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Abstract. — Experimental, analytical, and numerical investigations into the dynamics of a cylindrical gas pocket in
a liquid (a “one-dimensional” bubble) are described. One wall of the bubble (the gas-liquid interface) may move. The
other walls (the curved wall, and the other end of the cylinder) are bounded by rigid surfaces. The equation of motion
of a damped, forced, one-dimensional bubble is obtained, a nonlinearity arising through the amplitude-dependence of
the oscillator stiffness. Analytical solutions to reduced forms of this equation give the natural frequency of undamped
oscillations in the linear limit. In the nonlinear regime of finite-amplitude free oscillation the fundamental frequency
is found to be amplitude-dependent. Whilst analytical solutions of the undamped, unforced form of the equation
of motion can be obtained in phase space, the full nonlinear damped forced equation must be solved numerically.
These solutions are compared with those of the linear undamped analysis, and with experimental measurements. Two
relevant cases of such bubbles are studied: First, air bubbles trapped within the ear canals of divers and driven by
high-amplitude low frequency sound; second, the theoretical potential of bubbles in blood to cause haemorrhage of

lung blood vessels during lithotripsy.

Pacs numbers: 43.30Lz — 43.25Yw.

1. Introduction

Analysis of the dynamics of cylindrical pockets of gas
within rigid tubes reveals several features of use for in-
dicating the possible consequences of subjecting bubbles
in the ear canals of divers, or within blood capillaries,
to intense sound fields. In the simplest model the ve-
locity associated with the meniscus is in one Cartesian
dimension only, so that this bubble is loosely termed
“one-dimensional”. This is to distinguish it from three-
dimensional bubbles!, the significant difference being in
the way geometrical spreading allows fluid motion to di-
verge away from the bubble in the three-dimensional case,
but not in the one-dimensional. This means that the in-
ertia associated with the volume changes in a truly one-
dimensional bubble is undefined, which has consequences
for the dynamics of bubbles subjected to pressure changes
in pipes which are of comparable diameter with that of

!Spherical bubbles are the symmetrical limiting case of three-
dimensional bubbles, illustrating the figurative, rather than
the definitive, nature of the terminology. Ideally fluid motion
about a pulsating sphere is in one spherical dimension only,
the radial, but in three Cartesian dimensions.

the bubble, but which are very long. The case of blood
vessels is examined. However, many practical examples
of these bubbles are not truly one-dimensional, in that
the geometry does diverge some distance away from the
bubble. In such circumstances the inertia associated with
oscillation (the “radiation mass”) is finite, and the bubble
acts as an oscillator.

Such divergence is incorporated within the model one-
dimensional bubble discussed here, the liquid some dis-
tance from the gas space diverging from a tube into a
cone geometry (Figure 1), where the liquid velocity field
resembles that found in a spherically-diverging geometry.
In this way, the inertia is finite, and the natural frequen-
cies of the bubble are found in the limit of harmonic,
small-amplitude oscillations. The analysis also allows con-
sideration of the stiffness term, and the equation of mo-
tion is constructed. Whilst analytical solutions in phase
space may be obtained for undamped free oscillations,
numerical techniques are required for the full equation.
The predictions are compared with experimental mea-
surement of a one-dimensional bubble. Resonances asso-
ciated with membrane oscillations are also discussed, and
likely resonances of air bubbles in the ear canals of divers
are studied.
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Figure 1. Schematic of 1-D bubble.

2. Theory

The natural frequency of the undamped one-dimensional
bubble can be calculated by equating the maximum po-
tential energy (associated primarily with the gas) with the
maximum kinetic energy (invested primarily in the lig-
uid). Initially, surface tension, friction and viscous effects
are ignored, as is the possibility of meniscus deformation.
To find the potential energy of the gas, assume that the
gas within the bubble behaves polytropically, such that

pV" = constant, (1)

where p is the gas pressure within the bubble, of volume
V', and where & is the so-called polytropic index (which
varies between «, the ratio of the specific heat of the gas at
constant pressure to that at constant volume, and unity,
depending on whether the gas is behaving adiabatically,
isothermally, or in some intermediate manner). There-
fore the gas pressure and bubble volume at equilibrium

(po, Vo) can be related to values at some general position

through
2 (f‘l) = (—A"x“ ; 2)
Po v Agzo — Age
where Ap is the cross-sectional area of the bubble, ¢ the
displacement of the meniscus from equilibrium, and z;
the bubble length at equilibrium (see Figure 1). If e < zp

then equation (2) can be expanded to give the change in
gas pressure from equilibrium to be

KEPo
Ig '

pP—po= (3)
If an incremental displacement de occurs, and the bub-
ble volume changes by dV = Apde, then the incremental
change in the potential energy of the gas is

d®pg = —(p — po)dV. (4)

Integrating (4) from equilibrium to the extreme of the os-
cillation, ey, using substitution from (3), gives the maxi-
mum potential energy stored in the gas

€0 k4 : 2
QPE,max ':/ 22000 ede = (_hf’lnp[)) E—u (5)
0 Ip Ip 2

To calculate the kinetic energy of the liquid, assume the
inertia of the gas to be negligible, owing to the much
greater density (p) of the liquid. The total kinetic energy
of the liquid is the sum of the kinetic energies of the
liquid contained within the cone, and of the liquid column
contained within the tube (Figure 1). Assume a harmonic
displacement ¢ of the meniscus, ¢ = gge’/“ot. Since the
liquid is assumed to be incompressible, the kinetic energy
of the liquid in the column (of equilibrium length yo =
Hy, — zg), of mass pAgyo, occurs when the speed is a
maximum (i.e. |£.x| = woeg) and the displacement zero,
and equals

