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Abstract—The theoretical modeling of ultrasonic propagation in cancellous bone is pertinent to improving the
ultrasonic diagnosis of osteoporosis. First, this paper reviews applications of Biot’s theory to this problem. Next,
a new approach is presented, based on an idealization of cancellous bone as a periodic array of bone-marrow
layers. Schoenberg’s theory is applied to this model to predict wave properties. Bovine bone samples were tested
in vitro using pulses centered at 1 MHz over various angles relative to the orientated cancellous structure. Two
longitudinal modes (fast and slow waves) were observed for propagation parallel to the structure, but only one
was observed for propagation normal to the structure. Angular-dependence of velocities was examined, and the
fast wave was found to be strongly anisotropic. These results gave qualitative agreement with predictions of
Schoenberg’s theory. Although this new model is a simplification of the cancellous architecture, it has potential
for future research. © 1999 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION AND LITERATURE

Osteoporosis is a skeletal disease characterized by two
factors: reduced bone mass and the disruption of the
microstructure of bone tissue (Consensus Develop-
ment Conference 1993). These symptoms increase
bone fragility and currently contribute to causing over
60,000 hip fractures in Britain annually. If diagnosed
sufficiently early, osteoporosis may be treated effec-
tively to reduce the risk of fracture. The currently
preferred diagnostic technique is dual energy x-ray
absorptiometry (DXA), which examines bone for one
indication of osteoporosis: reduced mass. The second
characteristic, the deterioration of the bone micro-
structure, may potentially be assessed by ultrasonic
techniques because this structure is known to affect
the transmission of ultrasound (Tavakoli and Evans
1992).

The broadband ultrasonic attenuation (BUA)
technique arose following work by Langton et al.

(1984). This method measures the frequency-depen-
dent attenuation of ultrasonic pulses, of bandwidth
200 – 600 kHz, traveling through the os calcis (the heel
bone). This skeletal site contains a large amount of
cancellous bone; a bony matrix of trabeculae, satu-
rated with marrow. Cancellous bone in the bovine
femur is shown in Fig. 1.

Although ultrasound is regarded as a promising
tool for bone assessment, being relatively inexpensive,
safe and easily utilized, research is still required be-
fore it may assist clinical decision-making (National
Osteoporosis Society 1996). Systems such as BUA
yield a purely empirical measure that has not yet been
firmly linked to physical parameters, such as bone
strength or porosity. Establishing such relations
through a validated predictive model for ultrasonic
propagation in cancellous bone would be a significant
advance.

This paper reviews one candidate theoretical
model, Biot’s theory, for application to cancellous
bone, and identifies that its isotropic assumption is one
of its major weaknesses. A simpler anisotropic layered
model of the cancellous architecture is proposed, to
which Schoenberg’s theory is applied. The predictions
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of both theories are compared within vitro experi-
ments.

THEORETICAL ASPECTS OF PROPAGATION

The bar equation
A number of theoretical models have been proposed

for propagation in cancellous bone. The first assumes
that waves travel through cancellous bone with the bar
velocity, Vbar 5 =(E/r ), for Young’s modulus,E, and
density,r, of trabecular material. This equation has been
used extensively to predict the elasticity of cortical (com-
pact) bone, useful for quantifying bone strength (Abend-
schein and Hyatt 1970; Carter and Hayes 1977). It has
also been suggested that in a cancellous bone a wave
travels along each trabecula with the bar velocity (Rho
1998). However, the authors of the present paper doubt
the suitability of the bar equation for ultrasound in can-
cellous bone. First, it is only valid for macroscopically
isotropic media, and cancellous bone is known to be
anisotropic. Second, for wavelengths larger than the mi-
crostructural dimensions, the bar equation predicts one
wave but, for such frequencies in cancellous bone, two
waves have clearly been observed (Hosokawa and Otani
1997). Hence, propagation in cancellous bone requires a
more detailed explanation than that offered by the bar
equation.

Biot’s theory
The oversimplified model of the bar equation is

contrasted by the complex Biot’s theory (Biot 1956a,

1956b), which has been used extensively in geophysical
applications. In recent years, Biot’s theory has been
applied to ultrasound in cancellous bone on a number of
occasions (McKelvie and Palmer 1991; Williams 1992;
Lauriks et al. 1994; Hosokawa and Otani 1997).

