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ABSTRACT

In this report a methodical presentation of mobility functions for thin plates excited in flexure is
given. Both driving point and transfer mobilities are analysed considering either infinite or finite
plates. The mobilities related to all kinematic (linear and angular velocities) and to all dynamic
(force and moment excitations) parameters are considered. The matrix representation for a single
point connection or for a multiple point connection plate system is also given. The main properties of
the driving-point and transfer mobility matrices are analysed and it is shown that: the driving point
-mobility of an infinite plate gives approximately the mean response of the driving point mobility of a’
finite rectangular plate; the driving point mobility matrix of an infinite plate is a. 3% 3. diagonal
matrix while the driving point mobility matrix of a finite rectangular plate is a fully populated 3X3
. matrix except in the particular case of considering the centre position of the plate in-which.case. also :
for a finite plate the driving point mobility matrix is diagonal; the real part of the d:agonal terms of
the driving point mobility matrix of a finite rectangular plate are all positive; for reciprocity, if the
system is linear, the transfer matrix between position P; and P, is equal to the transpose of the
transfer mobility matrix between positions P, and P; and finally as a consequence of point ¢ and d the
driving point or driving multi-point mobility matrix is positive definite.
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1. INTRODUCTION

Seismic vibration - structure borne sound

The vibration analysis of 2 mechanical system is usually classified in two categories: first,
the “mechanical or seismic vibration” field and, second, the “structure borne sound” field
[1]. The structure borne sound field deals with the generation and propagation of very small
time-wise varying motions and forces in a solid body and with the radiated sound in the
medium surrounding the solid body. This type of vibration is defined for periodic motions
occurring in a frequency range between 16 and 16.000 Hz: the audible frequency range. In the
majority of cases the study of structure borne sound transmission is related to problems of
noise control, radiation of sound in water and “sonic” structural fatigue. Studies of
engineering materials or musical instruments are more rare. Alternatively the mechanical
vibration field deals with periodic vibrations at frequencies lower than 16 Hz. However, in
many cases vibrations of mechanical systems occurring at relatively low frequencies, below
100 Hz, are also treated as seismic vibrations so that the system is modelled with a finite
number of lumped elements (springs, rigid masses and dissipative elements).

Time-variation response to harmonic, periodic and transient excitations

When the excitation of the system is harmonic the system response is characterised by a
transient part where the response is composed by an harmonic function that decays
exponentially with time and by an harmonic function with constant amplitude. After a period
of time the first component can be neglected and the steady-state response is then given only
by the harmonic function with constant amplitude. If the harmonic excitations have the form

F(f) = Re{F, exp(jot)}, where @ is the circular frequency, than the steady state response is

also harmonic so that the displacement could be wriften as: x(¢) = Re{x0 exp( jcnt)} where x,
is complex. The displacement x(¢) is.related to the harmonic excitation via a linear relation of
the following form [2,3]:

x(f) = Re{ou(@)F,e™ | (1.1)

where o,(®) is a complex function of frequency called the frequency response function (FRF)
of the system that in this particular case is the system receptance (for more details see the
following references: [4] sec. 1.5, [5] sec. 2.1, [2] sec. 3.5).

In many cases the excitation acting on the mechanical system is periodic with period T but
not harmonic. In this case the excitation can be regarded as a summation of an infinite number
of harmonic functions, whose circular frequency is an integer multiple of the fundamental one

®, =no, =2nn/T , by means of a Fourier series f(t)= 2:17" exp(jnw 1) ([6] Ch. 7, pp
367-370). The steady-state response-of a linear 'system-can therefore be found by.superposing
. the harmonic responses due to each of the exciting harmonic forces so that ([5] Sec2.9.pp 75--
76 [6] Sec. 7.6, Examples 1 and 2 pp 370-374):

x(t) = Rc{ ian(o))ﬂej”‘”"’} (1.2)

n=-<a

Even if the time variation of the excitation is not periodic the response of a linear system to
that type of forcing can be treated as a superposition of an infinite continuous number of
harmonic motions. In this case the Fourier series of the excitation is replaced by an integration



of harmonic motions by means of a Fourier integral f(f)= IjF((o)exp( jot)dw ([6] Ch. 7

pp 380-388). The Fourier integral represents a continuous function in the frequency domain
also called spectrum since it provides a measure of the intensity of f in the frequency interval
between ® and ® +dom . In this case the system response is not periodic and depend on the
forcing variation in time although still it is characterised by the appropriate system frequency
response function a(®)= X(®)/F(®) where X(®) is the Fourier transform of the response

x{£) (I5] Sec2.9 pp 76-77 [6] Sec. 7.8 Example 1 pp 390-392):
x(H) = Re{ Ja(co)F (w)- ej""da)} (1.3)

From this brief description of the three typical problems of forced vibration the picture that
can be drawn is that the frequency response function of a mechanical system gives a lot of
information about the vibration dynamics of a mechanical system apart from the type of
excitation to which the system is forced. Most of the engineering vibration problems are
therefore studied by considering the frequency response function rather than deriving the
response of the system for a specific type of excitation. In the case of transient excitations, the
specific effects on the response of the excitation time history are evaluated independently to
the real system dynamics by considering the maximum peak response of a single degree of
freedom oscillator as a function of the natural frequency of the oscillator itself, i.e. by
considering the response spectrum [2] sec. 4.6.

Frequency Response Function forms

The frequency response function can assume different formats depending on the variable
used to describe the response of the mechanical system: displacement, velocity or
acceleration. For each of the defined frequency response functions it is possible to derive the
inverse function which could also be defined as a frequency response function although these
latter formats are discouraged as they can generate some confusion when muti-degrees-of-
freedom systems are considered. The following table summarises the three standard
definitions of frequency response function and the equivalent inverse functions.

Response Standard Inverse
Parameter Frequency Response Function | Frequency Response Function
Formula Name Formula Name
Receptance
5 - Admittance _ = D ic -
displacement | o(w) =x7@-)— Compliance K(@)= Fw) ynamic
F(o) Dynamic (@) stiffness
flexibility
. (W) Mobilit Fw) Mechanical
velocity Y(o)=% oDty Z(®)=—= .
F(w) x(w) impedance
% Inertance &
()] F(w
acceleration Alw)= J.C,( ) M(®) =_£.§_J Apparent
F®) Accelerance x(®) mass




Mechanical-electrical analogies - Network theory

The vibration analysis of mechanical systems is also characterised by the geometry of the
system. In general, the vibration analysis of complex mechanical structures is reduced to the
analysis of a network of flexible elements connected at point-, line- or surface-junctions. The
analysis is therefore reduced to two problems. First, the definition of the differential equation
of motion of each element of the mechanical system at the junction points and at eventual
positions of interest due to both the external excitations acting on the element (known
parameters) and the reactive excitations produced by the elements directly connected to that
under consideration (unknown parameters). Second, using the equilibrium and compatibility
conditions at the junction positions, a system of equation is built from which the response of
the entire system can be derived.

Thus, the vibration study of a mechanical system is reduced to the vibration analysis of
basic elements which are usually classified depending on their geometry. The most common
structural elements are beams, plates and shell of various shapes (cylinders, spheres etc.). For
these types of structures, the structure borne sound vibration is studied in terms of wave types
that characterise the element motion. For example, for beams three types of waves are
defined: first, longitudinal waves; second, torsional waves and third, bending waves. The
study of the wave types associated with the aforementioned basic type of structure has been
widely studied in the past and beooks are now available on the topic (see for example
references [1,7,8,91).

As discussed in the paragraph above the vibration of a mechanical system is usually studied
in terms of its frequency response function; in this particular case the vibration analysis can
follow a pre-defined standard approach which is based on the mechanical-electrical analogy
method formulated by Firestone [Firestone 10,11,12]. This method consists of the following
three steps.

e First, the mechanical system is divided into sub-systems that could be considered as “black
boxes” with a number of terminals that identify the position and direction of all junctions
dynamic parameters (force and moment excitations) and the corresponding kinematic
parameters (linear and angular displacements or velocities or accelerations).

e Second, for each “black box” an immittance or transfer matrix [13-18] that relates the
terminals variables is defined.

o Third, the “equivalent mechanical circuit” of the mechanical problem to be soived is
drawn. In this way the vibration problem is reduced to a form similar to that of electrical
circuits so that the system response to the primary excitations can be found by applying
similar principles to those used in the electrical networks theory [19,20] (Kirchhoff’s laws,
superposition theorem, reciprocity theorem, Thévenin’s and Norton’s equivalent systems
reductions).

This approach-has been widely studied during the last 50 years [4,18,19,20] particularly with

reference to seismic vibrational . problems-where-the .elements .comprising -the smechanical

system can be modelled as lumped sub-systems.

The method is however not well developed with reference to problems of structure borne

sound vibrations. First of all there is a lack of frequency response function formulations for

distributed systems. Bishop and Johnson’s book [4] presents a methodical formulation of

frequency response functions in terms of receptances for finite length beams. Cremer et al [1]

gives instead the frequency response functions for infinite beams in terms of mobilities.

Moving to plate or shells, Soedel [21] has presented a general theory from which it is possible

to derive the frequency response function for plates and shells. However no specific formulae

of frequency response functions are derived for the most common types of plate or shell
structures. For plate and shell structures the best reference giving frequency response

functions of infinite structures is the book written by Cremer at al [1].
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It is then possible to find short sections of books or reports (see for example ch. 26 of [22]) or
technical reports (see for example [23] and [24]) that give some formulae for the driving point
frequency response functions of specific structures.

In this report an attempt is made to give a systematic presentation of frequency response
functions for thin plates excited in flexure. The frequency response functions are expressed in
terms of mobilities. Both driving point and transfer mobilities are analysed considering either
infinite or finite plates. The mobilities related to all kinematic (linear and angular velocities)
and to all dynamic (force and moment excitations) parameters are considered. The matrix
representation for a single point connection or for a multiple point connection plate system is
also given and the main properties of driving point and transfer mobilities are examined.



2. MOBILITY FORMULAE FOR AN INFINITE PLATE EXCITED IN FLEXURE

2.1. Driving-point and transfer mobilities

When an infinite plate is excited in flexure four different types of mechanical mobilitics
could be defined in a similar way as in reference [1] (p 312). Figure 1 shows the vector
notation used for the kinematics (translational w and angular 8, displacements) and

dynamics (force N, and moment M, excitations) parameters related to bending waves at two
generic positions P, =(x,,y) and P, =(x,,y,). These positions are defined considering 2

right handed Cartesian co-ordinate! main system of reference (0,x,y,z) which has the z axis
orthogonal to the surface of the plate.

z

v
Fig. 1: Notation of the displacement w and rotation 9, at positions P; and P, when a plate is
excited in flexure by a point force N, and point moment M, at position P .

