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Wavenumber estimation: Further study of the correlation technique and use

of SVD to improve propagation direction resolution.

1. INTRODUCTION

Techniques have been developed previously for the estimation of flexural wavenumbers
and applied to wave propagation in one-dimensional structures such as beams [1-3] or in quasi-
one dimensional structures such as cylinders [1] and tyres {4-5], where the motioﬁ for the latter
is decomposed into essentially one dimensional components. Hence the direction of propagation
is known or assumed. These methods include discrete Fourier Transforms [4], Prony series [1,5]
and least squares methods [2,3]. Prony series approaches, in particular, seem to offer the most
accurate estimation but are very sensitive to noise in the data and require equally spread data.
The Fourier Transform technique requires equally spaced measurements and its wavenumber
resolution is restricted by the size of the physical scan area in the same manner that the ‘BT
product [6] restricting the frequency resolution B to the available length T of the data.
Essentially most of the other aforementioned methods systematically fit complex exponential
travelling waves to the measured data, from which the number of wave components present and
their (complex) wavenumbers can be determined. In particular it is also possible to have an
iterative procedure that fits to both the wavenumber and the wave amplitudes [1]. One could
propose testing one-dimensional strips cut from a two-dimensional structure, but this is
inapplicable for in-situ testing, in cases where there is curvature or for non-isotropic
configurations. Furthermore this is not a true two-dimensional technique that is required for
experimental validation of theoretical analyses {7].

There are substantial particular problems applying these methods to wave motion that is
truly two-dimensional. These include resolution, noise, directionality, nearfields, cylindrical
spreading and so on and, in general, the infinite headings on which the free waves may
propagate through the structure. The most obvious difference in estimating the wavenumbers in
two-dimensional structures is the large quantity of data required. It is difficult to obtain good
quality, noise free data at all points and at all frequencies — occasional bad measurements are
unavoidable. Thus it might be desirable, in whatever estimation process is adopted, to be able to
weight the measured data according to a measure of its quality e.g. by the coherence.

Furthermore, it may be difficult or impossible to measure responses at uniformly spaced



positions, so that techniques which require this are inapplicable. In principle a Prony series
approach can be applied to two-dimensional structures (as suggested in reference [1]), but in
practice the foregoing issues may make it impractical. Finally, in a finite structure with point
excitation, there will be cylindrical spreading of the free waves and strong resonant behaviour
will be exhibited if the modal overlap is low enough. At such frequencies certain wave
components will dominate the response; their wavenumbers will be relatively easy to measure,
but they will mask the presence of other (non-resonant) wave components. Thus the
effectiveness of any proposed technique will be expected to depend on the modal overlap of the
structure.

In [6] a general approach was described which aims to avoid or overcome some of the
previous difficulties. Measurements of the mobility were taken on a flat isotropic and a flat
anisotropic composite panel. An electrodynamic exciter was attached near to a corner and a
broadband force excitation was applied. The transfer functions were subsequently obtained with
measurements made over nominally equidistant grid points, using a scanning laser vibrometer.
Here spatial correlation at each frequency between the measured locations was used to estimate
the wavenumbers. Existence of wave propagation is indicated by large correlation at particular
wavenumbers. However, it was observed that there can be ambiguity in the wavenumber
estimation at resonances and missing information about the wave propagation in other
directions. It was also suggested that using higher damping would reduce the nearfield waves at
the boundaries. For further validation it was envisaged that if more wavenumber components
could be resolved, e.g. because of high modal overlap (more wavenumber components), more
structural configurations with different boundary conditions (estimation at same and/or different
frequencies), larger panels or high edge damping, then more complete estimation of the
wavenumber field would be achieved.

