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ABSTRACT

Several researchers have investigated the acoustic properties of rigid frame porous
materials. Models for these materials require the definition of several parameters, which
generally need to be measured through different procedures. The work presented in this
report concerns the behaviour of porous media when exposed to a normal incidence sound
field. A short section on the fundamental theory of wave propagation in air and in a porous
material is first presented. Then the approach based on simple concepts of wave
propagation in semi-infinite materials and in rigidly backed porous layers is described.
Relatively simple expressions for reflection and acoustic absorption coefficients are
derived and compared with established equations. The derivation is extended also to the
case of a layer of porous medium placed at a certain distance from a rigid wall. Some
practical considerations about common installation of layers of porous absorbing materials
are finally presented.
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1 INTRODUCTION

The use of sound absorbing materials is widespread, for example in noise control and
acoustic design of auditoria and rooms. Absorption mechanisms are divided into three
main groups, according to the way in which acoustic energy is dissipated:

« porous materials;

« panel absorbers;

= cavity resonators.
Porous materials, such as acoustic tiles and plasters, mineral wools (fibreglass), carpets,
and draperies consist of networks of interconnected pores within which viscous losses
convert acoustic energy into heat. The absorption effects of such materials strongly depend
on frequency: they are relatively small at low frequency and they increase to relatively
high values with frequency. They also increase with increasing thickness of the lining.
Mounting the material away from the wall can increase low frequency absorption
{Richardson, 1953).
A panel absorber mounted away from a solid backing vibrates under the influence of the
incident sound, and the dissipative mechanisms in the panel convert some of the incident
acoustic energy into heat. Such absorbers (gypsum sheetrock, plywood, thin wooden
panelling, etc) are quite effective at low frequency absorption (Richardson, 1953).
A cavity resonator consists of a confined volume of air connected to the acoustic field to
be controlled by a narrow opening or a small neck. It acts like a Helmholtz resonator,
which absorbs acoustic energy most efficiently in a narrow band of frequencies near its
resonance frequency. This type of acoustic treatment may be in the form of individual
elements, such as concrete blocks with slotted cavities. Other forms consist of perforated
panels and wood lattices spaced away from a solid backing with absorption blankets in
between. They provide useful absorption over a wider frequency range than is possible
with individual cavity elements (Kuttruff, 1973).

The research presented in this report focuses on the behaviour of the first type of absorbing
materials, i.e. porous materials. In order to understand their acoustic behaviour it is
necessary to investigate in detail their physical properties. This area has been extensively
investigated from a non-acoustical point of view, i.e. in the field of dynamics of fluids
{(Johnson et al, 1987 and Lafarge et al, 1997). Many researchers have tried to describe the
physics of these systems by modelling the behaviour of fluids inside the pores of the
material from a macro or microscopic point of view (Umnova et al, 2000). The theory in
this field is quite complex and simplification is necessary in order to connect it with the
practical applications of this kind of material. Work in this sense has been described by
Brennan and To (2001), and the purpose of the study presented in this report is to present a
complete and consistent analysis of rigid frame porous materials from a macroscopic point
of view, with a set of simple formulae and graphs to help engineers design and implement
acoustic treatments of this type.

Following this introduction, in section 2 the wave equation in air and then in porous media
is presented together with the relative harmonic solutions. Section 3 offers a detailed
insight into the absorption properties of porous materials. It starts with the general
definitions and representations of waves impinging a semi-infinite medium, characterised
by ideal zero dissipation, and then describes the case of a semi-infinite porous medium.
The same approach is used for a finite thickness layer with a rigid backing, where standing
waves are generated between a surface of the layer and the rigid wall. An interesting



extension of this work has also been studied, that is the case of sound transmission through
a finite thickness layer of porous material. Finally the case of a porous layer placed at a
fixed distance from a rigid wall has also been analysed, which represents a common
application in architectural acoustics.

Through the whole of this report only plane incident waves are considered and while
analysing waves impinging semi infinite and finite thickness layers of porous media the
assumption of local reaction is made. The ‘normal surface specific acoustic impedance’
depends on the form of the incident wave. In fact the normal component of the particle
velocity at any one point on the interface is influenced not only by the local sound
pressure, but also by waves arriving from all other points of the exciting medium.
Consequently in general it is not possible to specify unique boundary impedance,
independent of the amplitude and phase distributions of the incident wave over the
interface. As porous sound-absorbing materials are selected for their capacity to dissipate
sound energy efficiently, and therefore to attenuate propagating waves, acoustic
communication within such material is rather ineffective. Consequently in many cases it is
reasonable to assume that the particle velocity generated by incident sound at any point on
the surface of a material is linearly related only to the local sound pressure, and is therefore
independent of the form of the incident sound field. The material is said to exhibit ‘local
reaction’ and it can be characterised by unique surface boundary impedance. The condition
of zero tangential velocity is not applicable to an interface between two fluid media or to
that between a fluid medium and a fluid saturated solid. However this component of
particle velocity is not relevant to the transfer of sound energy across an interface, which is
a function of only the normal component (Fahy, 2001).



2 WAVE PROPAGATION IN AIR AND IN POROUS MEDIA

This section gives the basic definitions and equations of acoustic waves, first in air and
then in a rigid frame porous material. The aim is to describe the physical behaviour of
waves and analyse the parameters that characterise porous materials from an acoustical
point of view. The concepts of complex impedance, wavenumber and density are
introduced, which are applied in section 3 to the general case of a semi-infinite porous
material and then to the case of a finite thickness layer of porous material.

2.1 Acoustic wave in air

The linear, lossless wave equation for the propagation of sound in fluids with phase speed
¢ is (see appendix A and Kinsler et al, 2000):

1 92
Vip=5o7
c” ot

(2.1)

where p is the acoustic pressure at (x,y.z)
t is the time

and V> = o + J +
oax*  dy* o7’
handed Cartesian coordinate system of reference.

The particular case of harmonic motion is considered with reference to a plane wave,
which propagates in an isotropic medium. For homogeneous isotropic fluids the speed of
sound is a constant throughout the medium. Also each acoustic variable of a plane wave
has constant amplitude and phase on any plane perpendicular to the direction of
propagation. Assuming the plane wave propagates along the x-axis, the wave equation
becomes:

is the Laplacian operator in x, y, z directions of a right

*p 1 3%
YOO 2)

and, assuming harmonic wave propagation, the general solution can be expressed in the
following complex form

p(x,1) = Ae’ @ 4 Be/® (2.3)

where A and B are two arbitrary constants, « is the circular frequency and k is the acoustic
wavenumber (k=a/c). The actual sound pressure will be taken to be the real part of
p(x,1), even though this will be omitted throughout this report.

The associated particle velocity u(x,f) is, in this case, parallel to the direction of
propagation and therefore given by (Kinsler ez al, 2000}

u(x,t) = (Alp,c)e’™ ™ — (B/ p,c)e/ ™ (2.4)



where ©,is the density of the fluid.
The sound pressure given by equation (2.3) can also be divided into two components

p. = A’ and p_ = Bel (2.5)

which physically represent the sound pressure of positive and negative going waves
respectively, with reference to x=0.