A flexural wave in an infinite plate can be generated at a specific point A =(x,,y,) by two
independent types of excitations: first, a force N,,(f) in the z direction and second, a moment
M, (¢) with the u, direction” in the plane of the plate (the u, direction is defined by the angle
B, as shown in figure 1). If these two excitations are harmonic with time dependence of the
form exp(jwt), where @ is the circular frequency, they can be represented by the real part of
the phasors3

N, () =Re{N, @)}, M,,(t)=Re{i,, @)™ }. 2.1,2)

When the infinite plate is. excited by-the harmonic force N, (f) or by the harmonic moment
M () the plate motion at the excitation position B is*equally harmonic-and-it-can-be

! According to reference [25] (p 443) a Cartesian co-ordinate system is called right-handed when the
corresponding unit vectors i, j, k in the positive directions of the axes form a right-handed triple. Also from

reference [25], a right-handed triple of vectors i, j, k is one in which the vectors assume, in the order given, the

same sort of orientation as the index, middle finger and thumb, of the right hand when these three fingers are held
in such a way to be orthogonal to each others.

2 In reference [26] (p 237) the positive direction of 2 moment is defined as the direction to which points the
thumb of the right hand when the fingers are curved in the direction of the rotation produced by applying the

moment (right hand’s rule).
3 Neubert {18] describe a phasor as: “a special vector in the complex plane having constant magnitude, with its

tail anchored at the origin and rotating counter clockwise with angular velocity "

5



represented respectively by the real part of the phasor of the translational veloc:lty in the z
direction and the real part of the phasors of the angular velocity in the u; direction®*

1, (£) = Re{i¥, @)™ }, NOE Re{ (@)e’ } (23.4)

The force/moment excitation parameters ﬁzl (®), ﬂul (®), and the linear/fangular velocity

parameters 1?{71 @), 6 (@) are all complex numbers whose absolute values and phases denote
respectively the amplitude and phase of the harmonic variation in time at the driving
frequency © . Considering the four parameters of equations 1 to 4, two mechanical driving-..
point mobilities could be defined as follow [1,24]:

(@) Ly Da@ 8,40

4 2.5,6
N, (@) et 2 @) 220

Yll ( )_

where the superscript “11” indicates that both the excitations and the velocities are taken at
position B, =(x,,y,). These driving-point mobilities are grouped together in a 2X2 driving-

point mobility matrix Y'" (®) of the form [1,15,19]

11
Y“(w)z[Y“’Nb(w) ° } 2.7

Yo, (@)

T
so that the vector v,(®@)= {wi((o) 9 l(co)} is related to the vector
fiw)= f\"fz[(a)) ﬂul(m)} by the driving-point mobility matrix as follow [1,15,19]
v, (@)=Y"(0)-f(®). (2.8)

If the kinematic parameters (translational and angular velocity) are taken at position
P, =(x,,y,) four mechanical transfer mobilities could be then defined as follow [1,24]:

7, (@) W, ()
2 (@) =2 _
) ( ) M,=0 ( ) (0)) Nz=0
2 Guz(m) ’ 5“2((0) (2.9-12)
e Y =
o (m) Nzl (G)) M, =0 Pl (m) MuI ((D) N, =

u

where the u, direction is defined by the angle B, as it is shown in figure 1. These four
mobility terms could be grouped in a new mobility matrix Y* (@) which is called the transfer
mobility matrix [1,15,19]:

* Reference [26] (pp 237) defines the positive direction of an angular velocity along the axis of rotation in the
direction of progression of 2 right-handed screw turned in the same way as that produced by the angular velocity.

6



21 21

12 (@) %, (@)

YZl(m)zli

. A r
so that the velocity vector v, (@)= {ﬁ'zz () 9, ((D)} is related to the vector of forces f, ()

in the following way:
v, (@)=Y (@)-f,(@). (2.14)

It is important-to underline that the four transfer mobilities -of equations (2.9) te.(2.12) are.
defined for either a point force "N, excitation when the moment M, is set to zero or for a

point moment M, excitation when the force N is set to zero [18]. The definition of the
driving point mobilities in equations (2.5) and (2.6) has not specified this condition simply
because the force N,; or moment M, excitations do not produce respectively angular éul or
linear w, velocities at the excitation position £ [1,24]. This is a peculiar characteristic of the

bending wave in an infinite plate that implies a diagonal driving point mobility matrix.

In the following sub-sections the formulae for the mechanical driving-point and transfer
mobilities are derived for thin plates excited by a force or moment acting on a small rigid
indenter with a circle base of radius a fixed to the plate.

2.2. Linear and angular velocities of bending waves generated by an out-of-plane force
acting on a small rigid indenter fixed to an infinite thin plate

Flexural waves in a thin plate excited by a uniform distributed force p,(x,y,z) over the
plate surface are described by a 4th order wave equation of the form [1] (p 286)

34w adw a4w azw
B( Loy ey )“" FYoaale ACHD 2.15)

where B = EIf(1-v?) is the bending stiffness, E is the Young’s modulus of elasticity, v is the
Poisson ratio and 7 = #°/12 is the cross sectional area moment of inertia. % is the thickness of

the plate, m = ph is the mass per unit area and p is the density of the material. Equation (2.15)

is valid for plates whose thickness is much smaller than the bending wavelength. Also,
-equation -(15) .does not account for the effects produced by internal shear stress and rotary.-
inertia component.

If the plate is excited by an harmonic point.force excitation ‘%'szf(I):-=,iRC{ﬁza.(C0)_e{%xi psthe:
steady state® linear velocity wi(z) can be derived from equation (2.15) by considering the

following boundary conditions [1] (pp 286-290):

- a the out-of-plane displacement w must be axially symmetric;

-b at the excitation point, the angular displacements 8 must vanish;

- ¢ at the excitation point the sum of the shear forces must be equal to the exciting force N, ;

-d the solution must satisfy the Sommerfeld “radiation condition”, so that the displacements
at large distances from the excitation point must behave like a decaying wave.

® The steady state response of a system harmonically excited does not account for the onset of vibrations (the
transient part) induced by the excitation.



A possible set of solutions that satisfy equation (2.15) and the boundary conditions a to d is
given by zero-order cylindrical functions; therefore, it has been chosen to formulate the
solution of the problem in terms of a cylindrical system of co-ordinates (o,7,0.,2), assummg the

“ b2

origin coincident to the excitation point.

X
e =
//
g
¥y
z

Fig. 2: Notation of the displacement w at position P when the infinite plate is excited in
flexure by a point force N, applied at the origin of the system of reference.

If the harmonic point force N,_(¢) is acting on a massless small rigid indenter with a circle

base of radius @ fixed to the plate and the plate thickness is small compared to the dimensions
of the area of the indenter, the out-of-plane steady state velocity w(f) at any position P .at

distance r = const from the origin is given by [1] (p 290}

W(r,o.0) = Re{#(@)e™ } = Re {“’é\; ;?)[Héz)(ksr)— j;tZ—KO (kBr)}efm'} 2.16)

where H®(k,r) is the second kind of Hankel function of the ith order and K, (k,r) is the
second kind of modified Bessel function of the ith order®. k, =w/c, is the flexural wave
number and ¢, = 4/B/m3/® is the “phase velocity” of bending waves propagating in a plate.

gl \/\/\/\/\/

Mo 05 1 15 2z 25 & 35 4 a5 5
kyr
Fig. 3: Real (solid) and Imaginary (dotted) part of the out-of-plane velocity phasor W when an

infinite plate is excited by a unit out-of-plane force N, (k,r =0+5 and o = const ).

¢ From reference [27]: H® (k,r)=J (kyr)— jY,(kpyr) where J,(kyr) and Y(kyr) are the Bessel functions
respectively of the first kind and second kind of order 4.



Figures 3 and 4 show the real and imaginary parts of the velocity phasor v"ii(r,a,co) due to a
unit out-of-plane force N,(f) considering k,r=0+35 and assuming ¢ = const in figure 3, or
assuming o = 90° +360° in figure 4. Both figures 3 and 4 show that for small values of k,r

the real part of the velocity phasor is dominated by a strong near-field component which
decays rapidly as k,r rises while the imaginary part of the velocity phasor tends to zero for

kyr—0.

Imaginary

Z

Fig. 4: Real (top) and Imaginary (bottom) part of the out-of-plane velocity phasor W when an
infinite plate is excited by a unit out-of-plane force -N, ( 0=80°+360° and k,r =0+35).

The steady state angular velocity éu(t) with u orientation at a generic position P related to
the bending wave generated by the out-of-plane harmonic force N, (f) acting on a small rigid

indenter fixed to the plate could be calculated by making some geometrical considerations on
the vibrating field generated by the force N (¢) .

Fig. 5: Notation of the angular displacement ©, at position P of u orientation when the infinite plate is
excited in flexure by a point force N, applied at the origin of the system of reference.

With reference to figure 5, the angular displacement 8, with u orientation evaluated at
position P = (r,a) could be derived by taking the following limit

9



tan{8, (P)} = Iei_lr)x‘}—“-ﬂy)z;—:(}wl, 2.17)

where the out-of-plane displacements w are taken at two positions P” and P” placed along a
line 4 which is normal to the angular velocity direction z and at distance e apart from P . For
small values of 6, tan{0, (P)}=0,(P) and therefore the steady state angular velocity is given

by the following limit

w(r’, o, 1) —w(r”,a,t) 2.18)
2e ' )

6, (ro,b= lim

The velocity phasors ﬁ(r’,oc,cn) and ﬁ’z(r”,a,o)) can be calculated from equation (2.16):

o h (Dﬁz(ﬂ)) ’ .2 ’
W(l" ’G"(D):_S—;B%T[H(()Z)(klgr )—‘J‘?t_KO(kBr )jl, (2.19)
L, ®N (@) w2 ”
w(r ,a,m):W[Héz)(kBr y— JEKO(kBr )}. (2.20)

Therefore, with reference to equation (2.18), the angular velocity phasor is given by

é"u(r,oc,m)=1immNz((f)[kar )= o kg )}, 2.21)
>0 8Bk, 2e
where
Ty (k,r)= HP (k,r)— 13 Ko(kyr). (2.22)
T

Fig. 6: Top view showing the geometrical parameters relating the out of plane displacements
w(P*) and w(P”) to the out-of-plane point force N_ applied at the origin of the system of reference.

