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1. Introduction

The presence of bubbles in a medium can be detected by exploiting
their characteristic scattering behaviour, specifically using the fact that
they are resonant non-linear scatterers [1]. Various strategies have
been proposed for achieving this goal. The simplest methods look for
a resonant scatterer using a tonal probing signal. Such methods are
prone to ambiguities [2]. To avoid these ambiguities methods which
utilise the known non-linearities in the bubble’s behaviour have also
been proposed. These may probe the medium with a pair of tones (see
the ‘Combination frequencies’ section of this volume). In this paper
we discuss this problem from a system identification viewpoint and
discuss a method based on a general non-linear system model. This
approach uses a random excitation signal, so avoiding the need to
employ a chirp or step through a range of tones at different
frequencies, and yields a more complete picture of the non-linear
scattering behaviour of the medium under examination.

2. Linear System Identification

The problem of measuring the scattering from a medium can be cast as
a system identification proeblem in which both the input and output are
measurable, as depicted in Fig. 1. The general problem is to infer from
measurements of the x(t} and y(t) the character of the unknown
system. Specifically the system will be predominantly characterised
by a simple delay if the medium contains no bubbles (or other
significant scatterers), whereas if a bubble is present the character of
the system about the bubble’s resonant frequency will be more
complex.
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Fig. 1 System Identification




If the unknown system is assumed to be linear then th.e in?ut/ output
relation can be expressed directly via the co‘nvrjslumn integral or
alternatively as a product in the frequency domain, Le.

y(t) = Th(‘t) x(t-t)ydr or Y(f) =H({) X 1)

where h(t) is the system’s impulse response anc} Y() denqtes the
Fourier transform of y(t). Such a linear system 1s characterised by
either its impulse response, h(t), or its transfer function, H(f).

There is a plethora of techniques for measuring the transfer fur}ction
associated with a linear system and these techniques can be z_1pp11f:d to
our scattering problem. For example, one can use a probmi signal
consisting of a single tone with variable frequency to make spot
measurements of H(f). This has the dr_awback_of requiring one to cycle
through all the measurement frequencies. It is more efficient to use a
single input signal which contains all the f_reque‘naes of mte;est.
Suitable signals include impulses, swept .511'11:1801615 and ran on}
signals. We choose to consider random excitations here because o
their convenience and robustness.

The cross-spectrum g'etween the signals x(t) and y(t) is defined as

Sy(D= ]?rx),('r:) e 41 where 1y, (T) =E[x(1)y(t— )]

-

in which r,(t) is referred to as the cross-correlation function and E[]
denotes the expectation operator. For a purely linear system one can
show that

H(f) = Sy (£) / Sxx () @)

Hence to estimate the transfer function, H(f), one estir‘nates_the two
spectra S_(f) and S,(f) from the data and forms their ratio. . Tl;e
estimatorrdescribed by eq. (2) is known to be asymptotically
unaffected by noise on the output measurement y(t).

A major limitation of the application of the above te'chnique to .bubble
scattering data is the observation that a bubble interacts with the
acoustic field in a non-linear fashion, so the underlying model, eq. (1),

is flawed. It is the object of this paper to show how the techniques
outlined above can be extended to non-linear models and so be
applied to data from bubble scattering.

Experimental measurements were made in a 1.8m x 1.2m x 1.2m
vibration isolated, reinforced plastic tank filled to a depth of 1.5m. An
acoustic field was generated using an underwater loudspeaker
(Gearing and Watson UW60). The received signal was measured
using a B&K 8103 hydrophone. The loudspeaker was driven by
broadband Gaussian noise, which was band-limited between 1.2 and 7
kHz. The driving signal and hydrophone output were acquired onto a

pc at a sampling rate of 20 kHz. Measurements were made with and
without a bubble, the bubble being tethered to a wire.

Figs. 2(a) and (b) show the magnitudes (in dB) of the transfer functions
estimated, via eq. (2), for the cases with a bubble absent and present
respectively. The peak in Fig. 2(b) at around 2.5 kHz is due to the
scattering from the bubble. Fig. 2(c) shows the ratio of the two transfer

functions and is one way of visualising modifications the bubble has
made to the transfer function.
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Fig. 2 Transfer Functions (in dB with common reference for (a) and
(b)): (a) Without Bubble, (b) With Bubble, (c) Ratio of (b) to (a)

Care must be exercised when interpreting the transfer functions in Fig.
2 since the bubble’s scattering behaviour is known to be non-linear and
the theory of transfer functions is only relevant to linear systems.