Biot’s theory predicts that three waves propagate
simultaneously in a fluid-filled porous medium: two
compressional waves and one shear wave. The two com-
pressional modes are known as waves of the first and
second kind, distinguished by their propagation mecha-
nisms. The wave of the first kind is essentially a bulk
wave where fluid and solid are locked together, that
usually exhibits negligible dispersion. In wave motion of
the second kind, fluid and solid move out-of–phase such
that it is usually highly attenuated. The waves of first and
second kind are also known as fast and slow waves,
respectively. This is because, in practice, the former
generally has a greater phase velocity than the latter.
However, theoretically, the phase velocity of the wave of
the second kind may be greater than that of the first kind
under certain conditions (Lawrence and Don 1996).
Therefore, the equivalence (first5 fast; second5 slow)
will not be used in this paper until it has been validated.

Acoustic propagation in porous media saturated
with fluid (of shear viscosity,h, and density,rf) is
divided into low- and high-frequency ranges. These
ranges intercept at the critical frequency,vcrit, (Biot
1956a, 1956b), where the viscous skin depth,ds, is equal
to the pore radius,a. In general, for angular frequency,v,
ds 5 =(2h/rf v) is the viscous skin depth. This param-
eter describes the extent of the viscous shear arising at an
interface as fluid flows relative to the solid.

In the low-frequency region of Biot’s theory (v ,
v

crit
) (Biot 1956a), a parabolic velocity gradient occurs in

the pore fluid becauseds is large compared with the pore
size. Viscous coupling locks solid and fluid together,
preventing the relative motion associated with slow-
wave propagation. Hence, only the fast wave propagates
at these frequencies.

In the high-frequency region (v . vcrit) (Biot
1956b), viscous coupling effects decrease asds de-
creases. This yields relative motion between fluid and
solid that allows the slow wave to propagate. At these
frequencies, viscous coupling effects are dominated by
inertial coupling effects that lock fluid and solid together,
allowing the fast wave to propagate. Hence, both fast and
slow waves propagate in the high-frequency region.

Inertial coupling may be regarded in the following
way. When a solid body accelerates in a fluid, it drags an
additional mass of surrounding fluid, which may be
thought of as a coupled mass. By analogy, during wave
motion in a fluid-filled porous solid, an inertial coupling
occurs between fluid and solid, represented in Biot’s
theory by the coefficient,r12,

Fig. 1. The porous structure in cancellous bone in the bovine
femur. Scale is 3 cm wide, with mm gradings.
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r12 5 ~1 2 a!brf, (1)

whereb is porosity anda is the tortuosity. Equation (1)
shows that inertial coupling is related to porosity. It also
depends on the geometry of the solid matrix, character-
ized by the tortuosity,a, although not on the material
properties of the solid matrix itself. The tortuosity has
been defined for various geometries of porous structure
(Berryman 1980) and for dynamics of the fluid (Johnson
et al. 1987).

Previous applications of Biot’s theory
In the application of Biot’s theory to ultrasound in

cancellous bone, the interstitial marrow has been as-
sumed to behave as a fluid. This assumption may be
made because marrow displays a viscous nature under
deformation (Bryant et al. 1989) and has a density sim-
ilar to that of water.

Rigorous use of Biot’s theory requires knowledge
of up to 14 parameters. The material parameters required
are: fluid and solid densities; bulk moduli of fluid, solid
and solid frame; Poisson’s ratios of the solid and the
frame, and the shear viscosity of the fluid. Structural
parameters required are porosity, tortuosity and perme-
ability. The frequency of propagating waves also needs
to be known. For cancellous bone, many of these param-
eters, particularly those of a geometric nature, cannot be
easily evaluatedin vitro or in vivo. This represents one of
the major difficulties in applying Biot’s theory to bone
diagnostics.

Using data taken from the literature, the authors
calculated that the critical frequency,vcrit, for marrow-
saturated cancellous bone was in the region of 1–10 kHz
(Hubbuck et al. 1998). This implies that ultrasound (de-
fined as above 20 kHz) will be part of the high-frequency
region of Biot’s theory, for propagation through this
medium. Therefore, two compressional waves should
propagate at ultrasonic frequencies in cancellous bone.

Propagation through cancellous bone produces neg-
ative dispersion (Nicholson et al. 1996); an observation
in quantitative agreement with multiple scattering ideas
(Schwartz and Plona 1984). Previous authors generally
accepted that the slow wave was highly attenuated, ren-
dering it difficult to observe in practice. Thus, when
researchers such as Williams (1992) and Lauriks et al.
(1994) reported one compressional wave, it was assumed
that this was the fast wave. Although Lakes et al. (1983)
reported observing two compressional waves in cortical
bone, the lack of the observation of two compressional
waves in cancellous bone in earlier research marked a
significant omission from evidence supporting the appli-
cation of Biot’s theory. The existence of two compres-
sional waves in this medium was confirmed by

Hosokawa and Otani (1997), who were able to obtain
agreement between predictions of phase velocity and
measurements of both waves.