Considering the sketch of figure 6, if r>>e¢ the distances ' =OP’ and r”=OP" could be
assumed approximately equal to = OH’ and r” = OH” respectively, so that:

r'=r—ecosd " =r+ecosd (2.23)

10



where, according to figure 5, 8 =& — (f +m/2) . Equation (2.21) then becomes

6u(r,a’m) _ mNz((;)) {T;,[kg(r-—ecosf))]— 'I},[kB(r-!-ecosS)]} 0.24)
8Bk, 2e
which, after defining € = ecosd , could be written as
o N k - —
6 (rio0) = lim— SNe(@)C0S8 {T"{ p(r - Tl 8)3}. (2.25)
£—0 8Bk, 2e
The term in curly brackets is the first derivative of T, (kyr) with respect to r, hence
- N T
5 (rowwy=-2% z(“’)f"sa oTo(ks?). (2.26)
8Bk, or
The first derivative of T, (k,r) with respect to r is given by:
olhal) - -t ko), (2:27)
where
T, (kyr)y= H? (kyr) - j-2— K, (kyr). (2.28)
s

Therefore the steady state angular velocity is given by:

6 (rof)= Re{é" (@)e”™ } ~Re M[Hf” (eyr)— 2K, (kBr)]ef‘“‘ 2.29)
8Bk, T

and, because cosd = cos(@ — B —7/2) =sin(@ — B),

: _ (Dﬁz(m)sm(a“ﬁ)[ @ _ g ] oo
8, (ra,t)= Re{ 85T, H® (kyr)— j - K (kpr) ™ ¢ (2.30)

2.3. Mobilities relating linear or angular velocities to a force
The driving point mobility YJ,,L ()= i«'ﬁl(a))/ ]'\"7Zl (®), evaluated at a point P, = (x,¥,), could

be derived directly from equation (2.16) by considering the response due to a force excitation
N, (1) when r— 0, which gives [1]:

® 1
Y = = 2.31
"% 8Bk 8JBm @31)

i1



Two important observations should be made considering equation (2.31): first, this point
mobility parameter is independent of frequency and second, it is purely real. The transfer

mobility ¥, = i, @)/ N, (@) could also be derived from equation (2.16) by considering the

distance r,, given by:

oy =405, — 1)+ =0 (2.32)
so that
72 (@)= —-“’—-[ng’ (gt — 2K, (ot )} . (2.33)
e 8Bk} T

Finally the transfer mobility YBHN (co)=§ 2 (03)/ K’ﬂ(&)) is derived from equation (2.30) by

considering the distance r,, and @ =0.,,, § =B, so that

 sinf(o, — L2
¥, (@) = éBE Bﬂ[chz)(kBrﬂ)_ JE=5 4 (kBrZI)] . (2.34)
B T,

It is important to underline that these three mobility formulac are derived assuming the out-of-
plane force N, (f) acting on a small rigid indenter which transmits to the plate a uniform
force distributed over a small circle of radius a (see Cremer et al [1] p 289). Moreover it is
assumed that the plate thickness is small compared to both the bending wavelength and to the
dimensions of the area of the indenter.

2.4. Linear and angular velocities of bending waves generated by a point moment
acting on a small rigid indenter fixed to an infinite thin plate

If, instead, a point force N_, a point moment M, = Re{ﬂu(a))exp( jcot)} of u direction is

acting on a small indenter with a circle base of radius a fixed to the plate and the plate
thickness is small compared to the dimensions of the area of the indenter, the translational
velocity w(z) at any position P at distance r= const from the origin could be calculated by

adding the effects produced by a pair of opposite phase force excitations N(t)=+N,(t) and
N(£)=—N,(¢) acting along a line d, orthogonal to u, at distance e from the origin, as is
shown in figure 7.

Fig.7: Notation of the displacement w at position P when a plate is excited in flexure by a point
moment M, with u orientation, applied at the origin of the system of reference.
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In fact, if the distance 2e between the two forces is reduced to zero, the two opposite phase
forces N/ and N, generate a moment with u direction which is given by:

M (5)= 1i_1)1(‘)12.-2N1Z (). (2.35)

The steady state translational velocity at position P generated by the two point forces acting
at positions O’ and 0" could be calculated by means of equation (2.16) with reference to the
distances ' =O’P and r” = 0"P . Considering the skeich of figure 8, if r >> ¢ the distances
r'=O'P and r” =0”P could be assumed equal to r"= H'P and r” = H”P, so that:

r’=r—ecosd r" =r+ecosd. (2.36)

where according to figure 7, & =0 — (B +7/2). Therefore the phasors of the translational
velocities w’(7) and w”(¢) at position P due respectively to N(¢) and N,{¢), are given by:

~ps 7 (‘Dﬁz(m) ’ L] 2 I

w(r ’a’m)z_SE];E_[HéZ)(kBr )_J:J;KO(ICBF ):| (2.37)
e pp e I (DKT z (0)) ” . 2 ”
w (r ,a,m)Zﬂw[Héz)(kBr )—JEKO(kBr ):| (238)

so that, in the limiting case of ¢ — 0, the phasor of the total velocity at position P generated
by the two point forces acting at positions @’ and 0" is given by

=

W(r,o,0) = Iirré[v"ﬁ'(r’,oc,a)) + W (r”,(x,co)] (2.39)

Fig.8: Top view showing the geometrical parameters relating the out of plane
forces N} and N to the out-of-plane displacement w_at position P.

Equation (2.39) can be rearranged in the following way

— - wﬁz(m) ’ L
(r,0,0) = im——2 7 [T, (kyr")— Ty (yr™)] (2.40)

B

where T,(k,r) is given by equation (2.22). Considering the expression (2.35) given for the

13



moment M, , equation (2.40) can be written as follows:

oM, (®)cosd {i'a[ks(r-ecosf))]— %{ks("+‘*°035)]} 2.41)

w(r,a,0) = lim
( ) a0 8Bk. 2ecos6

that, after defining € = ecosd , becomes

W(r,o,®)= lim-~ (2.42)
£

@it (@)cosd [T [ky(r+8)]- L [ks (r—©)]|
8BKZ | 2

The term in curly brackets is the first derivative of T,(k,r) with respect to r, hence the

expression for the translational velocity phasor is given by

oM, (@)cosd oT, (k, r)

2.43
8Bk2 ar 243)

w(r,o,m)=—

The first derivative of T,(k,r) with'respect to r is given in equations (2.27) and (2.28) so that
the steady state linear velocity is given by:

M, (®0)cosd

2) - Z ] Joot
SBk, [Hl (kgr) ]n K (kgr)le } (2.44)

W(r,0,t) = Re{ﬁ;(m)ef‘”‘ } = Re{

and, because cosd =cos(al — p —1/2) =sin{o. — B),

W f) = Red SMu(@)sin@ = B) [Hfz’ (1)~ j 2K, (kBr)]ej“” . (2.45)
8Bk, I
1 e
%0.5-:
1

\/\/\/\\/\,

=051

o5 1 15 2z 25 5 a5 4 45 &
kor
Fig. 9: Real (solid) and Imaginary (dotted) part of the out-gf-plane velocity phasor W when an

infinite plate is excited by a unit moment M, with u orientation ( kyr = 0+5 and o = 0%).
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Figures 9 and 10 show the real and imaginary part of the velocity phasor v"'ﬁ(r,oc,co) duetoa
unit moment M, (f) with direction « considering k,r=0+5 and assuming o =0° in figure

9, or assuming o =90 +360° in figure 10.

Fig. 10:  Reul (top) and Imaginary (bottom) part of the out-of-plane velocity phasor i when an

infinite plate is excited by a unit moment M, with u orientation defined by B = 907

(o =90° +360°and k,r =0+5).

The angular velocity 8 , with x, orientation at a position P = (r,t) related to the bending
wave generated by the point moment M, (z) of direction « acting at the origin o of the main
system of reference (0,x,y,z) can be derived in a relatively simple way by defining a new set
of cylindrical co-ordinates (o,r,Y,z}.

Fig. 11: Top view showing the geometrical parameters relating the bending moment M,
of u direction to the angular displacement 0, of u direction at position P.
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As shown in figure 11, the (o,r,Y,z) system of cylindrical co-ordinates is defined with
reference to the main Cartesian system of reference rotated of B, +1/2 around the z axis
(0,%,9,7) sothat the ¥ axis is parallel to the segment 4, . In this way

X, = rcosy ¥, =rsiny, (2.46)
where
v =3/2n -0, +0a, x=32r-B,+B . (2.47,48)

The steady state translational velocity w at any position P at distance r=const from the
origin given by equation (2.45) can therefore be re-written in the following way:

W(r .0 = Re{mM“ (@)sinly = X) [H](Z)(kﬂr) _i2k, (kBr):lejm’}. (2.49)
8Bk, p

The steady state angular velocity éup(r) can be derived by differentiating wi(r,y.f) at
P =(r,y) along the d, direction, i.e. along the X direction:

(Y, 1)

- {(2.50)

éup(r,'y,t) =

(ry)

This is the partial derivative along the X Cartesian co-ordinate of a function given in
cylindrical co-ordinates. Therefore by using the “chain rule” for the derivation of a function
(see reference [26] pp 186-190) it can be written in the following form

(ry.0) O | dW(ry,1) o 2.51)

O, (ry.0= or oO% oy ox

and, considering equation (2.46) (sec reference [26], example 6 pp 165-167):

w(ry,0| siny ow(ry.0)

(2.52)
or I(r.‘r) r a‘Y

E')u,,(r,"{,t) =cosY -

)

Because ¥ =3/2n—B,+0c, the cosine and sine terms in equation (2.52) become:
cos(3/2m +o.—B ) =sin(e — B ,) and sin(3/2m+ot~P,)=—cos(@~[,) so that equation
(2.52) could be written in terms of the o and B, angles as follow:

6. () =sin(e—p,)- 20| coso=By) MC1.0l 2.53)
J () d oY l(r:f)

The first partial differentiation in equation (2.53) can be calculated directly from equation
(2.49), so that:
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owry,nl Re{mM [(@)siny —B) 9T, (k,r) ef"“} (2.54)
{r:y}

ar SBkB or
that because,
k .
0T, (kpr) E‘I‘E(kgr)_kBTZ(kBr)’ (2.55)
or r
and
(@ 2
T, (kyr) = H3? (k) = j = Ky (kar), (2.56)
it becomes:
wW(ry,0  _ Re oM, (®)sin(y —%) _l_[H(z) (k r)—jEK (k r)j_
--—"—ar - 8Bk3 r 1 B T 1 B

