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1. INTRODUCTION

In earlier reports, a wave method [1] and a Fourier transform method [2] have been
introduced in order to describe the dynamic behaviour of simple beam-plate coupled
structures. Using these methods, the dissipated power and power flow between substructures
were calculated and the power balance was investigated. In this report the beam-plate
coupling is expressed in terms of the Statistical Energy Analysis (SEA) framework, a
commonly used high frequency analysis method. First the use of SEA is briefly reviewed.

Approaching the high frequency region, corresponding to short structural wavelengths
relative to the geometry, the dynamic behaviour of structures generally becomes much more
sensitive to small structural changes and the prediction is often inaccurate due to the
increasing uncertainty of the structure. Therefore, nominally identical structures can show
significant differences in the high frequency region [3]. In such cases, therefore, the structural
analysis often needs to be treated as providing a mean value estimate rather than the detailed
response of the structure. For this reason various methods have been developed, amongst
which the most widely accepted is SEA [4].

The application of SEA to acoustic and vibration analysis is based on a system which
is considered to be an ensemble of nominally identical systems and correspondingly, a general
solution is presented when the subsystems are assumed to be drawn from the ensemble of
similar subsystems [4, 5]. Nominally identical subsystems may have the same gross physical
and geometrical properties, but modal characteristics vary due to differences in detailed
properties. If they are randomly different in a statistical sense, then the characteristics of the
subsystem can be defined in terms of the ensemble average of many such similar but not
identical systems. The response of a particular system is then one of the ensemble of possible
system responscs.

However, the application based on the ensemble is often impractical, and as it is
known that the variance of the response decreases as the frequency averaging bandwidth
increases [4], low ensemble variance can be assumed if the system has high modal overlap or
wide analysis bands are used. Thus, the frequency average technique can be used to
approximate the ensemble average. The frequency average arises from analysis based on a
frequency band, for example an octave or one-third octave band, so that the energy is actually

the frequency band average energy.



The system to be analysed may be divided into a number of subsystems. The
frequency - and spatially - averaged response in terms of energy are required. Then the
coupling between subsystems is defined in terms of a coupling loss factor (CLF), which
describes the relationship between the power flow between connected subsystems and the
stored energy in the subsystems. It is defined in an analogous way to the dissipation loss
factor (DLF) in that it relates the fraction of power transferred between subsystems to the
stored energy in the source subsystem. The values of the CLFs for particular connections are
highly dependent on the physical and geometrical properties and generally require numerical
calculations {4, 6]. Values can also be estimated using a wave method [5, 7].

If a system is considered as one of an ensemble of nominally identical systems, the
mathematically ‘typical’ model of the system can be modelled from the ensemble point of
view [4]. Then an exact coupling loss factor can also be defined, which is not affected by
details of the structure but depends only on gross properties.

Although research related to the mid-frequency region is more important for the
further study on which this report will be based, the present report discusses the CLFs and
related parameters in an SEA sense, which are predicted from the model previously
formulated [2]. This is because, although a statistical method is normally accepted for high
frequency analysis, it is still important to understand the physical behaviour of the structure in
the mid-frequency region. From this point of view, it seems useful to mention previous
studies. Although many studies related to SEA have been carried out, in the present report
some of them concerning coupled structures consisting of beams and/or plates are introduced.

Wester and Mace used an explicit ensemble average formulation [8] to analyse two
line-coupled finite rectangular plates. The response of the system was described using a wave
approach. The subsystem is assumed to be drawn from ensembles in which the reflection
coefficient phase lag is uniformly distributed as a random variable [5]. Accordingly, the
ensemble power was presented and compared with the estimates of the CLFs obtained using
traditional SEA methods. It was shown that the traditional SEA hypothesis of proportionality
between the coupling power and the difference in subsystem mean modal energies is exact for
the ensemble average response of the plate systems in which the two plate wavenumbers are
equal, regardless of the strength of coupling. Also a CLF traditionally calculated for use in
SEA by a wave method, in which semi-infinite subsystems and diffuse fields are assumed,
was found generally to over-estimate the exact value based on the ensemble average
predictions at low frequencies (low modal overlap). At these low frequencies the subsystems

are described as being strongly coupled.



Fahy énd Mohammed [9] investigated the relationship between the CLF, modal
overlap factor and the variance of the power flow for the coupled plate system by a
computational experiment. For the coupled plate system presented, it was shown that it is
necessary to have at least five resonance frequencies in a band for reliable estimates of the
CLF to be obtained. In addition, the estimates of the CLF based on a diffuse field
transmission coefficient generally exceed the actual value when the geometric average modal
overlap factor is much less than unity. Accordingly, the computational examples showed that
the CLF derived from tests on one physical sample could be unrepresentative of the ensemble
average value when niodal overlap factors are small.

The wave transmission coefficients of various joints of beam-plate structures were
studied by Langley and Heron [10]. The equations of motion of the junction, which consists
of semi-infinite plates connected through a beam, are formulated based on the dynamic
stiffness matrix and some example junctions such as L, T and cross type coupled structures
were investigated. The DLF of the structure was taken as zero, and the corresponding
transmission coefficients were presented as a function of the angle of an incident wave. The
diffuse incidence transmission coefficient was also determined. Then, a CLF was calculated
from the transmission coefficient in an SEA sense. Although the influence of the energy
dissipation in the beam could not be considered, as it was also assumed that the beam of the
junction has no damping, it was shown that the procedure presented could be used in practical
situations.

Heron subsequently introduced Advanced Statistical Energy Analysis (ASEA) [11].
ASEA allows for coupling between sub-systems that are physically separate by a so-called
‘tunnelling mechanism’ in which, even though the subsystems are physically separated from
each other coupling may exist in an SEA sense. The energy of each subsystem is divided into
free energy that is freely available for transfer to other subsystems and fixed energy that is
dissipated within the subsystem. The system is interpreted as a series of mathematical models,
and in fact, the results depend on the number of transfers of power across a subsystem and if
only one junction is considered then an ASEA model is identical to a standard SEA model. A
numerical example for a system consisting of six rods is considered and the normalized mean
square velocity compared with that from the exact result. ASEA converges to the exact results
whereas SEA is shown to overpredict by up to 60dB.

Ji developed a mode-based method as an approximate solution in which a set of basis
functions is introduced for interface decomposition between a stiff beam and a flexible plate

[12]. Using beam modal shape functions as the basis functions, the dynamic response of the



coupled beam and the power transmitted to the plate are expressed in terms of unloaded
modal properties of the beam and the plate as well as the modal correlation matrix between
them. The results are detailed for the structure consisting of a straight beam or an L-shaped
beam attached to a plate. It was shown that neither the dimensions nor the boundary
conditions of the plate are important for determining the vibration response. Therefore it is
reasonable to describe a large flexible receiver by a simple standing wave model.

Grice and Pinnington [13] used a wave analysis to study a built-up structure consisting
of a beam and plate in which the beam is seen as a source and the plate as a receiver. If the
wavenumber in the plate is at least twice the wavenumber in the beam, the plate can be
idealized as a set of independent plate strips that have a locally reacting impedance. Then the
dynamic behaviour of the beam can be described in terms of the locally reacting impedance of
the plate and the dispersion relationship of the coupled structure. As the coupled structure can
be divided into a structure carrying long wavelengths (beam) and a structure carrying short
wavelengths (plate), one can expect that each substructure can be analysed by different
methods. Grice and Pinnington introduced such a hybrid method [14] where a finite element
method is used for modelling of the beam and the plate is modelled as a number of plate strip
impedances. The hybrid method was used to calculate the response of two different plate-
beams, with a rectangular plate and a trapezoidal plate, and good agreement with
measurements was shown.

Another hybrid method was developed by Langley and Bremner [15]. In this method,
the degrees of freedom of a system are partitioned into a global set and a local set. The
important assumption is that the local modes have a high degree of modal overlap and the
main effect of the local modes is to add damping and an effective mass to the global modes,
which can be referred to as a fuzzy structure. Then, the long wavelength component is
modelled deterministically, while the short wavelength component is modelled by using SEA
so that each subsystem can be assigned a single degree of freedom cotresponding to the
vibrational energy of the local modes. An example for a simple rod system was presented and
it was shown that the method can be used to predict the dynamic behaviour in low and high
frequency regions. However, application to other system in not straight forward.

The difficulties of SEA mainly occur because of the uncertainty due to variability in
the CLFs. The variability in the CLF of two coupled rectangular plates was investigated by
Park [16]. In order to quantify the variability of the effective CLF, a wide range of parameter
variations such as the thickness ratio, the length ratio, the length-to-width ratio and damping

loss factor were studied using finite plate simulations. Variations in both modal density and



modal overlap were considered, either together or separately. Although the variability of the
effective CLFs reduced as frequency increased, significant variability still remains when
modal ovérlap is greater than about 0.4. Upper and lower bounds for the CLF developed by
Craik et al [17] were considered. It was shown that better agreement is found when the modal
overlap of both systems in taken into account, rather than that of the receiver alone, as
originally proposed by Craik et al [17]. Also the variance was investigated to find the
variability of the effective CLF in terms of the combined modal overlap factor and combined
number of modes for each subsystem. An empirical formula for the variance of the effective
CLF was derived, which showed improved confidence intervals of the CLFs compared with
previously published estimates [17, 18].

SEA is generally used for the high frequency analysis in various areas such as aircraft
and spacecraft problems and more recently automotive vehicles. One successful example of
the latter was given by Fraser [19]. Wave Intensity Analysis (WIA) proposed by Langley was
also used to model a curved panel [20, 21] and the complex joint modelling technique was
studied, so that the transmission of the energy of bending motion between panels connected
by a curved section of panel can be investigated. Based on different kinds of joints such as
between the roof and the windscreen or between the windscreen and the firewall, SEA was
used to predict the energy level difference of the panels. It was shown that the interior saloon
sound pressure level (SPL) was predicted accurately by the complex joint SEA model and the
most important noise paths were identified.

In most applications, SEA parameters are derived from the wave method or modal
formulations. Although, for example, the wave approach can conveniently be used for simpler
structures, it has been shown that there are some limitations in the previously described
application of the wave approach for the analysis of a beam-plate coupled structure [1]. By
contrast, the Fourier method produced good results for the analysis of a beam-plate-beam
coupled structure [2]. Thus, in the present report, in order to study SEA and its application to
the beam-plate system, the Fourier method is used. The equations of motion for the coupled
structure are the same as have been used previously and are not mentioned in the present
report except where it is necessary.

The frequency average technique is used here instead of using the ensemble average.
Also predictions of the spatial sum of the energy of a subsystem are made instead of the
response at any particular point in the subsystem.

In SEA, a complex system is notionally divided into a number of subsystems that are

connected through junctions. SEA parameters such as CLFs will depend on how the



subsystems are chosen. For a beam-plate coupled structure, the subsystems can conveniently
be chosen as the beam and the plate. As the cases in which the external force is applied to the
beam and then to the plate were analysed previously using the Fourier approach {2], SEA
parameters are evaluated for these cases based on the power balance equations. An equivalent
loss factor (ELFj for an infinite beam is obtained based on the wave method and is considered
as an asymptotic representation. Similarly, the case in which incident waves exist in an
infinite plate is considered, in order to obtain a lower bound for the CLF based on a diffuse
field assumption, which can also be used as an asymptotic estimate. Then, some relationships
such as variability and consistency are investigated and comparisons made between the
various CLFs.

In applying SEA to the beam-plate system it is recognised that the long wavelengths in
the beam cause it to have low modal density and low modal overlap, causing the CLF
estimates to contain potentially large variability.

Finally, the effective CLFs obtained for the single beam coupled structure are used in
a SEA model to predict the subsystem energies of a beam-plate-beam coupled structure. The
SEA model used assumes only direct coupling, i.e. no indirect coupling between the beams.
Then, the predicted energies are compared with those calculated exactly with the Fourier

technique and discrepancies are noted and explained.



2. BACKGROUND TO SEA

2.1 Power balance and coupling loss factor

The principal objective of SEA is to establish a model which can be used to predict the
average responses of a coupled structure in terms of the gross parameters of the subsystems of
the original structure. The main parameters required in this process are the subsystem
dissipation loss factors and the coupling loss factors. As the system is described in terms of
subsystem energies, the analysis procedure normally starts with a power balance equation for.
cach of the subsystems. It is generally necessary to consider structures consisting of several
coupled subsystems. However, it seems natural and simpler to start with a structure consisting
of just two subsystems, in this case a beam-plate coupled structure. The power balance
relationships for two coupled subsystems, 1 and 2, where external forces are separately

applied to only one subsystem at a time are illustrated in Figure 1.