1
(I’KE,max,co] — EPAoygngg. {6)

Since the cross-sectional area in the cone increases with
distance from the meniscus, the flow velocity of the in-
compressible liquid decreases in proportion. The area (A),
radius (r) and distance from the imaginary apex of the
cone (h) of a horizontal section through the cone are re-
lated to their values at the base of the column (Ap, 79,
and hg respectively -see Figure 1) through

@ - W_f‘g n ﬂ'(h(] tanﬁ)"’ ool A{] (7)
A 7?2 m(htanf)?  m(htan)?

where 6 is the half-angle of the cone. The volume of liquid
crossing all such areas A in a time d¢ must be constant if
the liquid is incompressible, so that equating liquid fluxes
gives the liquid velocity crossing the area A in the cone to
be £9Ag/A. Since A o h? (Eq. (7)), this gives an inverse-
square law similar to that seen in spherically divergent
geometries (see Discussion, Section 5). The volume of a
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liquid element of thickness dh of cross-sectional area A in
the cone is 7(htan @)?dh; its mass is pr(h tan6)*dh; and
its maximum kinetic energy is

-;—p:rr(h tan 0)2dh|émax|* (Ao /A)>.

Substituting for Ag/A from (7), letting | max| equal wyeg,
and integrating up the kinetic energy of all the liquid
elements in the cone gives the maximum kinetic energy
of the liquid in the cone:

¢'KE,mﬂx,cone =

Ha (4 A \?
- - 2| 2
_/hu (2ﬁrp(htan9) | maxl (—ﬂ(htan9}2) )dh

_ 1 p(Ageowy)? /!ﬁ dh
h

~ 2 wtan? J,, h?
i 1 )0(‘AI'.'JE('.l""-*’l'..'l)2 ( 1 'y 1 ) (8)
T2 wtan®*@ \ho Hy/°

The total maximum kinetic energy of the incompressible
liquid is therefore

q’KE,max = (bKE,mnx,coI + @KE,max.cone: (9)

which can be found by substituting from (6) and (8):

A 1 1

PKE,max = %ﬂ(iuwn)z«‘lo (3}0 + W::QB (};; = E)) .

(10)
The natural frequency of the undamped oscillator is found
by equating ®Pxg max t0 ®pEmax, Which can be done
through equations (5) and (10), with appropriate inclu-
sion of a term incorporating the effect of the viscosity of a
liquid oscillating in a piston-like mode within a cylindrical
confinement of radius rg:

KPo

- N An 1 1
po (yn{l i LU e - (hn H2))
(

wp =

11)

which is related to the linear natural frequency, fo,
through wy = 2nf;. The boundary layer thickness is
A = (u/7mpfy)/*, where p is the liquid viscosity and f;,
the linear resonance frequency of the piston-like mode
resembling the one discussed in this paper (Miller & Ny-
borg, 1983).

Having found the natural frequency, the two key com-
ponents of the oscillator, namely the inertia and the stiff-
ness, can be examined in detail. The radiation mass m,
of this one-dimensional bubble can readily be found by
noting that equation (10) must take the standard form

PKE max = Mr|woeo|?/2 (Leighton, 1994). Therefore

A (1 1 )
= garwes=rd i el
m, = pAoyo ( + Yo7 tan® (hn H2))
(inviscid liquids)

mr=PAnyu((1+A/’"ﬂ)+yﬂi_(l 1))

7 tan? @ h_n_Fff-;

(viscous liquids). J
(12)
The second term in the brackets incorporates the kinetic
energy of the liquid in the cone. In inviscid conditions the
first term (i.e. unity), which reflects the kinetic energy of
the liquid in the column, is about two orders of magni-
tude greater than the second term. This is because whilst
the liquid in the column has the same velocity as the
meniscus, the liquid velocity in the cone falls off rapidly
with depth (in the ratio Ag/A, i.e. as h=2, as discussed
after equation (7)). As a result the radiation mass of in-
viscid liquids is only about 1% greater than the mass of
liquid in the column, pAgye. However the finite viscosity
of water in the apparatus employed in this study (giving
A ~ 107* m) causes a ~ 15% increase in the radiation
mass. All these masses are very much less than the actual
gravitational mass of liquid, which equals

pAoo (1 + Tm(Hz = ho)) )

(13)
the first term (unity) representing the gravitational mass
of the liquid in the column, and the second term (which
for this apparatus is roughly two orders of magnitude
larger) representing the gravitational mass of the liquid
in the cone.

The stiffness k can be found by examining the force
exerted by the bubble in response to a displacement &.
That force can be characterized through the change in
gas pressure p, so that

Ip
= Ag—: 14
k= Ag 3% (14)
Differentiation of (2) provides dp/ds. Substitution of this

into equation (14) gives

—(x+1)
npoAg Age
= - 15
k Vo (1 Vo 1)

The stiffness is dependent on the displacement, and so
will vary throughout the oscillatory cycle, increasing in
compression, and decreasing in rarefaction. Figure 2 plots
the stiffness of the gas for both positive and negative val-
ues of meniscus displacement £. The nonlinear expres-
sion for stiffness, (15), is plotted as solid curves for both
the adiabatic and isothermal limits. As can be seen from
Figure 2, the stiffness increases in compression (¢ > 0),
and decreases in rarefaction. If the change in volume is
so small as to be negligible compared to the equilibrium
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Figure 2. Plot of stiffness k = Agdp/dc in Pa m as a function
of normalized displacement (g/2¢) for air bubble in water. The
apparatus used later in this study has Ag = 1.77 x 10™%m?,
and this value is used in the calculation. The bubble length
chosen (zg = Vi /Aq = 65 mm) is also typical of that which the
apparatus can produce. The air pressure chosen was 10° Pa.
Predictions in both the adiabatic (k = v = 1.4) and isother-
mal (k = 1) limits are shown. Those from the nonlinear theory
(i.e. from equation 15) are solid lines. The small amplitude
approximate form (equation 16), which would predict linear
oscillations, are broken lines.