. (2.57)
"—kg [Hém (kgr) - ];2{ Kz (kgr))]ejmt}

The second partial differentiation in equation (2.53) can also be calculated directly from
equation (2.49), so that:

oW(r,Y,t) @M, (®)cos(y —x)[ @ 2 ] y
) " r : 2.58
afY (ry) Re{ SBkB ! (kBr) J‘JT, KI (kBT‘) e ( )

In conclusion, substituting the expressions of ¥ and % given by equations (2.47,48), equation
(2.53) could be re-written in terms of the cylindrical co-ordinates 7,00,z :

- oM . . 2
0,,(ra,n= Re{?;ki%) {sm(a ~ B, )sin(o - B)[(H{” (ear) = — K, (kgr)) -

—~kpr- [Hf’(ksr) - ji—Kz (kBr))] +cos( — B pycos(or — ﬁ)[HfZ’ (kpr)— j%Kl (kBr)]}ejw}

(2.59)
which can be written in a compact form as follows:
- M, (®) (. .
0, (r,0,0) = Red ——— o — o~ B) [T (kpr) —kpr- T, (kpr)|+
ur (1200:0) e{ 3B, LR BpsinG —B) Rk —kpr To(,n) 2.60)

+cos(o — B ) cos(o — B)- Ig(ksr)}ejmt}
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If the direction of the bending moment and angular velocity is the same or opposite such that
B=B,or B=P,+x and the direction of the segment r is equal to those of the segments d

and d, so that B=P,=0a%n/2 or B=otn/2 and B, =0 Fn/2 (ie. the moment and
angular velocity are “aligned”) equation (2.60) assumes the simplified form:

- oM, (®)
0 ,p(ro,0)= iRe{ 2BL

B

[T, (kyr)—kyr-T, (kBr)]ej’”‘} (2.61)

where the “+” sign is valid for the case § =§, =t xm/2 and the “— sign is valid for the
case B=o+w/2 and B, = F7/2.

2.5. Mobilities relating linear and angular velocity to 2 moment

The driving point mobility ¥, (®) =§u1(u))/ M, (@), evaluated at any point P, = (x;,¥,),
could be derived directly from equation (2.61) by taking the limit of r — 0 [1]:

4
y! :—‘”m{l- 2 1n(0.9% } 2.62
8,M, (CU) 168 JTE Il( Ba) ( )

where a is the radius of the rigid indenter on which the moment excitation is applied. In this
case the point mobility is characterised by both a real part and an imaginary part which are
frequency dependent.

The transfer mobility Yj;, (@) =v';72 (co)/ ﬁul(m) could be derived from equation (2.45) by

considering the distance 7,

= A = %)+, —3)’ 2.63)

and o =0, § =P, so that:

@sinfo, —H,)

Y2 ()=
i, () 8Bk,

) ,
[H,(” (kyryy ) — j;Kl (kyry )] . (2.64)

Finally, the transfer mobility ¥, (@) =0 2 (@)/ M, (®) is derived from equation (2.60) by
considering the distance r,, and e =at,, B=B,, B, =B, so that:

Y2, (@)=

o X . L2 2
T } {sm(txl —B,)sinfat, - B, )[(HF’ (kpty)—J ;Kl kgt )) —kgty, - (ng’ (kary) — ];Kz (kgty ))] +

+cos(a; — B,)cos(e; — ﬁl)[Hl(n(kBrZI)—j%Kl(kBrll)]}
(2.65)

Also these three mobility formulae have been derived assuming the bending moment M, (?)

acting on a small rigid indenter which transmits to the plate a uniform distributed dipole
excitation over a small circle of radius a (see Cremer et al [1] p 289). Moreover it is assumed
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that the plate thickness is small compared to both the bending wavelength and to the
dimensions of the area of the indenter.

2.6. Three by three point and transfer mobility matrix for a plate excited in flexure

The matrix equations (2.8) and (2.14) are often used to model the flexural vibration
transmission of a complete mechanical system composed of a number of elements connected
at point junctions. As for example described in reference [29], this type of matrix models
define, for plate like elemeants, point and transfer mobility matrices of the same type of those
of equations (2.7) and (2.13) except that the moment excitation M, () and the angular

velocity 6 ,(¢) at a specific point P are defined by two components in the x and y directions.

As seen in previous sections, when the force and the two components of the moment
excitation are harmonic with time dependence of the form exp(jt), they can be represented

by the real part of the phasors:
F,(1) =Re{F, (@)e™ } M= Re{ﬂx (m)ef"”}, M, (1)=Re{il, (@e™} (2.66-68)

and the equivalent linear and angular components of the velocities are equally harmonic with
time dependence of the form exp(jor) so that

W () = Re{v"bx (co)ef“"}, 0. ()= Re{é" I((x))ej‘”‘}, 6,()= Re{é' y(co)ej““} (2.69-71)

Therefore the force-moment excitation and the linear-angular velocity vectors are given by:

N, () ()
f(@) =1 M (@) V(@)= é}'x(m) (2.72,73)
M,(@) 8,(®)

The positive direction of the moment excitations and angular displacements is shown in figure
12.

Fig. 12: Notation of the displacement w and rotations 8,, and 8,, at positions P; and P, when a plate is
excited in flexure by a point force N, and point moments My, and M, at position P ;.
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The point Y" (@) and transfer Y (o) matrices of equations (2.7) and (2.13) are therefore
3x 3 matrices which are defined as follow:

Yo (@) 0 0
Y= 0 X (@) 0 (2.74)
0 0 Y, 2 w, (@)

Yo @) Yh (@) Yo (@)
Y(@)=| Y (@) ¥, (@) Y @) (2.75)
B @) T, @) X2, @)

where:
" o _ 6,(0))
7! (@)= @) Y, = 2a@) Ay =2, 2.76-78
w, (@) N, @) 0., (@) (@) M, (@) i,,©) ( )
and: )
7 @)= 222 2 @ =22y )= 2@
E Fa @y e 0 HL0),, 4 2 @),
B @) . 8,,(®) 8,0
=2 Y S A erd -2 . (2.79-87
8.£ (®) F;:(CD)M o, () @) ( ®)= 7@ ( )
M, =0 : F,M,=0 F,,M,=0
6 (@) (©) 0 (@)
o (@) =2 Yo (m)———” @)= 22
S Fy@) T M (o) 1, (@)
M, M =0 FyM, =0 £ M =0

The linear-velocity/force and the angular-velocity/moment mobilities of the point mobility
matrix are the same as those derived in previous sections, thus:

I
Yl == - 2.88
“£ 8Bk 8JBm (289
7 @)=, @)=-211- 2 1n(0.9%,a) | 2.89)
8,M, = Lo,M, ~16B _Jﬂ: n\WV.7x, . .

Also the transfer mobility matrix parameters are similar to those found in sections 2.3. and
2.5. In fact the transfer mobility Yj;,z () is given by the same formula as that of equation

(2.33) so that:

Yo (@)= [H‘z’(k Ty )— _] 2k (kBrZI)] (2.90)

8Bk2
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The transfer mobilities relating an angular velocity to a force, %, (@) and ¥ (@). could be

derived from equation (2.30) assuming respectively 8, =0 and B, =90” and in both cases
O =0., so that:

W sing .2
Yl;zjvz ((D)=—8éf{Hfz)(kng)—J;K1 (k,grz] ):' » (2.9
WCcosOL .2
Yeii\rz () 3——8'3—](1'9—2[1{1(2)(1631”21)—]%-1?1 (kgrzi):l . (2.92)

Similarly, the transfer mobilities relating a linear velocity to a moment, Y. (®) and
Y‘fﬂffy (®), could be derived from equation (2.45) assuming respectively B, =0° and B, =90°

and in both cases o = o, so that:

msing .2
Yy (@) = W[g;n (kyry,) = J;t-Kl (ksry; )} , (2.93)
W CcOs 2
Yﬁ,,y ()= 3B, 1 [HI(Z)(kBrZI)—J;Kl(karzl)} : (2.94)

The four mobility terms relating angular velocity to a moment ¥y, (®), Iﬁ% (®), Y:y‘M (@)
Igﬁ{)_ (®) are derived from equation (2.59) assuming o =, and assuming the following pairs
of angles respectively: (B,=0 P,=0), (Bl =90° B,= O) , (B; =0 B, :90") and
(B1 =90° B,= 90") so that:

. L2 L2
Yeztw (w)= sin® a,- (an(kﬂrn)_J_"K1(k3r21))_ks”n '[HJ(.Z)(kBrzl)_J—Kz(ksrzl)) +
0 = S By, P n
L2
+cos? all:Hl(Z)(kBrzl)—J;Kl(kﬂrm)]}
(2.95)
Yl @)=~ cosoL, sindt; - (Hfz)(ksrn)_szl(ksru))"ksrzl '(Héz)(ksrzl)—jEKz(karzl))]"
s 8Bkyry, T T
—sinal, COSO_tl[Hl(z}(ksrn)"'j%K1(kBr21):|}
(2.96)
Yy (@)=~ e sinot, coseLy - [Hla)(kBrZI)—jg-Kl(kBer))_kBrZI'(Hén(kﬂrﬂ)_j£K2(kBr2l))}—
M 8Bkyry, n n

—Cosc, sinal[HfZ)(kgfn) -J'—i‘Kl (ka"z;)]}
2.97)
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2 , 2
Y"?”: (@)= {c052 oy '[[Hl(Z)(ksrz1) _j;t_Kl (kﬂrﬂ)J_ gty '(H‘?) (kgry)— J‘;Kz (ksrn)Il'*'

8Bkyry,

2
+Si1'12'(xI[H:Z)(kgrgl)_j;;Kl (kBrZI)]}

(2.98)
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3. MOBILITY FORMULAE FOR RECTANGULAR PLATES EXCITED IN FLEXURE

3.1. Driving-point and transfer mebilities

In this section the driving point and transfer mobility matrices for a finite rectangular plate
are derived. As shown in figure 13, a rectangular plate of dimensions I, X[, is considered and

the main Cartesian co-ordinate system of reference (o,x,,z) is placed at the bottom left corner
of the plate with the z axis orthogonal to the surface of the plate.

Fig. 13: Notation of the displacement w and rotations 6,, and 8,, at positions P; and P, when a plate is
excited in flexure by a point force N, and point moments M,, and M,, at position P,.

