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INTRODUCTION

This report describes the design and performance of a feedback controller for the
active isolation of vibration transmitted from one plate to another through flexible
mounts. The construction and testing of the inertial actuators used as secondary
sources is described first, followed by a discussion of the response from the actuator
input to sensor output on the plate system. This 'plant’ response constitutes the system
under control by the feedback system and the way in which it behaves, particularly in
relation to its phase response, will determine the performance limitations of the
feedback system. The performance of the feedback controller is then predicted and

these predictions compared with the experimental resuits for a single active mount.

The experimental arrangement for a multichannel systern which has three active
mounts is then described. The theory of multichannel feedback control is briefly
reviewed and then the additional constraints on stability and performance introduced

by the coupling between the mounts are discussed.

DESIGN AND TESTING OF THE INERTIAL ACTUATOR

The inertial actuator design is shown in Figure 2.1 and consists of a case with a
loudspeaker coil rigidly attached to it, with a moving magnet suspended on a rubber
diaphragm within the case. The magnet thus acts as both the inertial mass and
generates the magnetic field required for electromagnetic actuation. An accelerometer

is also built into the actuator.

The mass of the magnet assembly is about 77 gms and that of the total actuator is

about 137 gms. The measured force output of the actuator when driven by a constant



current amplifier and mounted on a large rigid mass is shown in Figure 2.2 which
shows the expected second order behaviour, with a constant force output above the
fundamental resonance frequency of about 70 Hz. The phase of the output force per
unit input voltage is also close to 0° above this frequency, indicating that the actuator
is acting almost like an ideal device in this frequency range. Notice, however, that at
low frequencies, below the natural frequency, the phase rises by 180°, which indicates
that the electromagnetic force is predominantly overcoming the stiffness of the
suspension to move the mass and so the inertial force generated by the mass is out of
phase with the driving force. The origin of the additional peak at about 4.5 kHz seen
in Figure 2.2 is unknown, but since it does not appear in any of the subsequent plots,
for which the force gauge was not used, it is assumed to be an artefact of the force

measurement.

The stiffness of the suspension inside the actuator (K;) can be simply calculated from
the moving mass (M = 77g) and the natural frequency (f,) since they are related by

21, = | @.1)

from which the stiffness can be calculated to be about 15,000 N miori15N mmL.

The damping ratio of the 70 Hz resonance in Figure 2.2 is about Cooune = 0.15 which
would be caused by a viscous damper having a resistance of about ;=10 N mls in

parallel with the spring.

The resistance and inductance of the coil in the inertial actuator were about R =42
and L = 0.06mH, but since a constant current amplifier was used to drive the actuator,

the secondary force, Fy, is assumed to be directly proportional to the input voltage, Vi,



A simple second order model of the inertial actuator is shown in Figure 2.3 from
which the ratio of the force transmitted to the rigid base, F,, to the secondary force,

Fj, can be derived as being

= _CQ_ZM_ = : 2.2
F= gl = Lie) 22)

where M is the moving mass and X is the complex stiffness of the suspension which is

équal to K, + joC,, and T,(jew) can be termed the actuator response, which is used

below

Magnetic circuit Rare earth magnet
doubles as the

inertial mass \ / Simple suspension

Light weight %:

outer case
acts as the L —
blocking mass I—I—LI

Accelerometer / 1‘1\

incorporated in the Fixing stud
base of the actuator

Figure 2.1  Sketch of the internal design of the inertial actuator
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Figure 2.2 Amplitude and phase of the measured frequency response of the
output force from the inertial actuator per unit input voltage
when mount on a rigid base.



Figure 2.3 Second order model of the moving parts of the actuator which is
mounted on a rigid base and is being driven by an input signal to
produce a secondary force of F,, which then generates a total
actuator force onto the rigid base of F,.