This paper identifies some important aspects of the
above studies. First, although Biot’s theory has success-
fully predicted phase velocity on a number of occasions,
there has been a consistent discrepancy between mea-
sured and predicted attenuation, possibly owing to a
misconception of the meaning of the predicted attenua-
tion. Biot’s theory predicts absorption due to viscous
losses at internal interfaces only, but experimental mea-
surements record empirical signal loss. Signal loss may
include contributions from scattering, absorption of the
scattered field, and artefacts of the measurement system,
such as diffraction (Xu and Kaufmann 1993) and phase
cancellation (Petley et al. 1995). These factors must be
known for the comparison between theoretical attenua-
tion and measured signal loss to be meaningful.

The energy of an ultrasonic wave traveling through
a porous medium will be partitioned between fast, slow
and shear waves. If the attenuation of any wave is to be
stated relative to the energy in a single incident pulse,
then that partition of energy between shear, fast and slow
waves must also be incorporated. If this factor is not
taken into account, then simple extrapolations from the
degree of attenuation to expected signal amplitude
should be critically assessed.

Second, in previous studies, the form of Biot’s
theory used has assumed that the material is macroscop-
ically isotropic. However, cancellous bone displays
anisotropic mechanical and ultrasonic properties (Evans
and Tavakoli 1992; Nicholson et al. 1994; Hosokawa and
Otani 1998), resulting from a highly oriented trabecular
structure in load-bearing bones (Gibson and Ashby
1988). In the following section, an anisotropic model is
developed that shows that the observation of compres-
sional modes depends on trabecular orientation. As a
codicil, an additional advantage of this model is that it
requires specification of fewer bone parameters than
Biot’s theory.

A STRATIFIED MODEL FOR PROPAGATION
IN CANCELLOUS BONE

Models of the trabecular structure
Characterization of the cellular architecture of can-

cellous bone is necessary to devise suitable mathematical
models that may be used to describe its mechanical and
ultrasonic properties. Gibson and Ashby (1988) pre-
sented idealizations of the trabecular architecture, with
mechanical properties originating from an oriented tra-
becular structure and cellular shapes depending on the
loads supported. For equal loads in three axes, equiaxed
cells form. For large loading in two directions, cell walls
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align and form a simple layered structure of alternating
bone-marrow plates, as in Fig. 2. Although the geometry
of this model is highly simplified, it is relatively straight-
forward to investigate ultrasonic propagation in this sys-
tem by applying well-established theory of acoustic
propagation in strata.

Schoenberg’s theory of acoustic propagation in periodic
stratified media

Rytov (1956) carried out analysis into wave propa-
gation in periodically layered systems for propagation
parallel and perpendicular to stratification. Schoenberg
(1984) later presented analysis on propagation in alter-
nating layers in any direction that was verified experi-
mentally by Plona et al. (1987).

In Schoenberg’s theory (Schoenberg 1984), the lay-
ering is parallel to thex1 direction, with spatial periodH
in the x3 direction (Fig. 2). In one period of a medium
with porosity b, the region 0, x3 , (1 2 b) H is
occupied by an elastic solid (that is, it obeys Hooke’s
Law), with density rs, compressional speed,Vs, and
shear speed,Vsh. The region (12 b) H , x3 , H
contains an ideal fluid, of density,rf, and sound speedVf.
Ideal fluid behavior is a valid assumption for frequencies
where the viscous skin depth is much smaller than the
fluid layer thickness. In other words, the frequency range
covered by Schoenberg’s theory corresponds to the high-
frequency region of Biot’s theory. Furthermore, in prac-
tice, to avoid scattering, the wavelength should still be
long compared to the periodH.