The mobility terms relating the three kinematics (translational and angular velocities) and the
three dynamic (force and moment excitations) parameters at two generic positions
P, =(x,,y,) and P, =(x,,y,) are here derived using a modal superposition approach. Figure
13 shows the vector notation used for the force-moment excitation parameters at position £
and for the linear-angular velocity parameters at positions F, and P,. Considering the flexural

vibration harmonic with time dependence of the form exp(jwz), where @ is the circular

frequency, the dynamic and kinematic parameters are represented by the real part of the
phasors

E0)=Re{N,@¢*},  M@=Refil,@e™}, M,()=Re[il,(@¢™} (.13
W, () =Refi,@e*},  6,0)= Re{é’ . (m)ef“"}, 6,(0= Re{§ (@)™ } (3.4-6)

Nine mobility terms for any pair of points P, and P, could be defined as follows [1,18]:

W, ( ) Wy(0) W, (@)
(0) == (@)= u, (@ )— =
F Ny )M,,M,,:o M (@ )F;,M,=0 My )F,M,=o
0 ,@) 8. (®) 8@
Y (0)==" (®)=—=""—" i, (@) == (3.7-15)
0,7, N, )M,My_o You, M o )F,,M,=o M (o )P;Mfo
8, 8,@) ) 5_(@) 8@
= v = 8.4@)
(@)= N, (@) O @ T, @)= )
M, .M,=0 . F.M,=0 F, M. =0



and therefore a 3x3 driving point or transfer mobility matrix could be defined as follows
[18]: '
Yl () Y, (@) %, @)
Yi@)=|%, @) %, @) ¥, @) (3.16)
¥, @ ¥, @ I, )

If i=j,ie. B =P, the matrix Y7(®) is a driving point mobility matrix while if i # j, i.e.
P, # P,, the matrix Y?(w) is a transfer mobility matrix. For any pair of points £, and P, of
the finite plate, including two coincident points P, = P, the force-moment excitation vector

i

f(w)= ﬁzi(a)) AF/I'H.(GJ) ﬂ?fyi(a))}r is related to the linear-angular velocity vector

. o L T
vf(m):{v‘&i(a)) 0 () Byl.(co)} by the relation [18]:

v,@)=Y"0)f@ 3.17

with Y7 (@) always given by equation 3.16. So, unlike in the case of an infinite plate, the
driving point mobility matrix is a fully populated matrix with off diagonal mobility terms that
are called “coupling mobilities” [1,30].

The analytical expressions for the nine transfer mobility terms of equations 3.7 to 3.15 are
derived in the following sections for a rectangular finite plate with three different types of
boundary conditions: first, all edges simply-supported; second, all edges free and third, all
edges clamped. The approach provided could be extended to plates of different geometry
and/or different boundary conditions if analytic expressions are available for the natural
frequencies and modes.

3.2. Modal expansion approach to calculate the steady-state translational velocity
W, () when the finite plate is driven by an harmonic point force N, (1).

Flexural waves in a thin plate excited by a uniform distribution of force
p.(x.3.1)= Re{p, exp(jor)} over the plate surface are described by a 4th order wave equation

as given in equation (2.15). When the plate is finite, the distributed force excites all the
natural modes’ of the plate in different amounts so that, assuming the excitation harmonic
-with time dependence exp(jot), the steady state velocity w,(#) at position F, is given by [21]-

(pp 178)

(1) = Re{i, (@) } = Re{ O3S Wi (00 (B ef“"} (3.18)

m=1 n=1

where W _(¢) is called the modal participation factor [21] and represents the amount of
participation of each natural mode ¢,,,(x,y) in the total dynamic response. The indices m and

! In reference [1] (Sec. II, 4) it is shown that there exist certain discrete preferred frequencies, the so called
natural frequencies, at which a linear elastic distributed structure will tend to vibrate once it has been set into
motion. At each natural frequency there is an associated matural mode which is a function over a structure
describing the relative displacement of any point on the structure as the structure vibrates in that single mode.
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n represent the number of half standing waves in the x and y directions for the mode ¢ . If
the plate has all the edges simply supported the kinematic boundary conditions are given by:

2
forr x=0 and x=1, w=0 %fzo

X

32,0 (3.1%)
for: y=0 and y=1, w=0 5 =0‘

A set of natural modes that satisfy both the homogeneous flexural wave equation (2.15) and
these boundary conditions could be [1,21]:

$,.,(x,y) =sin mlnx sinn—ny- . (3.20)

x ¥

where m=123,... and n=123,... The modal participation factor is then given by [21] (pp
186):
W, ()= (3.21)

where @, is the m,n-th natural frequency, 1 is the hysteresis loss factor [1] (Chapter 3).

h

F,_ is the modal force which is given by

L

1

E, ()= 9y (X )P, (X, y )y (3.22)
PN, “
where, for a simply supported plate,
45 1l
Ny = | )43, Ceydxdy === (3.23)
!!4! yMdy = —

For a simply supported plate, the m,n-th natural frequency of the flexural vibration ®,, 18

given by [1,21]
R Y 7 ’
"M b1
W, = +|— |, 3.24
Y 12p(1-v?) [{ I, ) [ly ]jl 529

where v is the Poisson ratio. Some references (see for example [21]) give the modal
participation factor in the form:

20
W)= L , 3.25
m(?) [(co},,,,—coz)chmmmm] 25

where {  is the modal damping coefficient. Chapter 14 of reference [21] presents a detailed

description of the relation occurring between these two ways of describing the dissipative
phenomena in a plate under harmonic excitations. The modal damping coefficient is related to
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the hysteric loss factor via the expression

{ ==Lmq (3.26)
1]

1
2
thus at resonance, ® = ® _, the modal damping coefficient is half of the hysteresis loss factor
C.b mn = lrl/ 2 *

For the specific case of an harmonic point force excitation N, (z)= Re{f\ufZl ()exp( jmt)} at

position F, the modal participation factor of equation (3.18) could be calculated by using the
Dirac delta function & so that the excitation is represented in the form

N, ()=8(x—x ¥W(y—y)p,(x,y.0), with | p,(x,y, t)| = |f\7ﬂ (0))| , and therefore

¢ (PON 1 (@) 3.27)

Wmn(l’): Am[(D;n"(l-i-m)—(Dz]

where, considering the simply supported plate

I

% hl i

A,, = phN,, = ph[ [62,(x y)dxdy = P rl (3.28)
006

In reference 1] the parameter A, is reported as the norm. At this point it is possible to give

an expression for the steady-state translational velocity w,(f) due to an harmonic force

excitation N, (f)

2 — ~ joor | __ . O N ¢mn(‘P )¢mn(191) £ for
wa(t)—Re{wz((O)ef }-Re{;(o%)1=1 A,,,,,[mf,mzl+jn)——m2]‘N“(m)ej } (3.29)

3.3. Modal expansion approach to calculate the steady-state angular velocity éuz(t) of
arbitrary orientation u, when the finite plate is driven by an harmonic point force
N, ().

The steady state angular velocity 6 ,,(t) of u, orientation at F, due to a point -force
excitation N,(f) at F, could be evaluated with the same approach used in section 2.2. and

using the modal formulation discussed in the previous section [21,28]. - L e
With reference to the sketch of figure 14, the angular displacement 0 ,,(#)- could be calculated

from equation (2.17) considering the out-of-plane displacements wi(f) and w;(7), evaluated
at two positions, P/ = (x, —esinB,,y, +ecosp,) and P=(x, +esinpB,,y, —ecosp,), placed
along a line d; which is normal to the angular velocity direction %2 and at distance e apart from
P,. Also in this case, for small values of 8, tan{f,,}=0,, and therefore the angular

velocity is given by the following limit:

R e

AQRAUN (3.30)

e u2 (t) = lel_{% 26
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Fig. 14: Notation of the angular displacement 0, of u orientation at P; induced by a force N, at P,.

The phasors of the linear velocities w;(z) and w;(¢) can be derived from equation (3.18):

W) = jo Y, S W, (90 (B) W= oY S W, (0. (F  (331.32)

m=I n=1 m=] n=l

By substituting equations (3.31) and (3.32) into equation (3.30) and after some mathematical
manipulations it comes out that

- & - o Ve BB 5 e
6 ,,()=Resd,, (@)™ b=R m W (@)e’ (3.33)
() e{ ,(®)e } e{ngéAm[m;m(Hm)—mz] (@)e }
where
¥ (x,y) = —sinp, a(ng,y) +cosp, B (3.34)
x dy

3.4. Modal expansion approach to calculate the steady-state translational velocity
w, (t) when the finite plate is driven by an harmonic point moment 3 ,(f) with

arbitrary orientation ;.

If instead of a point force, an harmonic point moment Mul(t)=Re{1|"/1u1 ()™ } with
arbitrary orientation u, is exciting the plate at position F,; the-translational velocity -, (¢} -at
position P, could be evaluated with the same approach used-in-section 2.4.-and by-using-the.

modal formulation discussed in section 3.2. [21,28]. In fact, as shown in figure 15, the
moment could be substituted by a pair of forces with opposite phases N,(t)=+N,(f) and

N/(f)=—N,(¢) applied along the line d, which is normal to the moment direction u; and at
distance e apart from P,. If the distance 2e between the two forces is reduced to zero then the
moment M, (¢) with orientation #, is given by:

M, () =1im2eN, (7). (3.35)
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The phasor of the translational velocities w;(f) and w;(f) due respectively to N;(r) and
N(t) could be evaluated by using equation (3.18):

WO =joY YW 0. (B) ) =joy, > Win@W,.(B) (3.36,37)
=1 n=1 m=1 n=1
where W’ (¢) is given by equation (3.27) assuming ¢,,, =¢,,(F) and W (#) is also given
by equation (3.27) assuming ¢, =0,(P¥ with P'=(x —esinB,,y +ecosB,) and
P'=(x, +esinB,y —ecosp).

Fig. 15: Notation of the transiational displacement w at position P induced by a
moment M, at position P,.

Therefore the steady state translational velocity w,(f) due to the moment M, (¢) is given by:

. -~ jaot . .’ . XN mi PZ ) P ¥ joot
w,(t)= RG{WZ (®)e’ }= 181_1‘13[2ew2 (&) +2ew; ()] = Re{ ]m; ; - q)[(;jz; ();i";'n () :)mz] M (@)e? }

(3.38)

where ¢ “(x,y) is given by equation (3.34) assuming p =, .

3.5. Modal expansion approach to calculate the steady-state angular velocity éuz (t) of
arbitrary u, orientation when the finite plate is driven by an harmonic point
moment M, (¢) with arbitrary orientation .