(1) (2)
})l,in 1)2,in
pw - _p® P —_pl2
El,tot | Ez,tot El,tot ] EZ.tot
(M (M) (2) (2)
R dis ‘p2,dis E dis ) PZ,a‘is
(a) Power input to subsystem 1 (b) Power input to subsystem 2

Figure 1. Power flows in coupled structure consisting of two subsystems

As explained before, introducing the ensemble average notation, the power balance equations

can be expressed as

ply _ p) py _ p) p)
R,r‘n - ‘Pl,a'r's +102.dis - R,dis +'F:2 E] (21)
D(2) _ pl2) B2 _ p@ D2)
})Z,irr - ‘P2,dis + Pl.dif - })2.a‘is + 1021 . (22)

where P, and P, are the input power and dissipated power; and P,(=—P, ) is the net power

transferred from subsystem 1 to 2. The superscripts are introduced to distinguish the case in



which the excitation is applied to subsystem 1 or 2. The powers are the time-averaged values
and ‘—’ denotes an ensemble average. Note that B’ = P2

In SEA, it is assumed that the power flow between subsystems is proportional to the
difference in average modal energy. Then, equations (2.1) and (2.2) can be rewritten in terms

of energies, coupling loss factors and damping loss factors as follows.

BY =B + B =o(nE0 + n0ED -nYEY), e
0= P, +BY =o(nE +7YE° —nPE) @4
PG =P+ B =o(nER + 1 B -nDEP) @)
0=F% + PP =0 (nEP +nPEO -nDE?), @9

where 77, and 7, are the dissipation loss factors (DLFs) of corresponding subsystems, £, and
E, are total energies, and 7, and 7,, are the coupling loss factors (CLFs). Energy is also

time-averaged. If the input power, the total energy stored in each system and DLFs are known

from other approaches, for example a wave method, a Fourier transform method, etc,

equations (2.3) - (2.6) can be used to obtain the equivalent SEA parameters CLFs 7y, ni},

72 and 72 . Hence, imposing the SEA model on the system and using the predicted

responses, one may invert the equations to obtain the SEA parameters which would provide

the same subsystem response. This is known as the Power Injection Method (PIM) [22].

Strictly 778" = 7, although in SEA it is usually assumed that 7’ =7{? i.e. the coupling loss

factors are independent of which system is being excited. If this assumption is made, and the

DLFs are known, only two of the above equations are required. In fact these equations are not

independent and cannot be used to separate 7,

and 7{”.

if

2.2 The effective CLF
As explained, the actual CLF is defined in terms of the ensemble average over
substructures that are different in detail but are members of same specified statistical

distribution. However, in real applications, it is often difficult to realise an ensemble.



Altematively ‘the power balance equations hold for an individual realisation and a CLF-like
term may be obtained for a particular realisation. This is referred to as the effective CLF 7,

[16]. Assuming 7" =75, the power balance equation including the effective CLF can be

written as

BY = o B iy ES) 2.7)

B = o, EP ~H,E) (2.8)

" -1
o[ ATR) e
ﬁZI —E](Z) E§2) Pz(lz)

Therefore, if the subsystem i is excited first by the external force and then the subsystem j is

or in matrix form,

excited, then the effective CLFs for the coupled structure can be obtained by equation (2.9).
Note that, here, the power flows and the stored energies are presented by space-averaged and
frequency-averaged representation such as the octave band frequency average and therefore

the frequency @ is the centre frequency of the corresponding octave band.

2.3 Consistency of the two coupled subsystems

As SEA requires the power flow between subsystems to be proportional to the
difference in average modal energy, for the whole system consisting of two subsystems as in
Figure 1, the consistency or reciprocity relationship can also be investigated, which is an
important hypothesis often used in SEA [4].

If the external excitation is applied first to the subsystem / and then to subsystem j,

then the equation for the consistency relationship may be given as
nn? =nn?. (2.10)

where n;, n; are respectively the modal densities of subsystems i and j and # is the CLF.

It is known if the coupling power proportionality (CPP) is exact then equation (2.10)
holds [23]. The CPP means that the coupling power from one subsystem to another is

proportional to the difference in their modal energy. The expressions for the CPP are simply



equations (2.7) and (2.8), so that the effective CLFs can be obtained based on the assumption
of the exact CPP. Therefore, it is expected that the consistency relationship should hold for
the present beam-plate coupled structure based on the power balance equations provided that
there are sufficient modes in a frequency band. However, note that the consistency equation is
not a necessary condition for the power balance equations, and has not been assumed in the
results in previous sections. If consistency were imposed there in principle, assuming
knowledge of the modal densities, one would only require one CLF to be evaluated.

" The numerical results testing the consistency equation will be shown later in section

5.3 where the effective CLFs are considered.

2.4 Modal density
As presented in equation (2.10), the consistency relationship relates the modal density
of subsystems as well as CLFs. Thus, it is necessary to determine the modal density of the

subsystems used here, normally a beam and a plate.

2.4.1 Finite beam system

Any finite structure has natural modes of vibration and the mode count N(w) is

normally used to define the number of modes occurring below a particular frequency @. The
mode count can be obtained based on the boundary conditions of the finite system and the
dispersion relationship. For a one-dimensional system such as a beam, the expression for the

mode count is known [4]

k,L

N(k,,)=—j—z_—+53C (2.11)

where k, is the travelling wave number, L is the length of the system in which the wave
propagates and §,. is a constant which is dependent upon the boundary conditions. The

constant &,. for particular boundary conditions is given by [24]
Sy =1-6,-6. (2.12)

where &, and &, are dependent on boundary conditions. For example, for a free boundary

condition & =0 and for a sliding boundary & =1/4.

10



The modal density of a structure is defined as the number of modes per unit frequency

interval, AN/A® . For the mode count N (a)) , the modal density function can be written as

dN dN dk
(0)- LA 2

n(w)="== . (2.13)
do dk dw

Therefore, the modal density of flexural vibration in a beam becomes, from equation (2.12)

and (2.13)

o)k N1 Lk .
dk do dkc, 720 (2.14)

where ¢, is the group velocity of flexural waves in the structure and is given by ¢, = 2w/k.

This is independent of the boundary condition in most cases.

2.4.2 Finite rectangular plate system
The general form for the mode count of a rectangular plate is given by Lyon and
Delong [4] as

2

kS
N(k))=~=2+T Lk (2.15)

tot
T 4

where k, is the plate free wavenumber, S, is the area of the plate, L,, is the perimeter length

of the plate and I",. depends on the boundary conditions.

Xie [24] introduced a more developed equation for the mode count, so that the

boundary effects can be considered as follows.

2
N(k )=f_p_S_p+(1__5 -5 ) Z +(1—5 -0 ) 5y +A (2.16)
p 475 x,L xR Ak »T ».8 Ak "

bd x
where 8, ,, 8,4, 6,r and 8, ; are the one-dimensional boundary effects corresponding the
boundary conditions of the four edges, A is a small number, and Ak, and Ak, are the
changes in trace wavenumbers from one mode to the next, which are z/L, and z/L, for the

present case.

For the present report, a coupled structure consisting of a beam and a plate is
considered in which the plate is assumed to be sliding along three edges including the
coupling junction and the opposite edge to the junction is assumed to be pinned.

Correspondingly, the mode count number for the present plate is given by

11



-1

Kok S Lk

N(k,) = R I ST e e 2.17)
L L 4 2L | 4m 2r

Then, the modal density can be evaluated from equation (2.13).

12



3. CLF BASED ON WAVE TRANSMISSION AND EQUIVALENT LOSS FACTOR (ELF)

The finite system effective CLFs #,, can be obtained from equation (2.9) by
considering both the beam-excited response and the plate-excited response. However, before
mentioning the effective CLFs #, based on the power balance relationship, the wave
coefficient is presented in this section. Often in SEA, the CLF is based on the transmission
coefficient and a diffuse field assumption [4] for the transmission between two semi-infinite
systems e.g. plates.

As well as the transmission efficiency and a possible lower bound for the CLF, the

equivalent loss factor (ELF) of the beam is also mentioned in this chapter, which can also be

used as an asymptotic representation of 7.

3.1 Power transmission between a semi-infinite plate and an infinite beam

For the coupled structure consisting of an infinite beam and infinitely long semi-
infinite width plate as in Figure 2, consider an incident harmonic wave in the plate with
wavenumber &, and heading 8 with respect to the normal to the coupling junction (at y =0).
The plate free wavenumber , is given by &, = (m; /D, )a)2 where ] is mass per unit area,
o is angular frequency and D, is the bending stiffness of the plate. Tt is assumed that the

plate has no damping and the beam has light damping’.

Figure 2. Coupled structure consisting of an infinite beam and a semi-infinite plate and the

incident wave on the plate.

" Note that for two coupled semi-infinite plates, normally both subsystems are considered to be undamped.
However, in the present case, as will be seer, in the absence of damping no power is transmitted to the beam.

13



The displacement amplitude of the coupled beam can be expressed as
W, = de™™", (3.1)

where k, is the component of the incident wavenumber along the beam direction. Matching

the trace wavenumber in the plate with the wavenumber in the beam, one has
k, =k, sing (3.2)

Accordingly, the motion of the plate can be represented by the trace wave matching as

follows:

~ = k ~n k. B . —i)
W, = (Ble W 4 B +B3ek’3y)e ex (3.3)

where B, is the amplitude of a wave travelling away from the junction, B, is the amplitude of
a nearfield wave decaying away from the junction, and §3 is the amplitude of the incident

wave. The plate trace wavenumbers can be expressed in terms of the beam and free plate

wavenumbers, namely

k, ==k ~k? =ik, cos@ (3.4)

=~ k2 +k2 =~k \1+sin’ @ (3.5)
x p P

y2

k,, =ik, cosf (3.6)

The equation of motion of the Euler-Bernoulli beam is

b, d?;fx) — M W, () == F(x) (3.7)

where fl(x) is the force per unit length, acting on the beam due to the plate, 13,, is the
bending stiffness which is complex due to damping and , is the mass per unit length.

Substituting equation (3.1) into equation (3.7) gives

14



ﬁ(ﬁbkj -mw’ )e'“‘*" =—fi(x). (3.8)

The boundary conditions that apply for the coupled structure consisting of an infinite
beam and a semi-infinite width plate are:

i) Equal displacement at the coupling junction

=W, (3.9)
Therefore, from equations (3.1) and (3.3),
A=B +B,+B,. (3.10)
ii) Infinite torsional stiffness of the beam is assumed (as in [1, 2]) which implies
Ml 0 (3.11)
W |, '
from which

= k fd k. N k., —J]
[(Blkyle W 4 Bk,e% + Bk e "} 0
y=0

Bk, + Bk, + Bk, =0. (3.12)

iii) Force equilibrium; the force acting on the junction can be expressed in terms of the shear
force in the coupled plate

D aaﬁ”’4-(2— o | g
dire v) oy | = f(®) (3.13)
Using equation (3.3),

Fw - - - )
P o_ 3 _kay 3 _kooy 3 kv —ikx
—2 = (B + Bk + Bkye Jet.

2{ D kY . D £a2Y D kyay ik x
6x26yzwkx (Bkue™ + Bk e + Bk,e™ e

Therefore,
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D, [ B, + By + B, —2-v)i (Bk,+ Bk, + BE,) | e = fio),
and as Elkyl + E’zkyz +J§3ky3 = (), equation (3.13) becomes
D, (B}, + Bk, + B, ) e = fi(x). (3.14)
From equations (3.10) and (3.12),

B = (3.15)

Bl(kyZ _ky])+‘§3(ky2 —ky3)

A= (3.16)
k,,
Substituting equation (3.15) into equation (3.14) gives
D, | Bk (k2 =% )+ Bk (R, —k2,) | e = Fi(). (3.17)
Also, substituting equation (3.16) into equation (3.8) gives
B (k,,—k )+ Bk, ~k,,) (DX} -ma®) .
k,,
Therefore, eliminating fl(x) from equations (3.17) and (3.18) results in
B, [(ﬁbk;‘ —my? )(k,, ~ Ky, )= D&k, (K2 — K2 )J 619
N

=B, [(ﬁbk; —mj? ) (ko ks )= D, ok (K2~ K )]
Hence, the ratio of the amplitude of the reflected wave to the amplitude of the incident wave

can be written as _
(ko =kys )[ (Dot =m0 )= D ok (0 + )]
(k=2 )[(Bok: =m0 )= Dok (K + )]

As presented in equations (3.3) - (3.6) each wavenumber can be expressed in terms of the

__5
F=—=-= 3.20
3 (3:20)

plate free wavenumber and the angle of the incident wave. Also, the uncoupled wavenumber
of the damped beam is given by £ =(m; /f)b)a)z. Thus, equation (3.20) can written as

follows.

i6



( 1+s° —ik c)[(f) Kk} —m;a)z)+iDpk§\/I+sz C(—kp‘\ll-i-sz +ikpc):|
(+k V1+s® ik c){( m;a)z)«I—iDpk;\/I+s2 c(+kp\/1+32 +ikpcﬂ

(-;-\}1+s +zc) k4 T )-—ZDPF.'k;\/H-s2 c/ﬁb

uml|_baa

(,_ 1+ +ic)(kis* ~ ks )~ 2D, 1+5 ¢/D, G20
where s =sinf and c¢=cosé .
For convenience, if & is given by
m' DK
B =
then equation (3.21) becomes
B (+\/i_:.5'_2+ic)(k:s4 e ) 21yk4\/1+_sc
A A R TR R o
If £ the free wavenumber ratio is defined by
§= /I;_: : (3.24)
then
B
E=§ (1+im,) . (3.25)
Accordingly, equation (3.23) becomes
. > _(+m+ic)|:s4(1+ir;b)—§4:|—2i,u§4mc 526

E (-—\/1+s2 +1icc)|:s4 (1+iﬂb)—§4]—2f#§4\}1+52 ¢

Therefore, the power reflection coefficient, which is the ratio of the power reflected from the

junction to the power incident in the plate, can be written as

~ 12

(3.27)

= p(@) =|f =

1
3

Also, the transmission coefficient, indicating the proportion of power that 1s transmitted to the

beam, can be obtained from the reflection coefficient as follows.
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Ty =1-py. (3.28)

In SEA it is usually assumed that a diffuse field is present, so that travelling wave
energy in the subsystem is distributed uniformly in all directions. The reflection coefficient

for the diffuse field can be obtained from an angular average of p,.

