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Abstract. Current options for modelling contrast agent nonlinearities do not predict acoustic 
propagation. Other popular formulae are restricted to the linear steady state (e.g. for cross-
sections, sound speed and attenuation). Hence all options for modelling contrast agents have 
limited applicability to most of the insonification conditions to which they are exposed in vivo. 
This paper provides a theoretical framework into which any nonlinear single-bubble model can 
be input, to predict the sound speeds and attenuations which clouds of contrast agents would 
produce. These two propagation characteristics are fundamental to the quantitative 
interpretations of signals from contrast agents in the clinical environment. 

1. Introduction: Two routes to modelling of contrast agent acoustics  
There are currently two main classes of theoretical descriptions for ultrasonic contrast agents. The first 
class involves empirical acoustic scatter cross sections. A cross-section is associated with each 
harmonic (at frequency ω, 2ω, 3ω etc.). These are based on the ratio of the measured power scattered 
at the frequency in question, to the intensity of the incident wave (assumed to have a frequency ω). 
The advantage of this approach is that it is simple, easily related to measurement, and deals with the 
populations in which contrast agents usually occur. The disadvantages are however considerable. The 
approach provides a very limited, if any, description of propagation (there would for example be no 
way of inferring the sound speed from them). As with all cross-sections, the parameter becomes 
undefined when the driving amplitude is zero, making it unsuitable for many of the short-pulse 
exposures to which contrast agents are subjected in vivo. There is no way to relate this empirical 
description to the single -bubble dynamics (so that for example the observer does not know how much 
of a measured 2ω signal arises from bubbles resonant at the driving frequency ω and whose wall 
pulsations contain a component at 2ω, and how much comes from smaller bubbles whose fundamental 
pulsation resonance is at 2ω).  This weakness arises because the empirical approach is not grounded in 
the fundamental physics, a factor which leads to its most serious failing.  The potency of acoustic 
cross sections lies in their additive nature, in that the effect from a bubble population can be obtained 
through a summation of the cross sections of the individual bubbles present (which is similarly the 
basis of inversions to determine the bubble population from the measured acoustic characteristics).  
This property comes from the fact that the scattered (or absorbed) powers are additive, which in turn 
relies on the fact that the signals from the various bubbles in the population are incoherent at the 
receiver.  However by ascribing a cross-section to each harmonic, this basic principle is violated, in 
that the 2ω signal from any individual bubble will be correlated with the ω signal from the same 
bubble at the receiver.  Hence great caution must be exercised over how the empirical cross sections 
are utilised.  
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Figure 1. (a) The variation of polytropic index with equilibrium bubble size for free air bubbles in 
water under room conditions, for bubbles driven in the linear syteady state limit at resonance. The 
dashed line shows the prediction if a constant value is taken for the thermal diffusivity Dg, and the 
solid line shows the predictions when the effect of Laplace pressure on Dg is included. (b) The 
dimensionless damping constants for bubbles pulsating in the same limit as in (a), plotted for an 
assumed constant Dg (dashed line; plotted thick for thermal damping constant, and thin for total 
damping constant). This can be compared with the results when the effect of Lapace pressure on Dg is 
included (solid line; plotted thick for thermal damping constant, and thin for total damping constant). 
Since these plots relate to linear steady-state pulsations fo bubbles in response to monochromatic 
forcing, they will in many circumstances be inapplicable for contrast agent exposure. Figure by TG 
Leighton and PR White. 
 

The second approach to modelling the acoustic properties of contrast agents is through the 
adaptation of existing models for the dynamics of single bubbles to incorporate wall effects relevant to 
contrast agents. Whilst on occasion a linear model is used, most often a nonlinear model is adapted. 
There are two main issues here. First, the limitations of the eventual model will be derived in part by 
those of the progenitor model. A Rayleigh-Plesset basis will therefore usually provide only for viscous 
damping, with formulations from the Herring-Keller/Keller-Miksis or Gilmore-Akulichev families 
being required to incorporate radiation damping.  Thermal damping is of particular interest, in that 
none of the above formulations in themselves include any net thermal losses.  Attempts to do this by 
adding a "thermal viscosity" included no new physics beyond that found in the monochromatic steady-
state damping constants, which are of course inappropriate for the exposure of contrast agents to 
pulses of microseconds-order duration and O(MPa) amplitudes. Thermal damping for the time-
dependent nonlinear oscillations of bubbles requires more rigorous treatments [1,2]. A common route 
is to neglect those damping mechanisms which have proved to be more difficult to incorporate, but 
this can of course only be done when a quantitative and accurate argument has been made to show that 
such neglect does not affect the interpretation of the results. 