The steady state angular velocity 6 () of orientation u, at P, due to a point moment M (D)
excitation with arbitrary orientation u; at P could be evaluated by using the same approach
used in subsections 3.3. and 3.4. In fact, the angular velocity 8,,(f) can be calculated using
equation (3.30) assuming that the translational velocities w;(#) and w;(t) are both due to a
pair of forces with opposite phases N.(f)=+N,(¢) and N;{f)=~N,(r) applied along the d,
line at distance e from P as it is shown in figure 15. The point moment excitation is then

obtained by reducing to zero the distance 2e between the two forces. After some
mathematical manipulations it comes out that
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\{J(HI)(P N(uz)(P) - )
R R = - M st 3.39
6,,()= e{ o (@)e } e{]m;;A [wf,,,,,(1+m) m] ) (3.39)

with both w“(x,y) and y®(x,y) given by equation (3.34) assuming respectively f =p,
and B=§,.

3.6. Mobility formulae for a finite rectangular plate excited in flexure.

Using the modal expansion approach described in previous subsections it is possible to derive
an analytic formulation for the nine mechanical mobilities for either the driving-point or
transfer mobility matrix of equation (3.16). Because the analytical formulae for the driving-
point and transfer mobilities are the same, only the elements of the transfer mobility matrix
are reported in here. The mobility term relating a translational velocity w,(#) to a point force

excitation N, () can be derived directly by equation (3.29) so that

®) e P B)bu(B)
a )____ mn 2 ma V] . (340)
M (© ©) EZ:Am,,[co;ﬂ,,(lﬂn)—mz]

The mobility terms relating a translational velocity w,(¢) to the point moment excitations
M,,(t) and M ,(t) can be derived from equation (3.38) assuming respectively [, =07 or

B, =90° so that:

0 (B o (P)
il oy ? - (3.41)
Mx,((o ZIZ;A Jo2. 1+ m—-o?]
~ _ On (B (B) (3.42)
My (0) = y,() S 212; Aol 1+ m-o]

where, assuming the plate simply supported so that the natural modes are given by equation
(3.20), the two functions y ) (x,y) and y ) (x,y) assume the forms

v ()= %—Esin n;nx cosnlﬂ vy, y)=— n;ﬂ: cos—mlix—sin n;ty . (343,44)
x x y

y * ¥

The mobility terms relaiing the angular velocities 0 (&) and éﬂ (#) to a point force excitation

N, (t) could be obtained from equation (3.33) assuming respectively B, =0 or B, =90° so
that

0,(@) _ y BN, (B)
e (@) = Z,Z, me (3.45)
BXN Nzl ((D) m=1 ,.,—1 [ _ﬁm(l + m) [} ]

»
mi (@ )—? o33 VmBlmB) (3.46)

N,(® ) m—ln_lA [mﬁm(1+jn)—m2]
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Finally, the four mobility terms relating the angular velocities 8 ) and 0 ,2(#) to the point
moment excitations M,,(¢) and M, (#) can be derived from equation (3.39) assuming also in

this case B, =0° or B, =90° when B, =0° or B, =90” so that

Mot (@) = _Mﬂ(m) = jo EZA [ﬁ,,,,<1+m> o (347)
2 8,@) ) - \V‘”(P)W(”’(P)
mi, (®) = mn (3.48)
My[(co) ,,,22 A, |0k, 0+ m) -]
2 ] y 2P E(R)
n . ) 3.49
meny(fD) Mﬂ(&) ;; [G);m(].'*'m)—(ﬂz] ( )
o {¥) {(n
ByM_\,( ) yz(m) 22 mn(PZNrtzn(‘Pl) . (3.50)

@) 7 SE A, ek, 0+ m-o]

The driving-point mobility terms could be evaluated using exactly the same formulae given by
equations (3.42) to (3.50) just by assuming both natural mode functions evaluated at the

position of the excitation A .

The formulae given here are valid for point force or moment excitations. If the excitation is
acting over a rigid indenter of a relatively large arca the effect of a distributed excitation
should be included in the forrnulation. This could be done by calculating the modal force,
given by equation (3.22), due to a uniform force p,(x,y,t)=Re{p, (@)exp(jor)} distributed

over the indenter area S,

F, (r):E— j’ 0. (6, )P, (@)dS - e™ (3.51)

where 7 (0)= ﬁz (co)/SM and the force acting on the indenter is given by
N ()= Re{ﬁz (@)exp( j(,ot)}. For a moment excitation the modal force is also evaluated using

equation (3.51) but the uniform force over the indenter area S,, has a dipole distribution

oriented with reference to the moment orientation.

3.7. Approximate method for plates with all the four edges either free or clamped.

When a plate with four edges simply supported is considered, an exact solution of the wave
equation and boundary condition equations can be found. This is not the case for plates with
all four edges either free or clamped, thus an approximate solution must be used. Warburton
[31] has derived formulae for the natural modes and natural frequencies by applying the
Rayleigh method. He assumed that the natural modes of plates and beams are similar so that,
for example, the natural modes of a plate of dimensions / x/ with all edges clamped is the

product of the natural modes of two beams of lengths [, and /, and with the ends clamped as

well. A general description of the theory of this approximate method can be found in
references [31,32]. .
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From reference [31] the natural frequency for plates with all four edges either free or
clamped can be calculated using the folowing equation

ER’ zY
- IELIN L R 3.52
m.ﬁ""' 12p(1 __.VZ) (II] qak ( )

where @, isin radfs, i=m+1, k=n+1 and

4 2
q, = \F;j(i) +G! (k)(i—"] + 2(5—] VHDH, () +(1-v), i), (k)] (3.53)

Y ¥

The constants G,, G,, H , H,, J,, J, are summarised in tables 1 and 2 respectively for a plate

with all four edges either free or clamped.

Table 1:  Values for the constants G, G, H,, H,, J,, J, when a rectangular plate have all four
edges free (from reference [31]).

iork  Gi)or Gyfk) H.(i) or H(k) J{i) or (k)
0 0 0 0
[ 0 0 12/n?
2 1.506 1.248 5017

34,5,.... i_% (ik_%jz(l_ﬁ(_ii—il):—t] (i—%)z(lﬁz—i%{].

Table 2:  Values for the constants G, G,, He, Hy, I dy when a rectangular plate have all four
edges are clamped (from reference [31]).

iork Gyor Gy H;orH, JyorJ,
2 1.506 1.248 1.248

34,5, i_..;_ (i‘%)z(l"@i_fl—)n] (i—%)z[i‘ffi%)n_) |

The plate natural modes -¢ ..(x,y) -are given by the product of the @, (x) and ¢, (y) beam
functions

0 (6, 2) =0, ()0, (¥)- (3.54)

The function ¢,(x) represents the natural modes of a beam having the same boundary
conditions of the plate under consideration at y=0 and y=/, and, in the same way, the
function ¢, (y) represents the natural modes of a beam having the same boundary conditions
of the plate under consideration at x=0 and x =1 . The boundary conditions for a plate with
all edges frec are given by [1,31]:
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x=0 and x=1{ =0 =0
o o ox°
32 3%, (3.55)
=0 and y=1! =0 =0
y y ¥ ay2 ayS

The beam functions in the x-direction for a free-free beam are given by [31,32]:

Po(x) =412
<p1<x>=J3/_2(1—-§f]

{x)=cos f——l + k. cosh i—--l- G20
Prags.... Y. L2 : Yi 12
@45, (X)=siny f[% - —;—] + k/sinhy ,’[f- -;—) .
where
: —_ SIH(’Y,—/z) k:= sm(’y,/2) ] (3.57,58)
sinh(y,/2) sinh{y{/2)

and the constants y, and y; are the i-th zeros of the two following implicit equations

tan(y,/2) +tanh(y,/2)=0 tan(y{/2)—tanh(y;/2)=0 (3.59,60)

Bishop and Johnson’s book 4] (p 389 and p 397) reports tables with the first 5 roots of these
equations and gives approximate equations for the higher order roots.

Table 3: Roots for the 2 equations (3.59) and (3.60). r=6,7,8,9,....

¥, =4,7300 v, =78532

Y, =10,9956 Y5 =14,1372

T =17.2788 Y5 = 20,4204

v = 23,5620 ¥ o =26,7036

v = 29,8452 Y1 = 32,9868
Vo, = (4r—Dm/2 Y ;3,15,___ =(4r+1m/2

In table 3 r=6,7.8,.... The beam functions. in the . y-direction -are same as those in the x--
direction given by equation (3.56) which are all normalised so that '

i !
i 2 __lx r 2 _ ! :
Joitde=7 Joromy=7- (361,62)

Therefore, considering a plate with four edges free, the norm A, given in equation (3.28)

becomes
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[

x ¥ l l
A, = PhJ [0} ()03 (y)dy = ph =2 (3.63)
00

The first three natural modes for a plate with all edges free are rigid body modes and therefore
the indices m and n have not the usual meaning, that is to represent the number of half
standing waves in the x and y directions for the mode ¢, . The first rigid body mode is for
i,k=00 (e.g. m,n=—1,~1) and represents a translational oscillation in the z direction of the
plate. The second and third rigid body modes are for i,k=0,1 and ,k=10 (e.g. m.n= -1,0
and m,n =0,—1 respectively) and represent rigid body angular oscillations around the x and y
axes respectively. In this case the double summations in the mobility formulae of eguations
(3.40) to (3.50) should consider m =-1,0,1,2,3,... and n=-1,0,1.2,3,...
The boundary conditions for a plate with all edges clamped are given by [1,31]:

x=0 and x =/, w=10 %V—V=0
a:; (3.64)
=0 and y=! w=0 —=0

and the beam functions in the x-direction for a clamped-clamped beam, also given in
references {31,32], are:

(92,4.6.___(I)=005Yf[; ;]+k coshy, (l—_%}
i N (3.65)
P57 (0= Sinﬂ(f*%}+ k/sinhy '(i‘—%}
where in this case
" sinh(y,/2) © sinh(y/2)
and the constants v, and y/ are the i-th zeros of the two following implicit equations
tan(y ,/2) + tanh{y;/2) =0 tan(y{/2)~ tanh (y{/2) = 0 (3.68,69)

whose roots are summarised in table 3. Also in this case the beam functions in the y-direction
are the same as those in the x-direction given by equation (3.65) and are all-normalised so that_
the norm A, for a plate with all edges clamped is given by A, =phl 1 /4.