bubble volume (i.e. Age < Vp) then the stiffness becomes
independent of displacement, and of value

KpoA?

v’
(as shown by the dashed plots in Figure 2). Therefore the
natural frequency in the limit of small-amplitude oscil-
lations is given by the root of the ratio of (16) to (12),
giving equation (11) which, in the limit where the inertia
of the liquid in the cone is neglected, reduces to

| . i KpPo
oy =2y = \/ P )

Within the approximations inherent in (17), the natu-
ral frequency is symmetrical about the midpoint of the
column as regards the equilibrium position of the menis-
cus (solid plots in Figure 3a), wy being a minimum when
zoyo = (Hy — z¢) is a maximum (when zp = ). The
resonance frequency becomes undefined for yo — 0, as
the bubble fills the column (and in the trivial case of no
bubble present, i.e. zg = 0), a situation which is resolved
when the mass of fluid outside the column (which now
dominates the radiations mass) is reintroduced (dashed
plots in Figure 3a, given by equation 11). The natural
frequencies of tubes of various lengths which are filled by
bubbles to 50%, 10%, 5% and 2% are shown in Figure 3b.
Use of equation (17) is justified for tubes long in compar-
ison with the bubble length and the tube diameter, when

k= (16)

the inertia of the liquid outside the tube has negligible
effect.

Equations (11) and (17) both employ an inherent as-
sumption that the stiffness is independent of the dis-
placement. Since the stiffness has in fact been shown to
be displacement-dependent (equation 15), the actual re-
sponse of the oscillator is found by incorporating this
displacement-dependency, together with the radiation
mass and damping, b, into the equation of motion:

(b))
yomtan®8 \ hy H;

A2 Age\ ")
+bé + "”“j,o 0 (1 = 7;) e=F (18)

meé + bé + ke = F =

(PAnyu ((1 + A/ro) +

Analytical phase space solutions can be found by express-
ing the undamped, unforced version (b = 0; F = 0) in
terms of the normalized displacement z = £/z as

z=0 (19)
where the constant wf is defined by the formulation of
(11). Note that whilst the notation wj imitates the classi-
cal notation for the linear equation describing simple har-
monic motion, in this nonlinear equation it only reflects
the natural frequency for small displacements. Equation
(19) can be solved in phase space by making the substi-
tution

- dv
F=v—

o where v = & (20)
to give the separable first order differential equation
1=d—v = —wa(l — x) (=g (21)
dz u

Integration of both sides of this equation with respect to
T yields

i dI—u 2(1 — kx) -
k(k —1)(1 — )~
(k=1)

\/(1 —In(1 -
(22)

where ¢ is an arbitrary constant. This equation relates
displacement to velocity, that is, it is a solution in phase
space. Further integration will be required to obtain dis-
placement as an explicit function of time, a task best
suited to numerical rather than analytical methods. How-
ever plotting the curves defined by (22) does enable the
description of a trajectory of the solution in phase space.

Figure 4 illustrates four typical trajectories obtained
from (22) for the free undamped oscillations of a bubble
having wy /27 = 23 Hz with four different initial displace-
ments. The closed form of these curves indicates the pe-
riodic nature of the solutions. The curves are not of the
ellipsoidal form that the linear model would produce, a

(k#1)

z)+c
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Figure 3. a) Plots of the effect of bubble length, shown as a
proportion of the tube length which is filled by air at equilib-
rium, on the natural frequency, as predicted by linear theory
in the limit of small-amplitude oscillations. The tube length
(H1) and internal diameter (rp) are set at 123 mm and 1.5 mm
respectively, reflecting the dimensions of the experimental ap-
paratus used in this study. The solid lines indicate calculations
for which the inertia of the fluid in the cone is neglected, and
the dashed lines correspond to calculations including the iner-
tia of the fluid in the cone. The upper two plots correspond to
the adiabatic (k = v) case, and the lower two fo the isother-
mal (k = 1) situation. Viscous effects are neglected. b) Plots
of the effect of tube length on the natural frequency, for the
adiabatic (k = 7, broken lines) and isothermal (x = 1, solid
lines) cases. Results are shown for tubes filled at equilibrium
by gas to a proportion (from the top) of 2%, 5%, 10% and, for
the lowest lines, 50%. Tube diameter is assumed to be small
compared to tube length, but surface tension and viscous ef-
fects are neglected.
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Figure 4. Solutions of equation (22) give phase space plots
of bubble wall velocity as a function of wall displacement for
the free undamped oscillation of a bubble having wo /27 = 23
Hz. The normalized initial displacement increases from (a) to
(d): (a) 0.05, (b) 0.10, (c) 0.25, (d) 0.35.
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Figure 5. The displacement time histories associated with
the solutions shown in the corresponding parts of Figure 4.

difference which increases with increasing initial displace-
ment, indicating significant departures from linearity in
these solutions.