Schoenberg derived the dispersion relation for this
medium by relating continuous acoustic field variables in
one period to those in the next by propagator matrices.
He showed that acoustic wave propagation here could be
expressed in terms of a slowness vector, s 5 (s1, s2, s3).
This vector has magnitude equal to the inverse of phase
velocity, with phase angle equivalent to the angle of
propagation through the layers relative to stratification.
Components of the slowness vector parallel to the layers,
s1, and normal to the layers,s3, are found from the
dispersion relation to be related as

S s3
2

~r!D 2 Fb~Vf
22 2 s1

2

rf
1

~12b!~Vs
222s1

2!

rs~12Vpl
2 s1

2! G 5 0, (2)

where ^r& 5 brf 1 (1 2 b).rs, and Vpl is the plate
velocity, which can be expressed as

Vpl 5 2~1 2 Vsh
2 /s2!1/ 2Vsh. (3)

Equation (2) can be arranged to give the component
normal to the layers,s3 as a function of those parallel to
the layers,s1. From that relationship, the phase velocity
can be found as the inverse of the magnitude of the
vector (?s? 5 =[s1

2 1 s3
2]) and the propagation angle

with respect to the layering (u 5 tan21(s3/s1)).
Schoenberg’s theory predicts two compressional

waves for all propagation angles, except for that perpen-
dicular to the plates, where there is only one. The two
waves are equivalent to the waves of the first and second
kind of Biot’s theory. Inertial coupling changes with
propagation angle relative to the stratification. For prop-
agation parallel to the layers, inertial coupling is zero,
and waves may propagate in the fluid and solid indepen-
dently. Inertial coupling increases with increasing angle,
reaching a maximum normal to the layers, where fluid
and solid are locked together. This locking impedes the
slow wave and only the fast wave propagates.

Fast- and slow-wave velocities were predicted as a
function of propagation angle by Biot’s theory, eqns
(A.1) to (A.8) and values in Table 1, and Schoenberg’s
theory, eqns (2) and (3) and Table 2. They are plotted in
Fig. 3. In this figure, 0° corresponds to the direction
perpendicular to the layers and 90° is parallel to the
layers. Figure 3 shows that velocities predicted by Biot’s
theory are constant with angle, unlike those predicted by
Schoenberg’s theory. From the latter, the fast-wave ve-
locity increases with angle and the slow-wave velocity,
being zero at perpendicular incidence, maintains a con-
stant value over a wide angular range. The two theories
do, however, give values of velocities parallel to the
layers within 10% of each other.

Because many of the parameters for Biot’s theory

Fig. 2. . An idealization of the architecture of cancellous bone
as a series of periodically alternating bone-marrow layers.
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are difficult to evaluate in practice, these predictions will
contain errors. Schoenberg’s theory requires only six
parameters (these being densities, speeds in component
media and porosity), which is an advantage for compu-
tational issues. In Schoenberg’s theory, the fluid is as-
sumed to be inviscid, and so viscous absorption is not
predicted. This prevents a direct comparison with ab-
sorption predicted by Biot’s theory. For this reason,
absorption and attenuation are not considered further in
this paper. Investigations of fast- and slow-wave phase
velocities are presented in the following section.

EXPERIMENTAL SYSTEM AND METHOD

The experiments aimed to observe two compres-
sional waves, to investigate their phase velocities over a
range of angles with respect to trabecular orientation, and
to compare these results with the predictions of Schoen-
berg’s theory.

Samples of cancellous bone were taken from bovine
tibial and femoral epiphyses, known to contain a well-
oriented trabecular structure. Specimens of cross-section
30 mm 3 30 mm were prepared with the dominant
structure extending both parallel and normal to the cross-
section, as determined by eye. Sample thickness, mea-

sured by micrometer, varied from 0.6 mm to 1.3 mm (6
0.5 mm). The samples were stored in formalin, and the
marrow was left intact throughout the experiments.

Two 1-MHz resonance, 2.5-cm diameter transduc-
ers were suspended in a water-filled tank, at a separation

Fig. 3. Predictions of phase velocity against propagation angle
for Biot’s theory (dashed lines) and Schoenberg’s theory (solid
lines). 90° corresponds to direction of layers; 0° is perpendic-

ular to layers.

Table 2. Parameters for Schoenberg model.

Parameter Value

Density of bone,rs 1960 kg/m3†

Density of marrow,rf 990 kg/m3‡

Porosity,b 0.65
Solid compressional speed,Vs 3200 m/s*
Fluid compressional speed,Vf 1500 m/s
Shear speed,Vsh 1800 m/s§

†Lang (1970); ‡Duck (1990); *after Williams (1992);§Wu and
Cubberley (1997).

Table 1. Parameters for Biot’s theory.

Parameter Value

Density of bone,rs 1960 kg/m3†

Density of marrow, Pf 990 kg/m3‡

Young’s modulus of bone,Es 20 GPa*
Bulk modulus of marrow,Kf 2.2 GPa
Shear modulus,N 3.4 GPa‡

Poisson’s ratio of solid,ns 0.32‡

Poisson’s ratio of frame,nb 0.32*
Porosity,b 0.65
Power index,n 1.23*
Viscosity of marrow,h 0.04 Pa.s§

Pore radius,a 5 3 1023 m
Permeability,ko 5 3 1029 m3i

Frequency,f 1 MHz

†Lang (1970);‡after Duck (1990); *Williams (1992);§Bryant et al.
(1989); iMcKelvie and Palmer (1991).