The functions y ) (x,y) and y ¥?(x,y) , which are required to derive the mobility equations
(3.40) to (3.50) are given by equation (3.34) assuming B =0" or B =90" respectively. Since
the natural modes are given by the product of beam functions as in equation (3.54), equation
(3.34) can be written as follow:

a“’ 2 4 cos 9,622 (3.70)

Yy xy)y=—sinf -9, (y)—— 3
y
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thercfore:

20,0) w20 =, 2. (B.71,72)

(D (o . i A
Yo () =0,(x) % .

Considering a beam with both ends free the term @] =dg,(x)/ox is given by

0o (x)=0
07(x)=—6/L,
, Y . X 1 . X 1 :
P4, (X) 33{—51117 {E_E) +k Slnhvf(z _E}} ' (3.73)

’ Y: ) X 1 , ) x 1
Qa5 (X)= Z{COSY i [Z = -2"] +k/coshy] (Z - 5]}

and equal types of expression gives the ¢} =3¢, (x)/dy . For the beam with both ends clamped
the term ¢/ =d@,(x)/ox is given by

’ Y i B X 1 . X 1
Rl e R )
: (3.74)

s vi Jx 1 , SJx 1
0355, (X)= 7;" {COSY r(}: - 5) + k; coshy; (Ex— - EJ}

and, also in this case, equal types of expression give the ¢} =d@, (x)/dy.

The method described in this section to calculate the natural frequencies, modal amplitudes
and modal slopes needed to calculate the driving point and transfer mobilities of finite plates
(equations (3.40) to (3.3.50)) can be used for rectangular plates having any combination of the
three basic edge boundary conditions, e.g. simply supported, freely supported and clamped.
For example it could be used to study a plate with the two opposite edges in the x direction
free and the other two opposite edges in the y direction clamped and simply supported
respectively. In this case the beam function in the x direction ¢,(x) is given by the mode

shape of a clamped-simply supported beam and the beam function in the y direction ¢, (y) is

given by the mode shape of a free-free plate. The mode shapes for a beam with boundary
conditions which differ from each other could be found in references [31,32] where the
constants needed to calculate the natural frequency equation (3.52, 3.53) are also reported.

Figures 16 to 18 show the modal amplitude and the modal slope of the first four ‘modes
respectively for a simply supported beam, for a freely supported beam and for a clamped
beam. From the plots of figure 17 it is clear that the first two modes (m=-1, m=0) of the freely
suspended beam differ from the other modes (m=1, m=2) of the freely supported beam or
from the model m=1,2,3.4..... of the simply supported or clamped beams since they are not
characterised by a deformation of the beam. These two peculiar modes are the so called “rigid
body modes”. The mode number m=-1 and m=0 have no meaning, they have been assigned in
such a way to be consistent with the modal formulation adopted for the mobility formulae
derived in section 3.6. The mode numbers, m=1,2,3,4,... have instead a precise meaning: they
represent the number of half standing waves of the mode.
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3.8. Frequency spectrum of the point and transfer mobility parameters

In this section the frequency spectrum between 0 and 1000 Hz of the nine driving point and
transfer mobility parameters are plotted for the three cases of boundary conditions considered
i.e. all edges simply supported, all edges free and all edges clamped.

The plate considered is made of aluminium with density p= 2798 Kg/m®, Young’s

modulus of elasticity E, =72x10" N/m?, Poisson’s ratio 0.33. The plate thickness is
h=3mm and dimensions are [, =048 m, [, =0.2 m. The driving point mobility matrix is
evaluated at position P, =(0.30, 0.15) while the transfer mobility matrix is evaluated
between position B, (excitation position) and position P, = (0.35, 0.09) (velocity position).

The natural frequencies in the frequency range considered, i.e. 0-1000 Hz, of the three
types of plate under consideration are given in tables 4,5,6.

Table 4: Natural frequencies of Table 5: Natural frequencies of Table 6: Natural frequencies of

the simply supported plate. the freely supported plate. the clamped plate.

m R f (Hz) n n f (Hz) m n f (Hz)

1 1 214.5 -1t -1t 0 1 1 441.6

2 1 309.7 cbt Or 0 2 1 527.8

3 I 468.3 0r -1t 0 3 1 684.0

4 1 690.4 1 -1t 71.96 4 i 914.5

1 2 762.7 Or Or 107.2

2 2 857.9 2 -1t 198.3

5 1 976.0 1 Or 229.3

3 2 1016.6 2 Or 378.8
3 -1t 388.7
-1t 1 414.5
Or 1 468.2
3 Or 574.4
1 1 6152
4 bt 6423 Note: in table S t stands f
2 1 814.3 “r?an‘s[a:ir(lma[ m;de" and rS ::lansds lel:
4 Or 827.8 “racking mode”
5 -1 959.8

For each type of boundary condition eleven plots are reported. The first one consisis of a 3X3
matrix of plots showing the modulus of the nine driving point or transfer mobilities (figures
19, 30, 41). The second one shows the frequency spectrum of the driving point and transfer

mobility Y, (@)=, (@)/ N (@) (figures 19, 31, 42). The other nine pictures consist of 2

2 x 2 matrix of plots showing the real and imaginary parts of the nine driving point or transfer
mobilities (figures 20-28, 31-39, 42-51).

Considering the plots of the modulus of the point and transfer mobilities given in figures
19-20, 30-31, 41-42 for the three types of boundary condition it can be seen that the mobility
parameters of the plate with all edges simply supported or clamped (figures 19-20 and.41-42)
present a similar frequency spectrum which is characterised by a spring like behaviour [19] at
frequencies below the first resonance and by a mass like behaviour at higher frequencies [3].
The low frequency response of the plate is in fact dominated by the local stiffeness reaction of
the plate while for frequencies above the first resonance, the spectrum tends to drift
downwards with antiresonances occurring immediately before resonance which is the
characteristic mobility trend shown by a system whose response is dominated by the inertia of
its mass (see pages 154-156 of reference [5]). The modulus of the point and transfer mobilities
derived for the plate with all edges free (figures 30 and 31) is characterised by a mass like
behaviour in all frequency ranges. Unlikley the other two cases, at frequencies below the first
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resonance is dominated by a mass like behaviour {19] since the plate is vibrating as a rigid
body and therefore the response is controlled by the mass of the plate.

The nine plots showing the spectra of the real and imaginary parts of the point and transfer
mobilities for the three types of plate considered show that the following conditions are valid
for the driving point mobility matrices (top plots of figures 21-29, 32-40, 42-51):

Re{¥2l, (@)}>0 Re{7L, (@)}>0 Re{t, @)]>0 (3.7577)

and

Yo, (@)=Y}, (@) T @)=Y, (@) Y (@)=Y, (@)  (3.78-80)

In other words, the driving point mobility matrix Y'' (@) is positive definite [25,26] since it is
symmetric and the real part of the diagonal terms is always positive. The transfer mobility
matrix Y*'(@) is not positive definite, in fact, as shown in the bottom two plots of figures 21-

29, 32-40 and 42-51 the following conditions hold:

oo < T2, (@) < oo — oo < KR, (@) < oo —oo< B, (@) <+ (3.81-83)

and

Iy (@) # ¥, (@) Lo @)= Y (@) o, (@) Yo, (@) (3.84-86)
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Line: positive values, dotted line: negative values.
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line: positive values, dotted line: negative values.
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Fig. 45: Real (left-side plots) and imaginary (right-side plots) part of the ¥y, driving-point {top plots)
and transfer (bottom plots) mobilities for a plate having all four edges clamp. Solid line:
positive values, dotted line: negative values.
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Fig. 47:

Fig. 48: Real (left-side plots) and imaginary (right-side plots) part of the Yo, driving-point (top plots)
and transfer (bottom plots) mobilities for a plate having all four edges clamp. Solid line:

rac/sMm
—
o

Re( Yé)]ch)
L

0 500
frequency Hz

1000

0 500
frequency Hz

Real (left-side plots) and imaginary (right-side plots) part of the Yy, driving-point (top plots)
and transfer (bottom plots) mobilities for a plate having all four edges clamp. Solid line:

1000

rac/sNm
—
[=)

|m(Yé}Mx)
)
IS

500 1000

frequency Hz

rad/sMm
b
<

Im( Yg}Mx)
(=)
L

positive values, dotted line: negative values.

rad/siNm
—r
=}
o
i’

Y
(=]
s

-t
[=)

Re(Y{uy)
b L

s
(o]

500
frequency Hz

(o]

1000

0 500
frequency Hz

1000

500 1000

frequency Hz

500 1000

frequericy Hz

rad/shNm
v
o

Im{ %}My)
I3

positive values, dotted line: negative values.

53

500 1000

frequency Hz



Fig. 49:
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4. PROPERTIES OF MOBILITY MATRICES

In this section the main properties of the mobility matrices derived in sections 2 and 3 are
analysed. As will be shown, the driving point and transfer mobility matrices have some
peculiar characteristics that could be used as a check of the driving point and transfer mobility

formulae used.

4.1. Relation between infinite and finite driving point mobilities

First of all the driving point mobilities of infinite and finite plates are compared. Skudrzyk
[33] has investigated the relationship between systems with a finite and an infinite number of
resonances. He has shown that a finite structure may be approximated by an equivalent
structure of infinite extent without discontinuities generating reflections. Hence, it could be
assumed that waves generated by the source propagate and decay away under the dissipative
effect of structural hysteresis and sound radiation damping. Alternatively this is equivalent to
assuming that there are many modes of vibration contributing to the motion at any one
frequency without one mode being dominant. At low frequencies where the resonances are
well separated, Skudrzyk’s approximation is less accurate although it is still valuable since it
gives the average level of the response. As shown in reference [34], when a distributed system
is excited by a harmonic force, the spectrum of the steady state response measured at the
excitation point is characterised by a sequence of peaks and “troughs” due respectively to
resonance and antiresonance phenomena. At the resonance frequencies the waves generated
by the excitation are reflected at the boundaries and arrive at the excitation point in phase with
the outgoing wave so that maximum power is transmitted to the system. Alternatively at the
antiresonance frequencies the reflected waves arrive at the excitation point out of phase and
they destructively interfere with the outgoing waves so that the power generated by the source
is minimum. As the hysteretic dissipative effect of the structure rises or the sound radiation
damping rises the maxima (at resonance) vibrational amplitude decrease and the minima (at
antiresonance) vibrational amplitude increase. The dissipative effect rises as the vibrational
frequency response tends towards an average response which is characterised by a smooth
line. Since this mean curve has neither maxima nor minima it may be considered to represent
the response that would be generated by the excitation if the system is sufficiently damped so
that no reflections occur at the boundary of the system. The mean line, then, obviously
represents the amplitude of the wave generated when the structure is of infinite extend.

