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1. INTRODUCTION AND DERIVATION

The ordinary coherence function can be used to calculate the ratio of the total power in
a signal to the power of that component of the signal which is linearly related to another
signal. Consider the model problem shown in Figure 1, in which the observed output signal,
¥(t), is the sum of that which is linearly related to another signal, x(f), and a "noise" signal,
a(r). The noise signal may be composed of measurement noise or components of y(r} which

are non-linearly related to x(f). The spectrum of the observed output is thus

Y(jw) = Z(jo)+ N(jo), (1)

where

Z(jo) = H(jo)X(jw), (2)

H(jw) is the frequency response of the linear system H in Figure 1, and X(j@) and M(jw) are

the spectra of x(#) and n(?).

The power spectral density of the component of y(¢) which is linearly related to x(z) is

S (jwy = |HGo) S, (jo) 3)

where S,,(jw) is the power spectral density of x(¢). The ratio of S,(f@) to the power spectral

density of y(2), §,,(jw), is thus

S, (jo) .2 9L (Jw)
Shm - HUOT $5ay - )

The cross spectral density between x(f) and y(?) is equal to
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Sy = H(jow)S, (jo) &)

so that equation (4), which is equal to the ordinary coherence function between x(f) and y(¢),

)’fy(ja)) [1], is equal to

2
L SGe) _[S,Ge) |
U0 = 58y T LGS, @) ©

It is important to note that H(jw) is not constrained to be causal and so it is impossible to
infer a "cause and effect” relationship between x(f) and y(¢) from the ordinary coherence
function [1]. Indeed the ratio of the total power in x(¢) to that which is linearly related to y(¢)

can be similarly derived to be the coherence function between y(r) and x(#), which is

Yalio) = y,(jo) | (7
since

S.(j@) = S (jo), (8)
where * denotes complex conjugation.

If, however, we only consider the component of the signal y(#) which is causally related to

x(#), c(#), its power spectral density may be written as
S.Go) = [H(jw)}.[ S.(jo) ©)

where the notation { } denotes the Fourier transform of only the causal part of the inverse

Fourier transform of the quantity in the brackets, as used in Wiener filtering {2,3]. Explicitly

we can write
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{H(jo)}, = #U() 7' H(jw)| (10)

where Fdenotes the Fourier transform and U(#) is the unit step function which is one for £ 20
and is otherwise zero. The generation of c(¥) is illustrated in Figure 2, in which the "noise"
signal, m(t), now contains the components of y(¢) which are non-causally related to x(¢), as

well as those non-linearly related to x(f) and measurement noise.

Taking the measured estimate of the unconstrained frequency response between x(¢) and y(z)
from equation (5), the ratio of the power spectral density of the component y(f) which is
linearly and causally derived from x(r), equation (9}, to the power spectral density of y(r) can

be written as

G0 ~ <UD = 500

S, G [
{Sn(jw>}+| (n

which may be termed the causal coherence function between x and y.

Notice that generally

Ye(J0) # ¥o(jo) (12)
and that although
| HHGo)},[ do < [ |H(o) do (13)

. 2, .
|{H( ja))}+| is not necessarily less than |H(jo)|" at each frequency and so Y2 (jo) is not

necessarily less than yf},( Jjo) at each @, although this will be true when averaged across

frequencies.
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Although ¢(2) in Figure 2 is derived from a causal filtering of x(#), which is equal to the
causal part of the estimated frequency response given by solving equation (5), this is not the
optimum least squares estimate of y(#) which can be derived from x(¢). This optimum least
squares estimate would minimise the difference between the output of the filter and y(z), and
could use the predictability of x(z) to achieve this. The frequency response of this optimum

causal filter was derived by Wiener [2, see also 3] and can be written as

: 1 S, (J®)
= : : 14
where F(jw) is the causal, minimum phase spectral factor of S,.(j®), so that
S.(jw) = F(jo)F (jo) (15)

and { }, denotes the Fourier transform of the causal part of the inverse Fourier transform of

the quantity in brackets, as above. The block diagram for such a system is shown in Figure 3,
in which the mean square value of the "noise” signal,' {(f), is now minimised by causally
filtering x(¢) to produce p(®). The ratio of the power spectral density of p(#) to that of y(f) can

thus be written, using equation (4}, (14) and (15) as

2

(16)

{Sx),(ja))}
F(o)],

which may be termed the predictive coherence function. Generally speaking this will be

— 1 = 1
S =00 = 505

greater than the causal coherence function, because the predictability of x(f) has been used in

its derivation.
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2. PRACTICAL CALCULATION

The causal coherence function may be calculated in practice from sampled stationary random
data by first computing the discrete frequency version of the power spectral densities of x(f)
and y(1), and their cross spectral density, by averaging over the FFTs of consecutive blocks of

data in the usual way [1].