Using numerical integration the time histories asso-
ciated with the solutions shown in the corresponding
parts of Figure 4 can be calculated (Figure 5). The cor-
responding frequency content of these solutions is shown
in Figure 6. At small initial displacements the oscillation
is nearly sinusoidal (Figure 5a), with a fundamental fre-
quency of 23 Hz (Figure 6a), in accordance with the nat-
ural resonance predicted by the small-amplitude linear
theory through equation (11). However for the larger ini-
tial displacements the greater the harmonic content of
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Figure 6. The frequency spectra associated with the displace-
ment time histories shown in the corresponding parts of Fig-
ure 5.

the frequency spectrum (Figure 6), as reflected in the
increasing asymmetry of the time histories in Figure 5.
This arises because, in compression, the system has an
increasing stiffness and therefore a more rapid response;
conversely, in rarefaction, the stiffness is reduced and the
response more sluggish, in agreement with Figure 2. The
fundamental frequency, as given by the peak closest to
the origin in each spectrum in Figure 6, decreases with
increasing displacement, being (a) 23 Hz, (b) 23 Hz, (c)
21 Hz, and (d) 18 Hz.

The analytical treatment of the equations of motion
which are either damped, forced, or both, is not feasi-
ble, and requires the adoption of the numerical path.
The solution to (18) can be calculated using standard
Runge-Kutta algorithms (Forsythe et al., 1977). A sinu-
soidal form for the forcing term is assumed. The size of
the damping term can be obtained from theory, and has
been solved for similar geometries, though the analysis is
not simple (Miller & Nyborg, 1983; Miller & Neppiras,
1985). In this case estimates of the quality factor were
obtained from experimental data (see later, Section 4),
and a value of Q = 3.5 was chosen.

3. Experimental

An experimental one-dimensional model bubble was con-
structed within the laboratory in order to investigate the
limitations of this theory. The bubble model uses glass
capillary tubing of &~ 123 mm length (depending on ex-
act position of screw top), having an internal diameter of
1.5 mm and a wall thickness of about 2 mm, attached to
an inverted glass funnel (# = 30°; Hy = 43.3 mm). The
base of this funnel is covered with a rubber diaphragm
(Figure 7), which is connected by a bolt to the vibrator.
Because of the area ratio of the funnel mouth to the di-

Power amplifier

)

—F-I Frequency meter ]ICRO(timebasefX-Yi
| Signal generator |

Figure 7. The apparatus employed to measure the phase re-
sponse of a driven bubble.

[

ameter of the capillary tube, a small displacement of the
diaphragm will produce a displacement approximately
twenty times greater in the tube, so facilitating observa-
tion of the meniscus motion and minimizing vibration of
the glassware. The glassware has two stopcocks attached
at either end of the capillary to enable both the control of
pressure and the introduction of a known amount of lig-
uid (which was degassed, filtered, and colored with food
dye).

The diaphragm is driven by a Ling vibrator (type 409)
supplied by a sinusoidal signal, the excitation frequency
and amplitude being made adjustable by the sinewave
generator (Therlby Thandor type TG220) and amplifier.
The acceleration is measured using an accelerometer con-
nected via a charge amplifier (Bruel and Kjaer types 4367
and 2635 respectively) to a storage oscilloscope (Gould
type 0S1420).

Two types of measurements were made, each requiring
a different set of equipment. The phase sensor comprised a
photoresistor (NORP-12) and an LED which was masked
to minimise light transmission through paths other than
those which crossed the tube interior, such that the ob-
scuration of the light by the dyed water produced a signal
which, when incorporated into the circuit shown in Fig-
ure 7, could be used to monitor the meniscus displace-
ment. The driver (accelerometer) and response (photore-
sistor) signals were displayed on the oscilloscope as an
X - Y plot, resulting in Lissajous figures. These could
then be interpreted to give the driver-response phase re-
lationship, once all the phase changes introduced by the
electronics had been accounted for (including filter ef-
fects). The light detector signal was filtered to reduce
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mains interference using a low pass filter (Barr and Stroud
type EF3-04) set to 50 Hz. Since the accelerometer sig-
nal tended to be corrupted by noise, particularly at low
frequencies and at low amplitudes, a 40 Hz low-pass fil-
ter (Fern Developments type EF5-02) was incorporated.
The phase response for increasing frequencies was found
for constant acceleration amplitude. Although adequate
for the measurement of phase, this procedure proved to
be inadequate for demonstrating an amplitude resonance.
This was due to the fact that a constant amplitude volt-
age input signal to the vibrator, for increasing frequency,
resulted in an increasing acceleration amplitude gener-
ated by the driver: hence to keep the acceleration ampli-
tude constant (as monitored with the accelerometer), the
input voltage to the vibrator had to be reduced each time
the frequency was increased. This process decreases the
displacement amplitude of the meniscus to such an extent
that the optics used to measure displacements were not
sensitive enough to detect a resonance peak. This prob-
lem was overcome by taking displacement measurements
for constant input voltage to the driver as the frequency
varied, the acceleration amplitude of the vibrator being
continually recorded. The amplitude of displacement was
found by illuminating the moving meniscus with a strobo-
scope (Dawe type 1204C) tuned to a frequency approxi-
mately twice that of the driver. This optically reduced the
velocity of the image of the meniscus, so that the extreme
of the oscillation could be measured using a travelling mi-
croscope (Type 2162-HB) with a Vernier scale.

