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This paper addresses problems associated with the estimation of bubble size distributions 
from passive data.  Existing methods for computing the rate of entrainment of bubbles, and 
their size distributions, are based on estimating the acoustic energy within a frequency band, 
i.e. the spectrum of the received signal.  This paper demonstrates how such measurements 
are subject to an ambiguity.  It demonstrates that, by taking into account higher order 
statistics of signals in a frequency band, this ambiguity can be resolved. 

1. INTRODUCTION 

Of all natural entities in liquid, gas bubbles are the most acoustically active. This, along 
with the fact that they can occur in numbers greater than 106 m-3, means that their impact on 
the underwater sound field can be very great. Having natural frequencies inversely 
proportional to their radii, the typical pulsating oceanic air bubble population (having radii of 
O(mm) to O(µm)) provide pulsation natural frequencies in the frequency range of at least 1-
500 kHz respectively, with commensurate quality factors of roughly 30 to 5.  

The acoustic emissions they generate so potently in this frequency range when entrained, 
may be seen as unwanted noise in some circumstances, and highly desirable in others. The 
characterisation of bubble populations in acoustical oceanography is not only promoted by 
their potency in affecting sound fields, but also by their importance to environmentally 
significant processes: coastal erosion and wave dynamics [1]; methane seeps [2]; and the flux 
between the ocean and atmosphere of momentum, energy and mass [3]. The top 2.5 m of the 
ocean has a heat capacity equivalent to the entire atmosphere; and the flux between 
atmosphere and ocean of carbon alone exceeds 109 tonnes/year [4]). Entrainment emissions 
have been monitored in waterfalls and babbling brooks [5]; under breaking waves; in ships 
wakes; in industrial sparging; and during rainfall over water [6], where the “lack of surface 
rainfall data is a recognized problem…especially in oceanic regions… Data are needed to 
identify occurrence of rain, type of rainfall, and quantification of rainfall amounts… to 



  

understand the local, regional and global heat and water budget which control the circulation 
of the atmosphere and upper ocean” [7].  

One of the prime purposes of such monitoring is to estimate the number of bubbles 
involved, and their size distribution. At low entrainment rates the natural frequencies of 
individual bubbles are easy to identify [5]. However when they overlap in noisy 
environments this becomes less easy. Two options are then available. The first is to try to 
identify these individual emissions using signal processing techniques, such as the Gabor 
transform [5]. The second is to try to invert a model of the overall emission of the bubble 
cloud [8]. They might also be used for inversion (estimation of the bubble size distribution 
from the measured acoustic field), for example to test models of the evolution of bubble 
clouds under breaking waves [8].  However such spectral techniques may produce 
ambiguities in the inversion.  These and their resolution are discussed below. 

2. PRINCIPLES 

The goal of this text is to outline the key reasons as to why Higher Order Statistics (HOS) 
should be considered in this application.  To realise this objective we shall consider an 
illustrative simple geometry: the extensions to realistic geometries are more or less 
straightforward.  Consider an omni-directional hydrophone at the centre of homogeneous 
medium.  In a spherical region, of radius R, centred on the hydrophone bubbles are being 
formed in a manner that is homogeneous in both time and space; that is to say that the mean 
rate of entrainment is uniform within the sphere.  Outside the sphere it is assumed that no 
entrainment takes place. 

Let N(ω0) denote the number of ringing bubbles with natural frequency ω0 generated per 
unit volume, in unit time within a 1 Hz frequency band; we shall refer to this as the 
entrainment density.  It is assumed that the acoustic pressure signature of any one bubble is  
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(1)

where the damping coefficient, α and the natural frequency ω0 depend on the bubble’s radius 
[11], and the amplitude of excitation A depends on the entrainment depth, h [11].  For the 
purposes of this paper we shall assume that A is independent of depth and treat it as a 
constant.  Note we explicitly avoid inserting specific models relating the damping and natural 
frequencies into (1); various forms can be found in the literature [11] and the structure of our 
method is unaffected by this choice. 

The power spectral density (PSD), S(ω), of the signal received at the hydrophone can 
(assuming a spherical spreading model) be shown to be: 
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where the two integrals are taken over the volume of the bubble cloud and the frequency band 
of interest respectively.  Here r is the distance from an elemental volume dV, to the 
hydrophone; and ( )0;Y ω ω  is the squared magnitude of the Fourier transform of (1).  The 
notation aims to make clear the distinction between the natural frequency ω0 and the 



  

frequency resulting from the Fourier transformation ω.  Integrating over the assumed 
spherical bubble cloud gives: 
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The key observation from (3) is that the measured PSD is proportional to the overall radius 
of the bubble cloud.  This formulation predicts that the acoustic energy at the hydrophone 
grows without bound as the size of the cloud increases.  This is a form of Olber’s Paradox 
[12] (the observation that the night sky should be uniformly bright, if the universe were 
infinite and the distributions of stars homogeneous).  If one considers spherical shells of 
radius δr then each such shell adds to the integral (3) a quantity that is independent of r, so 
that distant and nearby shells make equal contributions.  Hence if one seeks to employ (3) to 
estimate the entrainment density, N(ω0), it is necessary to obtain an estimate of the effective 
radius of the bubble cloud, R, or to impose constraints upon the geometry.  In many 
applications it is difficult to obtain a reasonable estimate for R. 