2.2 Waves in a porous material

The derivation of the wave equation is now extended to the case of propagation of sound in
a porous medium. The particular case of a plane wave propagating in x-direction is
considered. The medified wave equation for plane wave sound propagation in gases
contained within rigid porous materials can be derived from the equation of mass
conservation and the momentum equation, as described in detail in Chapter 7 of reference
(Fahy, 2001). The conservation of mass results in the following equation

o \9p [ P YO
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where k is the effective bulk modulus of the gas, # the porosity of the material and u’ is
the cross-sectional average particle velocity. The bulk modulus refers to the ratio of
pressure to the decrease in volume and its inverse is the compressibility. Applying the
principle of conservation of momentum gives
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where ¢ is the flow resistivity and s is the structure factor. The presence of the porosity in
the first term of the right hand side of eq. (2.7) indicates that the average particle
acceleration within the pores of the material is greater by a factor A than the volume

I

. : o ou . :
acceleration per unit area which is represented by 5 In the case of harmonic motion
4

with circular frequency @, then equation (2.7) becomes
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can be considered as a complex density. Equation (2.8) shows that the harmonic pressure
and particle acceleration in a plane wave are not in quadrature inside a porous medium as
they are in free space. The ratio of the real to the imaginary part of the complex density
increases with frequency. This means that viscosity controls low frequency propagation
and inertia controls high-frequency propagation.

The modified plane wave equation

Differentiation of eq. (2.6) with respect to time and of eq. (2.7) with respect to x, and
elimination of the common term, produces the following modified plane wave equation:

’p (sp, \9°p (oh)\op
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The main effects of parameters 4, s and o , together with altered bulk modulus x , are:
1) to alter the speed of propagation of plane waves from its free wave value and
2) to attenuate the wave as it propagates.

Harmonic solution of the modified plane wave equation

The harmonic solution of the modified plane wave equation can then be written in complex
form as

p(x.1) = Ae TR lim or px,1) = Agl @9 (2.11)

where A is the complex amplitude. The complex wavenumber %’ takes the place of k in the
free wave equation (2.10), and it can be written in the following form:

K=p -ja, (2.12)

in which o is the attenuation constant and S 1is the propagation constant. The imaginary
component of the wavenumber &’ represents the real part of the exponent, and is referred to
as attenuation constant as it is responsible for the attenuation of sound. The real phase
speed of a plane wave propagating in a porous medium is given by @/ . Substitution into

equation (2.10) of eq. (2.11) yields

w’sp, jwoh
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which can be written as

K =EDp (2.15)

Substitution of this expression into eq. (2.8) gives an equation for the characteristic
specific acoustic impedance of a porous medium:

1
(= PW _po_[pk KX (2.16)
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which is complex, indicating that the particle velocity is not in phase with the pressure.

2.3 Summary

In this section the fundamental definitions and equations of acoustic waves have been
given. Distinction between the cases of waves in air and in porous materials have been
presented, with considerations about the influences on the main acoustic parameters:
density, speed of sound, wavenumber and impedance. The basic definitions and equations
presented here are necessary foundations for the work presented in the following section.



3 REFLECTION AND TRANSMISSION OF WAVES FROM ONE MEDIUM
TO ANOTHER

3.1 Introduction

The fundamental equations governing the behaviour of a plane wave propagating in the x-
direction, given in the previous section, are now applied to the cases where a propagating
wave in a medium impinges another medium of semi infinite and finite thickness. In both
cases calculations for the simple case of a medium with real density, specific impedance,
wavenumber and speed of sound are first presented. Next the case of a porous medium is
considered in which case these parameters are complex.

The reflection and transmission coefficients at the interface between the two media are
first introduced and equations for the standing waves inside the layer are then derived.
Reflection coefficients are also derived for the case of transmission through a finite
thickness medium placed at a certain distance from a rigid wall, as they are necessary for
the computation of absorption coefficients. Some of the results obtained are then compared
with established equations in order to verify the reliability of the model. Within the model
specific parameters concerning the physical and acoustical properties of a porous material
have been used and they are given in Appendix C.

3.2 Waves impinging a semi infinite porous material
3.2.1 Definitions

A simple representation of a propagating time harmonic wave in a generic medium 1
which impinges on a semi-infinitc medium 2 is shown in Figure 3.1 where g, and ¢, are
the density and speed of sound in the fluid on the left hand side respectively and o, and
¢, are the density and speed of sound in the fluid or porous material on the right hand side

respectively.
The wave impinging on medium 2 (incident wave) is partly absorbed/dissipated inside the
medium itself, and partly reflected.

medium 1 medium 2

4= pG

Incident wave

Reflected wave €

Figure 3.1 Representation of waves in a semi-infinite medium



For this system the reflection and transmission coefficients can be specified, as follows.
The interface reflection coefficient is defined as the ratio between the reflected and the
incident sound pressure

P P
p="L=-=L 3.1
; 3.1)

fzfzg (3.2)
where

p; = P/ 3.3)

p, = Pelterh (3.4)

p, = Be!“™® (3.5)

are the expressions for the sound pressure of the incident, reflected and transmitted waves
and P, P, and P are the relative complex amplitudes (phasors) for 7=0and x=0 at the
interface.

By taking into account the continuity of pressure and of the normal component of the
particle velocity at the interface between the two media (see Kinsler et al, 2000 for more
details), it is possible to derive expressions for both »and ¢

F=f2”h (3.6)
t=—2% (3.7)

where z, = p,c, and z, = p,c, are the characteristic impedances of the two media.

Now a distinction has to be made between two cases: first waves impinging a fluid of
different characteristics and second, waves impinging on a porous medium, characterised
by its complex density, impedance and wavenumber.

In the first case, the interface reflection coefficient r is always real. It is positive when
z, > z; and negative when z, <z,. Consequently at the boundary the acoustic pressure of
the reflected wave is either in phase or 180° out of phase with that of the incident wave.
When the characteristic acoustic impedance of fluid 2 is greater than that of fluid 1, a



positive pressure of the incident wave is reflected as a positive pressure. On the other hand,
if z, < z,. the positive pressure of the incident wave is reflected as a negative pressure.

The interface transmission coefficient ¢ is real and positive regardless of the relative
magnitudes of z, and z,. Consequently at the boundary the acoustic pressure of the

transmitted wave is always in phase with that of the incident wave.
In the second case the incident and reflected pressures are not always exactly in phase, and
thus the normal specific acoustic impedance may be a complex quantity

=2z +jz;, (3.8)

where z, is the resistance and z, the reactance. The general surface reflection coefficient
becomes

It DA (3.9)
(z,+z,)+ jz,

Furthermore, inside the layer there is dissipation, and thus the density and speed of sound
are complex quantities.

3.2.2 Representation of waves in the spatial domain

The harmonic time dependence is now suppressed for clarity, so that the expressions for
the incident, reflected and transmitted waves become:

p, = Be (3.10)
p, =P = ppeti (3.11)
p, = Pe' ™ =tPe*e (3.12)

They are plotted in Figure 3.2 for the general case of separation between two fluids, so that
both the impedances z and z,are real, and in Figure 3.3 for waves impinging a porous

material, so that pg,, k,, z, and ¢, are complex.

By comparing the two figures, the additional effects generated by the porous medium, of
amplitude decay through the medium itself and phase shift of the reflected wave, are
clearly seen.



ek, 0262k,

Incident wave
P; Transmitted wave
Reflected wave 2
I3

Figure 3.2 Incident, transmitted and reflected waves in a simple case of
separation berween two fluids (air/vapour)

P62k,

Incident wave

P

Transmitted wave
P
Reflected wave

Figure 3.3 Incident, transmitted and reflected waves in a simple case of
waves impinging a semi infinite porous material

3.3 Waves impinging a finite thickness medium

For a semi-infinite medium, waves are only reflected at the surface of the medium itself,
while transmitted waves are progressively dissipated inside it. In the case of a finite
thickness medium, the waves transmitted inside the layer are also reflected by the rear
surface. Thus, when considering a finite thickness layer of fluid or porous medium,
interface reflection and transmission coefficients for both directions have to be considered
(see Figure 3.4). Considering equations (3.6) and (3.7), and the notation shown in Figure
3.4, the following interface reflection and transmission coefficients can be defined:

Ly =2 L=z
=2 " F, =" (3.13)
3+ 2,
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;= t, = (3.14)
oty 1o +z
= ry =25 (3.15)
. - (3.16)
LT 23+ 2,
1 2 3 1 2 3
ha
? D :
12
< il
@—)— -
~-—
Frs
__..+ t23
—_—T
‘(“D £
—> -]

Figure 3.4 Schematisation of the interface reflection and transmission indexes at
the two surfaces separating media I and 2 and media 2 and 3

When dealing with finite-thickness layers of materials further reflection and transmission
coefficients, here indicated with capital letters, can be defined. As shown in Figure 3.5, the
overall reflection coefficient R at the left hand side of the layer includes the contribution
not only of the surface reflection, but also that of the waves inside the layer. The
transmission coefficient 7" is instead representative of transmission not only through an
interface (e.g. one of the two surfaces of a layer), but of the whole layer itself.