4. Results

The experimental results, taken at discrete frequencies,
demonstrate the phase relationship between the driver
and one bubble (Figure 8), and the amplitude response
of another bubble (Figure 9), as a function of frequency.
Table 1 summarizes the experimental parameters and res-
onance frequencies, as determined from these experimen-
tal data, and as calculated (for k = 1 and & = ) from
small-amplitude linear theory (equation 11), and through
the numerical solution of (18). The results of these
integrations, which allow for finite amplitude nonlin-
ear damped oscillations and employ the experimentally-
determined quality factor of 3.5, are shown in Figures 8§
and 9 as dotted plots for Kk = 1 and k = +, (labelled
“with viscosity”). To demonstrate the importance of vis-
cosity (an effect which is often of secondary importance
for spherical bubbles - Minnaert, 1933), dashed lines (la-
belled “inviscid”) in Figures 8 and 9 show the results of
setting p to zero in equation (18). Table 1 includes these
numerical predictions of the resonance found through in-
viscid nonlinear theory, as well as the estimations of linear
inviscid theory found by setting g = 0 in equation (11).
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Figure 8. The phase response of the driven bubble
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celeration amplitude: 8.92 m/s”. Experimental measurements
are taken at discrete frequencies. The numerical solutions are
shown for the adiabatic (x = v) and isothermal (x = 1) cases,
as the labels show. Solutions are shown for the equation of
motion (18) incorporating both viscous effects (short dashes,
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Figure 9. The amplitude response of the driven bubble
(zo = 70.0 = 0.5 mm, yo = 53.0 & 0.5 mm), driven with a
vibrator acceleration amplitude which increases linearly with
frequency from 9 m/s® at 15 Hz to 45 m/s® at 36 Hz. Exper-
imental measurements are taken at discrete frequencies. The
numerical solutions are shown for the adiabatic (x = 7) and
isothermal (x = 1) cases, as the labels show. Solutions are
shown for the equation of motion (18) incorporating both vis-
cous effects (short dashes, - - - -) and for the inviscid case
(long dashes, — — —).
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Table 1. Comparison of the experimentally-determined resonances with those determined by piston-mode theory: linear
(equation 11) and numerical (equation 18), for py = 10° Pa, p = 1073 Pa and p = 1000 kg m=3. Bubble size and

vibrator acceleration are indicated.

Fig Vibrator Resonance Resonance Resonance Resonance Resonance
r:—::_l- 0 acceleration (Linear viscous (Numerical (Linear inviscid (Numerical (Experi-
mm
amplitude theory, eq. 11) viscous theory, eq. 11, inviscid theory, mental)
/(s=2m) /(Hz) theary, ¢ 0)/(58) | w=0)j(i) | oq18 o) | /cue
z
8 71.5 0.5 52.0+0.5 8.92 24.1+£0.2 25.0+ 0.5 26.1 £0.2 26 £ 0.5 26x1
(x=1) (x=1) (x=1) (x=1)
28.8 £ 0.2 30.0+ 0.5 30.9 £ 0.2 31 £0.5
(x=14) (k=1.4) (.= 1.4) (r=1.4)
9 70.0 0.5 53.0 £ 0.5 See Figure 9 24.440.2 24.04+0.5 26.1 % 0:2 26 +1 26+ 2
(r=1) (r=1) (x=1) (k=1)
caption 28.8+0.2 2041 30.8+0.2 30+1
(x =1.4) (e=1.4) (k=1.4) (= 1.4)

5. Discussion

Recalling that experimental results should lie at frequen-
cies on or between the pair of curves which, for a given
assumed viscosity, correspond to the limits of x = 1 and
k = 7, Figures 3 and 4 indicate that the viscous theory
fits best, and that the conditions are closer to the isother-
mal than the adiabatic. This is supported in Table 1, best
agreement with experiment occurring when viscosity is
incorporated into the theory. The simple linear theory
gives adequate predictions of the resonance, even when
the inertia of the liquid within the cone is neglected, as
expected when the column contains a significant amount
of water.

The theory contains assumptions that should be out-
lined. The acceleration is assumed to be uniform over the
diaphragm, which it is not clearly since in the experi-
mental bubble the perimeter is fixed. Also the effects of
friction, and surface tension have been neglected. Whilst
deformations of the meniscus have been neglected, such
deformations are however readily observable in the ex-
perimental bubble, and are of an oscillatory nature. The
presence of a second oscillation in the system may clearly
have important implications on the dynamics.

The dynamics of similar oscillators have been stud-
ied in the past. Howkins (1965) made observations and
preliminary calculations regarding the oscillations of gas
bubbles in water attached to the submerged base of an in-
verted vibrator (both roughly spherical bubbles beneath
a plane face, and gas pockets trapped within “pits” within
the base). Analyses have been made of several other cases.
Miller (1979) studied cylindrical bubbles bounded by elas-
tic walls, to model the response to ultrasound of gas
spaces of micron-order size between plant cells within
Elodea. The cylindrical bubbles within this model were
assumed to vibrate in the radial mode, rather than be
dominated by motion of the end-walls, and the stiffness
of the plant walls was dominant over the stiffness of the
gas. Other analyses include the diaphragm-like oscilla-
tion of the meniscus as it undergoes a Bessel-function

deformation, the so-called “clamped-drumhead” vibra-
tion. This was first considered for a small circular menis-
cus within a solid plane (i.e. having infinitesimal thick-
ness, but infinite in the other two dimensions) separating
two half-spaces, one of gas and the other, liquid (Miller,
1979). The oscillator was therefore baffled, as were two
later geometries in which this membrane was placed: a
gas pocket fully filling first a uniform perforation through,
and second a uniform circular pit within, a submerged
solid sheet (Miller & Nyborg, 1983). In all these cases the
resonance frequency and the damping were found. The
“clamped-drumhead” resonance of a meniscus within a
partially-filled perforation and pit within a flat solid sheet
was also found. This case represented a departure from
the earlier ones, in that the inertia was not solely invested
in the liquid outside the hole, but also included that due
to the liquid in the hole. Miller & Nyborg (1983) also ex-
amined the piston-like motion of the bubble wall, as dis-
cussed in this paper, but only for the baffled case, where
the gas fully fills the pore. This constraint was relaxed
somewhat by Miller & Neppiras (1985), who discussed
the oscillations of partially-filled pores within a flat solid
sheet in terms of two distinct regimes, those of “clamped-
drumhead”, and of piston-like, motion. At small ampli-
tudes, symmetrical perforations gave the same resonances
as pits which had the same depth and gas content as half
of a perforation. Exploiting this fact to adopt the notation
employed in this paper, the circular resonance frequency
wyy of the clamped-drumhead model of a bubble in a baf-
fled perforation or pit would be:

= D= 120moz + 156pg Ao
“m = EMIm = | 325z0r3 + 15A0pzoyo(1 + AJTo)

(23)

where o is the surface tension.