This property could be used to check for example that the natural modes ¢(x,y), the
natural frequencies ® . and the norm A, used to evaluate the mobilities of a finite plate

give an average level of the same order of magnitude of that calculated using the mobilities
formulae for infinite plate.

 Figures 52, 55 and 58 show the spectrum of the driving point mobilities
Yo (@) =W, (0))/ N, (®) for an infinite plate given by equation (2.31) (faint line) and for
finite plates having the three types of boundary condition considered in this report calculated
with equation (3.40). As can be seen the driving point mobility of the infinite plate is constant
in frequency and gives approximately the mean response of the finite system with the three

types of boundary conditions examined.
Moving to the mobility relating a moment to an angular velocity, figures 53, 56 and 59
compare the driving point mobility formula for infinite plates given by equation (2.62) with
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Fig.: 55:
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Fig.: 58:
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the driving point mobility ¥, (@)= 6 u (co)/ M (o) given by equation (3.47) while figures
54, 57 and 60 compare the driving point mobility formula for infinite plates given by equation
(2.62) with the driving point mobility ¥, (@)= 6 #(@)/M (@) given by equation (3.50).
Also in this case the driving point mobility of the infinite plate gives approximately the mean

response of the finite system when the freely suspended plate is considered. It should be noted
that, considering the infinite plate driving point mobilities, alternatively to the Y, (@), the

If;;i u, (@) driving point mobility rises proportionally to the frequency.

4.2. Driving point mobility evaluated at the centre of a finite plate

When the driving point mobility matrix of a rectangular plate is evaluated at the centre of
the plate the validity of the formula for the natural modes, ¢, (x,y), and their derivatives in x

and y, y %(x,y) and y %) (x,y), directions used in the mobility equations (3.40-50) could be

mn

checked. As figures 60, 61 and 62 show for the three types of plate considered in this report, if
the driving point mobility matrix is evaluated at the centre of the plate then it is a diagonal
matrix. This peculiar characteristic could be explained as follow: the centre point where the
mobility parameters are evaluated stays in both the x and y axes of symmetry of the mode
shapes. Therefore at this specific point the three degrees of freedom related to bending waves -
(w, 8,, 0,) are uncoupled as can be deduced from the modal amplitude and modal slope

plots of figures 16, 17 and 18. As a consequence of this the coupling driving point mobilities
are zero. So, in the particular case of a driving point mobility matrix of a finite rectangular

plate evaluated at the centre of the plate, F = (lx /2, 1, /2) the mobility parameters of
equations (3.7-3.15) are given by:

Ti, @)#0 Y, @)=0 ¥, (@)=0
Ky ©)=0 Ty @0 Ly @)=0. 19)
Yy @)=0 Ei @)=0 K @)#0

As shown in figures 60,61 and 62, this property is not valid for the transfer mobility matrix
even if evaluated between the centre of the plate and at an off centre position.

* This property of the finite rectangular plate could be applied for other plate shapes that have
two axes of symmetry so that the driving point mobilities at the centre of the plate are as in

equations (4.1-9).
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4.3. Diagonal terms of the driving point and transfer mobility matrices

Another property that could be used to check the validity of the mobility parameters of
finite plates derived from equations (3.40-3.50) can be found by considering the real part of

the diagonal terms of the driving point mobility matrix Y" () . Figures 64, 65 and 66 show
that the three driving point mobilities Re{¥%, (@)}, Ref¥f,, @)} and Re{kf, @)} are

always greater than zero while the real part of the coupling mobility parameters of the driving
point mobility matrix could be either greater or lower than zero. T his is a peculiar property of
the driving point mobility matrix and could be explained in terms of energy. The time-
averaged vibrational power injected into the plate by an harmonic point force N, (¢) acting in

isolation is given by:
]. =% —
P, (@) :-Z—Re{NZ,. (@)W,@)}, (4.10)

where * indicates the complex conjugate. Therefore, remembering that
w.(@) =Y (®)N,(®) equation (4.10) can be written as follows:

N, @) Re{ti, @] @.11)

1
P, (®)==
W (@)=2

Because the point force is acting in isolation on the plate, in order to have power transmission
to the plate and not absorption the real part of Y‘:,;, (o) has to be positive. A similar
conclusion can be drawn when a point moment in the x direction M, (#) or in the y direction
M () is acting in isolation. In fact the time-averaged vibrational power injected into the

plate by an harmonic point moment M (#) or M (z) acting in isolation is given respectively

by:

B, @ =Rl @6 @), By @ =Relif @B, @]. @123

Because éxi(m) = Ye’;‘;My(co)Mx,.(m) and 6 (@)= YeifMy(o})My,.(m) equations (4.12) and (4.13)

can be written as follows:

o R @} By @ =3[0 Refl, @) @1415)

1
PMx(G)):E

Thus, also when the two moment excitations are acting in isolation power is injected to the
plate only if the real part of Yy, (®) or Yy, (@) are positive.
This type of property does not hold when a transfer mobility matrix Y#(®) is calculated as

shown in figures 67 - 69.

It should be noted that the properties above described for the diagonal terms of the driving
point mobility matrix of a finite rectangular plate hold as well for the diagonal terms of the
driving point mobility matrix of an infinite plate. In fact the real part of the driving point

mobilities ¥}, (@), Y,y (@) and 1:;';'% (®) given by equations (2.88) and (2.89) are all

positive by definition.
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4.4. Symmetry and positive definition properties for driving point and driving multi-
point mobility matrices

With reference to a finite rectangular plate the following properties of the driving point and
transfer mobility matrices can be verified. From the modal formulae of equations (3.40) to
(350), assuming P =P, so that ¢,(R)=0,(P), WI(R)=y(P) and
y2(PYy=y(P), it can be seen that

mn

Y (@)=Y, (©) Yy (@)=Y, (©) Yoy @)=Y, (@). (4.16-18)

Therefore the driving point mobility matrix Y"(®) is symmetric:
Y9 =Y". (4.19)

The transfer mobility matrices between two positions F, # P, are not symmetric but, because
of reciprocity are related to each other so that:

™

(YT =YY, (4.20)

Equations (4.19) and (4.20) hold also when the driving point and transfer mobility matrices
are calculated with reference to an infinite plate as can be directly verified by the definition of
the driving point mobility matrix given in equation (2.74) and from the mobility equations
(2.90-2.98). Therefore the two properties of equations (4.19) and (4.20) can be used as a check
of driving and transfer mobilities for both infinite and finite plates.

If a plate is excited at two positions P, =(x,,y,) and B, =(x,.y,) and Y' (@), Y*(®)
are the driving point mobility matrices at P, and P, while Y*(®), Y"(®) are the transfer
mobility matrices between P, and P, the following mobility matrix could be defined:

Yll Y12
Y2 () = 21(0)) 22((0) , 4.21)
Y () Y™ w)

—~—

~ ~ ~ ~ ~— T
so that the excitation vector f(o))={Nzl M, M, N, M, Mﬂ} is related to the

.oa K .4 s~ 7
velocity vector v(®) = {ﬁl 6, 0, w, 0, © yz} through the usual relation:

x1

V(@) =Y (o) f(®). (4.22)

This type of matrix could be defined as a driving multi-point mobility matrix since it relates
the kinematic parameters W, 8., 8 , at a set of positions F. P, ..., F, to the dynamic
parameters ﬁz, M, Mry at the same positions B, P, ... , P,. This type of driving point

mobility matrix is often used to model the dynamics of a mechanical system composed of
several sub-systems which are comnected to each other at a set of point junctions
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P, B, ..., P,. For each sub-system a driving multi point mobility matrix is derived and used

in a mobility matrix formulation as described in reference [29].
Now, considering the two conditions of equations (4.19), for a driving point mobility matrix,
and (4.20), for a transfer mobility matrix, it comes out that also the driving multi-point

mobility matrix is symmetric.
Figures 70, 72, 74 show the real part while figures 71, 73, 75 show the imaginary part of the

driving multi point mobility matrix Y'"*"*(@) evaluated considering two positions
P, =(03, 0.15) and P, =(0.35, 0.09) for the three types of finite plates considered in this

report. The symmetry condition is verified in all three cases and considering the real part of
the diagonal terms it can be seen that they are all positive. In fact they are all diagonal terms of

either the Y''(w) or Y2(m) driving point mobility whose diagonal terms’ real part are all
positive as seen in section 4.3.

In conclusion the real part of any driving point Y*(®) or driving multi-point ¥ ()

mobility matrix for either a finite or an infinite are positive definite since they are symmetric
and their diagonal terms are always positive. So for any vector x the following conditions are

verified:

-

x' Re(Y*)x >0, x" Re(Y™" " )x >0 (4.23,24)

This condition can be explained in terms of power, in fact for any vector of excitations f(?)
the time-averaged vibrational power injected to the structure is given by:

1
P() =2 Re{f” (@)v(w)}, (4.25)

where H indicates the complex conjugate transpose. Therefore, remembering that
v(©)=Y""""(®)-f(®) equation (4.25) can be written as:

1 -N1-N 1 1-Ni~
P(a))=5Re{f”((o)Y1 Y (w)f(co)}=5f’*(co)Re{Y YN (@) (@) (4.26)

and, because the system is passive, power is only injected to the structure, i.e. power must be
positive, which means that the real part of the driving multi point mobility matrix has to be
positive definite.
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5. CONCLUSIONS

This report presents a detailed description of the driving, point and transfer mobility
matrices derived for thin plates excited in flexure. Both mobilities formulae related to an
infinite plate and a finite rectangular plate are analysed. The details of the mathematical
formulation are given and the procedure presented could be used for other types of bi-
dimensional structure like, for example, cylindrical shells. In particular the procedure to derive
the mobility formulae for a rectangular plate with any type of boundary condition is shown.

The main properties of the driving-point and transfer mobility matrices are analysed and it
is shown that: _

a the driving point mobility of an infinite plate gives approximately the mean response of the
driving point mobility of a finite rectangular plate;

b the driving point mobility matrix of an infinite plate is a 3x3 diagonal matrix while the
driving point mobility matrix of a finite rectangular plate is a fully populated 3x3 matrix
except in the particular case of considering the centre position of the plate in which case
also for a finite plate the driving point mobility matrix is diagonal;

¢ the real part of the diagonal terms of the driving point mobility matrix of a finite
rectangular plate are all positive; '

d for reciprocity, if the system is linear, the transfer matrices between position P, and P; 1s
equal to the transpose of the transfer mobility matrix between positions P5 and P;

e as a consequence of point ¢ and d the driving point or driving multi-point mobility matrix
is positive definite.
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