The present work further investigates the correlation technique in order to improve
wavenumber directional resolution, estimation at resonances and comparison of the benefits of
different test configurations. Initially the technique is briefly introduced [6], with some
examples from earlier study. Later simulations on the free-free and simply supported plate have
been used fo understand the influence of different parameters on the resolution at low and high
modal overlap. The singular value decomposition technique (SVD) is then used in resolving

directions of wave propagations. Some additional experiments were performed on a curved



sandwich plate for validation purpose. Lastly a modified approach using the two dimensional
correlation approach is suggested which can improve wave propagation direction resolution

under certain conditions.
2. THE CORRELATION TECHNIQUE

The formulation used is given below [6] which has been implemented for a discrete
number of points measurement points for a scan using the Cartesian co-ordinate system.
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where W(kmk,y,a)) is comrelation coefficient at wavenumber with components £, and

k;y with frequency @, I and [, are the dimensions of the nominally rectangular scan area and x
and y are spatial locations on structure where response w is measured. The correlation
coefficient will have peak values at particular wavenumber K;(kw,Ky) vector. If wave

propagation is equally likely in all directions, the peak value of correlation coefficient will
occur at many combinations of K, and kry .

In practice the structural response, W(X,y,®) available for analysis is not continuous
in space. Usually it is sampled discretely at several spatial co-ordinates on the structure. This
necessitates modification of equation (1) to sampled data. The modified formulation for the
correlation coefficient is given by

n lxl N N —iky X, —ikyy,
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Sampling of the response at certain locations may have some implications on identification of

wave propagation in structure under consideration. The parameters that influence the correlation
for the presence of propagating waves (i.e. wavenumber and spatial dimensions) are &, k, N

and the sampling locations x, and y,.



Stmulations have been performed on a flat plate with simple supports and free edge
boundary conditions, only flexural waves are considered. The general flexural wave equation in
terms of transverse displacement, w, is given by

[8414) d'w 84wJ o%w
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12(1 Vz“’"), v is the Poisson’s ratio, E the Young’s modulus of elasticity and p the

where D

density for the plate material. The following solution can be written for the above equation in

terms of wave propagation at an angle &to the x axis,

i(wt—kex—kyy)

w(x, y,1) = Ae 4)

where &, and &, are the wavenumbers in x and y directions respectively. These are related to

wavenumber k by k, =kcos6 and k, =ksin6 . Using (3) and (4),
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The corresponding wavelengths in the two directions are given by
2n 2n
k. and 4y k (6)

A flat steel plate of size 915x590x1.6 mm’ was used for the simulations. In general a
damping loss factor of 1% percent has been used, except in the case study on increased damping
and its effect on wavenumber resolution. Gaussian noise was added to the accelerances
considered to achieve, to some degree, experiment like situation. The additive noise model used
is

N(@)= CoN,g,1€”™! + Cy Ny pe727 0,

where N, and N are random numbers with normal and uniform distribution respectively and C
are constants. The spatial mean accelerance for one of the simulated ‘experiments’ is shown in
Figure 1. The fundamental mode occurs at around 16 Hz. The structure exhibits strong modal
behaviour up to around 200 Hz. It is to be noted that the excitation was applied near the bottom

left corner of the plate. The number of ‘measurement’ or sampling points used were 25 in the X



and in the 20 Y directions i.e. total of 500 points. The scan area was restricted to the smaller
central part of the plate as shown in Figure 2 and its size is 0.36 x 0.285 m".

Wavenumber variation with frequency calculated using equation (5) is shown in Figure
3. This can be used in assessing accuracy of the estimates from the correlation technique.

Figure 4 shows the corresponding wavelengths. This information will be used subsequently in

explaining the performance of the correlation technique.
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Figure 1. Simulated spatial mean accelerance on a simply supported flat rectangular plate with corner excitation.
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Figure 2. Small scan area used on the plate. Excitation point + is also shown.
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Figure 3. Wavenumber variation for a flat steel Figure 4. Wavelength variation for a flat steel plate
plate of 1.6 mm thickness. of 1.6 mm thickness.

2.1. Wavenumber resolution

As in temporal signal processing, the spatial domain analysis also shows some
constraints that need consideration in planning the measurements. One of the issues is the finest
resolution that can be achieved with reasonable accuracy in any of wavenumber estimation. In
this section the effect of sampling on resolution of the measured wavenumbers is discussed. In
case of temporal data 1/T is the frequency resolution, where T is the time length of the

measured sample. Similarly, in the case of the spatial domain the best wavenumber resolution is

restricted by the size a dimension of the scan area to be —. Here half a wavelength is
a

considered as this would still result in identification of the wavenumber by the presence of
correlation peaks at multiples of that wavenumber. For the scan of Figure 2 this value is 9
rad/m.