One-dimensional bubbles of interest exist in biologi-
cal structures, and some of these are exposed to intense
sound of a particular frequency. Two examples are dis-
cussed here. The first case is of one-dimensional bubbles
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trapped within ear canals of divers, and the adverse ef-
fects on divers and other mammals exposed to high inten-
sity sound in the marine environment is currently of great
concern. The second case is of one dimensional bubbles
trapped within a capillary blood vessel. This may occur
particularly in the lung, and evidence suggests that the
lowest thresholds for damage by clinical ultrasound in
mammals in vive are found in the lung.

Divers today are increasingly becoming exposed to
high-powered sound in the underwater environment both
as unwanted noise from apparatus associated with their
work, and from the increasingly common acoustic tech-
niques associated with communication, exploration, mon-
itoring, and exploitation of the oceans by man. Apparatus
may include tools operated by the divers themselves (in-
cluding stud guns, plasma cutters, rock drills, jet cleaning
tools, impact wrenches, grinders and drills) which may
produce sound pressure levels (SPL) of 150-170 dB (re
20 pPa) underwater, up to 210 dB (re 20 pPa) having
been recorded (Molvaer & Gjestland, 1981; Nedwell et al.,
1993). Tool emissions occur over a wide frequency range,
at least from a few 10 Hz to around 10 kHz (Nedwell et
al., 1993). Whilst active sonar operates from a few kHz
up to around 100 kHz, given the dimensions of the ear
canal (Davis, 1978) of particular interest are experiments
involving the propagation of low frequency sound (from
a few tens of Hz up to a few hundred) over long ranges
(of order 1000 km) for climate monitoring. For detection
over such long ranges, the sources of such sound are nec-
essarily powerful (220 dB re 1 pPa at 1 m; Baggeroer &
Munk, 1992).

Comparatively little is known about air bubbles
trapped within the ear canals of submerged humans.
These bubbles are capable of having a significant effect
on underwater hearing (Al Masri, 1993). The geometry
of these bubbles is not known, but the most likely shape
is a cylindrical gas pocket, bounded at the curved wall
by the flesh of the ear canal itself, and at the ends by
the ear drum and the gas/water interface within the ear
canal. The remainder of the canal would be water filled
leading to the pinna, where a much larger body of wa-
ter occurs external to the head. As with the column-
cone model of the liquid body used in this investigation,
the inertia of the oscillator will be invested primarily in
the liquid contained within the ear canal, the radiation
mass associated with the water outside of the head be-
ing far less significant, and the inertia of the entrained
gas within the ear negligible. Therefore use of the simple
linear theory given by equation (17) is justified for mak-
ing estimations of the resonances (though clearly there is
elasticity associated with the fleshy boundaries). Given
typical ear canal dimensions, simple linear theory pre-
dicts that air bubbles trapped within divers’ ears may
be expected to resonate at frequencies as shown in Fig-
ure 10. The resonances for the clamped-diaphragm model
(equation 23) are also shown. Because of the relative gas
volume changes which the two geometries can generate,
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Figure 10. Resonance of air bubbles in ear canals as a func-
tion of depth h (acting through pgh) for a 2.5 cm ear canal of
diameter 5 mm filled to (a) 50% (solid line —), and (b) 10%
(dashed — — - ) and (c) 2% (dotted line - - - -). The piston-like
modes (equation 17) and membrane-like modes (equation 23)
are labelled, and isothermal oscillations (x = 1) are assumed.
Viscosity is incorporated, but the inertia of the liquid outside
the canal is neglected (justified since the filling of air is to less
than 50%). Values of 72 mN/m, 1000 kg/m® and 9.8 m/s* are
assumed for the (fresh) water surface tension (o), density (p)
and acceleration due to gravity (g), respectively.

it is likely that the piston-like motion can generate the
larger pressure fluctuations within the gas. The energet-
ics of such resonances, and their harmonics (of the type
illustrated in Figure 6), clearly may cause a noticeable
effect within a system which is designed to be sensitive
to acoustic stimulation through gas, rather than liquid,
adjacent to the eardrum. The mechanisms of underwater
hearing itself are involved (Al Masri, 1993) and it is not
a simple matter to theoretically extrapolate from this to
predict the effect of such bubbles on underwater hearing.
However human diving is potentially hazardous, and the
occurrence of any resonances coupling the human hear-
ing, orientation and balance systems to an ocean medium
which can contain intense sound at those frequencies must
be considered.