Figure 3.5 Reflection and transmission coefficients R and T
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If the layer of fluid or porous medium is rigidly backed, then coefficients r,, and ¢;, are

not defined, whereas r,; =1 (as z, is assumed to be infinite) and 2,; =0.

In the following subsections the reflection coefficient R for a rigidly backed layer of fluid
or porous material is first derived. In section 3.5 the reflection and transmission
coefficients (R and T) of a layer without rigid backing are then calculated, and finally
section 3.6 defines the overall reflection coefficient R for the case of a layer placed at a
certain distance from a rigid wall. For the last case, the locally reacting model applies, as
the air gap is assumed to have rigid partitions (Kuttruff, 1973).

In order to describe the behaviour of waves inside the layer, the sound pressure is
expressed in terms of two components: one due to positive going waves and another one
due to negative going waves, which are analytically derived in the following sections.

3.3.1 Positive going waves inside the layer

Considering the system shown in Figure 3.6, and assuming an incident wave p, = Pe ™",
the sound pressure due to the positive going waves inside the layer is given by:

+ —_ — Jkx gl Y - jk{d-x) — jkd -jkx}
p (x)_ Fpe ™ + {Pitme }{e €7 e + (3.17)
+{Btae™ fe My ey | W W }+

which corresponds to:

N e — jiex —jkad
p (x)_ Pitlze + ﬁtlle }{r21r23e }+ (3 18)
- jhr -jk2d - jk2d } '
+ {Ez‘ue }{r21r23e }{r211f23e + ..

where d is the thickness of the layer and % stands for &, (second medium). Then, writing
a=Pte™ and b=rne M, (3.19)

the expression for the sound pressure of the positive waves becomes

pt(x)=a+ab+ab® +ab’ +...= ‘:z(1-1~b+b2 +b° +...)= aib" . (3.20)

i=0

12



NasTy
Lipsly Fozs T2
pIClkl ipzcz k., ?
Incident wave 1 } g
f
Reflected wave € i\ Z
7 .
J~——-—-\~§ e
w O
P /
/ Negative
Efeczfdjons 1 é component
transmission C— — e e ] ! %
______________________________ N

—
T A

Figure 3.6 Schematic showing the reflected and transmitted waves in a finite
thickness layer with rigid backing

The sum for the series in equation (3.20) is

romdy

that is, in terms of travelling waves,

= fhyx
Bipe

_ —fk32d} )
I—yo e

p*(x)=

This is equivalent to writing:

p+(x)= P;Ilze—jkgx +p* (x){rn ™ Ty 2d} .

(3.21)

(3.22)

(3.23)

The sound pressure complex amplitude of the sum of all positive waves inside the layer in

x=0 1is then given by:

o )= £,
p( ) 1- 21}_238—_;%12:1'}'

13
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In the case of rigid backing, the reflection coefficient at the right hand side interface, r,;, is

equal to 1, and thus

pt(07)e —Fhe (3.25)

I- {rzle_jkz * }

If there is not much dissipation inside the layer to cancel the reflection from the rear
surface, then standing waves are generated inside the layer itself.

3.3.2 Negative going waves inside the layer

In the same way as in the previous subsection, the sound pressure due to the negative going
waves inside the layer is given by (see Figure 3.6)

p (%)= {Btzze_jkdrza ejk(d_x)}+ {P;tlze&jmrzs ejk(x_d)}{e+jer2; e 'ny ejk(x_d)}'f'
+{Pf1rue_ﬂ°dr23 eﬁ‘("“")}{e”"‘“r21 e ¥ Fag ejk(x"d)}gz”’“rz] e"jkdr23 ej"‘(x‘d)}+...
(3.26)

which corresponds to:

p(x)= {Htlzr%ejk(km }'*‘ {Hﬁz" e O } Jé"zz“” e }+ (3.27)

—jhx - jk2d }{ —jk2d }
+{erzrzse }{’il%e F31753€ +...

where d is the thickness of the layer and k stands for %, (second medium). Then, as done
for the previous case, the sound pressure can be expressed in the following form:

p (x)=adp’, (3.28)
i=0
where:
a=Pt,re™ ™ and  b=rnne M (3.29)
The sum for this series is again
p (x)=a L (3.30)
1-b
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that, in terms of travelling waves, can be written as

' o (x-240)
p-(x)z Fz"rlQ.rZBe ) (3.31)

- —ﬂcde}
1= yyrse

This 1s equivalent to writing
P (x)= Pryrne™ 0 + p (x){rmrzze_jkz * } (3.32)

The sound pressure complex amplitude of the sum of all negative waves inside the layer in
x =0, is then given by:

—jky2d
Blare

p %)= — (3.33)
I—r e ™

In the case of rigid backing the reflection coefficient at the right hand side interface, r,, is
equal to 1, and thus

prie)- T (334)

o —jka2d
l-r,e

3.3.3 Considerations on the reflection coefficient

As shown in Figure 3.7, the propagating waves are first transmitted through the layer and
then reflected towards the first medium and are travelling in the same direction as the first
reflections. By adding all the components coming out of medium 2 to the first reflections,
the actual outgoing wave is obtained.

By summing the complex amplitudes of the second order reflection at x=0, and
multiplying it by the corresponding transmission coefficient z,,, the complex amplitude of
the global second order wave, which is reflected back to the left hand side medium, can be
derived.
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Figure 3.7 Schematization of the direct and indirect reflection processes for a layer
with rigidly back right hand side

With reference to Figure 3.7, the sound pressures generated by the first three loops inside
the layer are given by

p,(0) = Pt e ™, e = Pt,r,e” " (3.35)
p,(0)= Pt r,e ™ r e M e = {pt,rpe ¥ Foure ™} (3:36)
p,(0) = {P;tlzr23e'ﬂ‘2d }{r’zlrﬂe"ﬁ‘ 2 }{r21 N R } (3.37)
By induction, the sound pressure due to the n-th loop is then given by
P, (0} = p, (O + p,(0) + p;(0) +... . (338

so that, as previously discussed, it can be expressed in terms of a summation of the type
p(0*)=a) b’ (3.39)
i=0

where a and b are those defined by equations (3.29) .
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The sum is therefore given by

—jkr2d
Fthe

P (07)=p(07) = “% - e—jkz?.d} |
27

(3.40)

It can be easily observed that this equation is identical to that for the sound pressure of the
negative going waves at x=0.