Of particular interest in this context is the common use made of the polytropic index (the ratio of 
the specific heat of the gas at constant pressure to that at constant volume).  This is not a fundamental 
quantity, but by allowing it to take a value intermediate between the adiabatic case and unity 
(corresponding to isothermal bubble pulsations), it may be used to adjust stiffness of gas to account for 
heat flow across the bubble wall. However unless its value varies during the oscillatory cycle, there are 
no net thermal losses and the polytropic index does not describe net thermal losses.  Its characteristics 
have particular significance for contrast agents, the two reasons. First, the major effort in adapting 
single-bubble models to contrast agent use has been in order to adapt the stiffness term (which 
otherwise is dominated by the polytropic characteristics of the gas) to account for the presence of the 



agent’s wall. Second, the received wisdom about the polytropic index, which has served the 
macroscopic bubbles community well for decades, does not hold for microscopic bubbles.  For 
example, a widely-held view is that for free air bubbles in water at resonance, the polytropic index 
tends to the adiabatic limit for large (i.e. mm-sized) bubbles, but to the isothermal limit for small (i.e. 
micron-sized) bubbles. This is because the assumption is almost always made that the thermal 
diffusivity of the gas can be set at a constant value. However the Laplace pressure for micron-sized 
free bubbles becomes so great as to change the thermal diffusivity of the gas [3], and inclusion of this 
effect changes the polytropic index and the thermal damping (Figure 1). The wall properties of 
contrast agents can vary from cases resembling the free-bubble conditions of Figure 1, to ones where 
an assumption of convenience is made, in which the wall engenders within the bubble a pressure 
identical to that found far from the bubble (effectively counterbalancing surface tension). The range of 
assumptions that may be made about gas behaviour in microbubbles needs critical examination. 

Whilst these two descriptive routes (empirical cross sections and single -bubble models) are very 
different, they share a same basic limitation. Specifically, neither can describe key propagation 
characteristics, such as sound speed and attenuation.  These are fundamental to any quantitative 
interpretation of the acoustic signals from contrast agents.  Without a sufficiently accurate knowledge 
of the sound speed, the range inferred from travel times is misleading. Without knowledge of the 
acoustic attenuation, quantitative interpretations based on signal amplitude are compromised. Hence 
the unexpected conclusion, given the title of this section, is that neither class of model will actually 
describe the acoustics of contrast agents, merely their wall dynamics and radiated pressure fields. In 
order to obtain information about the propagation of acoustic waves through a contrast agent 
suspension, another model must be found.  Since, as the next section will outline, no such model 
currently exists, such provision is the purpose of this paper.  

 

Figure 2. Schematics of 
steady-state bubble 
volume oscillations vs. 
applied pressure. The left 
column shows the result 
for the inertia -controlled 
regime, and the right 
column corresponds to 
the stiffness controlled 
regime. The four rows 
correspond to conditions 
which are (from top 
downwards): linear and 
lossless; linear and lossy; 
nonlinear and lossless; 
nonlinear and lossy. 

 
2. Models for propagation through contrast agent populations  

In 1989 Commander and Prosperetti [4] produced the most widely-used formulation for predicting 
the propagation characteristics of an acoustic wave through bubbly liquids. Its applicability for 
contrast agents in vivo is limited, since the theory assumes linear steady-state bubble pulsations in 
response to a monochromatic driving field. Leighton et al. [5,6] developed a theoretical framework 
into which any single-bubble model could be input, to provide propagation characteristics (e.g. 
attenuation and sound speed) for a polydisperse bubble cloud (which may be inhomogeneous) 
incorporating whatever features (e.g. bubble-bubble interactions) are included in the bubble dynamics 
model. Because of the inherent nonlinearity, such a model cannot make use of many familiar 
mathematical tools of linear acoustics, such as Green’s functions, complex representation of waves, 
superposition, addition of solutions, Fourier transforms, small-amplitude expansions etc. The crux of 



this model is in the summation of the volume responses of the individual bubbles to the driving 
pressures. If the contrast agent cloud is divided into volume elements, let ldP  is the change in the 
pressure applied to the lth volume element as a result on an incident ultrasonic field. Divide the 
polydisperse bubble population into radius bins, such that every individual bubble in the j th bin 
is replaced by another bubble which oscillates with radius ( )jR t and volume ( )jV t  (about equilibrium 

values of 0 j
R  and 0 j

V ), such that the total number of bubbles Nj and total volume of gas ( )j jN V t  in 

the bin remain unchanged by the replacement. If the bin width increment is sufficiently small, the time 
history of every bubble in that bin should closely resemble 0( ) ( , )
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greatest around resonance). Hence the total volume of gas in the lth volume element of bubbly water is 
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framework into which any bubbly dynamics model may be inserted (giving ( ) ( )j ldV t dP t  appropriate 
to bubbles in free field or reverberation, in vivo, in structures or sediments, or in clouds of interacting 
bubbles, etc. as the chosen model dictates). To illustrate this, consider a monodisperse bubble 
population pulsating in the linear steady-state (Figure 2). If the propagation were linear and lossless, 
the graphs of applied pressure (P) against bubble volume (V) would take the form of straight lines, the 
location of the bubble wall being plotted by the translation of the point of interest up and down these 
lines at the driving frequency (Figure 2, top row). Since a positive applied pressure compresses a 
bubble in the stiffness regime, here dV/dP<0 (Figure 2, top row, right).    If, in this linear lossless 
regime, 

lc
ξ  (above) is seen as equivalent to cc  (the sound speed in the bubbly water), then c wc c< . 