[ pycos0d0 =

24 [? pycostds . (3.29)

f cos@dé
Assuming that there is no significant power dissipation at the junction, then a power
transmission coefficient for the semi-infinite system such as the structure shown in Figure 2

will be
Tua=l-py. (3.30)

where subscript 21 means that power is transmitted from the plate (subsystem 2} to the beam
(subsystem 1) for consistency with the previous section. As a diffuse field is assumed, the
total normal incident power in the diffuse field due to the incident wave as shown in Figure 2
is given by

T

- |2
loinc.d - R

Hilig

(6)cos8d6 = P, [* cos6d6 =P, (3.31)

where P, =P, (6) is the constant incident power for any arbitrary angle &, which is

nc

independent of @. Similarly the transmitted power is also given by

k4 T

Py = [1%:(0)B, (0)c0s0d0 =P, [ 7,,(@)cosbdO =P, Ty (3-32)

A coupling loss factor (CLF) of a finite system cannot be obtained directly from the
transmission coefficient and the relationship between the incident power and the energy
which is assumed equally distributed in the subsystem. For a finite beam the net power
transferred to the beam depends upon its damping and when it is undamped there will be no
net power transferred to it.

For a diffuse field on the plate (subsystem 2), the relationship between the incident

power arriving at the perimeter and total energy of the plate may be expressed as [25]
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L
e = ExCy—o- (3.33)
2

where E, is the total energy stored in the plate, ¢, is the group velocity of the plate
(c, =2¢c, =20/k,), L, is the perimeter of the plate and S, is the area of the plate.

Therefore, the power flowing to the junction of length L becomes

.
¥ rS, L

tot

(3.34)

The net power transmitted to the beam from the plate P, is dependent upon the beam

damping and is given by
By, =1,@F, —n,0F,. (3.35)

If one assumes negligible power is transmitted from the beam back to the plate (i.e.
n,0E, < 1,,0F,) then, from equations (3.32), (3.34) and (3.35) an approximation for the
coupling loss factor of two-dimensional subsystems can be represented in terms of the power

transmission coefficient {25] as

N sz,ngL
21~

3.
7w, (3-36)

In practice 77,@E, # 0 so the estimate for 7,, given above represents a lower bound
for the actual CLF (provided 7, is positive). Also, strictly the system analysed violates the

assumptions on which the expression in equation (3.36) is based.

3.2 CLF estimates of a beam-plate coupled structure based on the semi-infinite structure
wave transmission )

Now, an approximation for a lower bound for the CLF of a coupled structure
consisting of a finite beam and a finite plate such as the structure shown in Figure 3 may be
obtained from the power transmission coefficient derived in section 3.1 and the procedure

described in section 3.1 using a slightly more rigorous approach.
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Figure 3. A built-up structure consisting of a finite beam attached to a finite plate with a
pinned opposite edge.

As explained in section 3.1, the total energy in the plate (subsystem 2) is made up of
the incident and the reflected wave at the junction. Thus the energy for any angle of incidence

& in the plate is given by
1, «2 =2y 1, ~ 12
£, (0)=5mS,0° (lBll +|3)| )=5mpS2a)2 IB,[ (1+0,)- (3.37)
If an equivalent reﬂectioﬁ coefficient p, for the diffuse field assumption is introduced as”

_ﬁ%w_ﬁ%ﬁ

fao 3

2. , (3.38)

and a corresponding equivalent transmission coefficient is
Toe =1— P, (3.39)
then, the total energy stored in the plate is given by
E, = E E,(6)d6 = %ﬂ'm:Sza)z 8] (1+0,). (3.40)

Apart from this, the total energy per unit area (energy density) due to the incident

wave motion is

PR ) B (3.41)

* Note that 0. % Py due to the omission of the cos@ term here.
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Therefore, the normal incident power per unit length due to the wave travelling at an angle &
to the normal to the coupling junction may be written as

~ |2
n 3
m, o |B3|

P, =é&c cosf = cosé (3.42)

r

where ¢, is the group velocity of the plate. Accordingly the normal component of the power

incident along the length L_ of the junction is given by

"SEZL
myw’ |B,| L,

P, =sc,L cosf= cosd. (3.43)

P
Then the incident power assuming a diffuse field can be simply given by the integral

over & (see equation (3.31))

~ 12
w3
_mo |33’ L,

Boca = . (3.44)
ine,d kp
and the net transmitted power becomes
m;a)3 |§3|2
Pra =Tnabned = Toa T'_Lx . (3.45)

P
Applying equation (3.35) and assuming n,@E, < 1,,@E, , then a lower bound for the CLF is
given from equations (3.40) and (3.45).

dr,,L, 275, ¢, L,

> = :
T (1+p,)7k,S, 2-7,, 108,

(3.46)

Equation (3.46) can be compared with equation (3.36). It has the same form. However it can

be seen that there is a correction in the denominator of (2—121’2 ) /2, due to the difference

between the incident power and the reflected power at the coupling junction for a semi-

infinite plate. This equation is a little different to the one presented in [16] where a correction

factor of (2 - Tyy ) / 2 is used; this was initially given in terms of the transmission coefficient

7, by Lyon and DeJong [4]. However, the difference between them seems negligible in the

present case, as will be shown in the following section.
The consistency relationship for two coupled subsystems is described in section 2.3.
Using this assumption, the power flow equation (3.35) can be rewritten in terms of one CLF

and the modal densities as follows.
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n
R’J.l = 01y (Ez —n_ZEIJ (3.47)

1

where n, and n, are the asymptotic modal density of the beam and the plate respectively.

Then combining equations (3.45) and (3.47) gives

~ 12
r_2
" TZl.dmpa) lBB| Lx

T = ' 3.48
E, (1——”2‘5* )kp (349

mE,

Therefore, substituting equation (3.40) in equation (3.48) results in

2 c L -
172] = TZl.d g X (1_ n2E1] . (349)
(2“2le,e) @rs, nkE,

It can be seen that equation (3.49) is slightly different from equation (3.46).
The total energy of the beam can be presented based on the transmission coefficient

and the diffuse field assumption as follows.
T E 1 , -2 1 ' -2
E = [PE (0)6= [ Embea)z |B,| z,d6= S’ |B.] <. (3.50)

Thus the energy ratio E,/E, required in equation (3.49) can be found from equations (3.40)
and (3.50) i.e.

E__mn - (3.51)
E, mlL/(2-7,) '

As the CLF presented by equation (3.49) is based on the assumption of the consistency
relationship, this expression is also an estimate for CLF 7,, rather than the exact one.

3.3 Numerical analysis
3.3.1 Baseline model

In this section, numerical results are given for the CLF calculated using equation
(3.46). Although equation (3.46) represents the coupling parameter of the finite structure
shown in Figure 3, it is necessary to note that the CLF is calculated from the transmission
coefficient of the semi-infinite lmodel assumption as in Figure 2. Accordingly it seems
meaningful first to examine the transmission coefficient,

The material properties and the dimensions used for the baseline model (see Figure 3)

are presented in Table 1. The length of the beam is regarded as 3.0 m, which in fact has no
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influence on the results as §, =L x L, (see equation (3.46)). Note that the damping of the

plate is assumed to be zero as the CLF is calculated based on the power transmission
coefficient, so that the CLF from the plate to the beam is not a function of the plate

dissipation.

Table 1. Material properties and dimensions of the baseline model shown in Figure 3.

Material Perspex
Young’s modulus, E (GNm™) 4.4
Poisson’s ratio, v 0.38

Density, p (kgm'3) 1152.0
Beam length, L, (m) 3.0
Plate width, L, (m) 0.75
Thickness, £ (mm) 5.9
Height of the beam, /4 (mm) 68.0
DLF of the beam, 7, 0.03
DLF of the plate, 77, 0.0

Firstly, the transmission coefficient 7, is investigated, which indicates how much
power is transmitted to the receiver beam. Figure 4 shows the transmission coefficient 7, of

the baseline model where it can be clearly seen that 7, is a function of the incident angle of

the wave as well as the frequency. It is interesting to note that the maximum power
transmission occurs at a lower incident angle (closer to normal) with increasing frequency,

which can also be confirmed in Figure 5.

Note that the coupled beam wavenumber £, is calculated from k£ =% sind. Hence
k. is smaller than k,, and reduces as & reduces. The results shown in Figure 4 correspond to

the same phenomenon explained previously [1] in the relationship between the coupled beam

wavenumber &, and the free plate wavenumber k,, because the equivalent mass (1, / k,)of

the plate impedance is reduced with increasing frequency (see Figure 14 in section 3.5).
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Figure 4. Transmission coefficient 7, of the baseline model (7,=0.0,7,=0.03) as a

function of angle of incidence and frequency. A darker value corresponds to a larger

transmission coefficient.
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Figure 5. Transmission coefficient 7, of the baseline model at different frequencies

(n,=0.0,7,=0.03)asa function of incident angle 8.
The corresponding diffuse field transmission coefficient z,,, is shown in Figure 6.

Less total power is transmitted to the receiver beam with increasing frequency, which

indicates the coupling becomes weaker as frequency increases.
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Also the equivalent transmission coefficient 7,,, introduced in the previous section is

shown in Figure 6 and the corresponding correction factors (2-7 2and {2-7 2 are
21d 2l,e

given in Figure 7 to compare their difference. It can be seen that the difference between them

is negligible as mentioned (maximum difference of 0.4%).

— tau
— — tau

21d
21a_ |4

1Q
10

Frequancy {(Hz)

Figure 6. The diffuse field transmission coefficient r,,, and the equivalent transmission

coefficient 7,,, of the baseline model (7, =0.0,7, =0.03).
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Figure 7. Comparison of correction factors (2—721,4 )/2 and (2—1‘21,2)/2 of the baseline

model (77, = 0.0,7, =0.03).
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3.3.2 Effect of different beam heights and thicknesses

Next the effect of changing the height and thickness of the beam is considered. These
investigations will effectively be used in comparing with the resuits in following sections, so
that different kinds of coupling situations can be examined. The other dimensions are as used
previously. One would expect that the CLFs decrease as the height of the beam increases,
which corresponds to weaker coupling with increasing height.

In Figure 8, the power transmission coefficient 7, is shown as a function of the
incident angle and frequency for a beam height of 360 mm. Comparing this with Figure 4, as
beam height increases, it seems that the incident angle for the maximum power transmission
has much less dependence on frequency. This phenomenon can be explained from
examination of equations (3.24) and (3.26). Note that the only frequency-related term in

equation (3.26) is the equivalent mass ratio . If the beam height increases the ratio of the

free wavenumber of the beam to the plate & decreases and therefore, the term including g,

2i yé"x/l%-_s? ¢ becomes small so that the influence of the frequency is reduced. As the term
related to ¢ has a small value, if s*{1+i7,)—-&* becomes greater one can expect that p, —1.
Meanwhile, the maximum power transmission occurs when siné becomes close to &. In
such cases, accordingly, the term related to x becomes important as s* (1+ir,)~¢" has a

small value as well.

In fact, as the beam height increases so that the beam wavenumber is much smaller
than that of the plate, the incident angle of the maximum power transmission, in other words
the minimum power reflection, is closer to zero. This means that the power transmission is

maximum when the incident wave propagating into the beam is at a normal angle to the beam
axis (s* = 0), when the beam wavenumber is much smaller than that of the plate (&4 —>0).

A very similar phenomenon occurs for an incident wave on the beam with k, < k,, when the

transmitted propagating wave radiates into the plate at an angle which is almost normal to the

axis of the beam [26].
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Figure 8. Transmission coefficient 7, for a beam height of 360 mm (¢, =5.9mm, 7, =0.0,

n, =0.03)

It is interesting to compare the transmission coefficients 7, with different heights of
the beam (Figures 4 and 8). The maximum transmission coefficient 7, is found to be greater
when the beam height increases. This is because the transmission coefficient z, of the

baseline model is present over a wider range of the incident angle. Note that as the height of
the beam increases, the power tends to be transmitted only over a particular narrow range of
angle as shown in Figure 8. In fact therefore, the diffuse field transmission coefficient 7, ,
decreases with increasing beam height. The same phenomenon occurs similarly when the
thickness of the beam increases.

The power transmission coefficient 7, is shown in Figure 9 for the 400 mm thickness
case. It scems that the incident angle of the maximum power transmission becomes
independent of frequency as the thickness increases. This can similarly be explained as in
360 mm height case. In this case, the phenomenon is mainly related to the mass ratio
p=m, /m;kp . As seen in equation (3.26), it is clear that the mass ratio x decreases as the

thickness of the beam increases and the term including 4 becomes smaller, so that the

influence of the frequency on 7, is less important. Note however, that this term is again

important when s* (1+i7,) £ has also a small value. Meanwhile, if the mass ratio increases,
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then the effect of 2:‘;:5"\/14-7 ¢ also increases, and accordingly equation (3.26) becomes
dependent on the frequency as seen in Figure 4.