It is now straightforward to obtain the complex amplitude of the wave on the left hand side
of the layer interface, which is referred to as the indirect pressure p,,, by simply

multiplying it by the relative transmission coefficient #,,:

—jka2d
Bty e

B —jk32d} )
1 {rzlrz3e

Pna(07)=1,,p7(07)= (3.41)

The total sound pressure in medium 1, sum of the interface and second order reflections, is
given by

Puor ()= P, (3)+ Py (6) = (5 + 73 ) Poe™ = RBe™ (3.42)

where total reflection coefficient R is given by

—jla2d
R=ryy 41y = 1y +— 22— (3.43)
1= yurse ™ }
and
= piﬂd(o ) . (3_44)

The reflection coefficient R obtained with this formulation, has been compared with that
given by Kinsler et al. (2000):

1-4 |cosk,d + j| 22— | sink,d

1+ cosk,d + j L2 4 sin k,d
23 L L

; (3.45)
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where the formula for the reflection coefficient has been derived from the conditions of
continuity of the specific acoustic impedance at the boundaries between media 1 and 2 and
then 2 and 3.

3.3.4 Representation of waves in a rigidly backed layer of porous material

Considering first the particular case of a rigidly backed layer with a fluid characterised by
both real density and speed of sound, then the wave propagation and reflection are given in
Figure 3.8. The two plots show the incident and reflected wave components and the
standing wave in the layer with reference to the non-dimensional frequency (Brennan and
To, 2001)

Q=— (3.46)

where @, correspond to the @, defined for a porous material in Appendix C. It correspond

to the frequency at which the mass-like behaviour of a porous material starts to dominate
over the damping like behaviour. A detailed description of the parameters of the porous
medium considered in the simulation is given in the same appendix. The presence of two
discontinuity surfaces, i.e. the front face of the second medium and the rigid backing,
creates the conditions for standing waves in the layer.

x Q=10

Figure 3.8 Incident, transmitted and reflected waves for a layer of fluid with rigid backing,
characterised by real density, wavenumber, impedance and speed of sound for £2=1I (left)
and =10 (right). The x axis normalised to the wavelength in the second medium

In Figure 3.9 and 3.10 examples are given, instead, for waves impinging on a layer of
porous material for Q =10 and & =1, respectively.

18
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Figure 3.9 Incident, transmitted and reflected waves for a rigidly backed laver of porous

material, whose properties are listed in Appendix C (2=10)
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material, whose properties are listed in Appendix C (£2=])
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3.4 Acoustic absorption

The relation derived for the reflection coefficient R of a rigidly backed layer can be used to
evaluate the absorption coefficient for normal sound incidence, of the porous material
through the equation (Kinsler ez al, 2000):

A=1-|R] (3.47)

Figures 3.11 and 3.12 show four sets of plots for different values of the normalised
thickness d/4, (1,0.63, 0.21 and 0.1) of the porous layer with the incident, reflected and

standing wave in the layer at =10 (top plot), the real and imaginary components of the
reflection coefficient for 107 < Q <10° (centre plot) and the absorption coefficient for the
same frequency range. A is the wavelength corresponding to the circular frequency @,

defined in Appendix C.

The dash dot lines stand for the semi-infinite porous material case, and they represent the
asymptotic limit for large values of the thickness. What seems to be clear is that while
going towards smaller values of the thickness, the reflection and absorption coefficient
curves oscillates more and more, due to resonance phenomena. For higher frequencies, the
absorption coefficient becomes constant, which is around 1 for large thicknesses. This
value (from here on referred to as absorption plateau) reduces as the thickness decreases.
It has to be noticed that for simplicity the values of the normalised thickness in the plots
relate to the specific cases where the thickness of the material itself has a finite value.
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Figure 3.11 Sound pressure of the incident and reflected waves and of the standing wave in the layer for
£2=10 (top plots — x- axis normalised to the wavelength on the second medium), real and imaginary parts of
the reflection coefficient (centre plot) and absorption coefficient (bottom plot). Solid line: layer of finite
thickness d/A,=1 (left column) and d/A, =0.63 (right column). Dashed line: semi-infinite porous material.
Values of the normalised thickness relate to specific cases where the thickness of the material itself has a
[finite value

21



Layer of porous material (complex density) Layer of porous material {(complex density)
d/A=021, 2=10 diA, =01, 2=10

RAoaltR)
a

Rosl{Ry
o

10 10° 0

Figure 3.12 Sound pressure of the incident and reflected waves and of the standing wave in the layer for£2=10 (top
plots — x -axis normalised to the wavelength on the second medium), real and imaginary parts of the reflection
coefficient (centre plot) and absorption coefficient (bottom plot). Solid line: layer of finite thickness d/2, =0.21 (left
column) and d/A, =0.1 (right column). Dashed line: semi-infinite porous material. Values of the normalised
thickness relate to specific cases where the thickness of the material itself has a finite value |

22



3.5 Absorption and transmission of a layer of porous material without rigid backing

As shown in Figure 3.13, if the layer under study is without any rigid backing, there is also
a transmitted wave in the third medium.
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Figure 3.13 Schematization of reflected and transmitted waves for a finite thickness
layer of porous material, with no rigid backing

Positive and negative components in the second medium are expressed by the equations
seen in § 3.3.1 and § 3.3.2. The actual sound pressure amplitudes will be reduced due to
the transmission of sound energy to the third medium. In order to derive the transmitted
wave in the third medium, the sound pressure at x =d needs to be derived. In a similar
way as for the wave retransmitted in the first medium (Figure 3.7), the sound pressure of
this wave can be derived by evaluating the sound pressure of the positive component at
x =d (see Figure 3.13), and then multiplying it by £,,, as follows

Pt t.,.e "
+ g+ )= + d— — iv12%23
p ( ) LypP ( ) 1- rllrzse—jklzd}

(3.48)
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Thus, considering for simplicity a new reference system with a z-axis with the origin in
x=d (see Figure 3.14) the expression for the outgoing wave (after transmission through
the layer) is:

Pt 1,.e " e
p(2)=—FE—— e (3.49)
I rne e }

—_—
—
Pi
———
P2
nﬁ——ﬁ
Ps

Figure 3,14 Schematization of reflected and transmitied waves for a finite thickness layer
of porous material with no rigid backing

Figures 3.15 and 3.16 show the same plots given in Figures 3.11 and 3.12 for a layer of
absorption material without rigid backing. The dash dot line represents again the reference
limit case of a semi-infinite porous material, while the solid line represents the case of
transmission through the layer, with normalised thickness 1, 0.63, 0.21 and 0.1. The x-axis
in the graphs is normalized to the wavelength 4> of the sound inside the layer. It can be
noticed that at high frequencies the limiting value for the absorption coefficient is 1 for
every thickness of the layer, but differences can be observed at low frequency, where the
absorption seems to be inversely proportional to the thickness of the layer. In this case the
sound energy is not only dissipated inside the layer, but it also travels through the layer.
Besides this, lower frequency means greater wavelength, and if the incident waves impinge
upon a thick layer, it is more likely for them to be reflected rather than to be transmitted,
and vice versa for a thin layer. In the case of rigid backing reflections from the wall can be
also retransmitted again in medium 1.

An extension of this work results in the definition of a transmission coefficient 7" as
previously pointed out and shown in Figure 3.5:

(3.50)

where F, is intended to be the amplitude of the wave in medium 3 at z=0 or x=4d.
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Figure 3.15 Sound pressure of the incidens, reflected, transmitted waves and of the standing wave in the layer
Jor$2=10 (top plots — x- axis normalised to the wavelength on the second medium), real and imaginary parts of the
reflection coefficient (centre plot) and absorption coefficient (bottom plot). Solid line: layer of finite thickness
d/A=1 (left column) and d/A,=0.63 (right column} with no rigid backing. Dash-dotted line: semi-infinite porous

material
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Figure 3.16 Sound pressure of the incident, reflected, transmitted waves and of the standing wave in the layer
for2=10 (top plots — x- axis normalised to the wavelength on the second medium), real and imaginary parts of the
reflection coefficient (centre plot) and absorption coefficient (bottom plot). Solid line: layer of finite thickness
d/A=0.21 (left column)} and d&/A,=0.1 (right column) with no rigid backing. Dash-dotted line: semi-infinite porous
material
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3.6 Absorption of a porous layer at a certain distance from a rigid wall

In the case where the layer of porous material is not fixed over a rigid backing, but is
placed instead at a certain distance from it, a standing wave is generated also in the air gap
between the porous medium and the rigid backing. After transmission back again in the
porous layer, a new component arises in medium 1 and again it has to be summed with the
first reflection and the “second order” reflection component, arising from the standing
wave in the porous medium. In this case the reflection coefficienr R has thus a new
component.