Estimates of the entrainment density are obtained by discretising (3) as 

( ) ( ) ( ) ( ) ( )0, 0, 0, 0, 0, 0,4 ; 4 ;n m n m m n n n n
m

S R N Y RN Yω = π ω ω ω δω ≈ π ω ω ω δω∑  
(4)

where N(ω0,n) is the mean entrainment density in the nth frequency bin; Y(ω0;ω0,n) is the 
energy integrated over the nth frequency bin from a bubble in the centre of bin m; and δω0,n is 
the width of the nth frequency bin.  The exact form in (4) can be solved using matrix methods.  
The approximation neglects the contributions that bubbles with natural frequencies ω0,n make 
to adjacent frequency bins, i.e. it removes coupling between data in different frequency bins.  
This approximation is reasonable if the frequency bin widths δω0,n are large in comparison to 
bandwidths of the individual bubble signatures (1), but sufficiently small so that the value 
entrainment density can be regarded as being constant within a bin.  Under these conditions 
the solution to (4) can be expressed as 
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In order to remove the dependence of the results on the parameter R we shall exploit HOS. 
In particular we shall seek to compute the fourth order cumulant Cx of the received 
waveform, x(t), defined as: 
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where E[] denotes the expectation operator.  The use of cumulants (rather than moments) is 
motivated by two factors [13,14].  Firstly cumulants obey a super-position principle for 
independent random processes; greatly simplifying the subsequent theory.  Secondly 
cumulants (of order greater than two) are unaffected by additive Gaussian noise.   

For the sake of brevity we shall assume there is no coupling between frequency bins.  The 
extension to include coupling is straightforward.  In which case our method is direct 
analogous to that defined by (5).  In the absence of such coupling one can write 
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where Cx(ω) is fourth order cumulant computed in the nth frequency bin.  Expressing the 
volume integration in (7) using spherical polar co-ordinates leads to 
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Equation (8) is unbounded because of its behaviour close to r=0.  The physical reason for 
this is that our analysis so far is based on a far-field approximation for the amplitude of the 
received pressure waveform.  It is evident that as r approaches 0 a far-field approximation is 
inappropriate.  In order to ensure the convergence of the integral in (8) one needs to adopt a 
more realistic model of how the pressure amplitude of a bubble signature varies as a function 
of range to the transducer.  We shall assume that the transducer is small in comparison to the 
wavelength, implying an omni-directional beam-pattern for the transducer – more formally 
ka<<1, where a is the radius of transducer’s face plate.  Under these circumstances one 
assumes that the off-axis transducer response is equal to the on-axis response.  This is 
equivalent to replacing the integral in (9) by [15] 
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This integral is not analytically tractable but can be readily be approximated using 
numerical methods (since this can be performed off-line, the computational burden this 
imposes is of little practical importance).  This integral converges to a finite limit as R→∞, so 
for large bubble clouds we can employ the value ( )aI ,ω∞ .  This leads to an estimate of the 
entrainment density given by 
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In contrast to (5) the above does not depend on the size of the bubble cloud, other than to 
assume that the cloud is sufficiently large as to allow one to replace ( ),RI aω  with ( ),I a∞ ω .  

Figure 1 plots the values of ( ),RI aω  for a particular configuration.  In this case the integral 
converges for values of R  in the region of 10cm. 

3. RESULTS 

In order to demonstrate the utility of this method we present the results of a simulation 
studies.  Random realisations of homogeneous, spherical, ringing bubble fields are 
constructed, with controllable entrainment densities, radii and controllable transducer surface 



  

area.  The numerical model computes the time series at the hydrophone output.  Two 
examples of such time series are shown in Figure 1 – these data are constructed so that there 
PSDs are equal, i.e. so that RN(ω) is constant.  From this Figure one can see that the two time 
series are very different: the data from the more dense bubble cloud (Figure 2a) appears much 
less impulsive that the data from more disparate bubble cloud (Figure 2b).  By computing the 
fourth order cumulant we are constructing a measure of this impulsiveness. 

 

Figure 1: Plot of the value of ( ),RI aω  for a=1cm at 3kHz. 
 
a) 

 

 
b) 

 

Figure 2: Simulated time series for bubble clouds with different entrainment densities (see 
Figure 2 for details) a) Low density cloud; b) High density cloud 

 
In Figure 3 one can see a comparison of the energy and the fourth order cumulant 

measured in 1kHz frequency bands.  This demonstrates that for these two cases shown in 
Figure 1 the energy curves are very close, whereas the cumulant curves are very different.  
This is a simple illustration of how the fourth order cumulant differentiates cases for which 
the energy based methods give an ambiguous result. 



  

 
a) b) 

Figure 3: Energy and Fourth order cumulants computed in energy bands for two bubble 
clouds (radii 1 and 0.25) of entrainment densities: N(ω0)=1 Hz-1s-1m-3 and 4 Hz-1s-1m-3 
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