As explained before, the incident angle for maximum transmission depends on the
height of the beam and reduces to zero as the height becomes very large. In this case, sind
decreases down to approximately 0.3 at the minimum. This can also be inferred from equation

(3.26). The maximum power transmission occurs when siné~& =k, /kp , which can be

confirmed from & = 0.306 (# =68mm) as seen in Figure 9. Therefore, the maximum power
transmission occurs for the particular material and geometry when the incident angle becomes

about 18" and decreases with increasing height.
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Figure 9. Transmission coefficient 7, for a beam thickness of 400 mm (/=68mm ,
n,=0.0,n,=0.03)

3.3.3 CLF estimates and effect of the beam damping

Based on the diffuse field assumption the CLF lower bound (equation (3.46)) was
obtained and the estimate for 7,, (equation (3.49)) was derived using the consistency
relationship in section 3.2. The corresponding numerical results are shown here.

As explained in section 3.1, the net power transfer to the beam is dependent on the
beam damping. Therefore, firstly-the CLF lower bounds are presented in Figure 10 in order to
compare the effect of the beam damping (see equation (3.46)).

It can be seen that the CLF lower bounds increase with increasing DLFs of the beam,
which means more energy is dissipated in the beam and correspondingly more power is

transferred to the beam. This relationship can be confirmed as the CLF lower bound is
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obtained from equation (3.35) with the assumption 7,,0E, « 1,,@E, , s0 B, = wn, E, whilst

P, =onkE,.

GLF21 lowe: bound

167" ¢

— DLF, = 0.01 |3
— - DLF, =003 |]

. DLFb= 0.1

2 10°

Fraquency (Hz)

Figure 10. Comparison of CLF lower bounds with different DLFs of the beam for the baseline

model.

In addition to the CLF lower bound, the CLF based on the consistency relationship is
found (see equation (3.49)). The corresponding results are shown in Figure 11, also for

different DLF values for the beam. The effect of the beam damping is similar to that on the

CLF lower bound

16

shown in Figure 10.

;
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10°
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Figure 11. Comparison of 7,, based on the consistency assumption and using the predicted

1,, with different DLFs of the beam of the baseline model.

The difference between ‘the CLF lower bound and the estimate for 77,, based on the

consistency relationship is shown in Figure 12 for two different values of beam damping. As

seen in the figures, the difference is small (maximum difference of 4.8 and 23.3 %

29



respectively}. Although the difference is small for both cases, it increases with increasing
damping of the beam. This means that the effect of the term related to the power transmitted

from the beam back to the plate (7,,@E,) also increases with increasing beam damping (see

equation (3.35)).

— GLF,, lower bound |

CLF,,

[CH (b}

107 L L L 107 i N .
10’ 10° 0 10' 10° 16°

Fraquency (Hz) Fragquency (Hz)}

Figure 12. Comparison of CLF lower bounds and 7,, based on the consistency assumption;
(a) 17, =0.03 (b) 7, =0.3.

As the difference between the CLF lower bound and the CLF based on the consistency
relationship is small and it is known that the consistency relationship only holds when the

coupling power proportionality (CPP) is exact, as explained in section 2.3, in the following
sections only the CLF lower bounds are compared with the effective CLFs 7,, .

3.4 Equivalent loss factor and CLF
In an earlier study [1], the structural behaviour of the beam-plate coupled system was
investigated by the wave method. In this section some physically important characteristics of
the wave method are reviewed and the relationship with the effective CLFs is presented.
Consider the coupled structure consisting of an infinite beam and a semi-infinite plate

shown in Figure 13 where the edge of the plate along the joint is assumed to be sliding.

> o0
o *
z ¥
“
o0

Figure 13. A built-up structure consisting of an infinite beam attached to a semi-infinite width
plate.
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The general dispersion relationship for a ‘free’ wave in the beam of this structure is given by [1]
Dkt =mye’ —io Z, (3.52)

where D, is the bending stiffness, k. is the coupled wavenumber, m, is the mass per unit
length of the beam, @ is frequency and 2?; is the plate impedance per unit length along the
beam. For the semi-infinite plate, if the plate free wavenumber kp is much smaller than & _,

then the line impedance of the plate can be approximated as

. Dk m’ @
Z L E(l+i)=—2
ala (1+i) k

P

(1+1) (3.53)

where fjp is the bending stiffness, and ] is the mass per unit area of the plate. The real part

of the impedance acts as a damping effect and the imaginary part is mass-like. For the finite

plate of the width y = L , using the same assumption (&, >> k), the approximate impedance

is given by [1]

s, D2k, 1-B,7
T e |+ B -i(1-BF) (3:54)

ik

—ik,. 2L
where g, =e"

" represents a phase shift over length 2L, , 7 is the complex reflection

coefficient at the edge of the plate y = L,. Combining equations (3.52) and (3.53) for the semi-

infinite plate and equations (3.52) and (3.54) for the finite plate, the corresponding wavenumber
relationship can be identified. The wavenumbers obtained for the semi-infinite plate case and
the finite plate case are shown in Figure 14 and Figure 15 respectively. The material properties
for this figure are the same as presented in Table 1 except that the DLFs 7, and 7, are changed,

to 0.0 and 0.01 respectively. It can be seen that the slope of the coupled wavenumber £, is
lower than that of uncoupled wavenumber %, as the mass effect in the impedance reduces with

increasing frequency due to increasing £, .
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Figure 14. Wavenumber comparison of the coupled structure consisting of an infinite beam and

a semi-infinite plate as in Figure 13 (5, =0.0, 5, =0.01).
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Figure 15. Wavenumber comparison of the coupled structure consisting of an infinite beam and -

a finite plate (7, = 0.0, 7, =0.01).

Note that the damping effect of the impedance results in the wavenumber ﬁx in equation (3.52)

being complex. This means that some energy in the beam is absorbed by the coupled plate and
the beam behaves as a damped structure. Therefore, if the DLF of the beam itself is assumed to
be zero, an equivalent loss factor due to the plate can be defined. For an infinite beam coupled

to the plate, the equivalent loss factor (ELF) is represented by
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hn(,%;“)

= EJ/?_;T) (3.50)

7.

where IEI is the complex travelling wavenumber of the coupled beam.

Tt should be noted that the ELF only arises because the plate impedance acts to damp
the beam [26], the DLF of the beam being assumed to be zero. Therefore, this only accounts
for the net power flow from the beam to the plate. This differs from that when determining the
effective CLFs, where power flows from the plate to the beam as well as from the beam to the

plate, these being described separately by #,, and #,, . Therefore, the net power flow related
to 7, is necessarily less than that associated with 77,. The relationship between the ELF and
the CLF can be explained by rewriting equation (2.7) as follows.

(0 (1) (1 (1
_5B +an kB + ks
12 =
®E"Y wE®  E®

(3.51)

The first term on the right hand side of the equation accounts for the net power from the beam
to the plate (corresponding to 7, ) and therefore, one can expect 7, < f,, as the second term is
positive and added. Physically, if a coupled structure has weak coupling, then the influence of
the energy of the plate (related to the second term in equation (3.51)) is small so it can be
neglected compared with the first term, and 7, becomes closer to 7, . Therefore it seems
worth comparing the effective CLF and the ELF. One can see that the difference increases as

the strength of coupling increases.
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4. COUPLING LOSS FACTOR OF A FINITE BEAM-PLATE COUPLED STRUCTURE

4.1 Baseline model

The power balance relationship for the beam-plate coupled structure shown in Figure
3 has been studied in [2] using a Fourier technique, in which an external point force was
applied at the end of the beam.

. In this section, the same procedure based on the Fourier technique is used to evaluate
energies and hence the CLF #,, for a coupled structure as in Figure 3 if the beam is regarded
as the source structure. Note that although the dynamic characteristics of the effective CLF
#,, are explained here, in fact in order to obtain the effective CLFs 7}, and 7,, , it is necessary
to consider both the beam-excited and the plate-excited cases simultaneously as seen in
equation (2.9), and also assuming 7’ = 7.

In the previous analysis [2], 400 components (7 = 400 ) of the Fourter series were used,
which can be regarded as exact results. The number of components in the Fourier series may
be changed to reduce the calculation time. For example, for the case of the beam length
L_=3.0m, 40 components are considered. The maximum difference in the narrow band
results such as the energy and power, is less than 0.25%, compared with the results including
400 components for frequencies up to 1413 Hz.

The ends of the beam are assumed to be sliding and the plate is also assumed to be
sliding along the edges x=0, x=L_and along the coupling junction y =0, while the
opposite edge to the junction, y = L, is assumed to be pinned. All physical properties and the
dimensions are the same as presented in section 3.4.1 except that the DLFs 7, are changed to
0.01 (7, =0.03).

SEA was originally formulated for random forcing, so-called ‘rain-on-the-roof’
forcing, and the response of the system to the rain-on-the-roof forcing is taken to be the
equivalent to the average response to the point forbing over all possible excitation locations
[8]. In the present study, 20 excitation points are chosen randomly on both the beam and the
plate and each is used to obtain total energy of the subsystem, total power input and dissipated.
The energy corresponding to each subsystem is obtained from the maximum strain energy [2].

Frequency bands such as .1/3 octave or octave Bands can be chosen for estimating the
CLF, and in the present report the octave band is used. This is used because it is necessary to
include a sufficient number of modes, especially for the beam which is much stiffer than the

plate. Also, for obtaining enough information concerning coupling, an overlapping band
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technique is used, so that the data can be presented with a resolution of 1/3 octave bands. The
natural frequencies of the uncoupled beam are shown in Table 2 and the number of modes of
the uncoupled plate in the octave bands is presented in Table 3. The actual modes of the

coupled system will differ a little from these.

Table 2. Natural frequencies of uncoupled beam (L, =3.0 m, #, =5.9 mm) in the frequency
of interest 5.6 — 1413 Hz.

Mode Number 1 2 3 4 5 6 7
Natural frequency (Hz) 6.7 26.9 60.1 107.2 | 167.4 | 2409 | 3279

Mode Number 8 9 10 11 12 13 14
Natural frequency (Hz) | 428.5 | 542.6 | 669.5 | 810.2 | 963.9 | 1131.1 | 1312.7

Table 3. The number of modes in each octave frequency band for the beam and the plate
(L,=3.0m, L, =0.75m).

Number of Number of
Sor Ser Soor modes Fwr Sor Sior modes
Beam | Plate Beam | Plate
5.62 7.94 11.2 1 1 70.8 100 141 1 23
7.08 10 14.1 0 2 89.1 125 178 2 27
8.92 12.5 17.8 0 1 112 160 224 1 38
11.2 15.8 22.4 0 2 141 200 282 2 44
14.1 20 28.2 1 4 178 250 355 2 59
17.8 25 35.5 1 8 224 316 447 3 74
22.4 32 44.7 1 8 282 400 562 3 87
28.2 40 56.2 0 8 355 500 708 3 108
35.5 50 70.8 1 11 447 630 891 3 137
44.7 63 89.1 1 15 562 794 1122 3 180
56.2 80 112 2 17 708 1000 1413 4 225

4.2 Effective CLF, 7}, (beam to plate)
4.2.1 Relationship between energy and CLF

The CLF is the constant of proportionality between the power flow and the difference
between modal energies of subsystems. Accordingly, the CLF is related to the characteristics of
each subsystem energy of the coupled structure. The energy of each subsystem averaged over
20 excitation positions on the beam is shown in narrow bands in Figure 16 and the
corresponding energy averaged in overlapping octave bands is shown in Figure 17. It can be
seen that the peaks of the octave band results such as 20 Hz correspond to those of the narrow

band results. Also note that natural frequencies of the coupled beam are different from those of
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the uncoupled beam. Thus, the peaks such as 10.6 and 36.1 Hz in the beam energy correspond

to the coupled beam modes that are predominantly dependent on the beam behaviour.

—— Beam
— — Plate
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Figure 16. Total energy stored in each subsystem of the baseline model when the beam is

excited (L, =3.0m, 7, =0.03, 7, =0.01).
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Figure 17. Total energy stored in each subsystem of the baseline model when the beam is
excited (L, =3.0 m, 7, =0.03, 5, =0.01).

The ratio of the energy of the plate to the energy of the beam is shown in Figure 18. This
energy ratio can be compared with the effective CLF 7j,, calculated using equation (2.9)
which is shown in Figure 19. It is clear that the energy ratio shows similar trends to the
effective CLF. The energy ratio is maximum when the beam has minimum energy, or when
the plate has maximum energy when the resonant modes of the plate are excited by the power

transferred from the beam:.
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Figure 19 shows that negative values of CLFs are found for frequency bands of 16, 20
and 25 Hz. This may be because there are not enough modes in the beam and correspondingly
not enough energy in the beam as seen in Figure 17. In fact, there is no mode between 11 and
35 Hz for the present coupled beam and the coupled structure is dominated by the plate
motion. For example, at 21 Hz, the dominant mode of the coupled structure is flexural mode
of the plate where the wavelength is about A ~1.0 m. Meanwhile the beam remains in rigid
motion. The consequent subsystem energies that explain this can be found in Figure 16.
Therefore, the small modal energy of the beam results in the negative value of the CLF. Note .

that SEA is based on the assumption of the modal energy relationship and it is generally

2

recommended to have at least 5 modes in a band [9].
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Figure 18. Ratio of the energy of the plate to the energy of the beam of the baseline model
(L, =3.0m, 7, =0.03, ,=0.01).