Fig. 4. Schematic diagram of the apparatus used in the
experiments.
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of 14 cm6 0.1 cm (Fig. 4). The sample was mounted in
an absorbent surround, coaxially aligned between the
transducers at a distance of 10 cm6 0.1 cm from the
transmitter. This ensured that it was in the acoustic far
field, where plane wave propagation could be assumed
over a limited volume. The water temperature was re-
corded at 20°C6 0.5°C.

The transmitter was driven by a single sinusoidal
pulse of center frequency 1 MHz generated by a signal
generator (TG1304, Thurlby Thandar, Ltd., Huntingdon,
Cambridgeshire, England), amplified by 50 dB (RF
Power Amplifier, ENI, Illinois, USA). Pulses travelled
through the water-bone–water path, and were acquired
by a digital storage scope (9314L, Lecroy, Chestnut
Ridge, N.Y., USA), sampling at 10 MHz over 500 av-
erages. The signal was analyzed off-line on a PC using
MATLAB t software.

Data was acquired with the bone specimens in place
interrogated initially at normal incidence and, subse-
quently, with the specimen rotated in the field. Data
without the specimen present was recorded as a reference
signal.

Calculations
The theories of Biot and Schoenberg predict phase

velocity. Therefore, their predictions should be com-
pared with experimentally derived frequency-dependent
velocity, and not that derived from pulse transit time.
The phase velocity was calculated using a technique
developed by Smith (1972) and Plona et. al. (1987) for
propagation at any angle of incidenceui. This technique
uses mode conversion at the fluid-porous solid interface
and accounts for refraction through the sample at non-
normal angles of incidence. The phase velocity at normal
incidence can be expressed as:

Vp 5 Vw/~1 2 q!, (4)

whereVw is the velocity in water and where

q 5 ~Vwfb~v!!/vd, (5)

whered is the thickness of the target. The termfb(v) is
the phase difference between pulses with and without the
target present. IfF(v) andG(v) are the real and imagi-
nary parts, respectively, of the Fourier transform of sig-
nal, the phase may be found asf(v) 5 tan21(G(v)/
F(v)). The phase difference can be expressed in degrees
as:

fb~ f ! 5 (2fw) 2 ~ft! 1 360fLc. (6)

In eqn (6), the frequency,f, is in hertz. The phases, in
degrees, of pulses received with and without the target
present arefw and ft, respectively. The termLc is a
time-compensating distance that accounts for the phase
of the reference signal in the water displaced by the
insertion of the target. For an angle of refraction,ur,
where:

tanur 5 sinu i~cosu i 2 q!, (7)

the phase velocity can be expressed as:

Vp 5 Vw/~1 1 q2 2 2q cosu i!
1/ 2. (8)

Reproducibility and error
Reproducibility was assessed by testing 6 speci-

mens with trabeculae parallel to the cross-section and 4
with structure perpendicular to this. The procedure was
repeated 4 times, with specimens being repositioned each
time. Sources of errors in the calculations included the
measurement of transducer separation (6 0.5 mm); the
width of the sample (6 0.5 mm); the angle of incidence
(6 0.5°); and spectral smearing, owing to the truncation
in the time domain of the modes being analyzed.

RESULTS

Observation of two compressional waves
Separating propagation modes in the time domain is

most easily achieved using pulses, which also allows for
temporal windowing for spectral analysis. Figure 5a
shows the voltage output trace for a single sinusoidal
input pulse, center frequency 1 MHz, traveling between
transducers without a specimen present. Figure 5b is the
power spectral density of the pulse in Fig. 5a, showing a
maximum value around 920 kHz, possibly offset from 1
MHz by nonlinear propagation or dispersion. This spec-
trum shows the bandwidth of the signal within which it
can be assumed that spectral data is reliable and not
subject to a poor signal-to–noise ratio.

Figure 6a shows the trace for a 1.2-cm width sample
where the trabeculae are parallel to the direction of
propagation (referred to here as a parallel sample), inter-
rogated at normal incidence to the surface. Two arrivals
can be seen: one of low amplitude around 87ms, and a
prominent arrival around 92ms (from the time of the
trigger). The possibility of these arrivals being reflections
from the tank was eliminated because no specular echoes
could arrive within the time frame. It was also assumed
that no shear wave would be generated at normal inci-
dence, so the arrivals were assumed to be compressional
modes travelling through the sample.