BEHAVIOUR OF THE ACTUATOR
AND THE PASSIVE MOUNT ON A RIGID BASE

An important step towards understanding the frequency response of the complete
experimental system is to study the response of the inertial actuator when mounted on
the passive mount placed on a rigid base. A simple two degree of freedom model for
this system is shown in Figure 3.1. The moving mass of the inertial actuator is M,
(77 g), the stiffness of the actuator suspension is K; (15N mm™"), the mass of the
actuator body and mounting components is M, (59 g) and the stiffness of the passive
mount was K, (90 N mm™). The equations of motion for the two degree of freedom
model of the actuator lead to the coupled set of equations for the complex V; and V, in

terms of F as

K +K, K, lre - - -

]COMI + I —}:'a"}' Vl “FS
= , 3.1)
K . K
—Ez)‘ _]Q)Mz'l':']ﬁ _VZ_ _FS_



in which the complex stiffnesses K, and K, contain the damping terms, from which V;
and V, can be calculated as a function of F5. The measured frequency response
between the actmator input and the velocity on top of the passive mount (V) is shown
in 3.2(a) and that calculated using equation (3.1) are shown in Figure 3.3, which also

shows the behaviour of V, (faint line).

Although at each of the natural frequencies of the second order system both masses
are moving, at the first resonance the motion of M, is considerably larger than M, as
shown in Figure 3.3. This first resonance can thus be strongly associated with the
actuator and occurs at a similar frequency to the natural frequency of the actuator
alone when mounted on a rigid base. At the second resonance both masses move in
phase, but that of M, is considerably smaller than that of M, because it is decoupled
by the actuator suspension and so this resonance can be strongly associated with that
of the passive mount. Further simplification of the dynamics is suggested by the fact
that the two resonances of the two degree of freedom system can be reasonably well

associated with the dynamics of either the actuator or the mount alone.

When the actuator is mounted on a flexible structure, such as the passive mount, so

that it generates a velocity V,, the force applied by the actuator can be written as

F,= T,(jo)F, - Z,(jo)V, (3.2)

where T,(jo) is the ratio of F,/F, if V; =0, i.e. it is mounted on a rigid base (as given
by equation (2.1)) and Z, (jw) is the mechanical input impedance to the actuator from

the base looking upwards. The velocity of the mount structure in response to an input

force of F, can be written as

V,=M,(jo)F, (3.3)



where M (jw) is the input mobility of passive mount in this case at the actuator

mounting point. Substituting (3.3) into (3.2) we obtain

F, = [1+Z,(jo)M(jo)] T,(jo)F; (34

and so the velocity at the top of the passive mount per unit secondary force is equal to

Vi/Fs = [1+Z( jaJ)Ms(ja))]"l T,(jo)M(jo) . (3.5)

Figure 3.4 shows a block diagram of this mechanical interaction, together with the

electrical feedback control discussed below.

If the product of the actuator's mechanical input impedance and the structure's
mechanical input mobility is much less than unity, then the force applied by the

actuator is almost the same as if it were mounted on a rigid base, i.e.

if Z,(jo)M,(jo)<1 , then F,=T,(jo)F,. (3.6,3.7)

So for the specific case considered above, the condition given by (3.6) is reasonably

true above the resonant frequency of the actuator.
When the actuator dynamics are reasonably well decoupled from those of the

structure to which they are attached, then the overall response of the structure to the

secondary actuator can be written as

7L = T,(j0) My(jo) . (3.8)
§

Since in this case T,(fo) is given by equation (2.1) as



(3.9)

and the input mobility of the mass M, and passive mount of stiffness X, is equal to

. jo
M, (jo) = ——=—, 3.10

M(] ) Kl _ a)Z M} ( )
which is equal to M;(je) in this case, the approximation to the overall response given

by equation (3.8) can be directly calculated, and is compared with that generated by

the complete equation for this response (3.1) in Figure 3.5.