The wavenumber estimation at 500 Hz is shown in Figare 5. Prominent contour centres
are located at nearly two times the spatial resolution in the y direction and 3 times in the x
direction. The wavenumber estimated is 35 rad/m which is very close to 35.6 rad/m given in
Figure 3. The correlation shows lot of spreading (each contour area). It is interesting to note that

only two directions of wave propagations are identified. The reasons for this could be coarse



resolution of the wavenumbers, predominant wave propagation in preferred directions or
unknown sampling related issue.

In another simulated ‘experiment’ the scan area is increased whilst maintaining the same
number of points and the excitation location so that there is improvement in resolution. The
scan area covers almost the entire area of plate. The finest wavenumber resolution here is
3.7 rad/m. The wavenumbers estimated at 500 Hz for this case is shown in Figure 6. The
correlation contours are closer than previously and more propagation directions are identified.
However, it is still not possible to identify wavenumbers in many directions. It appears that
resolution alone will not essentially improve wavenumber measurement. The wavenumber
resolution is crucial at lower frequencies where wavenumbers are smaller. Here coarser
resolution would result in a larger spread, where it may not be possible to distinguish different

contours. If resolution were finer, it may be possible to distinguish different contours.
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Figure 5. Wavenumber estimation at 500 Hz with Figure 6. Wavenumber estimation at 500 Hz with
corner excitation and limited scan area. corner excitation and large scan area.

It is obvious that at higher frequencies reasons other than resolution and preferential
wave propagation directions are responsible for limited wavenumber identification. A possible
reason is explained below. Re-examining equation (2), if one were to presume a direction of
propagation, k, and k, would have a particular ratio for any wavenumber. It is also assumed that
the energy due to direct field is dominant compared to reflected waves. The cylindrical
spreading of waves will result in propagation of waves that will occur in several 6 directions

originating from the excitation point. Some of these directions are shown in Figure 7 for the



case under consideration. The correlation coefficient here will depend on how many points on
the scan are crossed over by the propagating wave, which is dependent on the direction of wave
propagation. It is most likely that directions closer to diagonal will have a larger number of
crossed points. The number of points crossed over in some other directions can be very small.
This means that depending on the wave propagation direction, the correlation coefficient
calculated can vary significantly. This in turn would result in identification of only a few wave
propagation directions. This is true even if the wave field is reverberant. This behaviour is seen
in Figures 5 and 6 where contour centre locations correspond to directions that run closer to the
diagonal in the example. This explanation also means that peaks of varying correlation
coefficient that correspond to a wavenumber of interest may exist in most of the directions, but
are masked by large coefficients in some specific directions. Improvements might be achieved
with an alternative proper layout of scan points and location of excitation, in a polar co-ordinate

scanned area.
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Figure 7. Small scan area along with some directions of wave propagation.

2.2. Effect of the location of the excitation point
In the measurement scan of Figure 2, travelling waves to the left and below the source
are not captured directly. However, waves that are reflected from boundaries after crossing the

scanning points are captured when moving to the left and towards the bottom of the plate. The



energy levels in the reflected waves can be smaller (depending on the damping) resulting in
some contours not being prominently represented and masked by the larger correlation
coefficients. Also as discussed earlier, a similar situation is encountered where corner excitation
allows some directions of propagation crossing a larger number of points compared to others.
For the second case, excitation is applied at the centre of the plate instead of the corner.
The scan areas remain as before. Figure 8 shows the wavenumber correlation at 500 Hz with the
limited scan area. Although in most of the directions the number of scan points crossed over is
similar, only four significant contours are seen in the plot. Nearly six independent contours
were identified under corner excitation case (Figure 5), but the correlation intensity was varying
for all of them. For centre excitation, however, the correlation is seen to be strong at all four
locations. Here a limited number of wavenumbers are identified as the resolution is coarse
(18 rad/m) compared to earlier case as the total span in each direction is reduced by a half.
Coarser resolution means a spread in the correlation coefficient, hence a smaller number of
prominent peaks. Figure 9 shows results for the larger scan area. Here it appears to identify a
greater number of contours hence more travelling waves. By contrast, the correlation coefficient
levels differ significantly across all contours. The contours appear to occur in pairs as expected
for this case. When compared to corner excitation (Figure 5) where eight correlation contours
were at larger levels, there appears to be little extra information. The wavenumber resolution

here is 7.4 rad/m compared to 3.7 rad/m in corner excitation.