3.6.1 Waves in the air gap between the porous material and the rigid backing

A representation of the system with a layer placed at a certain distance from a rigid wall is
given in Figure 3.17.

Figure 3.17 Schematisation of a layer of porous material of thickness d; placed at a
distance dy from a rigid wall
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The expressions for the positive and negative going wave components in the air cavity
between the layer and the rigid wall can be derived from eq. (3.22) and (3.31) respectively,
bearing in mind that the incident wave relative to the cavity has obviously a different
complex amplitude as compared to the original incident wave P;. The various components
will be indexed with reference to the notation shown in Figure 3.15. As in § 3.5, two
reference systems will be used (x and z variables). For the waves in the cavity then

I - jkaz
p1+ (Z)= P :t236 (351)

2
_ — ks 2d, }
1 {r 32134€

Jks(z-2d2}

I

1‘“( )“ P 1yuhe

p &)= —iky2d, |7
1= {7 }

(3.52)

where P' = p*(d”) is the complex amplitude in x=4d~ and t,P' is the actual complex

amplitude of the incident wave for the waves of index I (amplitude in x=4d *). The
expression for the sound pressure in the cavity is thus

Plalz)=p" (2)+ " (2). (3.53)

If the waves retransmitted in medium 2 are now considered (index II in Figure 3.17), then
the positive going wave component can be written as

ot I,  —jkd - jk, o, -jkd -k - Jky (d— — Jkyd —Jky
P (x)zP; Ine e J"x"'{Pf tpe e “X}{e Fal x)rzse e J'x}"'

O, —jkod_ —jksx }{e_ ey (d—x) - fld —Jlox }{?— o (d-x) w jad = jieyx }
+{F§ i€ e Fy € r, € ¥y € K e +...
(3.54)

which corresponds to:

ot/ \_ pll — ey (rtd) {PII - jfc-_,(x+d)}{r —jn2d }
p (x)—P} Iphe T e 21723 € + (3.55)

1 < ey (x+dd) ~jka2d }{ — k24 }
+ {E f3o751€ Foifas € Vol € e
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and then, using the same formula for the series summation of eq. (3.39),

+ Pz, p, e D
1 i '
x) = _ (3.56)
P (x) A-r,7,, e—_,rko_.Zd)
where
1 = jky2dy
P = (0" = — B (3.57)

_ - jky2d, }
1 {"327'343

In the same way, the negative going wave component can be written as

n( \_ pl, je(e-d) | Jpll, jkya-d) }{g—ﬁc:x - Jadd —ﬂc«.(x—d)}
p (x)— Bte +{Pi Ine €77 g€ +

I, jilx-d) k— Jen — jlend = jhey (2= }{e_ JRax = fheodd — ey (x—dl) }
+ {P t,€ Ty € tyy € e e + ..

(3.58)
and
[ _ pl ko {x~d) )| Jka (x—=d) =Jjks2d
P (x)'“a t:!zej : +{Pi I3€ 721723€ }+ (3.59)
I, ko (x~d) -y 2d - 2d ’
"'{Pi t,e" }521"23" 2 }{rmrzse ! }"'
which becomes
- Pz, et
Pt (x)=—1"2 (3.60)

_ -jk-_,_Zd} ’
R T

The same method is applied to derive expressions for the waves with index HI and IV in
Figure 3.17, so that

jig - jkaz
P zt23€

m+
" ()= — (.61)
1= {raree 2% |
_ Prﬂt r eﬁ‘s(z—Zdz)
pm (Z)= i ©23734 — , (362)
1"{’32"343 i 2}
where P}m = pH+ (d™) and for the IV index waves
14 — jiey (24}
PV ()= T T (3.63)

_ ks 2d }
1-y s €
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v Jhy (x—d}
pIV_(x)__: B tye (3.64)

_ —jkzzd}
1 {rurzse

where PV = p™ (0%). It is now possible to define an additional component for the

reflection coefficient due to transmission towards the medium one from the standing wave
H as shown in Figure 3.17

1+ - jk22d = jky2d,
I Oty _  tplytylnnge e’ (3.65)

—jk,2d ¥ —jks2d, Y
F (l—rane 2 )'(l—rnrue s )

This reflection coefficient is representative only of the second group of reflections. By
referring now to the waves indexed as IV, the coefficient r" can be derived

IV ry— 2, 2 2 —jkydd - jhydd,
VP Oy folaly t Pyl @ e (3.66)

4 - - ~Jky2d F( — ~jky 2a; )2
£ (1 o€ [ —r,re

which can also be written as

—jly2d — jky2d —jkr2d - Jis 2,
v _ Latplaslanhia€ € LylssPo T3 € (3.67)

_ —jkzzd)z(__ —-jk32d3) (_ —ijZd)(_ —jkgzdz)'
(1 21138 L~ rar,e l—ry e L= r,r,e

It may be noticed that the first factor in eq. (3.67) is equal to r". By extending this
procedure to higher order reflection-transmission effects within and between the two
layers, the higher order terms in the series for the reflection terms " and 7" are found.
The sum for these two series is the same as in the previous cases

1

FairGap = a[—l— b)’ (3.68)

where, in this case,

—jka2d - jky2d,
LiolotsatinTie€ e (3.69a)

_ —jka2d By _ - jiy 2ds )
(1 L€ )2(1 F3pF€

~jley2d - jky2d,
b = t23t32r21r;i4e e’ (3 69b)
(1_ —jkzzd) (1__ —jk32d2) ) ’
1317338 F3a73,€
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In conclusion, the reflection coefficient due to the propagation of acoustic waves in the
layer of porous material and in the air gap is given by

—jha2d - jhy 2

Lolartastsatasl €
-k 2d - Jk;2d,
_ o, ., _ (1_’"21”23"3 )2(1_52”343 ’ ) (3.70.a)
rAG =" +r +..= ~jk2d - jky2d, . :
1- Loats i T34€ €

_ —jkﬂa‘) ( _ —jk32d2)
(1 Py Fy€ 1 —r,re

or

~ j2Ukod+ksds)
he . (3.70.b)

r —_—
AG . . N X
ik, _ . — ik, - j 2 kol +hrd
(l—rle jo2d ] (l—rze Jhy 24ty )— (I—rle ﬂ‘-”)—;@e Akt rhyd, )

The total reflection coefficient is now given by the sum of the previously derived ones, r, ,

and r,., and the first reflection one 7,

Ry =hy+t, 7 (3.71)

This reflection coefficient can be used to evaluate the absorption coefficient of a layer of
porous material placed at a certain distance from a rigid wall, according to eq. (3.47). In
Figure 3.18 a few plots are given of the absorption coefficient for different values of the
thickness of the layer and of the cavity depth. The absorption coefficient

2

R (3.72)

tot

Amz =1-

is represented (thin line), together with the reference semi-infinite case (dash dotted line),
and the case of rigid backing (thick line). Figures 3.18 a) and 3.18 b) refer to different
values of the normalised thickness d/(A, /4). For a given thickness of a porous layer, the

introduction of an air gap with the rigid backing does slightly improve the low frequency
absorption but it also increases the low frequency oscillation of the absorption due to
resonant effects. It can be seen that the height of the absorption plateau is only dependent
on the thickness of the porous layer.