M, |1 v _
F 2 Moving
5 parts of
K, Inertial
actuator
F §
j§ | Remaining
M, v, » mass of
') Intertial actuator
kP
S/

Figure 3.1 Two degree of freedom model for the inertial actuator (M,, K,),
driven by the electromagnetic force Fs, generating a velocity V,
on the actuator body (M, ) which is mounted on the passive mount
(K, ) and the velocity V, on the actuator mass.
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actuator when the passive mount is mounted on a rigid base.
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Figure 3.4 Block diagram of the mechanical interaction between the actuator,
with blocked transfer function T, and internal mechanical
impedance Z,, and the structure being controlled, with mobility M,
together with the electrical feedback controller, H.
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the actuator and mount dynamics are uncoupled (faint line).

EXPERIMENTAL ARRANGEMENT AND COMPLETE PLANT RESPONSE

An initial estimate of the final plant response was obtained by placing a plate between
the actuator and passive mount, and the measured frequency response of this system

from actuator input to integrated accelerometer output is shown in Figure 4.1.

Figure 4.2 shows the final experimental arrangement in which an 7 beam driven by the
primary source is coupled to a receiver plate via three passive mounts each with an

inertial actuator and accelerometer above them for active control.

A simple model for a single mount in this arrangement is shown in Figure 4.3 in

which the I beam is assumed to have a much lower mobility than the other

—11-



components and are thus approximated as a rigid base. The input mobility of the

complete structure, as seen by the actuator is now

M,(jo)M,(jo)

M, (jo) + M, o) “.1)

Ms(jw) =

where Mp(jo) is the input mobility of the plate, My(jw) is the input mobility of the

remaining mass of the actuator and passive mount as given by equation (3.10).

Figure 4.3 shows the calculated input mobility to the complete structure, Ms(ja),
compared with that of the mount alone, My(j®) and of the plate, which was assumed

to be 0.75mm aluminium of dimensions 720 x 550mm attached near the centre of

plate. Notice how the phase of M(jw) must again be between + 90° since the system

is entirely passive.

Figure 4.4 shows the complete response from secondary force to velocity at the top of
the mount calculated from the simplified model for M;(j®) and using equation (3.8) as
the approximation for the complete response which assumes no coupling and equation
(3.10) for the actuator response. The measured response from actuator input voltage

to output velocity, as measured with an accelerometer, is shown in Figure 4.5

12—
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/ I beam
Inertial L/

actuators

Passive mounts

Figure 4.2 Sketch of the final experimental arrangement with an I beam
driven by the primary force coupled to a receiver plate via three

actively controlled passive mounts.
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M.
Moving
parts of
K Inertial
Fs 2 actuator
M

} Remaining

mass of
Intertial actuator

~+— Receiver plate

1

K, Passive
mount

S

Figure 4.3 Simple model of the arrangement used in the experiments, in
which the I beam is assumed to act as a rigid base.
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Figure 4.4

Figure 4.5
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Figure 4.6 The measured response from actuator input signal to integrated
accelerometer output signal for a single channel of the final

experimental system shown in Figure 4.1.
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SINGLE CHANNEL FEEDBACK CONTROL DESIGN AND PERFORMANCE

The complete transfer response from the actuator input to sensor output is referred to
as the 'plant' response and its transfer function is denoted G(s). The vibration due to
the primary shaker acts as a "disturbance” at the sensor output and is denoted D(s) In
Figure 5.1 which also shows the sensor output being fed back to the actuator input via
a negative feedback controller with transfer function - H(s). The sensitivity function
of the feedback controller is given by the ratio of the controlled to uncontrolled output
of the plant (Franklin et al, 1994), and is equal to

E(s) _

_ 1
5() = ) T T+ GHE -

(5.1

The closed loop system is only stable if its poles, which are given by the roots of the

characteristic equation,

1+ G(s)H(s) = 0 5.2)

are in the right hand half of the s plane. In practice closed loop stability can be
assessed from the open loop frequency response, G(jw)H(je), which is itself assumed
to be stable, by plotting this in a polar diagram and checking whether this plot
encloses the Nyquist point, ~1, 0, as @ varies from —ee to e, Assuming the feedback
controller is a fixed gain, the resulting Nyquist diagram for the inertial actuator and
passive mount on the rigid base, for the inertial actuator and mount with the initial
plate and for one of the inertial actuators in the final arrangement are shown in

Figure 5.2.
Figure 5.3 shows disturbance and the predicted level of the error after feedback

control with a fixed gain controller for the initial arrangement 5.3(a) and the final

experiment 5.3(b).