The ordinary coherence function can then be calculated as

2 s, (0|
Tak) = Sl(k)swl(k)

a7
where k is the discrete frequency variable corresponding to the true frequency of kf/N where
f; 1s the sample rate and NV is the number of data points in the FFT. The usual care must be
taken to ensure that the circular effects of the FFT and the sidelobes of the time window do

not unduly affect the accuracy of the estimated spectral densities [1].

The discrete frequency response of the linear system in Figure 1 is given by

S (k)
K

H(k) = . (18)

et

Taking the inverse FFT of this frequency response allows the noncausal part, from

n = N/2 to N-1, to be set to zero and thus calculate

{H()}, = FFT[Um)IFFT(H(k))| (19)

where U(n) = 1 from n = 0 to N/2-1 and is otherwise zero. It is assumed that the size of the

FFT, N, is large enough that the causal part of the IFFT of H(k) is not affected by the circular
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effects from its noncausal parts. The discrete frequency version of the causal coherence

function is then

Yok = %8-3 HZGTR (20)

In order to calculate the predictive coherence function the spectral factors of 5,,(k) may first
be obtained by calculating the minimum phase component of the system whose frequency

1
response has a modulus of (Sn (k))z. This can conveniently be achieved using the cepstral

method of calculating the discrete Hilbert transform [4], so that

Fk) = exp[FFT(c(n) IFFT]log, (Su(k))])] 21

where ¢(n) is equal to 3 for n >0, is equal to O for # <0 and is equal to 7 for n = 0. The
causality operation { }+, can be easily calculated for discrete data, -as above. Some care must
again be taken to ensure that the size of the FFT used, N, is sufficient for its circular nature
not to interfere with the causality operation. This is illustrated in Figure 4, in which the
continuous spectrum of an example of the function S,(e’")/F"(e") is plotted for sampled
data in Figure 4(a), together with ifs inverse Fourier transform in Figure 4(c). The time
domain response in Figure 4(c) lasts about 20 samples in this case. The FFT size must be at
least twice as long as this, and Figure 4(b) shows the discrete frequency spectrum
S (k)/F(k) for an FFT size of 64 points. The causal part of the inverse FFT of this
spectrum, Figure 4(d), extends from sample 0 to sample 31, and clearly is a faithful

representation of the true response, shown in Figure 4(c), over this range of samples.

Once the spectral factors of S,,(k) has been calculated, together with the causal part of

S (k)/ F'(k), the predictive coherence function can be calculated at the discrete frequency
S, (k)
F(k)],
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3. EXAMPLE CALCULATIONS

In this section several example calculations will be presented to illustrate the properties of the

causal and predictive coherence, first on synthetic signals and then on measured signals.

In the first example a random signal with a 3dB/octave spectrum (pink noise) was used as the
input signal x(n). The output signal was equal to a sum of this signal weighted by a factor of
7 and delayed by one sample and another uncorrelated random pink noise signal of equal
variance also weighted by a factor of 3. The magnitude of the frequency response estimate
S,,(k)/S,. (k) and its Fourier transform are shown in Figure 5. The FFT block size was 512
samples at an assumed sample rate of 2.5 kHz and the spectral densities were calculated by
averaging over 512 blocks of data. The impulse response clearly shows the one sample delay
and weighting of 0.5, and since it is substantially zero for the noncausal part of the time
window, the Fourier transform of the causal part, also shown in the upper graph in Figure 5,

is substantially the same as the original frequency response.

The "forward” causal coherence function, cy;, (k), as plotted as the dashed line in Figure 6, is

thus very similar to the ordinary coherence function, which as expected is equal to about 0.5

for all frequencies in this example. The "backwards” causal coherence function, .5 (k),

however, is almost zero in this case.

The "forward" predictive coherence function, ,¥.(k), is plotted as the dashed line in

Figure 7 and is again similar to the ordinary coherence function, since it is not necessary to

use the predictability of x(f) to minimise the mean square difference between the filter output

and y(f). The "backwards" predictive coherence function p'yf.x(k) as shown by the dash-

dotted line in Figure 7 is now about 0.2, or greater at low frequencies, since the predictability
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of the pink noise-signal is being used to overcome the inherent one sample advance of the

signal x(f) compared with the signal y(#) in this case.

Data was also simultaneously acquired from an accelerometer mounted on the body of a car,
x(t), and an internal pressure microphone, y(#), as the car was driven over a coarse road
surface. The power spectral densities of the two signals are shown in Figure 8 calculated
with an FFT size of 512 samples at a sample rate of 2.5 kHz over 512 blocks of data. The
frequency response calculated from S, (k)/S, (k} is plotted in Figure 9 together with the
corresponding impulse response. The FFT of the causal part of the impulse response is
shown as the dashed line in the upper graph in Figure 9. The ordinary coherence function
and the causal coherence function, from the acceleration to the pressure, was calculated using
the method outlined above and these functions are shown in Figure 10. It can be seen that the
causal coherence function is similar to the ordinary coherence function over most of the
frequency range plotted in this figure, indicating that most of the part of the pressure signal
which is coherent with the accelerometer could be generated by causally filtering the

accelerometer signal.