To classify the modes in Fig. 6a with respect to
waves of Biot and Schoenberg theories, experimental
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phase velocities were compared with theory (Fig. 7). The
phase of each mode was computed using a fast Fourier
transform algorithm on a section of the trace. The phase
velocity of the pulse in this section was then found using
eqns (4) to (6), shown in Fig. 7.

The literature suggests a range of values for bone
properties. Using the best-fitting values for bone and
marrow within this range (Table 1), the predictions of
Biot’s theory are shown as solid lines in Fig. 7. It may be
argued that it is easy to fit predictions to experimental
data, given that Biot’s theory has many variables. The
authors’ unpublished observations suggest that variations
in densities and moduli within the literature limits do not
appear to significantly alter predicted wave properties.
Geometric structural parameters appear to affect wave
properties more significantly. Here, porosity is deter-
mined by experiment and is, therefore, known. Hence,
the fit to experimental data is achieved through changes,
within appropriate limits, in those least well-defined pa-
rameters, such as permeability and tortuosity.

Figure 7 helps to classify the waves. The arrival at
87 ms gives the upper curve of experimental points that

corresponds to the predicted fast wave. The arrival at 92
ms gives the lower curve of experimental points, corre-
sponding to the predicted slow wave. The first arrival
will, therefore, be referred to as the fast wave, and the
second as the slow wave, for the remainder of this paper.
The observation of two compressional modes was re-
peatable for all parallel samples tested.

Figure 6a shows that the slow-wave amplitude is
greater than that of the fast wave in cancellous bone.
However, the slow-wave amplitude is generally expected
to be less than the fast-wave amplitude, owing to the high
attenuation of the former. This discrepancy is likely to be
because marrow-filled pores in parallel samples are open
to the surrounding reference medium of water. A good
acoustic impedance match between water and marrow
means motion in the two fluids will couple effectively.

Figure 6b shows the trace emerging for a 1.2-cm
wide sample with a trabeculae at right angles to propa-
gation (a perpendicular sample) at normal incidence.
(This direction may be thought of as being equivalent to
the direction used in current BUA methodology through
the calcaneus.) Only one arrival is apparent, which was

Fig. 5. (a) Time history of 1-MHz center frequency pulse
traveling through water bath; (b) its power spectral density.

Fig. 6. Time history of 1-MHz pulse traveling through cancel-
lous bone (a) sample of 1.2 cm with structure parallel to
propagation direction; and (b) sample of width 1.2 cm with

structure normal to propagation direction.
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found to have propagated through the specimen as a
compressional wave. The phase velocity of this mode
was evaluated and is plotted in Fig. 7. The experimental
points could not be curve-fitted within literature limits to
correspond clearly with any predictions from Biot’s the-
ory. Therefore, it was not clear whether the mode was a
fast or slow wave. This point may be clarified with
reference to the stratified model in the following section.

Effect of structural orientation on fast and slow waves
Comparison of Fig. 6a and b clearly shows the

influence of trabecular orientation: one mode is observed
for the perpendicular sample, compared with two for the
parallel sample. To investigate the effect of trabecular
orientation further, data were acquired as specimens
were pivoted around an axis coaxially aligned with the
transducers, which remained fixed. Data were taken for
increments in the incidence angle of 5°, over as wide a
range as possible before the detection of a signal around
the specimen.

Figure 8a and b shows graphs of phase velocity
against the angle of refraction,ur. Values forur were
evaluated at 920 kHz (the frequency of maximum
power) using eqns (5) to (8), for each measured angle
of incidence,ui, sample thickness,d and speed of
sound in water,Vw at 20°C. The angle of incidence
was evaluated for a particular sample using the con-
vention shown in Fig. 9 and used to plot Fig. 8a and b.
This convention defines the angle of incident rays with
respect to the trabecular alignment, and not the sample
surface.

Phase velocities were predicted for a bone and mar-
row-layered model using Schoenberg’s theory, eqn (2)

and Table 2, and are plotted as the solid line in Fig. 8a
and b. Where possible, parameter values were the same
as for the curve-fitted Biot predictions of Fig. 7.

Figure 8a shows the accuracy in the measurements
of physical parameters. Plotted errors include the stan-
dard deviation due to spectral smearing (around 5% for
fast waves, 2% for slow waves: no larger than the size of
the points plotted). The error in the angle of refraction
was6 1°. Having typified the accuracy in this way, these
error bars are not shown in Fig. 8b for clarity, which
shows errors in terms of reproducibility.