—17-
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EFFECT OF THE ACTUATOR DYNAMICS ON SYSTEM STABILITY

Tt is clear from the Nyquist plots shown in Figure 5.2 that the main cause of instability
as the gain is increased in the feedback loop is the actuator dynamics. In this section

we investigate the effect on the stability of changes in the actuator dynamics.

Figure 6.1 shows the frequency response of the two degree of freedom mode] for the
inertial actuator on the passive mount, Figure 3.1, for the mass and stiffness values
used above, Figure 6.1(a), and for the same model with half the actuator stiffness
(K, = 7.5 Nmm™) but the same viscous damping C, = 10 Nm's. The effect of halving
the actuator stiffness is to reduce the natural frequency of the first resonance, which is
mainly associated with the actuator, by about 40%, but not to significantly effect the
natural frequency of the second resonance, which is mainly associated with the

passive mount.

Because the amplitude as well as the natural frequency of the first resonance has been
decreased the gain of the system has been reduced when the phase passes through
180°. When the Nyquist plots of these two systems are plotted, in Figures 6.1(b), the
lower actuator resonance thus results in a smaller loop on the left hand side of the
imaginary axis. If this modified actuator was incorporated into a simple negative
feedback system, the gain could be increased by a further 6 dB compared with the
original system before instability, and thus a greater reduction in the disturbance

could be achieved.

Instead of changing the stiffness of the suspension inside the actuator, it may be
possible to use a compensator circuit to modify the input signal to the actuator to

achieve the same result. If the original blocked response of the actuator is

T,Go) = 2 6.1)

-20-



and the required response is

2 ’
1, (o) = w2 0n (62)

Then the response of the compensator is equal to

. — T, (jo) _ M EK-o’M
Cljow) = T (o) - M KoM (6.3)

In particular if M" = M and K" = K/2, as in the example above, then

: — 26° 20 -20°
o) = 20U = 25— (64)

If K is assumed complex, as above, so that @, is also complex, the frequency response
of this compensator is plotted in Figure 6.2. The gain is 2 at low frequencies, to
compensate for the change in stiffness, and 1 at higher frequencies, since the motion

is then mass-controlled.

Although the compensator is guaranteed to perfectly transform the dynamics of the
actuator when mounted on a rigid base, the dynamics are more complicated when the
actuator is mounted on the flexible mount for example. The physical actuator
resonance shifts slightly as a result of mounting on a compliant system and so the use
of the compensator derived above will not just transform the actuator natural
frequency but results in the more complicated dynamics shown in Figure 6.3. The
gain margin of the controller has still been considerably increased by the use of the

compensator, but now appears to be quite sensitive to small extraneous phase shifts.
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line), together with the Nyquist plots of the original (solid line)
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MULTICHANNEL FEEDBACK CONTROLLER

The block diagram of a multichannel feedback controller is shown in Figure 7.1. The
vector of output signals e(s) is related to the vector of disturbances, d(s), by the

sensitivity matrix [I+ G(s) H(s)]"] so that

e(s) = [I+G()HH()] d(s) . (7.1)

The stability of the multichannel feedback system is determined by whether the roots

of the characteristic equation which is given by

det[T+G(s)H(s)] = 0 (7.2)

lie in the right hand half of the s plane. The multichannel equivalent to the Nyquist
criterion on the open loop frequency response is that the locus of the complex

function given by
det[I + G(jw)H( jo)] = 0 (7.3)

encloses the Nyquist point as @ varies from —oo to eo. This plot is rather difficult to
interpret and so we can use the fact that the determinant of a matrix is the product of

its eigenvalues to show that
det[I+ G(ja))H(j(o)] = (1 + A, (jw)) (1 +A, (ja))) (7.4)

where A,( JO)A,(jw), etc, are the frequency dependent eigenvalues of G(jw) H{jw).
For the complete system to be stable the Nyquist plot of each A(jw), the characteristic
loci, must not encircle the Nyquist point as @ varies from —o to oo (Skogestad and