10" ¢

107°F

-a

1
3

10 ) .
10 107 10

Cctave band centre frequency {(Hz)

Figure 19. The effective CLFs 7}, in overlapping octave bands for the baseline model as in

Figure 3 (L, =3.0 m, 7, =0.03, 7, =0.01).
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It is of interest to note that the energy level of the plate is generally higher than that of
the beam. One of the general hypotheses of SEA is that ‘weak coupling’ is present. Although
weak coupling is not defined quantitatively, it can generally be said that if the subsystems are
weakly coupled then the energy of the excited subsystem (or source subsystem) is greater than
that of a receiver subsystem [27]. From this point of view, it can be said that the baseline
structure is strongly coupled. If the Smith criterion is used, where the coupling is considered

weak when the CLF n,, is smaller than the DLF of the source subsystem 7 , that is
7., < 1, [28], then the baseline model seems clearly to be in a strong coupling regime, as seen
in Figure 19. Note that the DLF of the beam (source structure) 7,(=7,) is 0.03 and the

effective CLF 7j,, is about 0.1.

The numerical analysis for the equivalent loss factor (ELF) explained in section 3.5 is
carried out to compare with the effective CLF #,,. In Figure 20, the effective CLF of the
baseline model and the ELFs calcuiated using the wave method are compared. The ELFs are
calculated for a situation in which the plate width is 0.75 m, which is the same as that of the

baseline model, and when the plate is regarded as being semi-infinite in width.

10" ¢

= Effective GLF,

—%— ELF (wave method, semi-infinite plate) |]
—— ELF (wave method, finite plate) T

1 0*3 1 I 1
10' 10% 10°
Octave band centre frequency (Hz)

Figure 20. Comparison of the effective CLF 7, and ELF 7, of the baseline model (7, = 0.03,

n, =0.01 for the effective CLF and 7, =0.0, 77, =0.01 for the ELF 7,).

Comparing the effective CLF of the finite system and the ELF of the finite width plate

case, it can be seen that the effective CLF is greater than the ELF (7, >7,) as explained
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above. This can be confirmed if only the energy of the beam ( E)) is considered in equation
(3.51), that is writing 7, =B, /(@E,). This gives an equivalent loss factor for the beam

accounting for the net power flow, which is comparable to the infinite beam wave result

(3.50). The result is shown in Figure 21. In that case, it can be seen that the power ratio

B, / (@E,) (instead of the effective CLF) becomes much closer to the ELF, as expected. For

the same reason, the ELF for the semi-infinite plate is larger than for the finite plate casc.

e POwer ratio
—w— ELF (wave method, finite plate)

3 10° 10°
Cctave band centre frequency (Hz)

Figure 21. Comparison of the ELF 7, and the power ratio (£, /(@E,)) when only the power
from the beam to the plate is considered (baseline model. 7, =0.03, 1, =0.01 for the power

ratio and 7, = 0.0, 77, =0.01 for the ELF 7,).

4.2.2 CLFs for different dimensions

As explained in section 4.2.1, the effective CLF #,, shows negative values at low
frequencies, which is related to the number of modes of the beam. To eliminate these, the
frequency band can be enlarged or the dimensions of the structure can be reconsidered so that
enough number of modes can be included. The enlargement of the frequency band can cause
loss of information. Thus, the dimensions of the structure were reconsidered. Initially the
length of the beam L, was changed. Figure 22 shows the results for different beam lengths. It
can be seen that the effective CLFs are in close agreement for different lengths of the beam,
especially at high frequencies. The modes of the beam therefore have little effect on this CLF.

Although the results show that the effective CLFs near 20 Hz still have negative

values, even for a 5.0 m beam case, it can be seen that the result of the 3.0 m or 4.0 m beam
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case is closer to that of the 5.0 m case than that of the 2.0 m beam. Therefore, it seems that a
3.0 m beam is suitable as the baseline model, as a beam of 4.0 m or greater requires much

more calculation time.

10" ¢

. .
10 10® 10

Oclave band cantre frequency (Hz)

Figure 22. The effective CLFs 7, for the bascline model as in Figure 3. The length of the
beam L, is changed from 2.0mto 5.0 m (L, =0.75 m, 7, =0.03, n, =0.01).

In addition to the length of the plate, it seems appropriate to investigate the influence
of the plate width L, . Fixing the length of the beam L, =3.0 m, various widths of the plate

are considered to investigate the effective CLF and the results are shown in Figure 23.

With increasing width, it can be seen that the peaks and dips tend to disappear. At this
stage, it should again be noted that the behaviour of the plate is strip-like [26] where the beam
carries long wavelength waves and the plate carries short wavelength waves. Therefore the
dynamic characteristics of the plate can be represented by strip-like behaviour, which is not

“influenced by the position x along the beam but is influenced by the width. Therefore, with
increasing width, it can be said that the number of resonances increases as well, which means
that the CLFs are less dominated by one or a few plate strip-like resonance frequencies, and

peaks and dips of the CLFs tend to disappear.
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Figure 23. The effective CLFs #,, for the baseline model as in Figure 3. The width of the
plate L, is changed from 0.75m to 2.0 m (L, = 3.0m, 7, =0.03, 7, =0.01).

For the case when the width is short such as L, =0.75 m, the fluctuation of the CLFs

is greater, and it can be seen that the corresponding frequencies are related to the widths of the
plate. Also note that the CLFs are related to the stored energy of the subsystems. As explained
in section 4.2.1, the effective CLF increases when the energy of the plate increases, which
corresponds to octave band centre frequencies of 63, 160, 250 and 400 Hz in the case

L, =0.75 min Figure 23. One can expect that in these frequency bands the displacement of

the plate increases so that the energy of the plate is maximum. As the plate behaviour is like a

beam, if the width of the plate increases by a factor of 2 (L, =1.5 m), then the corresponding
wavenumber of the plate for a given mode should decrease by half compared with

L,=0.75 m. Then as o’ = kD, / m; , the corresponding resonance frequencies are a factor

of 1/2* for the plate of double the width. An example of this is shown in Figure 24 for the
forced response at 395.7 Hz, in which the plate displacements are presented when a unit
magnitude point force is applied at the end of the beam, x=0. Figure 24 (a) shows the real
part of the displacement for the plate width L, =0.75 m and (b) shows that for double the

width, i.e. case L, =1.5 m. They show the same shape, but the frequency decreases by 1/4

to 99.4 Hz for the latter case.
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Figure 24. The displacement of the plate along the width y of the baseline model as in Figure

Ly {m}

3. The width of the plate L, is changed (L, =3.0m, 7,=0.03, n,=0.01, point force

applied atx=0 of the beam, response at x=0); (a) 395.7 Hz, L, =0.75m (b) 99.4 Hz,

Ly =1.5m.

In the same manner, the frequencies of the peaks and dips in Figure 23 can again be explained.

For example, the peaks in the CLFs for the case L, =0.75 m such as in the 63, 160 and

250Hz bands correspond to the same peaks in the 20, 40 and 63 Hz bands for the case

Ly =2.0m.

4.2.3 Damping effect of subsystems
The effect of the damping of the receiver plate is investigated and presented in Figure

25 where the DLFs of the plate 77, are varied between 0.01 and 0.3. As the DLF of the plate

increases, the effective CLF increases, because more energy is dissipated by the plate.

The effective CLFs are heavily influenced by the DLF because the structure is
strongly coupled, as explained before. For a weakly coupled structure, it is expected that the
CLF will be unaffected by the damping because the receiver system hardly affects the
behaviour of the source subsystem. An example of this will be shown later.

Although the effective CLFs increase with increasing DLF, they converge as the plate
becomes heavily damped. Comparing the effective CLFs with the ELF of the semi-infinite
plate case, it can be seen that the ELF may be regarded approximately as an asymptotic result
for high damping where the small difference may occur because the different values of the

DI Fs are used in the calculations of the ELF and the CLFs.
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Figure 25. The effective CLFs 7j,, with different DLFs of the plate of the baseline model.

7, = 0.0 and 7, =0.01 are used in wave method.

Tn addition, the effect of the DLF of the beam on the effective CLFs is shown in
Figure 26. Again, the CLFs increase as the DLF of the beam is increased. In this case, in fact

the power flow P in equation (2.9) increases so that the effective CLF 7, increases.

: .
10° 10°

Cctava band centre fraquency (Hz)

Figure 26. The effective CLFs 7, with different DLFs of the beam of the baseline model.

4.3 Effective CLF, 7,, (plate to beam)

Similar to section 4.2, the effective CLFs #,, for the structure shown in Figure 3 are

investigated based on the power balance relationship. Also, the CLFs based on the diffuse
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field transmission coefficient are compared with these results in this section. The baseline

structure is the same as presented in section 3 where the length of the beam is L, =3.0 m and
the width of the plate is L, =0.75 m . The DLFs of the subsystem is 7, =0.03 and 7, =0.01.

However the CLFs based on the transmission coefficient are obtained assuming that

1, =0.03 and 77, = 0.0 where the influence of the difference in the DLF of the plate is

expected to be negligible.

4.3.1 Baseline model

The effective CLF 7,, of the baseline model is shown in Figure 27. It can be seen that

the effective CLF #,, is smaller than 7,(=7, =0.01), especially above 100 Hz, which

suggests that 7},, represents a weakly coupled situation.

Also in the same figure the effective CLF 7,, is compared with the low bound based
on the diffuse field transmission coefficient. It can be seen that there is a significant difference
between them. The diffuse field estimate is generally known to be accurate only for weak
coupling for example in a plate coupled structure [6]. Although the present case can be
considered to be weakly coupled based on Smith’s criteria, it seems that the diffuse field
bound is not appropriate to describe this coupling situation. However, it is expected that the

difference reduces as the coupling becomes weaker, which will be shown later.
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Figure 27. The effective CLFs 7,, for the baseline model (Z, =3.0 m, 7, =0.03, n,=0.01)}.
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4.3.2 Dampihg effect of subsystems

The DLF of the beam 7, is varied between 0.01 and 0.3 and the corresponding
effective CLF are presented in Figure 28. The CLFs increase as the DLF increases. It can be
said that more energy is transmitted to the beam as the DLF increases, which means the
coupling of the structure becomes stronger as the DLF of the beam is increased. Comparing

the effective CLFs with the CLF lower bound based on the diffuse field assumption, it can be

seen that there is reasonably good agreement for 7, =0.3. However as the damping is

reduced, the effective CLF reduce only slightly whereas the lower bound reduces in

proportion to 7, (see Figure 10). Hence, it is found that the lower bound can be used as an

asymptotic representation only for a heavily damped beam, as shown in Figure 28.

e DLFb = 0.01
—x— DLF_ =0.03
- % DLF, =0.1
.. DLF =03 ]
—w— CLF lowar hound (DLFb =0.3)

& 107 £

107°F
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Figure 28. The effective CLFs 7,, with different DLFs of the beam for the baseline model
(L,=3.0m. 17,=0.01 for the effective CLFs and 77, =0.0 for DLF lower bound used

respectively).

In addition, the influence of the plate damping is shown in Figure 29. The change in

the CLF is much greater here than for similar values of the beam damping shown in Figure 28,
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Figure 29. The effective CLFs #,, with different DLFs of the plate for the baseline model
(L,=3.0m, 7, =0.03).

Recalling the results of the effective CLF 7, (beam-to plate) in section 4.2, it can be said that

the CLFs 7, and #,, both increase with increasing damping of both the beam and the plate.
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5, EFFECT OF HEIGHT/THICKNESS OF BEAM

In most SEA applications, the prediction is known to be accurate for weak coupling
[27] and often, a weakly coupled structure can be assumed. In the previous section, the
effective CLF has been found not to agree particularly well with the ELF or diffuse field
lower bound. It is suspected that these discrepancies may be due to the presence of rather
strong coupling. Therefore, it is worth comparing the results where the coupling situations
are changed. In this section, the baseline model shown in Figure 3 is slightly modified in
order to realise weaker coupling. Although the various dimensions of each subsystem could
be adjusted, the height and the thickness of the beam are considered here. As explained before,
for weak coupling, it is expected that the source structure has more energy than the recetver

structure. Therefore, numerical analysis is carried out when taller or thicker beams are used.

5.1 Effective CLF, 7, (beam-to-plate) and comparison with the ELF

Firstly, the height of the coupled beam used in Figure 3 is changed from 68 mm to
180 mm and then 360 mm, which are about 3 and 5 times greater than that of the baseline
model. Other parameters are given in Table 1. The corresponding effective CLFs are
presented in Figure 30. As expected, it can be seen that the CLFs generally decrease as the
beam height increases, which means more energy is dissipated in the beam than in the plate.
Remembering the DLF of the beam is 0.03 and Smith’s criteria, it seems that a beam of height

360 mm can be considered to be weakly coupled, as 7, <7, at least above 100 Hz. For this

case, the wavenumbers of the beam are compared in Figure 31. The beam wavenumber for a

beam of height 360 mm is a factor of 2.3 smaller than that of the baseline model having a

height of 68 mm.
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Figure 30. The effective CLFs #,, with different heights of the beam (¢, =5.9mm , 7, =0.03,

7, =0.01).
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Figure 31. The travelling wavenumber of the beam £, for two different heights (68 mm and

360 mm ).