There is far more documented evidence concerning the
situations where one-dimensional bubbles might be ex-
pected to be exposed to high intensity ultrasonic fields.
The excitation of gas pockets which are stabilized within
biological structures, the so-called “gas body activation”
(Miller, 1984) was first considered to interpret, the biolog-
ical effects of ultrasound on the leaves of the aquatic plant
Elodea, as discussed earlier (Miller, 1977). Such bodies
have also been considered to discuss the mechanism of
bioeffect when pockets of gas trapped in blood vessels,
insect trachae and mammalian cells are subjected to ul-
trasonic irradiation.
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There are conceivably many mechanisms of acoustic
interaction with matter through which ultrasound could
generate a bioeffect (ter Haar, 1986), and these poten-
tially include both cavitational and non-cavitational ones.
The relative effectiveness of these will depend on the spe-
cific conditions which exist, including those relating to
the incident sound field (e.g. frequency, amplitude, puls-
ing characteristics, focusing) and those relevant to the
medium (e.g. ultrasonic absorption, the presence of bones,
perfusion etc.). The critical importance of the availabil-
ity of cavitation nuclei has been recognized for several
decades. The combination of these features determines
the activities through which cavitational bioeffects may
potentially arise. If driven at low amplitude, the bub-
ble will oscillate stably and repeatably, and such stable
cavitation (of spherical bubbles) has been observed to
cause bioeffect. Mechanisms involving stable cavitation
include firstly those effects associated simply with the for-
mation of stable bubbles (through rectified diffusion, the
effect of ultrasonically-induced temperature rises on gas
solubility and vapour pressure), which may bring about
decompression-type symptoms. Other potential mecha-
nisms for bioeffect are associated with the motions, ei-
ther oscillatory or rectilinear, of stable spherical bubbles,
including microstreaming and effects related to radiation
forces generating high-speed bubble translations, particle
aggregations etc. Of particular concern has been the phe-
nomenon of “unstable” or “transient” cavitation, typified
by the explosive growth of unconfined spherical bubbles,
followed by their rapid collapse. This collapse typically
involves gas shocks and adiabatic heating of the gas to
high temperature, both processes being capable of gen-
erating free radicals. The collapse is followed by a re-
bound, capable of generating liquid shocks. Though the
field has been dominated by models of spherical bubbles
(Leighton, 1994; Holland & Apfel, 1989; Apfel & Holland,
1991) cylindrical bubbles may also show the equivalent of

“stable” and “transient” regimes?.

Microstreaming from stable cavitation can cause cell
death in Elodea (Miller, 1985). Vivino et al. (1985)
demonstrated similar results using Nuclepore™ to in-
duce cell lysis in spleen cells in vitro at a spatial peak
threshold intensity in excess of 75 mW em~™2, at an
acoustic frequency of 1.6 MHz continuous-wave. These
experiments, using Nuclepore™, are characterized by
the very low intensities at which bioeffects can be de-
tected: Williams & Miller (1980) used photometry to de-
tect ATP release from in wvitro human erythrocytes, a
technique which has probably produced effects at the low-
est continuous-wave intensity recorded for a detectable
biceffect, 4 mW em~? (Williams, 1983). The mechanism
was probably rupture or a change in permeability of

*The equivalence is not rigorous. It does not extend to the
well-defined phenomenon of inertial cavitation, but only bears
similarities with the initial explosive growth associated with
the less well-defined phenomenon of transient cavitation.

the cell membrane brought about through microstream-
ing stresses at the cell wall. Other effects reported with
this technique include platelet aggregation (Miller et al.,
1979) and hemolysis (Miller, 1988; Miller & Thomas,
1990). In an examination of mechanisms in the latter pro-
cess, Miller & Thomas (1990) suggest that the increased
hemolysis observed at elevated ambient temperatures is
a result of the reduced viscosity, and consequently mod-
ified liquid flow near the cell, rather than increased cell
fragility.

In addition to “stable cavitation” of cylindrical bub-
bles, a “transient” regime? also exists. However if the gas
bodies stabilized within biological structures resemble the
one-dimensional bubbles discussed earlier in this paper,
in certain circumstances it would be expected that the
growth phase is the key mechanism for bioeffect, in con-
trast to the traditional emphasis on the collapse phase
in the transient cavitation of spherical bubbles. If the
medium resists bubble growth (for example, it is a lig-
uid constrained to a fixed volume by structure, such as a
mammalian cell; or the gas pocket is itself part-bounded
by rigid walls, for example the larval trachae), then
stresses can be induced by the growth which may damage
the restraining structure (Ward et al., 1983; Venter et al.,
1983; Aymé & Carstensen, 1989a). Child et al. (1981) sug-
gested that larval gas pockets might be used to model the
response of bubbles within mammalian cells, particularly
in respect to us diagnostic-type pulses. Whereas in the
plant tissues studies it had been found that the stiffness
of the walls contributed significantly to the dynamics,
preliminary low-level continuous-wave studies had shown
that the walls of the insect tracheae do not contribute
significantly to the dynamics of larval gas pockets, and
model the case of human tissues more closely. Child et al.
(1981) demonstrated the susceptibility of fruit fly larvae
(Drosophilia melanogaster) to diagnostic-type insonation
(with pulse length of 1 us, giving a low time-averaged
acoustic intensity), with a sharp threshold (around 1 MPa
in a 2.5 min exposure). Evidence, including the coinci-
dence of the killing and transient cavitation thresholds
(Flynn, 1982; Child et al., 1981), suggests a cavitation-
type mechanism on the larvae (Child & Carstensen, 1982;
Berg et al., 1983; Carstensen et al., 1983a; Carstensen
et al., 1983b), probably acting primarily through these
micrometer-sized gas bodies within the organisms (Child
& Carstensen, 1982). The effect was related to temporal
peak, rather than the temporal average, intensity, a char-
acteristic of the rapid response found in transient cavita-
tion.