However at low excitation levels a linear approximation may be
reasonable.



alternative method for comparing the linear scattering results with
?nnd without bubbles is to compare the residual spectra. The mtethod is
to use the data set in which a bubble is absent to estimate the Impuls_e
response, h(t), of the tank-loudspeaker-hydrgphone: system. This
impulse response can then be used to form a residual signal, z(t), as

2(t) = y(t) - [ by (Dx(t =)t

is signal represents the scattered signal components not accounted
Ej;ﬁ:;gt?te tari:k-loudspeaker—hydrophone system. Fig. 3 shows ;wo
examples of such residual spectra. Fig. 3(a) shows Fhe case where
there is no bubble present. Fig. 3(b) shows the\‘re51dual spectrum
obtained when a bubble is introduced. Its effect is to contribute ?he
majority of energy around the peak at 2.54 kHz (+0.02kHz), which
corresponds to an estimate of the resonant frequency of the bubble,
and in turn can be related to the bubble’s mean radius.
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Fig. 3 Spectra of Residual Signals (in dB with common reference): (a)
Without Bubble, (b) With Bubble

i i hod based upon
By comparing Figs. 2 and 3 we see that the meth -
rei.idualipectgra gives a less ambiguous result, generating only a single

peak.
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3. Non-Linear System Identification

The linear method described above can be used to identify whether a
resonant scatterer is present. However this procedure fails to include
the known non-linear behaviour associated with bubbles. In this

section we detail a method for partially characterising the non-linear
scattering of a bubble.

There are a variety of models available for parameterising non-linear
systems. Here we shall concentrate on one of the most popular,
namely the Volterra series [3]. The Volterra series extends the

convolution integral in eq. (1) to higher orders, so the input/output
equations become

9(t) = [ by (Dx(t=1)dv+[[ hy (), 7 x(t = 7 )x(t 1, )d,d,

(3)
+m'h3('r, 1 T2 T3 )X(t =T )X(t — T )x(t = T3)dT,dTod Ty +-+-

in which case the non-linear system is characterised by the infinite set
of kernel functions h,(t,...,7,). Even eq. (3) can only model some
classes of non-linear systems. In practice the Volterra series has to be
truncated at a low order and in this paper we shall restrict our
attention to the simplest non-linear model, i.. that in which only the
linear and quadratic terms appear. Also our model must be discrete in
form, so the actual model we exploit is more correctly written as

y(m)= 3 hy(P)x(n~p)+ Y, > hy(p,q)x(n - p)x(n —q) 4
P

P g

The problem is now how to estimate the kernel functions, h,(p) and
h,(p,q) from the measured data x(n) and y(n). In fact we choose to
estimate the Fourier transforms of these functions, H,(f) and H,(f,f,),
which are referred to as the first and second order transfer functions,
respectively.

The problem of estimating the higher order transfer functions can be
solved by extensions to eq. (2). If one assumes that the input, x(t), is
Gaussian then it can be shown [3,4] that for the model (4)

S.. () By (f1,£3)
Xy R et - ot LT
T S T

Hy(f)=

(5)
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Note that the estimate of the first order transfer function is exactly that
used for linear system identification. This a consequence of our choice
of a Gaussian input which serves to decouple the problems of
estimating the first and second order transfer functions. The quantity
B,,(f,f,) is termed the cross-bispectrum and is defined as the double
Fourier transform of the second order cross-correlation function,
r,,,(t,7,) defined as

Texy (T1,T2) = E[X(1)x(t = T )y(t=T2)]

Eq. (5) represents the standard technique for estimating the second
order transfer function. It has been shown [5] that the variability of
this estimator can be improved by modifying eq. (5), so that one forms
the cross-bispectrum between X(t) and a new signal z(t). This new
signal is the residual formed by removing the effect of the linear
transfer function, i.e. '

z(t) = y(t) - hy(t) * x(t) (6)

where h,(t) is the first order kernel (linear impulse response) and *
denotes convolution. Hence the procedure used to estimate the second
order transfer function is: i) use eq. 2) to estimate the linear transfer
function; ii) inverse Fourier transform this transfer function to yield an
estimate of h,(t); iii) form z(t) using eq. (6); iv) estimate the cross-
bispectrum between x(t) and z(t); v) use eq. (5) to estimate the second
order transfer function.

There is an obvious parallel between the method used to compute the
residual spectrum, shown in Fig. 3, and the method used to estimate
the second order transfer function. However, it should be emphasised
that in the case of the second order transfer function one does not need
to exploit a measurement made in the absence of a bubble.

Fig. 4 shows the result of estimating the second order transfer function,
based on eq. (5), using the bubble scattering data. This transfer
function shows a distinct peak around the bi-frequency (2.6, 2.6) kHz,
indicating that there is significant non-linear behaviour in that region.
This, in turn, may be used to infer the presence of a bubble in the
medium and further to estimate its radius based on a resonant
frequency of 2.6 kFz. This characteristic resonant behaviour allows
one to distinguish between non-linearities due to a bubble and, say,
non-linearities due to a transducer. In the latter case the second order
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Fig. 4 Estimated Second Order Transfer Function
4. Conclusions

This paper has demonstrated how one can use a Volterra series as
model of _the non-linear scattering behaviour of a bubble Thiz
parameterisation of the bubble behaviour allows one to be co.nﬁdent
whether or not a given scatterer is a bubble. Further, this approach
also naturally yields an estimate of a bubble’s resonant Erequen}zyp. ’
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