As explained in section 3.5, it is expected that the ELF based on the wave method
should provide an asymptotic estimate of the CLFs, especially when the coupled structure can
be considered to be weakly coupled. Results are presented in Figure 32. Equivalent results for

the baseline structure were given in Figure 20. Note that the beam is undamped, i.e. 77, =0.0

so as to consider only the effect of the plate in the wave method.
It can be seen that the ELF based on the semi-infinite plate becomes closer to the
CLFs in the case of a 360 mm beam height.
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The ELF based on the finite plate shows better results for both cases than for the
baseline model. Generally the ELFs based on the finite plate seem comparable to the CLFs

although the 180 mm case shows a better resuit than the 360 mm case.
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Figure 32. The effective CLFs 7, and the corresponding ELF for different beam heights
(t,=59mm, 7, =0.03, n, =0.01); (a) #=180 mm (b) ~ =360 mm.

Changing the thickness of the beam produces the effective CLFs shown in Figure 33
where the thickness is changed from 5.9 mm to 200 mm and 400 mm. Although such thicknesses
are very large, they are treated here simply as mathematical changes without considering
implications for the validity of modelling it as a beam. Note that the wavenumber of the beam 1s

unaffected by its width, but its mass is increased. It can be seen that the CLFs in both cases

decrease, mostly by more than a factor of 10, except in the low frequency region. It can be thus

seen that for these thicker beams the plate can be regarded as weakly coupled.
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Figure 33. The effective CLFs 7, with different thicknesses of the beam ( 4 =68mm,

7, =0.03, 77, = 0.01).
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The asymptotic ELFs are again compared with the CLFs for the cases of 200 mm and
400 mm thickness in Figure 34. It can be seen that the ELFs again provide good asymptotic
approximations here.

Also, the ELFs based on the finite plate are shown in the same figures. The results

show generally good agreement with the effective CLFs except at low frequencies.
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Figure 34. The effective CLFs 7#,, and the corresponding ELF with different thicknesses of
the beam (% =68 mm, 7, =0.03, 7, =0.01); (a) 7, =200 mm (b) 7, =400 mm.

Finally, both a height of 360 mm and a thickness of 400 mm are considered
simultaneously and the corresponding results are shown in Figure 35. Considering the results
of Figures 30 and 33, it is clear that both height and thickness have an influence on the results,
As the damping of the plate increases, the effective CLFs converge to a certain value, which

may indicate the asymptotic values of the CLF of the coupled structure.
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Figure 35. The effective CLFs #,, with different DLFs of the plate ( /=360mm,

t, =400mm ). 77, =0.03 is used in SEA. 7, =0.00 and 77, = 0.01 are used in wave method.

It is worth comparing again the asymptotic ELF obtained from the wave method, also
shown in the same figure. Recalling the result of the baseline model (Figure 25), the ELF of
the semi-infinite plate case can be regarded as an asymptotic representation for the effective
CLFs ;.

For the ELFs based on the finite plate, the curve is close to the asymptotic ELF except
at low frequencies. However, it can be seen that there are some differences between the ELF
based on the finite plate and the CLF 7,,.

Also, the difference may occur for a coupled structure assumed to be strongly coupled
as seen in Figure 20, which is normally considered in real applications. Therefore, although
the ELF based on the wave method can be considered as an alternative of the CLF, it should

be noted that that there is some limit on the use of the ELFs to represent the exact CLF.

5.2 Effective CLF, 7, (plate-to-beam) and comparison with the diffuse field lower

bound results

In section 3.4.2, the effect of the different height and thickness of the beam on the
diffuse field transmission coefficient was presented. In this section, the effective CLFs 7,

based on the power balance equation are shown to investigate the influence of the height and

the thickness of the beam for comparison with the diffuse field results.
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Firstly, the height of the beam is changed to 180 and 360 mm and the corresponding
7},, are shown in Figure 36. Similar to #,,, the effective CLF 7,, decreases with increasing
heights.

10'

10° 2

w0

n2l

e

-
10

Octave band centre fragquency (Hz2)

Figure 36. The effective CLFs 7, with different beam heights (¢, =59 mm, 7, =0.01,
7, =0.03).

Figure 27).

The diffuse field lower bounds are compared with the effective CLFs in Figure 37.
One can see that the difference between them reduces with increasing beam height (also see
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Figure 37. Comparison of the effective CLFs 7}, and corresponding lower bounds for 7,

Octave bana cenlra frequency {Hz)
based on the transmission coefficient 7,, , of the baseline model (77, =0.01 and 7, =0.03 for

the effective CLFs #, and 7,=0.0 for 7, , used respectively); (a) /=180 mm (b)
h =360 mm.
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Also, the effective CLF 7,, is investigated when the beam thickness is changed from
5.9 mm to 200 and 400 mm and shown in Figure 38. As expected, 7, decreases with

increasing thickness.

L 3

—— t_= 5.9 mm |3
—x— 1, = 200 mm |]
1, = 400 mm

-*- 1
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A
A
k3
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Figure 38. The effective CLFs 7,, with different beam thicknesses (7, =60 mm, 77, =0.01,
7, =0.03).

Comparing the effective CLF and the diffuse field lower bounds, the difference is
much smaller than that for the baseline model, as shown in Figure 39. Therefore, it can be

said that the diffuse field results can be an appropriate asymptotic representation for a weakly
coupled structure.

2
T T T T
@ —— CLF jowar bound b} —— CiF lower bound

w0 E 107

107 L L . 10t . L L
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Oxtave bang centre trequency (Hz) Octave band cantre irequency (H2)

Figure 39. Comparison of the effective CLFs 7, and corresponding lower bounds for 7,,
based on the transmission coefficient 7,, , of the baseline model (7, = 0.01 and 7, =0.03 for

the effective CLFs 7, and 7,=0.0 for 7, , used respectively); (a) ¢, =200 mm (b)
t, =400 mm.
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The results of 7,, where both the height and the thickness are modified are shown

Figure 40. Similar to #,,, 7,, increases with increasing DLF of the plate and it can be seen

that the diffuse field ‘lower bound’ gives an asymptotic representation of the effective CLFs.

—— DLF_=0.01
—=— DLF_=0.03
- DLFp =0.1
‘% DOLF =03
—— CLF lower bound

T 0
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5
T

10’ 10
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Figure 40. The effective CLFs 7,, with different DLFs of the plate ( 2=360mm,
t, =400mm. 7, =0.03 for the effective CLFs 7,, and 77, = 0.0 for 7,,, used respectively).

5.3 Consistency for coupled structures based on power balance

The consistency relationship was explained previously in section 2.3. In this section,
the simulated numerical results are shown based on the modal density and the effective CLFs
obtained using the power balance equations presented in section 2.1.

Firstly, the modal density of the baseline model (equations (2.14) and (2.17)) is
presented in Figure 41. Then, using the modal densities of the subsystems and the effective
CLFs, one can examine the consistency relationship. The consistency relationships are shown

in terms of the ratio of m7,, to n,7,, (see equation (2.10)), as this would produce a ratio of 1

if consistency holds.

54



Mo R — M e M —Xem W e M — M B — X MmN M e — e o — e =X

Modal density

—— Beam
—x~_ Plate

) 1
10" 16® 16°

Cetave band centre frequency (Hz}

Figure 41. Asymptotic modal density n{@) of subsystems of the baseline model as Figure 3.

The results for the baseline model are shown in Figure 42. For the present case of the
baseline model, it can be said that the consistency relationship holds except at very low

frequencies.
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Figure 42. n,,/n,n,, for the baseline model (7, =0.03,7, =0.01)

The consistency relationships for different beam dimensions are also considered and

examined. The 360 mm height and the 400 mm thickness of the beam are considered

separately and then simultaneously. The ratios n,7,,/n,7,, are shown in Figure 43.
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Figure 43. n,,/n,n, with different beam heights and thicknesses (7, = 0.03 and 7, = 0.01

are used),

It seems that the consistency ratio becomes worse, especially comparing the baseline
model and the 360 mm height and 400 mm thickness model. This is because as the height or
the thickness increases, the number of modes of the coupled beam decreases. The first three
natural frequencies of the corresponding uncoupled beams are shown in Table 4. The modes

in the coupled structure are slightly different from these but one can expect that the larger
beams have fewer modes than the baseline model.

Table 4. The first three natural frequencies of uncoupled beam (L, =3.0 m).

Mode Number 1 2 3
Baseline model 6.7 26.9 60.1
Na““ag;fuency h=360mm | 354 | 1418 | 319.0
5, —400mm | 67 | 269 | 60.1

As the number of modes of the coupled beam decreases, the finite system is more sensitive to
the modal behaviour of the beam and the assumptions of high modal density and high modal
overlap are incorrect for the larger beams. Correspondingly, the energy of the beam is mainly
dependent on a few modes as the dimensions increase, and this results in fluctuations such as
seen in Figure 43. Conversely the energy of the beam in the baseline model is dependent on
more modes. This can be seen from Figure 16 where the energy is relatively evenly

distributed with frequency. Therefore, the fluctuations of the consistency result for the
baseline model are smaller as shown in Figure 42.
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Although there are some fluctuations at low frequencies, it can be seen that ratio
n, [n,,, gradually converges with increasing frequency so that the ratio tends to unity.
Therefore, it seems that the consistency relationship holds for the various coupling situations

such as shown in the present report.
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6. ENERGY PREDICTION FOR A BEAM-PLATE-BEAM STRUCTURE

6.1 Power balance relationships for a beam-plate-beam coupled structure

In previous sections the coupling loss factors for a single beam coupled to a plate were
investigated. As it is normally assumed that the interaction between two subsystems' is not
affected by the presence of a third subsystem [29], using the coupling loss factors obtained
from the single beam structure, it would seem possible to predict using SEA the energy of
each.subsystem of a beam-plate-beam coupled structure shown in Figure 44. As the Fourier
technique can also be applied to predict the response of the two-beam coupled structure this is
used to give an ‘exact’ result for comparison. The two beams are chosen to have different

dimensions initially.

Figure 44. A built-up structure consisting of two finite beams attached to a rectangular plate.

To predict the energy of a subsystem, firstly it is necessary to identify the power
balance relationship in terms of a SEA model. The power balance relationships for the
coupled structure consisting of three subsystems are shown in Figure 45 and the
corresponding power balance equations for the different excitation cases can be derived. In
this section to avoid confusion in the notation, beam 1 is named subsystem 1, the plate is
named subsystem 2 and the second beam is named subsystem 3 (or beam 3).

Note that there is no direct power transfer between subsystem 1 and subsystem 3 in

the figure. For the present study, it is assumed that the coupling between subsystem 1 (beam
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1) and subsystem 3 (beam 3), so-called ‘indirect coupling’, is negligible so that the coupling

loss factors 7, and 7, are zero, although it is not always true.

(1)
JR.in
) _ ¢} 1y (1)
M Plz - "le m st ‘““Psz 1
E » E » E
1.tot - 2,10t jal 3.tot
(1) (1) (1
}Jl,dis ‘P?.,dis 'P-".dis

(a) Power input 1o subsystem 1

(%)
f.iﬂ
P(Z) = _P(-’-) P(l) — ___P(Z)
@ 21 12 @ 23 32 )
El,tot -t Ez,tot - E3,zot
(2) {2} {2)
‘F{.dis PZ‘a‘is IDS.dis
(b) Power input to subsystem 2
(3)
‘f’-,in
(3) _ (3) (3) _ _p®
(3) By =-F; 3 By =—hy; 3
El,tot l«——  E; E

(¢) Power input to subsystem 3

Figure 45. Power balance between subsystems of the coupled structure as in Figure 44.

If an external force is applied to subsystem 1 as in Figure 45 (a), using the ensemble
notation ‘-, the power balance equations are

p _ p) pm
'Pl.ir.' - H,dis + })12 . (6.13)

59



By =P +BY. (6.1b)

BY = BY (6.1¢c)

3.dis *

where E is the net transferred power between subsystem i and j and P is the net

dissipated power by subsystem i. The superscript indicates which subsystem is being excited.

Similarly, if the force is applied to subsystem 2 as in Figure 45 (b), then the power balance

equations are

P =Pa +BP+PD. (6.23)
B?=PR%. (6.2b)
By =PG,. (6.2¢)

Also, if the force is applied to subsystem 3 as in Figure 45 (c), then the power balance

equations are

B =PG+BD. (6.32)
P =B3) + B (6.3b)
BY=R%. (6.3¢)

Introducing the relationship between the dissipated power and stored energies i.e.
B, =n,@E,, with 7, the internal loss factors, and }_f] = né,.a)Ef /i j,.cof‘f > with 7, the coupling
loss factors, then the power balance equations corresponding to equationé (6.1) - (6.3) can be

expressed as follows.