Postlethwaite, 1996).
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If perfect inertial actuators were used, which generated a constant force per unit input
at all frequencies, together with perfectly collocated velocity sensors, then the matrix
of plant response, G, would be directly proportional to the matrix of input mobilities
to the structure under control. If we also assume decentralised control, i.e.
independent local control of each loop, with equal feedback gains, then the matrix of
feedback controllers H is equal to the feedback gain multiplied by the identity matrix,

so that under these conditions

G(jo)H(jo) o M(jw) (7.5)
where M({j@) is the input mobility matrix.
The mechanical power supplied to the system can be written at a single frequency as a

function of the vector of complex forces f(jw) and the vector of complex velocities at

the connection points, v(j®), as
W = Lre[t?(jo)v(jim)] . (7.6)
But since the velocities are related to the forces via the mobility matrix
v(j@) = M{jo)t(jo), (7.7)

then the power can be written as

W = —%Re[f"'( jOYM(jo)(jw)| = £*(jo)R(jo) (i) (7.8)
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where R(jw) is half the real part of M(w). Since power can only be supplied to a
mechanical system, W must be positive for all f(w) and so R(®) must be positive

definite for all @.

Because the mobility matrix M(j) is symmetric then it has an eigenvalue/eigenvector

decomposition of the form

M=QAQ". (7.9

If the mobility matrix is split into its real and imaginary parts,

M=R+jX (7.10)

then A = QRQ+;Q*XQ (7.11)

and if R is positive definite then so is the diagonal matrix Q7 R Q, so that the
eigenvalues of M have a real component which is strictly positive real. The mobility

matrix, M(), can thus be described as strictly positive reat (SPR) for all @.

The locus of the eigenvalues for a 3x3 input mobility matrix calculated for an
arrangement similar to that used in the experiments is shown in Figure 7.2 by way of
example. Each of these complex eigenvalues are entirely on the right hand side of the
imaginary axis for all frequencies, confirming that the mobility matrix is SPR. If
independent control is applied from each velocity output to each force input, so that

the matrix of feedback controllers is equal to

Hijw)=kI, (7.11)
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then the polar plots for the eigenvalues of the open loop frequency responses will also
be SPR. The feedback gain can thus, in principle, be increased without limit without
the system becoming unstable. Balas (1979) showed that this was always true

provided H(jw) was frequency independent, symmetric and positive semi-definite.

Thus for collocated force actuators and velocity sensors which have a perfect
frequency response, simple decentralised control is guaranteed to be stable for any
feedback gain and the disturbance at each sensor can, in principle, be reduced to zero
using a high gain controller. In practice the dynamic behaviour of the transducer,
particularly that of the actuator, limits the maximum feedback gain by introducing
additional phase lags into the open loop frequency response, as we have seen for the

single channel system above.

The modulus of the measured frequency responses from each inertial actuator to each
velocity output are shown in Figure 7.3(a). Notice that above the natural frequencies
of the passive mounts, about 300 Hz, the off-diagonal terms in the matrix of plant
responses have a progressively smaller value compared with the diagonal terms,
which indicates that the transfer mobility on the plate is much less than the input
mobility. There is also a much larger phase lag in the off diagonal terms, as shown in

Figure 7.3(b), which is also to be expected.

If only one of the velocity signals was fed back to the corresponding actuator the
control system could be designed using the single channel approach outlined above.
The results of such a design calculated independently for each actuator and sensor pair
are shown in Figure 7.4. This shows both the Nyquist plots of the diagonal terms in
the plant matrix and the predicted result on the power spectral density of the
disturbance signal of a fixed gain feedback controller. It is important to note that the
attenuations shown in the individual disturbance spectra in Figure 7.4 could NOT be

achieved simultaneously since it has been assumed that only one feedback loop has
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been closed at any one time. Although reductions in the disturbance spectra are
observed at the error sensor which is being controlled, the disturbance at other error

sensors may then be significantly increased.