The frequency values at which minima of absorption occur are connected with the total
thickness of layer and cavity depth and the acoustic wavelength as shown in Figure 3.19
and Table 3.1.
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Figure 3.18 a) Absorption coefficient curves for d=d/(AJ4)=1 and three different values of dy/d, (0.05; 1;
2)-thick line; reference rigid backing case-thin line; semi-infinite case — das dotted line
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Figure 3.18 b) Absorption coefficient curves for d,=di(A/4)=0.5 and three different values of d,/d, (0.05;
1; 2)-thick line; reference rigid backing case-thin line

Calculus graph
£ A =(d +d,)*2 By 1.04 1.08
€2, A, =A412 N 2.08 2.16
Qs A =413 3.12 3.23

Table 3.1 Comparison between the values for the non-dimensional frequencies § at which minima
occur (deduced from the graph below) and the ones calculated with the reference acoustic
wavelengths A, A» and Ay (wavelengths for which the amplitude is zero at the front surface of
the layer)
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Figure 3.19 Frequencies of minimum absorption (d/A=0.1 and d:/ A, =0.63)

3.6.2 Plateau height

For both the rigid backing and the air gap case, the absorption at high frequencies oscillates
around a constant value (plateau). The curves shown in Figure 3.20 represent the values of
the plateau against the normalised thickness for different values of the normalised cavity
depth d,/d_,. , where d___is the maximum value considered corresponding to 20 cm.
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Figure 3.20 Plateau height plotted against the normalised thickness di/d, for different

values of the normalised cavity depth. d,[d .. = 5%, 30%, 55% and 100%
(linear and icgarithmic scales)

All the curves presented so far concerning the plateau and the absorption coefficient are
based on simplified formulae for the normalised acoustic impedance and wavenumber (see
appendix C). Using these formulae allows for simple calculations, but can bring to
underestimation of the damping of the material.
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Figure 3.21 shows the real and imaginary parts of the effective density, defined as
(Brennan and To, 2001)
i
Pe__ 1+—_%-— 1+j£2£4— : (3.73)
P, j& 2

. . 8o k . . . .
for increasing values of M = h;;zo , where «_is the tortuosity, %, is the viscous

permeability, & the porosity and A is the characteristic viscous dimension (see also
Johnson er al. 1987).

10 10" 1w’ W' 1t
o

Figure 3.21 Real and imaginary parts of the effective density for increasing values of M, rigid backing case

Figure 3.22 a) Absorption coefficient curves for increasing values of M (0; 0.5; 1; 2; 3; 5 respectively) and
for di=d/A,=0.02. The curve with the plateau corresponds to M=0; rigid backing case

w® w 1¢* ' +f

Figure 3.22 b) Absorption coefficient curves for increasing values of M (0; 0.5; 1, 2; 3; 5 respectively) and
for d=dIA=0.1. The curve with the plateau corresponds to M=0; rigid backing case
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The curves of the imaginary part can be considerably different in the high frequencies
region for values of M greater than zero. The damping effect of the porous medium is thus
not negligible as compared to the mass of the system and the absorption coefficient can be
remarkably increased in the same frequency region, as shown in Figures 3.22 a) and 3.22
b) for the rigid backing case. The absorption curves plotted so far all refer to the simple
case of M equal to zero and represent a lower limit case for the general behaviour of rigid
frame porous media.

Figure 3.23 a) and 3.23 b) shows equivalent plots for the case of an existing air gap and for
values of M greater than 0, where d, is the normalised thickness of the layer and D, is the
normalised sum of the thickness of the layer and the cavity depth.
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Figure 3.23 a) Absorption coefficient curves for increasing values of M (0; 0.5; 1; 2; 3; 5
respectively) and for d,=d/A=0.033 and D,=0.63; air gap case
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Figure 3.23 b) Absorption coefficient curves for increasing values of M{(0; 0.5; 1;2; 3; 5
respectively) and for d=di1=0.33 and D,=0.63, air gap case

3.6.3 Peaks of absorption

An interesting analysis can also be done on the frequencies at which the first peak of
absorption occur while varying the thickness of the layer or the cavity depth. This analysis
has been done both for the case of rigid backing and of air gap between the layer and the
rigid wall.
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Figure 3.24 shows plots of absorption for the rigid backing case and for different values of
d,, which is the thickness of the layer. Figure 3.25 shows instead the plots of absorption

for the case with fixed value of d, (air gap), for different values of d, .

Figure 3.25 Absorption curves for different values of the thickness of the porous layer.
Layer at a fixed distance from a rigid backing

Analytical expressions have also been derived for the resonance frequencies in the cases of
rigid backing and air gap. It has been found that in the general case of separation between
two layers of air, the peaks occur at frequencies for which the thickness of the second layer
(rigid backing case) or the value of D (air gap case) equals the quarter wavelength of the
standing wave inside the second layer, so that

noc 7 c

aJ =—-— and @ = — 3.74

PekRE ) g PG 2 (d,+dy) 374

where @, .and @, are the circular frequencies for peaks of absorption respectively

for the two cases examined (RB stands for rigid backing case and AG for air gap case) and ¢
is the speed of sound in air.
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In other words the phase speed in the porous medium is always less than the free wave
speed and this feature has a vital influence on sound absorption by porous sheets mounted
on a reflective surface, because they exhibit absorption maxima and minima at the acoustic
resonance and antiresonance frequencies, which correspond respectively to odd multiples
of one quarter wavelength and multiples of one half wavelength of the sound propagating
within the porous material.

For a given total thickness D =d, +d,, the absorption increases with the thickness of the

porous layer and the highest absorption is given for d, =D and d, =0, i.e. by occupying
all the thickness D with porous material (limit case of simple rigid backing).

It can be noticed (see Figure 3.26) that when D is fixed, the peak frequency Q peak ug 18
practically constant, whereas for the case of fixed d, it tends to move towards smaller
values for greater values of d,. It can also be noticed that the higher curve (limit case of
zero cavity depth) assumes the same shape as the curves for the rigid backing case

(d,=D,d, =0).

0 w0 [ 10 w

c)
Figure 3.26. Absorption curves for different values of D,= DIA, :a)D,=0.25; b)D,=0.52; ¢)D,=0.63.
Different curves in the same plot refer to different values of the normalised thickness di/(A4/4)
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Finally, in order to compare the overall absorption provided by a rigidly backed layer with
the one provided by the case with air gap, integration of the absorption curves has been
done over the range of frequency 107 <Q<10”and the result is plotted in Figure 3.27. The
difference between the two curves, which have been normalised to the integral of the semi-
infinite case, can be seen only for really low values of ;. The integral curve for the air

gap case remains practically the same when varying d,.

e

intagrati{latogrt sominlinito)
©
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Figure 3.27. Integrated absorption ratio per unit infegrated absorption of a semi-infinite porous medium
for a frequency range Q = 107 to Q = 107 for the rigidly backed layer (solid line) and porous layer with
airgap (dash dotted line)

3.7 Porosity

The value of the impedance used so far in this model refers to the characteristic impedance
inside the pores of the medium. It is representative of the impedance of the medium for
values of the porosity close to 1. For decreasing values of the porosity, it becomes less

representative. Therefore the characteristic impedance Z. should be used:

4

Z
7! =2c 3.75
h (3.75)

where & is the porosity.
Figure 3.28 shows plots for the real and imaginary parts of the characteristic impedance

where the thick line represents Z. for % =04, and Figure 3.29 represents the real and

imaginary parts of the corresponding reflection coefficient. Finally Figure 3.30 shows the
absorption coefficient plots for the two cases. The reference semi-infinite plots are given

for the two cases of Z_ and Z
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Figure 3.28 Real and imaginary part for the acoustic impedance: Z, thin line, Z’, thick line (h=0.4)

Figure 3.29 Real and imaginary part for the reflection coefficient: R for Z, thin line, R for Z’. thick line
(h=0.4)The dash dotted lines represent the corresponding cases for the semi-infinite medium

-
oz} -

0" 10! 1wt
[~}

Figure 3.30 Absorption coefficient: A for Z, thin line, A for Z° thick line (h=0.4).
Corresponding reference semi infinite cases dash dotted lines

The height of the plateau for the semi-infinite case when using Z; instead of Z_ (thick
dash-dotted line in figure 3.30) is given by:

4h

plateau = (1+h2) (376)
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4 CONCLUDING REMARKS

The study presented in this report is concerned with the acoustic properties of rigid frame
porous materials. The aim was to investigate the acoustic absorption effects of such kind of
materials by using simple formulae based on a macroscopic model of the absorption
effects. After an introduction on theoretical foundations of wave propagation, the wave
equations inside the material were derived, with reference to a semi-infinite or finite
thickness medium. The sound pressure inside and outside the material can, in fact, lead to
the definition of reflection and transmission coefficients. Distinction has been made
between two kinds of coefficients, i.e. those concerning a single interface between two
media, and those concerning a finite thickness layer.

In the case of a layer with rigid backing, reflection coefficients have been compared with
established relations and have been used for the computation of absorption coefficients. It
can be seen that acoustic absorption for these kinds of materials grows from 0 to a plateau
value as the frequency rises.

An extension of the work first concerns the study of sound transmission through a finite
thickness layer and then the analysis of the absorption of a layer placed at a certain
distance from a rigid wall. Transmission through the layer causes the absorption coefficient
to assume higher values in the low frequency region, due to the absence of reflection from
a rigid surface. The analysis has also highlighted that the thinner the layer the greater is the
absorption coefficient.

For the case with an air gap between the layer and the rigid backing, results show that the
behaviour is to some extent similar to the case of rigid backing. Indeed for a fixed cavity
depth the height of the plateau is the same for the two cases. In contrast, for a fixed
thickness of the layer, the absorption curves for the air gap case show the first peak of
absorption at lower frequencies. It is the thickness of the layer that governs the value of
absorption at high frequency. The air gap is, instead, responsible for shifts of absorption
peaks in the frequency range. A particular case is that of a fixed sum of thickness and
cavity depth: while varying simultaneously these two parameters in order to have a
constant sum, it can be noticed that the frequency of the main peak is almost constant.

With this work a general formulation based on propagating waves has been derived.
Furthermore, sets of plots that characterise the most important absorption features and
mechanisms have been clearly highlighted. A set of practical conclusions for the design of
absorption treatments are also given which can be summarised with the following points:

1. 1f the target is to have a good absorption with little space available, one has to bear
in mind that the thicker the porous layer, the higher is the absorption at high
frequencies;

2. besides this, the frequency at which the peak of absorption occurs does not
practically change while keeping constant the sum of layer thickness and cavity
depth;

3. the increase of the air gap, given a fixed thickness of the layer, is quite effective in
moving the peak of absorption towards lower frequencies as compared to the one of
the rigid backing case. Though, if the cavity is deep relative to the thickness of the
porous layer d then there may be several frequencies for which the cavity depth is
alternately one quarter wave, then one half wave, deep. This can cause the
absorption coefficient to vary between low and high values.
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APPENDIX A

DERIVATION OF THE ACOUSTIC WAVE EQUATION AND SIMPLE
SOLUTION

In order to derive simple equations that describe sound propagation in a fluid a few
assumptions are necessary. First the fluid is considered as lossless, so that there are no
dissipative effects due to viscosity or heat conduction; for waves of relatively small
amplitude, changes in the density of the medium can be considered small compared with
the equilibrium state.

The well-known egquation of state can be simplified if the thermodynamic process is
restricted. This is the case of perfect gas isothermal conditions:

PP =plp, (A1)

where P is the instantaneous pressure at the generic position (x,y,z)
Py is the equilibrivm pressure at (x,y,z)
© is the instantaneous density at (x,y,z)
Ppis the equilibrium density at (x,y,z)

or, assuming adiabatic conditions:

PIF =(plpy)” (A.2)

where yis the ratio of the specific heats.

For fluids other than a perfect gas, the adiabatic case becomes more complicated and it is
preferable to determine experimentally the isentropic relationship between pressure and
density fluctuations. This relationship can be represented by a Taylor’s expansion around

0 = p, (Kinsler et al., 2000):

oF 1{3%P

where the partial derivatives are determined for the isentropic compression and expansion
of the fluid about its equilibrium density.
If the fluctuations are small, only the lowest order term in (0 — p,) need be retained. This

gives a linear relationship between the pressure fluctuation and the change in density

oP
P=%+(a—p—J (p-p)  P~By=B(o-p,)!p, A4
P
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where B = p((dP/dp), is the adiabatic modulus. Then:
p=Bq (A.5)

where ¢ =(p— p,)/ p, is the condensation at (x,y,z) and p=P~F,.

The other important relationship between the particle velocity and the instantaneous
density is the equation of continuity.

Imagine a small rectangular parallelepiped volume element dV = dx dy dz, which is fixed in
space and through which elements of the fluid travel. The net rate, with which mass flows
into the volume through its surface, must equal the rate with which the mass within the
volume increases. The net influx of mass into this spatially fixed volume resulting from
flow in the x direction 1s

|:pux —[ pu, +a(—pu-"—)~dx):|dydz = _Q_(_gu_x)dv (A.6)

ox X

where u_is the velocity component in the x direction.

o, R

S>> pu +de

dz * ox
L

Figure A.1 Flow in the x direction through a parallelepiped volume

By writing similar expressions for the influx in the y and z directions, the total influx can
be derived:

a_x ay aZ
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The rate with which the mass increases in the volume is (0p/dt)dV . The net influx must
equal the rate of increase:

—aﬁ+v-(pu) =0 (A.8)
ot

Then, if we write p = g,(1+g), and assume g is very small gives:

po%+v-(pou) =0 (A.9)

The simple force equation: Euler’s equation

According to Newton’s second law, the net force df, acting on the same fluid element dV
containing a mass dm of fluid, is:

af,=| P~ P-{-a—de dydz=—-§—]f-dV (A.10)
ox ox

By taking into account the analogous expressions for df; and df;, as well as the presence of
the gravitational field (with a force godV ), we can write:

df =-VPdV +godV (A.11)

In order to obtain an expression for the acceleration, it is possible to start from the Taylor’s
expansion of the particle velocity, which is a function of both time and space. Thus when
the fluid element with velocity u(x,y,z,#) at position (x,y,z) and time ¢ moves to a new

location (x+dx, y+dy, z+dz) at a later time #4d?, its new velocity is expressed by:

u(x+ude,y+udi, z+u,dni+dr)=u(x,y,z,1) +-aﬂ u,dt +§E u,dt +@uzdt +@ dt (A.12)
ox dy 0z ot

Then the acceleration becomes:

w(x+udt,y+u dt,z+u dt,t+dty—u(x,v,z,t
azgmo( LAt ytu, d; Y—ulx, y,z,1) (A.13)
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or

=-a£+ux§-‘-l-+ au+ au*a—u+(u-¥7)u (A.14)
ot ox

a Mya—y Mza—z— 3

Since the mass of the element is odV we obtain (from equation A.11):
ou
~VP+go=p ~é~t—+(u-V)u (A.15)