Ry =of (1 +n2)EO -nEY . 64

Lin
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0= - E" + (" ) +n2 ) B - . (6.4b)

0ol (1 +i2) B -nil B | (649

B2 = o[ -qPE® +(n® + 1 + 02 ) E? - nPE |. (6.5)
0=o[(n?+n)EX -7VE | (6.5)

0= o[ (7 +72)E> -nPE? ). (6.5)

BY = of (0 +7 ) B -0 E |. (6.62)

0= -nPED +(n +n) +n ) EY -nPEP |. (6.6b)
0=a(n?+n)EC -mE? | (6.60)

In equations (6.4) - (6.6), powers and energies are time-averaged quantities, 7,, 77, and 7, are
the damping loss factors of the corresponding subsystems and 7j,,, 7, , 7, and 7, are the

coupling loss factors estimated from any of the aforementioned approaches.

6.2 Effective CLF
As explained earlier in section 2.2, the effective coupling loss factors (CLFs) are

obtained instead of the exact CLFs based on an average over an ensemble of realisations.

Assuming A" =7, the effective CLFs can be obtained from equations (6.4) - (6.6).
g =

Introducing a matrix form results in equation (6.7).
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By 0 0| [m+h, ~7hs o B EY E”

1.in

w0 })Z(fn) 0 |=| -y M+ Ty + 7 ~Ths ES) Eéz) Ef) s
0 0 ]:;(2 0 _ﬁsz ¥ ﬁsz Eesg) Ef) Ef)
(6.7)

and more simply

o 'P=[n]E (6.8)
where
(B2 0 0]
P=| 0 B3 0| (6.9)
o 0 P2

E=|E" EP EP|, (6.10)

h+7hs ~Tha 0
[77] =| -7, M+ Ty + 7 N |- (6.11)
0 ~Tiy M+,

6.3 Prediction of subsystem energy

In equation (6.11), one can see that the matrix contains only the effective CLFs
between subsystems 1 and 2 or subsystems 2 and 3 as it is assumed that there is no coupling
between subsystem 1 and 3. These CLFs have already obtained from a beam-plate system.

Therefore the energies E can be predicted using the CLFs earlier.
E=o"[7]" P. (6.12)

In fact, in order to obtain the energy terms it is necessary to know the input powers of
the beam-plate-beam coupled structure. However, by scaling the total input power to unity,
the energy normalised by the input power can be found from the coupling loss factors of the
beam-plate coupled structure where excitation is applied separately to one of the subsystems

and solving equation (6.7) for the known power input and coupling matrix.
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6.4 Numericél analysis

In this section, using the effective CLFs obtained based on the beam-plate structure,
the energies normalised by the total input powers of the beam-plate-beam structure as in
Figure 44 are predicted and examined. The dimensions of the beams in the corresponding
beam-plate-beam coupled structure are shown in Table 4 and the other dimensions are the

same as shown in Table 1 for the beam-plate structure. The height of beam 3 is arbitrarily

chosen so that it has different wavenumbers from beam 1 (4 = 68mm and 4, =50mm), and

it is expected that their modal behaviours are different. The uncoupled wavenumber of the 50

mm height beam is 17 % greater than that of the 68 mm height beam.

Table 4. Dimensions of the built-up structure shown in Figure 44.

Beam 1 (subsystem 1) | Beam 3 (subsystem 3)
Height of the beam, # (mm) 68.0 50.0
Thickness, ¢ (mm) 5.9 5.9
Loss factor of the beam, 7, 0.03 0.03
Beam length, L, (m) 3.0
Plate width, L, (m) 0.75
Loss factor of the plate, 7, 0.01

The effective CLFs of the coupled structure consisting of a single beam and a plate are
obtained using the same procedure explained previously in section 2. That is, the numerical
calculation for the effective CLFs of a coupled structure where the beam height is 68 mm is
carried out using the Fourier transform approach and then a 50 mm height beam case is
considered. Then these effective CLFs are used to predict the normalised energy using
equation (6.12) where excitation is applied to one of the subsystems. It is necessary to
mention that the boundary conditions for the opposite edge of the plate coupled to a single
beam is assumed to be a pinned condition as before, while the edges of a plate coupled to two
beams are sliding. Although their boundary conditions are not the same, it is assumed that the
effect of the boundary condition is small, especially at high frequencies.

For comparison with the SEA predicted normalised energies, the comparable

normalised energies are obtained directly from the beam-plate-beam structure using the
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Fourier technique. The responses are averaged over 20 point excitations separately applied to
one of the subsystems only. The analytical solution for the motion of such a beam-plate-beam
structure where a beam is excited is described in [2] and the solution for the plate-excited case
is given in appendix B.

Firstly, the normalised energies when subsystem 1 (beam 1) 1s excited are shown in
Figure 46. The same symbols in the lines are used to distinguish each subsystem. The thick
lines indicate results obtained directly from the Fourier approach while the thin lines are
obtained from the SEA model.
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Figure 46. Energies normalised by total input power (A =68mm, A, =50mm. Beam 1

excited). Thick lines are obtained directly from the beam-plate-beam structure and thin lines
are the predicted resuits based on the effective CLFs and solving the SEA model.

Significant differences are found at low frequencies. One can recall that the effective
CLFs of the single beam structure show negative values around 20 Hz (see section 4.2) and it
can be said that the corresponding effective CLFs are not appropriate for the prediction of
energy. However, the energies of each subsystem are in good agreement at higher frequency,
especially for beam 1 and the plate. There is some difference for the energy of beam 3. Note
that this is the case when beam 1 is excited and this has higher response at high frequencies
than the other beam.

For the plate-excited case, the corresponding results are shown in Figure 47. It can be
seen that they are generally in good agreement for all subsystems. The plate has the greatest
response and the two beams, although slightly dissimilar, are significantly lower in response
and not differing very much. This is probably the case of best agreement using the SEA

modetl and the exact beam-plate-beam analysis.
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Figure 47. Energies normalised by total input power (4 =68mm, %, =50mm. Plate excited).

Thick lines are obtained directly from the beam-plate-beam structure and thin lines are the

predicted results based on the effective CLFs and solving the SEA model.

The case for excitation on beam 3 is shown in Figure 48. The normalised energies are
generally in good agreement for beam 3 and the plate. However there is a big difference

between the SEA prediction and the exact result for the non-excited beam (beam 1).
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Figure 48. Energies normalised by total input power ( 4 =68mm, A, =50mm. Beam 3

excited). Thick lines are obtained directly from the beam-plate-beam structure and thin lines

are the predicted results based on the effective CLFs and solving the SEA model.
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From Figures 46 - 48, one can see that the differences between the SEA and exact
predictions for the normalised energies are greatest when the response of the non-excited
beam subsystem is calculated for excitation on the other beam. Otherwise, for the case when
the plate is excited, they show very good agreement.

This may be due to the indirect coupling between beam 1 and beam 3. Although they
are not coupled physically, in fact it seems true that there is a coupling so that power flow
occurs between two indirectly coupled beams. This is referred to as a ‘tunnelling effect” by
Heron [11].

Further investigation of this effect is carried out. It is expected that the indirect
coupling is maximum when both beams have similar modal energies [30]. To realise this
situation, the height of beam 3 is modified to 67 mm, which is close to that of beam 1 but not
identical. Firstly, the results for excitation on beam 1 are shown in Figure 49. It can be seen
that the difference in the normalised energy of beam 3 is greater than that shown in Figure 46.

Moreover, the response of beam 1 is slightly lower than that predicted by the SEA model.
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Figure 49. Energies normalised by total input power (A =68mm, # =67mm. Beam I

excited). Thick lines are obtained directly from the beam-plate-beam structure and thin lines
are the predicted results based on the effective CLFs and solving the SEA model.

However, if the plate is excited, good agreement is found between the results predicted using

the CLFs and SEA and those directly obtained from the beam-plate-beam Fourier analysis as

shown in Figure 50.

66



T =
—p= Baam 1 |]
—=t= Plate 3
~ux. Beam 3 14

Energy / power

1075k

1077

: .
10’ 10°
Ogctave band centre frequency (Hz)

3

10

Figure 50. Energies normalised by total input power (4, =68mm, A, =67 mm. Plate excited).

Thick lines are obtained directly from the beam-plate-beam structure and thin lines are the

predicted results based on the effective CLFs and solving the SEA model.

Finally, the results for excitation on beam 3 are shown in Figure 51. One can see that the

difference for the response of beam 1 again increases as frequency increases.
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Figure 51. Energies normalised by total input power (4 =68mm, A =67mm. Beam 3

excited). Thick lines are obtained directly from the beam-plate-beam structure and thin lines
are the predicted results based on the effective CLFs and solving the SEA model.

Therefore, from Figures 49 - 51, it can be inferred that the indirect coupling effect plays an

important role for such a beam-plate-beam coupled structure. To get accurate results using the
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SEA model it is insufficient to use only the direct effective CLFs calculated between a plate
and a beam. The problem may also be a consequence of SEA’s inability accurately to predict

the response of waveguide structures, and this is effectively what the motion in the beam can

be considered as possessing.
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7. CONCLUSIONS

Based on the power balance equations, the effective coupling loss factor (CLF) of a
beam-plate coupled structure is investigated in terms of the SEA framework, when the
external forces are applied to the beam and the plate respectively. The power and energy of
the subsystems are obtained from the Fourier technique previously presented [2]. Although
the actual CLF is defined in terms of an ensemble average, the frequency average technique is
used here instead of the ensemble average. The CLFs are presented in overlapping octave
frequency bands.

For the baseline model used previously [2], the effective CLFs 7, and #,, are
obtained and analysed in terms of energy. It seems that the baseline model behaves as a
strongly coupled system, particularly for power flow from the beam to the plate. The height
and thickness of the beam have also been varied to realise a more weakly coupled situation.

The power transmission coefficient 7z, (plate-to-beam) is found using a wave
transmission approach, based on the assumption of a semi-infinite structure. Then, using the
transmission coefficient and the assumption of a diffuse field in the plate, a lower bound is
obtained for the CLF 7,, of the equivatent finite plate and beam coupled structure.

An equivalent loss factor (ELF) based on the wave method is introduced as an
alternative representation of the CLF 7,,. When the structure can be assumed to be weakly
coupled, it is shown that the ELFs based on the semi-infinite plate are comparable with the

effective CLF 7,,, and the diffuse field lower bound for the CLF can be used as an asymptotic
representation of the effective CLF 7,, . However where stronger coupling is present the
asymptotic ELF based on the semi-infinite plate is an overestimate of 7, and the diffuse field
result is an underestimate of 7,, . Concerning the ELF estimate based on the finite plate, it
seems to have some limitation in representing the effective CLF #,, regardless of the
coupling strength.

The effect of the damping in the subsystem is studied. For both 7, and 7,,, it is

shown that the CLFs increase as the dissipation loss factor (DLF) of both the source and
receiver structure increases. 7

The consistency relationship is investigated. For this, the asymptotic modal densities
of the subsystem sﬁch as the beam and the plate are used when the corresponding boundary

conditions are considered. Tt is shown that the consistency relationship generally holds,
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independent of coupling situations. With the increased height and thickness of the beam, the
consistency relationship becomes worse. This is because, as the dimenstons of the beam
increase, the number of modes of the coupled beam decreases.

An attempt was made to predict the subsystem energy of the beam-plate-beam
structure using the effective CLFs previously obtained from the beam-plate structure. The
energy normalised by input power was compared with that directly obtained from the Fourier
approach. They were generally in good agreement at high frequencies for the plate-excited
situaﬁon. However, when one beam is excited, the normalised energy of the other beam
shows some discrepancy. It seems that this may occur due to the indirect coupling effect
between the two beams. The discrepancy 1s largest when the beams are similar.

For future study, an analytical approach will be developed to obtain the response of a
fully framed structure. Then results obtained in the present report might be applied to the
analysis of the dynamic characteristics of the framed structure and indicate the usefulness or
restrictions of applying SEA to such a problem. Also the problem of the wave approach
highlighted previously will be re-examined and considered for approximate calculations of

the framed structure.
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APPENDICES

Appendix A. Nomenclature

A wave amplitude in a beam (m)
B wave amplitude in a plate (m)
D beam stiffness (Nm?); plate stiffness (Nm)
E Young’s modulus of elasticity (N/m®); energy
L length of a structure
L, length of a beam (m)
L, width of a plate (m)
- perimeter of a structure
N(w) number of mode below a particular frequency
P power
S area of a structure
¢ cosé&
e, group velocity
f frequency (Hz)
£ force function
h height of a beam
i V-1
k wavenumber
k, uncoupled beam wavenumber
k, uncoupled free wavenumber in a plate
k, coupled travelling trace wavenumber of a beam
k, trace wavenumber in a plate
m mode number
m, mass per unit length of a beam (kg/m)
m’ mass per unit area of a plate (kg/m?)
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mode number

modal density function

ratio of wave amplitude

siné

thickness (m)

displacement (m)

co-ordinates

constant

phase change; energy per unit area of a structure
dissipation loss factor (-)

equivalent loss factor, based on wavenumber
ensemble average coupling loss factor
effective coupling loss factor

angle

Poisson’s ratio

non-dimensional wavenumber (=%, /k, )
density (kg/m®)

power reflection coefficient (= 7| )

power reflection coefficient for a diffuse field
power transmission coefficient

power transmission coefficient for a diffuse field
phase change

iy [(mik,)

radian frequency (rad/s)

constant

constant
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Appendix B. Motion of a beam-plate-beam structure when a plate is excited
B.1 Motion of the coupled structure

The coupled structure consisting of two infinite beams and an infinitely long finite
width plate can be analysed using a Fourier transform technique. The corresponding
subsystems of such a structure and their force relationships are shown in Figure B.1.