These results are further interpreted in the light of
subsequent results in the field of extracorporeal shock
wave lithotripters. Damage resulting from such exposure
in vive often manifests in vessel walls, particularly in cap-
illaries and medium-sized veins, with focal lesions in arte-
rial walls tending to occur much less frequently (ter Haar
et al., 1994; Delius et al. 1990a and b).The most sensitive
organ to shock wave exposure is the lung. Hartman et al.
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(1990a and b) found that comparatively mild lithotriptic
exposures were required to haemorrhage mouse lung (less
than 2 MPa for only 10 pulses). Severe damage occurred
at 5 to 6 MPa. In contrast fetal lung did not show damage
at 20 MPa. This is presumed to be because of the absence
of stabilized gas bodies within the fetal lung (ter Haar et
al., 1994). Noting that Child et al. (1990) and Frizzell
et al. (1994) have observed haemorrhage in mammalian
lung resulting from exposure to pulsed ultrasound at lev-
els low compared to those required to produce cavitation
in tissues that do not contain stabilized gas bodies, ter
Haar et al. (1994) comment that whilst the mechanism
is not clear, it does appear to be mediated by existing
stabilized gas bodies in tissue.

The hypothesis is that one-dimensional bubbles
within lung capillaries may rupture the capillary dur-
ing their growth phase. Clearly the considerations perti-
nent to the transient cavitation of spherical bubbles and
the mechanical index (e.g. a suitable free-floating micro-
scopic spherical nucleus - Holland & Apfel, 1989; Apfel
& Holland, 1991) are inappropriate if the dynamics in-
volved are those of a macroscopic cylindrical gas pocket
trapped within such a blood vessel. Such pockets might
arise dynamically, for example by the ultrasonically in-
duced growth of a nucleus to a diameter similar to that
of the capillary. Stable pockets can also become trapped
as they flow through ever-narrowing vessels (de Jong et
al, 1991, 1993: Schneider et al., 1992). Conditions within
the blood flowing from the heart to the lungs are designed
to encourage gas to come out of solution. Whilst gas may
transfer directly from the blood into the capillary wall,
to the air-vesicle wall and from thence to the air space,
the conditions are such that gas may come out of solution
within the blood itself (indeed, the interface between the
blood and the vessel wall provides a suitable location for
the nucleation of exsolution). This condition might also
arise were gas-filled echo-contrast agents to migrate to
blood vessels comparable with their size.

The response of the one-dimensional bubble from this
moment becomes radically different from that of the free-
floating spherical bubbles normally considered, since the
inertial term does not asymptotically tend to a finite value
unless the enclosing tube widens significantly. For a pul-
sating spherical bubble of equilibrium radius Ry, the radi-
ation mass has value 47 R3p (Leighton, 1994). This has a
finite and relatively small value because of the diverging
geometry: if the meniscus velocity is R when the bub-
ble has an instantaneous radius of K, then because of the
spherically diverging geometry the liquid particle velocity
at a distance r from the bubble centre is + = R (R?/r?)
(Minnaert, 1933). This inverse square law means that at
large distances from the bubble, the liquid velocity is very
small, so that the total kinetic energy invested in the lig-
uid is finite, even within an infinite liquid medium. In
contrast the liquid geometry in the one-dimensional bub-
ble system shown in Figure 1 clearly does not begin to
diverge until the cone section, the inertial contribution

from the liquid contained within the glass capillary tube
increasing monotonically with the tube length. This can
also been seen by examining the two contributing terms
to the radiation mass for this system as given in equa-
tion (12): the inertia of the liquid in the pipe is pAgyo
in the inviscid case, and pAgyo(1 + A/rg) for viscous lig-
uids, and within an infinite non-diverging pipe the bubble
would have infinite inertia, and so not be an oscillator at
all. On expansion within the blood system, for example
after the passage of a compressive pressure pulse or un-
der a tension, the one-dimensional bubble cannot move
the massive column of liquid, and stresses will be exerted
on the capillary wall and the meniscus. If the stresses so
exerted within the capillary wall are greater than the co-
hesion between the single layer of cells which make up
the blood vessel wall, then haemorrhage will occur. The
only other “give” in the expanding one-dimensional bub-
ble within the blood vessel is the meniscus: this will bow,
causing local fluid motion and in the first instance, small
gas volume change. If the deformation is sufficiently ex-
treme daughter bubbles will be generated. However to
do this a uniformly-bowing meniscus must pass through
the hemispherical condition, where the surface tension
pressure is a maximum. For a typical capillary of diam-
eter = 10 um this corresponds to a confining pressure
of = 23 kPa. Adhesion between capillary cells must ex-
ceed this to prevent haemorrhage. The ultimate tensile
strength of the weakest tissue noted by Yamada (1973) is
50 kPa. Should daughter bubbles be (in fact) produced,
these may seed further expansions, though still confined
by the capillary. In summary, the geometry acts against
allowing the large-scale gas expansion required to relieve
the stress on the capillary wall, and so prevent haemor-
rhage.

6. Conclusions

The dynamics of a one-dimensional bubble have been de-
veloped, including a simple analysis of small-amplitude
linear oscillations, analytical phase-space solutions of the
undamped unforced equation of motion, and numerical
solution to the full equation of motion, in agreement
with the oscillations of a laboratory bubble of centimeter-
order length. With one-dimensional bubbles of such size,
viscous effects are not negligible. The physical insights
gained by the models allowed examination of two poten-
tially biologically-significant cases. First, the bubble is
adjacent to the ear drum, and acts as an oscillator which
resonates at the low frequencies of the same order as the
underwater sound which is becoming increasingly com-
mon in the ocean at high amplitude, both as noise from
tools and for use in scientific investigation of the oceans.
Second, bubbles in pipes are subject to pressure pulses
and at some stage in their growth have a diameter sim-
ilar to that of the pipe, which is itself very much longer
than this dimension. The pipe system prevents geometri-
cal spreading of the liquid, which consequently has very
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large inertia. As a result significant stresses may be ex-
erted on the pipe wall, potentially causing rupture. The
application of this second case to the ultrasonic exposure
of mammalian lung capillaries is discussed.
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