This is the so called Euler equation with gravity. In the case where there is no acoustic
excitation, go, =VPF,, and thus VP =Vp+gp, (asVP-VE, =Vp), and so

—-in+gq= (1+q)(%—l:+(u-V)u] (A.16)

0

If we now make the assumptions that |gq| <<|Vp|/ o, |g| <<1 and that |(u-V)u| << |ou/df],
then |gg| <<|Vp|/ o,

P =-vp (A.17)

The linear wave equation

The linearized equations (A.5) (A.8) (A.17) can be combined to obtain a single differential
equation with one dependent variable, to give

V{p—]=—vzp (A.18)

where V-V = V? is the three dimensional Laplacian operator.
If we take the time derivative of (A.9), and consider space and time as independent and

that gy is only a weak function of time, gives

9 Ju
poa—rjiq-v-(po E]:o. (A.19)



Combining the equations (A.18) and (A.19) gives

d%q
Vip = p, -~ (A.20)

As the condensation can be written as ¢ = p/ B, and as B is a weak function of time, the
linear, lossless wave equation for the propagation of sound in fluids with phase speed c is:

=18?"119

Vip=— A21
P e A2D)
where c is the thermodynamic speed of sound defined by
=L (A.22)
Po

The above derivation did not require a restriction on B or gy with respect to space, therefore
it is valid for propagation in media with sound speeds that are functions of space, such as
found in the atmosphere or the ocean.
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APPENDIX B

COMPLEX AND EXPONENTIAL REPRESENTATION OF HARMONIC
FUNCTIONS

One of the most useful ways of describing simple harmonic motion is obtained by
regarding it as the projection of uniform circular motion onto a perpendicular plane
(French, 1971), as shown in Figure B.1.

Figure B.1 Representation of projection of circular motion

Referring to Figure B.1, the instantaneous position of the point P is then defined by the
constant length A and the variable angle 6. By taking the counterclockwise direction as
positive, the actual value of &can be written:

6=wt+¢, (B.1)

where ¢ is the value of @at ¢ = 0. Then the displacement of the actual motion is given by:

x=rcosb =rcos(wt + @) . (B.2)

The circular motion defines SHM (simple harmonic motion) of amplitude A and angular
frequency @ along any straight line in the plane of the circle. By considering the y-axis
perpendicular to the real physical axis, it can be observed that the rotating vector OP
defines, in addition to the oscillation along x, an accompanying orthogonal oscillation
along y, such that

x =rcos(at+ @)

. . (B.3)
y = rsin{awt + @)
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The rotating vector, with tail anchored in O and tip corresponding to the peoint P rotating
with constant angular speed @ in Figure B.1, has the polar coordinates (r,8). The
rectangular (Cartesian) components of this vector (x,y) are defined by the equations:

xX=rcosb
(B.4)

y=rsinf

The complete vector r can then be expressed as the vector sum of these two orthogonal
components:

r=x§+yj=rcos9 §+rsin6’j (B.5)
where i and j are the unit vectors in the x and y directions respectively.
However, a convenient form of describing rotating vectors, e.g. phasors, is given by the

complex notation. In this case the x-axis represents the real axis and the y-axis the
imaginary one, as shown in Figure B.2.

imaginary

real

Figure B.2 Gaussian representation of a rotating vector
In this way the vector can be written as

r=x+jy=rcos6+ jrsiné (B.6)
where x is the real component, y the imaginary one and j=+/-1

The exponential complex notation can be used, upon which a complex number may be
described by the expression:

r=re’’ = rcos@+rjsin@ B.7)
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where, as previously x =rcosé6 and y=rsiné and thus

X Ztanf and r=qxt+y° (B.8)
¥y

This notation is widely used as it is far simpler than the previous one (with sine and cosine)
in the development of algebraic and analytical operations.

Solution for the simple harmonic motion equation

The relations presented so far can now be used to obtain a solution for the simple harmonic

motion equarion.
The linear differential equation, which represents the motion of a simple oscillator is:

d*x

di*

+wix=0 (B.9)

where @, is the circular frequency of the oscillatory motion
A general approach to solving these equations, is to assume a solution of the form

x=Ae? (B.10)

Substitution gives ¢~ = —-a)o2 or ¢ == ja, . Thus the general solution is

x=Ae™ + A (B.11)

where A, and A, are to be determined by initial conditions x(0)=x, and dx(0)/dr =u,.
This results in two equations:

A+A=x, and A-A=—2 ="Ih (B.12)
) J Wy Wy
from which
A=tr -2y and A=l +d% (B.13)
2 @, 2 oM

are complex conjugates. Substitution of A, and A, into equation (B.11) yields:
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U .
X=X,co80,t+—2sinw, . (B.14)
(00

It can be noticed that satisfying the initial conditions caused the imaginary part of x to
vanish. In practice it is unnecessary to go through the mathematical steps required to make
the imaginary part of the general solution vanish, for the real part of the complex solution
is by itself a complete general solution of the original real differential equation.

This means that of a general solution of the form

x=Ae’™ (B.15)
where A=a+ jb, only the real part is considered
Re{x }=acosw ¢ —bsin ot (B.16)

The expression exp(jw,t) may be thought of as a phasor f of unit length rotating
counterclockwise in the complex plane with angular speed @,. Similarly any complex

quantity A=a+ jb may be represented by a phasor of length A=+a’ +5*, making an

angle ¢ = tan'l(éJ counterclockwise from the positive real axis. Consequently the
: a

product A exp(jw,t) represents a phasor of length A and initial phase angle ¢ rotating in
the complex plane with angular speed @,. The real part of this rotating phasor (its
projection on the real axis) is

Acos(w,t +¢) (B.17)

and varies harmonically with time.
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APPENDIX C
DEFINITION OF THE VARIABLE USED IN SECTION 3

In section 3 a few variables have been introduced, which derive from the work in (Brennan
and To, 2001). They mainly concern impedance and wavenumber as function of the
normalised frequency defined in § 3.3.4. These definitions include some parameters which
refer to physical and geometrical properties of porous materials (Johnson ez al., 1987,

Lafarge et al., 1997).
The definition of wavenumber and impedance is derived from the definition of effective

density:

1
L _ 1+_l(1+jg—j‘£)2

Pl jE 2
where
Bk, . . . :
M= TIAT is the non-dimensional shape factor that depends on the microstructure of the
material,
a_ is the tortuosity

h is the porosity
¥ is the ratio of specific heats

k=2
)
¢, 1s the speed of sound in air
=% with @, = h .
@, k, 0.,

The complex wavenumber with M set to zero is defined as

k= ko[ “JT {(Q2 ) +9}2 - ]((92 ) —QT C.1)

2Q

The complex impedance with M set to zero is defined as:

1 1
1

Z = zo( e f [(Q2 s1f+ .QT - _]((.Qz +1f —QT (C2)

212
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Specific values for the parameters are those given in table C.1.

Porosity A 0.4

Viscous permeability %, 1.5e-9m"
Tortuosity 1.37

Density g, at 20 C 12kgm”
Dynamic viscosity nat 20 C 18.22 e-6 Ns m™
Ratio of specific heats 1.4

Table C.1 Values of the parameters used in the definitions of
wavenumber and impedance

These definitions apply to the general case of a semi-infinite medium and they have been
used in the present work.

In the case of a layer with rigid backing, the normal incidence impedance is defined as
follows:

Z
Z, = chot(kcd). (C.3)
This equation has not been used in the present study to calculate absorption coefficients, as
they have been derived from calculated reflection coefficient for the case of a porous

material with rigid backing. However results obtained have been compared with those
gained with this formula and have proved to be equal.
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