Harmonic motion at frequency @ is assumed and the beams are assumed to be infinitely stiff

to torsion along y, =0 and y, = L,.

Plate p/

FS(x—x)

M\ Plate p2

Figure B.1. A built-up structure consisting of infinite two beams attached to an infinitely long

finite width plate and the force relationship between them.

The external point force is only acting on the plate located at y, = L, and the force is
defined by F,5(x—x,)6(y—L,) where § is the Dirac delta function. When the infinitely long
finite width plate and the infinite beam (beam b1) are joined along the line y, =0, a force per
unit length f;(x) acts between them as shown in Figure B.1. Now considering all forces

related to beam b1, the motion of this beam with damping becomes

A a4wbl(x)

D, =220 — @0 W, () =— £, () (B.1)
ox

where subscript b1 stands for the beam 51, D, is its complex bending stiffness and m;; is its

mass per unit length. In the same manner, the equation of motion for the other beam (beam

b2)is
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0" W, (x) _

D, = ml o, (x) = f.(x). (B.2)

The spatial Fourier transforms of equation (B.1) and (B.2) give respectively

DKW, (k) —my oWy (k) =-F (k). (B.3)

Dk, (k) —my,0° W,y (k) = Fy(k,) (B.4)

where W, (k,) and W,,(k,) are the Fourier transformed displacement of beams b1 and 52

respectively and F (k) and F,(k,) are the Fourier transforms of f(®) and f,(x)
respectively. '

Also, the equation of motion of the free plate with damping is

5, {a“ﬁfp(x, Y 250 0, (x))

ax* ox'ey’ &' ]‘mﬁwzﬂ’p(x,y) =0, (B.5)

where ﬁp is its complex bending stiffness and m; is its mass per unit area of the plate. The

corresponding Fourier transform of equation (B.5) is

W, (k,,) N 8*W, (k,, )
o’ o*

b, {k;Wp (ky, ) — 2K }—m;,a)sz (k,»)=0. (B.6)

where Pf/p (k_,y) is the Fourier transformed displacement of the plate. If harmonic waves in
the plates are assumed, the wavenumber relationship can be defined. For waves of the form

7™ the wave propagating or decaying away from the junction of beam 51 and the plate is

defined as

k, =k -k =k, (B.7a)
k, =k +k2 =k, (B.7b)

where A;p is the plate free wavenumber. Meanwhile, the positive square roots are assumed for

waves travelling towards the junction and are found to be



k,=\Jkl~k =k,, (B.7c)

k= k2 +k =k, (B.7d)

If ]kxl < |k |, then wavenumbers l:tyl and l€y3 are considered as travelling waves, and Eyz and

kP

k , then all of them behave as

kP

L« are considered as nearfield waves. Conversely, if |k,|>

nearfield waves.

Then the motion of plate pl can be written as
Wik, 3,) = B + Bd™ + Bid™ 1 B,db ®B.9)
and for plate p2,
W, v,) = aeE”y 4+ éze’;’*y 2 4+ ése#”y 4+ C~’4e’2y‘y 2 (B.9)

Note that different local coordinate systems are used in equations (B.8) and (B.9) in
describing the motion of the plate i.e. y,(= y) for plate pl and y,(=y—L,) for plate p2.

The response of the beams and the plates can be obtained based on application of the
appropriate boundary conditions. |

(i) Continuity equation for beam b1 and plate p!; equal displacement to the plate at y, =0 of

plate pl

Woulkoo )|, =Wanlk)) (B.10)

B +B,+B,+B,~W,(k,)=0. (B.11)

(ii) Sliding condition; beam 51 is assumed infinitely stiff to torsion along y, =0 of plate pl

oW, (k.. 3)

=0
™ (B.12)

»=0
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aﬁ}pl (kx’yl)

P~ =Bk, +Bk,+Bk,+Bk,=0. (B.13)
1

yl=0

(iii) Force equilibrium condition; the force on plate pl are equal and opposite to the

respective force on beam b1

— 63W (kxby) aW (kny) —
D, [———’”—‘—kf@—V)—""——l— =F(k,) (B.14)
=0

oy, %2
Combining equations (B.3) and (B.14) results in

B {aswpl(kxﬂyl) aWp](kx9yI)
-D, | —2—r= o p el

3 —kj(z"v)

} =(D,k! - YW,y (k).  (B.15)
1 1 =0
Therefore,
Bk, k2 2= vk, + By (), =k} (2= V)i, |
1 +B, {1253 —K(2- v)ic'ﬂ} +5, {ic';1 ~k2 2=k, } (B.16)
+( Dy} - myye* ), (k) =0
(iv) Continuity equation for plate pl and plate p2; equal displacement at junction y, = L, of

plate pl and y, =0 ofplate p2

Woskon)|,, =Wpalkes)|, (B.17)
é]eEJ-lLl + ézelz).zl-a +‘§36-€y3]—1 +J—§4ef;y411 "él __62 _ 63 _(":'-4 =0 (B.18)

(v) Continuity equation for plate pland plate p2; equal rotational displacement at junction
y, =L ofplate pl and y, =0 of plate p2

Wk )| _ W,k )]
EY &,

(B.19)

L1=1—1 y2=0

B 5 B 4 B e + B — Gy~ oy Oy — Gy =0

¥3 ya

(B.20)

(vi) Moment equilibrium condition; the moments acting on plates pl and p2 are equal at

junction y, =L
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M, (kx,yl)l M,k ,y2)|y2=G (B.21)

where M ,(k.,y;) is the Fourier transform of the moment per unit length A7 ,{*,¥,) acting on
edges of a plate and given by

W (k_,
—(—y'——k"' VIV (k ,y,} i=1,2. (B.22)

r‘

M, (k.y)=D [

Therefore,
D { ( k )e’z"‘L‘ +B, (%2 —w?cfv)eg"’L1 +B, (IE;’B - ka)eE”L’ +B, ( i —kzv)ef"‘l“:l .
-, [ G (R~ k2v)+ G, (B —kov)+ G (K, — kv )+ Gy (B2 _kjv)] =
(B.23)
(vii) Force equilibrium condition; the forces acting at junction y, = L, of plate pl and y, =0

of plate p2 should be in equilibrium with the applied external force as shown in Figure B.1.
By, , + B =Fok) (B.24)

where f‘z(k W) s F {k_,y,) and F (k,) are the Fourier transforms of the forces fz(x s

f; (x,y,) and ﬁ‘o (x - x,) respectively.

Therefore,

. [V (k. 3

"'Dp p1(3x yl)—kf(2— ( y; }

ayl ayl n=i

. [ W, (k,, oW ,(k,, .

--|-1)}J _p.%(Tx“Xﬁ_kf(z_v)_pab__y_Z_) =‘F;)(kx) (B.25)

P a}il a_yz =0
5 él {E_il —kf(Z— V)jéyl} ey éz {k~52 - kj (2- V)Eyz} g

T +B (B -k 2= vk, ) &4 4 B, (B~ 20k}
G (R - @)k, )+ C, (e, B 2= vk,

C, 3k AR | =Rk
+G {kjs ~k2(2- V)kys} +C, {k; —k(2- V)ky4} ’ (B.26)
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(viii) Contimiity equation for plate p2 and beam 52 ; equal displacement to the plate at

v, =L, of plate p2

WpZ(kxﬂy'j)

L =Wk (B.27)

Y2 =

é}ei,.rl? " Cﬁ’ze’;”h + ("j}e‘?ﬁlﬂ i C"v4ef;-4£.z _ W; ,(k)=0. (B.28)

(ix) Sliding condition; beam b2 is assumed infinitely stiff to torsion along y, = L, of plate

p2
W (k.. v,)
MM SR T B (B.29)
ayz yi=ly
aw (k.. M P e i em e
———---—--——‘°za(y" ) Clipe™™ +Cokpe™™ + Cik e + C ik, =0, (B30)
z yo=Ly

(x) Force equilibrium condition; the force on plate p2 are equal and opposite to the

respective force on beam 52

. [ k., »,) oW, (k,, ;)
Dp|:—p—————kf(2—‘/)'p—2

= Fy(k, :
PY 2, LLZ (k,) (B.31)

Combining equation (B.4) and (B.31) results in

5, {aawpz(fzx,yz) _e-n e (kx,yz)} (Bt ik, @2
&, dy, ot
Therefore,
Gl -k @-vik, Lot + G, {2, - k2 2=k, | €
"+, {i‘“ﬁs ~k;(2- V)/;ys} " 4G, {!E; k22— v)£y4} et | (B.33)

—(ﬁbk; —my,0"° )sz(kx) =0

The equations representing boundary conditions (B.11), (B.13), (B.16), (B.18), (B.20), (B.23),
(B.26), (B.28), (B.30) and (B.33) can be expressed' in a matrix form. For simplification, new

vanables ¢, and £, are introduced by
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o, =k —kEQ-v)k,,

o, = 12}3,2 -k2(2- v)i:t'y2 ,

_ _ (B.34)
a3 = k_}s:E _kf(z_v)kyél ]
a, =k, kI Q-V)k,,.
ﬁl = é3?1 - kxz v,
ﬁz = ]E)?z - kf v,
_ (B.35)
ﬂa = kja - kj v,
Bi= gjat —kv.
Then, the matrix form of the equations in the wavenumber domain is
Ku=F (B.36)
where the dynamic stiffness matrix K 1is
[ 1 1 1 1 -1 1
k, ko ks k. 0
a, o, a, o, 0 0 0 0 & 0
DP
I -1 -1 -1 -1 0 0
i k 1 7 £ 7 ¥ 7 4 i 7 7 i
. ket ket ket ket <k, <k, kg, ke 00
ﬁ;ekﬂh ﬂzek “ ﬁsek H 54‘9""‘*"1 - -p -5, -5, 0 0
—a et eyt —o:Bek""l“ —a e a, o, a, a, 0 0
0 0 0 0 ei{‘.,zﬁ kEoaly sl Eyqla 0 1
0 0 0 0 ket k™ kMt ke 00 0
0 0 0 0 e e a3e£"‘31'" a0 22
L P
(B.37)

where K,, = D,k* -m,&* and K,, = Dk} ~m}," . Also, the displacement vector uin terms
of the wave amplitudes in the plate and the transformed beam displacements is

- ~ ~ ~ ~ - -~ - - ~ T
u= [Bl (kr) BZ (kt) B3 (kt) B4 (kr) Cl (kt) CZ (kx) C3 (kt) C4 (kx) PVbl (kx) Hsz (kx)] *

(B.38)
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and the force vector is
F=[0 0 0 0 0 0 Ak)/D, 0 0 0. (B.39)

Thus, if the excitation force is known, the response of the beams and the plates can be found

from the solution of equation (B.36) as follows.
u=K''F (B.40)

As the response of the coupled structure consisting of infinite beams and the infinitely
long finite width plate is identified, the response of a finite structure such as the structure
shown in Figure 44 can be obtained based on a Fourier series expansion as explained in [2].

For example, the response of beam 51 is written as

W, 2 -
(1) =54 D Wy, cos(k,,x) (BA1)

n=1

where k,,, =nz/L, and W;u = Wm(kx,n) is the n" component of the motion of the coupled

beam b1, which is defined in equation (B.40).

B.2 Numerical analysis

Numerical analysis is carried out for the structure consisting of finite subsystems
shown in Figure 44 where the ends of both finite beams and the corresponding two edges of
the plate are assumed to be sliding. The relevant dimensions of the structure are given in
Table 4.

Firstly, the transfer mobility is investigated when the external point force is applied at

x=1.51m and y=0.5m on the plate and compared with that predicted using FEM. The

corresponding results are shown in Figure B.2. A difference in level between them is
observed near 9 Hz. This is because the corresponding FEM result is truncated due to the

frequency resolution used (0.5 Hz), otherwise it can be seen that they are in good agreement.
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Figure B.2. Transfer mobility comparison for the plate-excited coupled structure as Figure 44
(response at x =0.0m of beam b1, point force applied at x =1.51m, y =0.5m on the plate).

In addition to the transfer mobility, the power balance relationship is also investigated.
If the plate is excited, the power balance relationship for such a structure shown in Figure 44
is already presented in Figure 45 (b). The corresponding powers are shown in Figure B.3. It
can be seen that the power balance between the total input power, the transferred powers and

the dissipated power in the plate holds.

10 ¢

107E 4

Power (Nmys)
a
T

—— To%al power input 5
— — PowWer ie—beam b1 * FOWEL i beam bzt POWOT L s

10" 107 PP

Frequency (Hz)

Figure B.3. Comparison of power balance for the beam-plate-beam structure as Figure 44
{point force applied at x=1.51m, y=0.5m on the plate).
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