The backwards causal coherence, from microphone to accelerometer, can be calculated from
the estimated frequency response between y(¢) and x(r}, which is equal to S, (k)/S, (k). This
frequency response and the corresponding impulse response are shown in Figure 11. The
estimated response from y(f) to x(¢) will, however, be corrupted by any uncorrelated noise in

¥(#), as shown as n(f) in Figure 1, so that

S)'x — H* Sxx
Syy H[' AE

(23)

In this example, where the ordinary coherence function is significantly below unity, S,, is

large compared with |H|’S,,. The backwards causal coherence for the road noise example is

shown in Figure 12, and is significantly smaller than the forwards causal coherence function,
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which is to be expected, except at very low frequencies for which S (k)/S_ (k) is

particularly large.

The forward and backward predictive coherence functions are plotted in Figure 13. Although
it is to be expected that the forward predictive component is greater than the ordinary
coherence at some frequencies, the calculation also suffers from ill conditioning because of
the very low values of S, at high frequencies, whose reciprocal is used to calculate the
predictive coherence as in equation (16). The backwards predictive coherence is however
small compared with the ordinary coherence except when the ill conditioning occurs at high

frequencies.

4. MULTICHANNEL EXTENSIONS

If the spectral density matrix for the input signals of a multiple input single cutput (MISO)
system are defined to be
S. = E[x(jo)x"(jo)] 249

xx

where

x(jo) = [X,(o)X,(jo) X,(jo)] (25)
and the row vector of cross spectral densities is defined as
S, = E[y(jo)x"(jo), (26)

then the row vector of frequency responses between x and y can be written as
H(jw) = S8 . @7
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The power spectral density of the sum of the outputs of these filters is

S. = HS_H" (28)

Iz
and so the ratio of this to S, is

Yo = S—ZZ = T s 29)

which is the multiple coherence function. Defining the causal parts of the frequency

responses derived above to be

"}, ={s,si}. (30)

then the MISQO extension of the causal coherence can be written as

-1 a7 _ .
C,y,iy - {SHSU}+SSH{SXJSH}+ . (31)

¥
The row vector of optimal Wiener filters can also be written as
H, = {s,F"} F' (32)
where
S, =FF (33)
and F is the matrix of causal minimum phase spectral factors of S,,, so that

F'S F7 =1 (34)
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The MISO extension to the predictive coherence function can thus be written as

pyiy - S

b

— {SIJ' F_H}+ {SIJ'F_H}+ ) (35)

5. CONCLUSIONS

A special form of the coherence function is presented which quantifies the degree to which
one signal can be causally derived from another. This function is termed the causal
coherence. It is shown how this function can be calculated for stationary random sampled
data by calculating the power spectral densities and cross spectral density in the usual way,
and then using the causal part of the Fourier transform of the frequency response estimated
by dividing the cross spectral density by the power spectral density. Example calculations
are presented for synthetic pink noise data and for body acceleration and internal pressure
data recorded from a car travelling over a rough road. The causal coherence from the
acceleration to the pressure is similar to the ordinary coherence, but the causal coherence
calculated from the pressure to the acceleration is low, which suggests that the pressure is
causally dependant on the acceleration, as expected. Another coherence function can be
calculated from the optimum Wiener filter which minimises the difference between the
output of a causally filtered version of one signal and the other signal. Since this can use the
predictability of the input signal as well as the causal part of the frequency response it is

termed the predictive coherence function.

Neither of these new coherence functions are guaranteed to be less than the ordinary
coherence function, or indeed less than unity, at any one frequency, although the frequency
averaged value of the causal coherence function must be less than that of the ordinary

coherence function. Although these extensions to the ordinary coherence functions appear to
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give physically -meaningful results for the examples discussed in this report, their
mathematical and numerical properties are not as obvious as those of the ordinary coherence

function and some care needs to be taken in their interpretation.
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Figure 4 The magnitude of the continuous frequency domain version of
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A(@T) = S_(e’T)/F (e'"), Fig.4(a), together with its discrete
Jfrequency domain version A(k), Fig.4(b), for an example in which
this function has a resonant structure and for a FFT size of 64
points. The Wiener filter calculated using the FFT, equation (22),
will be accurate providing the inverse Fourier transform of A(k),
shown in Fig.4(d), is equal to the inverse Fourier transform of
A(e’"), Fig.4(c) for n = 0 to 32, as shown by the dashed lines in
Fig. 4(d).
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Figure 8 Power spectral density of the accelerometer signal, S.(k),
and microphone signal, S,,(k), measured from the vehicle
road noise data.
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