L 1 1
1¢ 20 0 40 50 -50 =40 -3 -20 =10 0 20 0 40 50

L]
K, fim}
Figure 8 Wavenumber estimation at 500 Hz with Figure 9. Wavenumber estimation at 500 Hz with
centre excitation and limited scan area. centre excitation and large scan area.
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It can be argued that if the excitation is near the corner, the waves travelling from one
quadrant cross over a larger number of points compared to centre excitation. A smailler scan
area, however, would reduce the segment of the angle of incidence of the travelling waves for
corner excitation. To overcome this difficulty the excitation point needs to be closer to the scan
area corner. If the waves are reflected efficiently at the boundaries, travelling waves in the
opposite directions could also be identified with corner excitation. In the case of centre
excitation, equal weighting (similar number of points crossed over in each direction) is given to
wave propagation in all directions provided the wavefield is direct rather than modal or
reverberant. The pairs of contours will hence be identified in each direction. Ideally, with a

large scan area centre excitation would result in better wavenumber identification.

2.3. Effect of damping

Damping in the structure controls the energy associated with travelling waves in the
spatial domain. Presence of larger damping is expected to reduce the energy associated with
travelling waves as the distance travelled increases. This effect can have large implications on
the wavenumber estimation procedures. In the above studies a structural damping loss factor of
1% has been used throughout. To study the influence of damping, a simulation with 10%
damping loss factor was implemented for the large scan area case. The spatial mean accelerance
is shown in Figure 10 for corner excitation. Strong modal behaviour is seen below only about
100 Hz.

Figure 11 shows wavenumber correlation contours at 500 Hz for larger damping and
corner excitation. The process appears to prominently identify only one negative wavenumber
in the x direction and a positive wavenumber in the y direction. This shows reduced reflection
from the boundaries as most of travelling waves die out or contain reduced energy in the
process of reaching the boundaries. This situation is expected to result in very little information
on travelling waves which lie in the other 3 quadrants hence small correlation coefficients.
Figure 12 shows a corresponding result for centre excitation. In this case the correlation process
appears to identify more information with larger damping (compare with Figure 9). In Figure 9
it is possible that strong reflection of some waves may have created larger correlation
coefficients at certain wavenumbers, possibly the standing wave patterns (modes), reducing the

relative significance of some other waves. On the other hand, increased damping might allow
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for equal representation for the free bending waves. The combination of centre excitation with
larger damping can work better for the same number of ‘measurement’ points and scan area as
in corner excitation. The resolution effect can also be seen in Figure 12 where in the x direction
the analytical wavenumber equal to 35 rad/m cannot be identified as resolution is 7.4 rad/m
(closest estimation at 37 rad/m). This results in energy being shared between contours centred at

37 and 29.6 rad/m, the largest correlation peak being the fomer.

< |Acceterancal > [mN"s“z]
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Figure 10. Spatial mean accelerance on a simply supported flat rectangular plate with corner excitation. The

damping loss factor used is 10%.

2.4, Limitations on the maximum and minimum accurate wavenumber

In earlier sections the influence of measurement resolution on wavenumber estimate was
studied. At the other end of the analysis, spacing between the scan points is expected to
influence the maximum accurate wavenumber estimation. This influence is studied by omitting

two lines of scans alternately, resulting in separation of the scanned lines equal to 0.115 m. This

. . . . . 27
will result in maximum accurate estimate of wavenumber as 55 rad/m i.e. (0 1151.
A2y

Wavenumbers smaller than this allows for at least 2 scan points in a wavelength. Above the
frequency that corresponds to the wavenumber of 55 rad/m, a mirror image of one half of the
correlation contours occur i.e. spatial aliasing takes place. The wavenumber estimation at 800

Hz is shown in Figure 13 which confirms the above limitation. If the original scan is used, the

12



maximum accurate estimate of wavenumber increases to 165 rad/m. The corresponding

correlation coefficient plot is shown in Figure 14. Although the resolution effect is still present,

the mirror images disappear eliminating ambiguity in the wavenumber estimation.
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Figure 11. Wavenumber estimation at 500 Hz with
corner excitation and limited area scan. Damping

loss factor of 10% is used.