In order to predict the effect of simultaneously controlling all three channels of the
system, the multichannel approach outlined above must be used. Figure 7.5 shows the
Nyquist plots of the eigenvalues of the matrix of plant response which are equal to the
eigenvalues of the open loop frequency response if the feedback control matrix is
diagonal. It was found that reasonable control of all channels could be obtained with

a diagonal feedback controller having the gains

- 60 0 0
H(jw) = |0 20 0. (7.12)
0 0 60

The predicted changes in the power spectral densities of each of the disturbance
spectra of simultaneously applying such a feedback controller to each channel are also
shown in Figure 7.5. The primary disturbances are assumed to be generated by the
primary force generating a white noise input. The vector of velocity spectra without

control, which correspond to the disturbances above are thus

d = tf, (7.13)

where £, is the primary force spectrum and tis the vector of measured frequency

responses between the primary forces and the velocity signals.

The spectral density matrix for the disturbance is thus

S,(jw) = E[dd"] = tt” (7.14)
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where it has been assumed that f, is white and of unit variance so that E [ f; f p] =1.

The spectral density matrix for the vector of error signals after control is

S..(jo) = Elee”]. (7.15)

The error signals are related to the disturbances via the sensitivity matrix, equation

(7.1), so that

S,.(jw) = [I+GH['S,[I+GH[" (7.16)

and since Sy(fw) is given by equation (7.14), S..(jw) can be calculated entirely from

measured frequency responses. The power spectral density of the individual error

signals after control are given by the diagonal elements of the matrix S_(j@)

calculated at each frequency.

It can be seen that the results of multichannel control are rather different from those
obtained with the independent single channel controllers shown in Figure 7.4, with
rather poorer attenuation of the disturbances. It should be emphasised however that
the disturbance attenuations shown in Figure 7.5 can now be obtained simultaneously

with each feedback loop being closed at the same time.

Plant Ud(s)
— G \j@ e(s)
(8) 7

H(s) K————|

Controller

Figure 7.1  Block diagram of multichannel feedback controller.
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CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

A simple model has been developed for the inertial actuator used in the active
jsolation experiments discussed here. This simple model has been used to predict the
main features of the frequency response from the actuator input to velocity output
when the actuator is attached to a passive mount, and when the actuator is used in the

final experimental arrangement.

The performance of a simple negative feedback controller has been found to be
limited by a potential instability caused by the low frequency phase shift of the
inertial actuator. The performance could be improved by lowering the suspension
stiffness of the actuator or, in principle, by using an electrical compensating circuit,

which would allow the gain in the feedback loop to be increased.

In a multichannel feedback system interaction between the individual feedback loops
can destabilise the system. It is shown that if collocated force actuators and velocity
sensors, which had no internal dynamics, were used in a multichannel controller, the
system would be inherently stable, since the real parts of the eigenvalues of the open
loop response are strictly positive real (SPR). Once again, however, the actuator
dynamics limit the performance by destabilising the system if the feedback gain is too
large. The performance of the multichannel controller has been predicted and is
rather poorer than that of the individual single channel controller, implemented one at
a time. Unfortunately, no measured performance data is available for the change in
the velocity signals at the multiple actuator locations when implementing

multichannel control to validate these predictions.
Becanse the predicted vibration performance of the multichannel feedback controller

is not as good as the individual single channel controllers and because no

experimental validation of these results is available it is recommended that a further
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laboratory study be carried out of the three-mount system. This need not be mounted
in the reverberation chambers, but since the measured and predicted behaviour will
need to be compared repeatedly, it is suggested that these tests are carried out at

ISVR. Specifically these measurements would address:

1) The reasons for the differences in the single channel performance between the

inner and outer actuators.

2) The variation in the plant response due to changes in the dynamic loading
conditions, which would define the multichannel plant "uncertainty” in the
system.

3) The optimum design of the individual controllers used in the multichannel system.

4) The comparison of the predicted velocity attenuation in the multichannel system

with that measured using a real-time controller.
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