Figure 8a and b, again, shows the anisotropic re-
sponse of cancellous bone. For refraction angles where
the fast wave may be identified (20°–90°), its phase
velocity increases with increasing angle. The slow wave

Fig. 7. Phase velocities vs. frequency, showing predictions
from Biot’s theory (solid lines), observed modes from a parallel

sample (E) and mode from perpendicular (•).

Fig. 8. Phase velocity (at 920 kHz) against angle of refraction
with predictions from Schoenberg’s theory (solid lines). (a)
Accuracy in measurement from one parallel and one perpen-
dicular sample. (b) Reproducibility of measurement in three
parallel (symbols1, E, •) and three perpendicular samples
(symbols3, D, •). The trabecular direction is at 90°; 0° is

perpendicular to trabeculae.
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is observable over a smaller range (50°–90°) and its
phase velocity remains approximately constant for an-
gles where it is observed.

The rate at which the experimentally measured fast-
wave velocity changes with angle appears to correspond
to that predicted by the Schoenberg model. Similarly, the
measured slow-wave velocity, for angles where it was
observed, appears to correspond well to the Schoenberg
prediction.

Confirmation of compressional wave propagation
Because measurements were taken at non-normal

angles of incidence, it was necessary to ensure that shear
waves were not being recorded and corrupting the re-
sults. To do this, samples with trabecular structure run-
ning 45° and 30° to the square cross-section (called
oblique samples), were prepared and tested at normal
incidence, where it can be assumed shear propagation
does not occur.

Phase velocities of waves through the oblique sam-
ple gave agreement to within 5% of the data from parallel
samples at 45° and 30°. Confidence was, therefore, put in
the recording of compressional propagation at non-nor-
mal angles.

DISCUSSION

These experiments demonstrate two results. First,
the reproducible anisotropic response of fast and slow
compressional waves in cancellous bone. Second, evi-

dence that ultrasound in cancellous bone containing a
dominant trabecular structure behaves like that in a strat-
ified array of bone-marrow layers. These results are
discussed below.

Comparison between Biot’s theory and Schoenberg’s
theory

It is of interest to compare the two theories consid-
ered here, and to comment on their respective ability to
model propagation in porous bone. The complexity of
Biot’s theory may mean that it provides a better model
conceptually, aside from anisotropic effects, but it is
worth considering whether or not it gives significantly
better agreement than Schoenberg.

Fluid viscosity is a crucial to Biot’s theory because
viscous properties define propagation into frequency re-
gions and determine at what frequencies the slow wave
may propagate. However, in this version of Schoen-
berg’s theory viscosity is omitted, and the latter theory
applies to frequencies where viscous effects can be as-
sumed to be negligible. Results here show that the in-
clusion of viscosity in Biot’s theory gives no significant
advantage in agreement with experiment, as when it is
omitted by Schoenberg for propagation parallel to the
structure.

Replacing interstitial marrow with water in cancel-
lous bone has been known to alter ultrasonic velocity and
attenuationin vitro (Alves et al. 1996). This may be as a
result of marrow having a higher viscosity than water.
Furthermore, the viscosity of bovine marrow signifi-
cantly decreases with an increase in temperature (Bryant
et al. 1989) and viscous coupling effects might be ex-
pected to decreasein vivo. This means that, if viscous
coupling is an issue at ultrasonic frequencies, the fast
wave may not propagate as effectively at certain propa-
gation angles as it doesin vitro. Clearly, the effect and
role of viscosity in ultrasonic measurements of bone
remains uncertain.

Biot’s theory, as discussed, assumes that the solid
frame is macroscopically isotropic. Anisotropy may be
introduced into Biot’s theory in two ways: first, in fluid
motion within the pores (inertial coupling); and, second,
in the bulk modulus of the frame. Under these condi-
tions, Biot’s theory may become equivalent to Schoen-
berg’s theory, which further work aims to demonstrate.

Cancellous bone in reality consists of calcified
plates that contain perforations and are not impervious,
as in the Schoenberg model. Accounting for perforations
may improve the accuracy of theoretical predictions,
although this may only be further improved after mate-
rial and structural properties are fully and accurately
evaluated.

Fig. 9. Angular convention for experimental work and the
presentation of results.
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Implications to in vivo measurement
Diagnostic techniques such as BUA operate in the

high-frequency region of Biot’s theory where, theoreti-
cally, both fast and slow waves propagate. It is, there-
fore, relevant to discuss the implications of these results
in vivo.