However since a π  phase change occurs across the resonance, the opposite is true in the inertia -
controlled regime (Figure 2, top row, left). The sound speed in a polydisperse population can be found 
through addition of such gradients as directed by the formula for 

lc
ξ  (above). If conditions are linear 

and lossy (Figure 2, second row), each acoustic cycle in the steady-state must map out a finite area 
which is equal to the energy loss per cycle from the First Law of Thermodynamics [6]. The 
characteristic spine (dashed line, Figure 2, second row) of each loop can, through summation as 
directed by the formula for 

lc
ξ , give the sound speed in a polydisperse population. This is effectively 

equivalent to the approach of Commander and Prosperetti [4], although they characterised the problem 
using a complex wavenumber, rather than through the locus in P-V space. It is interesting to note that 
Commander and Prosperetti found greatest difficulties with their theory when strong bubble 
resonances occur: The middle row of Figure 2 illustrates how this will coincide to conditions where 
not only is the area mapped out very large, but the characteristic gradient of dV/dP is very difficult to 
identify (in keeping with known through-resonance behaviour of sound speed in monodisperse 
populations). If conditions are nonlinear and lossless, in steady-state the P-V graphs will depart from 
straight-lines (for example because the degree of compression cannot scale indefinitely; Figure 2, third 
row).  The gradient dV/dP varies throughout the acoustic cycle in a manner familiar from nonlinear 
acoustic propagation, and appropriate summation (as in 

lc
ξ ) can appropriately describe this 

propagation and the associated waveform distortion.  If conditions are nonlinear and lossy, finite areas 
are mapped out, and whilst the characteristic spines may present significant challenges, nonlinear 
propagation may again be identified (the example of the right of the bottom row in Figure 2 illustrates 



a strong third harmonic, where the steady-state volume pulsation undertakes three cycles for each 
period of the driving field). 
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Figure 3. Volume time histories (top row) and P-V plots for Optison, as modelled by the Rayleigh 
Plesset equations with wall conditions as described in text. The bubble is insonified by a 3.5 MHz pulse 
of 30 cycles duration and 0-peak amplitude of 470 kPa (top and middle rows) and 15 kPa (bottom row). 
 
3. Results 
Whilst Figure 2 showed a schematic of the steady-state solutions, Figure 3 plots (top row) the volume 
time history, and (middle) the time-dependent P-V graphs, for the 3.5 MHz insonification of initially 
motionless bubbles (either side of the 3.5 mµ  resonance) by a pulse of 30 cycles duration, and 0-peak 
amplitude 0.47 MPa. This amplitude is chosen to coincide with the conditions of Coussis et al. [7], 
who used linear steady-state theory. The differences from such theory for this model is illustrated by 
comparison of the middle row with the bottom, where the 15 kPa driving amplitude will (in the steady 
state) give a result close to the linear model. Note how, during ring-up, the characteristic spine may 
differ from that associated with the steady-state solution (e.g. (b) in middle row). After the cessation of 
the driving pulse the P-V plot maps out a straight line as the bubble volume rings down. Whilst 
Leighton et al. [6] modelled free bubbles with full nonlinear damping, the calculations in this paper 
are based on inclusion of appropriate wall parameters (after Church [8]) in the Rayleigh-Plesset 
model, and includes viscous and thermal damping (after [1,2]). Future models will also incorporate 
radiation damping. At higher driving amplitudes (Figure 4, top and middle rows) the results deviate 
further from the 15 kPa limit (Figure 4, bottom row). 
 
4. Conclusions  
The model of this paper represents a significant advance on previously-available models for contrast 
agent acoustics (Table 1). It will allow the first assessment of the propagation of novel pulsing regimes 
for contrast agents and, for example, the propagation of lithotripter pulses through cavitation clouds. 
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Figure 4. As for Figure 3, but with top and middle rows driven with a 1.5 MPa (0-peak) field. 
 

Model 
type 

Arbitrary 
Driving pulse 

Transient 
period 

Non-linear 
damping 

Harmonics/ 
Subharmonics 

Scattered 
pressures 

Atten- 
uation 

Population 
effects 

Tissue 
effects 

(i) No No No  ←←←←←←Empirical? ? ? ? ?  Empirical No 
(ii)  Monochromatic No ←←←←←Only in linear steady state ? ? ? ? ?  No No 
(iii)  Yes Yes See † Yes Yes No No No 
(iv) Yes Yes Yes Yes Yes Yes Yes Yes 
Table 1. Summary of properties of the models discussed in this paper, for (i) Empirical Cross-section, 
(ii) Linear steady-state propagation model, (iii) Nonlinear single bubble plus wall effects, (iv) 
Leighton et al. [6]. (Note  †: Potentially yes, but often only for viscous damping). 
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