BUA measurements are taken by transmitting ultra-
sound through the os calcis (heel) in the mediolateral
(widthwise) axis. Trabeculae in the os calcis are aligned
in the proximodistal axis (lengthwise), and may be
thought to be perpendicular to the direction of propaga-
tion in BUA testing. Referring to the Schoenberg model
and Fig. 8a and b, this corresponds to propagation per-
pendicular to layering, where only the fast wave propa-
gates and with a velocity close to 1600 m/s. This may be
one reason why there is no evidence of two compres-
sional wavesin vivo, and why the velocity of observed
wavesin vivo is surprisingly low compared with that for
cortical bone (Truscott et al. 1996). The presence of a
cortical shell in vivo may make the observation of the
high amplitude slow waves unlikely, owing to the lack of
acoustic coupling between surrounding water and inter-
stitial marrow, as in thein vitro case.

The onset of osteoporosis increases the porosity of
bone from around 70% to up to 95% (Mellish et al.
1989). Such changes are likely to affect fast and slow
wave propagation, owing to a reduction in surface area
and, therefore, inertial coupling. However, first order
estimates using the Schoenberg model for propagation
perpendicular to the trabecular structure (the BUA test
configuration) suggest that the velocity may change by
less than 5%. Hosokawa and Otani (1998) recently
showed that, at high porosity, only one mode in the fluid
phase propagates in cancellous bone at ultrasonic fre-
quencies, behavior that, as yet, Biot’s theory cannot fully
describe.

CONCLUSION

Although the stratified model proposed is clearly a
simplification of the cancellous architecture, it may be use-
fully employed to investigate ultrasonic propagation in can-
cellous bone. This has given a more in-depth appreciation
of the physical and dynamic forces involved in this prob-
lem. Uncertainties still exist in the differences between the
theories of Biot and Schoenberg; in the role of marrow; and
implications to in vivo measurement. Nevertheless, this
approach has potential for future application in the field of
clinical ultrasonic bone assessment.
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APPENDIX

Biot’s theory predicts two compressional waves
(first, second) and one shear wave in a fluid-saturated
porous media. The complex velocities of these modes
are:

Vfirst, second
2 5

D 6 @D2 2 4~PR2 Q2!~r11P12 2 r12
2 !#1/ 2

2~r11r12 2 r12
2 !

(A.1)

Vshear
2 5 N/@~1 2 b!rs 1 ~1 2 1/a!rf , (A.2)

for D 5 Pr22 1 Rr11 2 2Q r12. The real part of the root
gives the phase velocity (m/s), while the attenuation in
Np/m, is found from the imaginary part of the wavenum-

ber, which equalsqf, sl, sh 5 v/ Vf, sl, sh. Elastic coeffi-
cients,P, Q andR, equal:

P 5
b~Ks/Kf 2 1! Kb 1 b2Ks 1 ~1 2 2b!~Ks 2 Kb!

1 2 b 2 Kb/Ks 1 bKs/Kf

1
4N

3
, (A.3)

Q 5
~1 2 b 2 Kb/Ks!bKs

1 2 b 2 Kb/Ks 1 bKs/Kf
, (A.4)

R 5
Ksb

2

1 2 b 2 Kb/Ks 1 bKs/Kf
, (A.5)

whereKf, Ks andKb are bulk moduli of fluid, solid and
skeletal frame, respectively;N is the shear modulus and
b is porosity. The Young’s moduli of the solid,Es, and
frame, Eb, of cancellous bone may be related by the
power law,Eb 5 Es(1 2 b)n, wheren depends on the
alignment of the structure (Gibson 1985). Bulk moduli of
solid and frame may be found asKs 5 Es/3(1 2 2ns) and
Kb 5 Eb/3(1 2 2nb), respectively, for Poisson’s ratios of
solid and frame,ns andnb.

The termsr11 andr22 are partial densities, defined
asr11 1 r12 5 (1 2 b)rs, andr12 1 r22 5 brf , for solid
and fluid densitiesrs andrf , respectively. The termr12

is defined asr12 5 (1 2 a)brf, wherea is the tortuosity.
Johnson et al. (1987) gave a frequency-dependent tortu-
osity, a(v), as:

a~v! 5 a` 1 jhbS1 2
4ja`

2k0
2rf v

b2L2 D /vrf k0, (A.6)

wherea` is a geometric tortuosity,L is pore size pa-
rameter with permeability,ko, and viscosity,h.
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