== .

K, 4m)

&

Figure 13. Wavenumber estimation at 800 Hz with
corner centre excitation and large area scan with
two alternate scan lines omitted. Damping loss

Jactor of 10% is used.

Figure 12. Wavenumber estimation at 500 Hz with
centre excitation and limited area scan. Damping

loss factor of 10% is used.

Figure 14. Wavenumber estimation at 800 Hz with
centre excitation and large area scan. Damping loss

Jactor of 10% is used.
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A low wavenumber estimation limit using the correlation technique is given by

2—”) For wavenumbers smaller than this and scan length covering at least half a
min(a,b)

wavelength, the cormrelation coefficient will contain a peak at the proper wavenumber and
several peaks of smaller values at multiples of it. This still allows accurate estimate of the
wavenumber. When the scan length is smaller than half a wavelength, it can be considered to
contain rigid body motion superimposed on the wave that is smaller in length than the actually

propagating wave. This effect can be visualized using Figure 15.

Wave as seen by scan length {rigid body motion
super impcsed)

Plate section/
S 7
/ Y J’
Actualwav

Figure 15. Section of plate when moving in first mode.

The rigid body motion contribution will have major influence on the estimated
correlation coetfficients. The motion can be treated as a rectangular signal in the spatial domain,
extending across the dimensions of the scan area. In analogy to temporal signal processing, this
signal is expected to have a broad band representation in wavenumber domain. The correlation

Al sink.x)

, where A is the amplitude
k.x

coefficient of the broad band representation is given by

of the rectangular spatial movement. Graphically, a typical plot of this is given in Figure 16.

Generally the first lobe dominates this signal, which indicates the presence of a high intensity

contour at the centre of correlation coefficient plot.
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For example at 16 Hz, the fundamental mode of the simply supported plate, the
wavenumber estimated using correlation technique is shown in Figure 17. Here, only the
contour centred on the zero wavenumber is identified. Which indicates prominence of 1* lobe in
Figure 16. The propagating wave, which affects the correlation coefficient at the multiples of

the wavenumber, are seen here to be masked by the correlation of the zero wavenumber

component.

Wave armplitude
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Figure 16. Wavenumber distribution for rigid body Figure I7. Wavenumber estimation at 16 Hz with
like motion. corner excitation on simply supported plate and

large area scan. Damping loss factor of 1% is used.

In all the cases considered above, simple supports has been assumed where nearfield
waves at the plate edges do not occur. In experimental tests, however, it may not possible to
achieve simple supports. In practice it is usually free-free supports. In such a situation near-field
waves will be present at the boundaries of the structure. The presence of near-field waves may
in addition have influence on the wavenumber estimation. The near-field wave decay rate is
controlled by the wavenumber itself. As the wavenumber increases, the spatial distance within
which nearfield waves decay decreases. Analogous to time v/s frequency domain, finer
sampling in spatial domain means a wider wavenumber domain. For example, an exponentially

decaying near-field wave can have wavenumber distribution {only one sided is shown) as

15



shown in Figure 18. The correlation coefficients are also seen to decay exponentially in this

case.

At 500 Hz, with a limited scan area on the free-free plate results of wavenumber
estimation are shown in Figure 19. Compared to Figure 5, the pattern of contours is
significantly different. Also present are some other contours, although at lower correlation
Jevels. Presence of these may be explained by the earlier arguments. As the frequency increases,
nearfield waves are expected to have very small correlation coefficients in comparison to the

travelling waves. Hence they are expected to have little influence on the wavenumbers

estimated.

Wave amplitude

Wava numbsr

Figure 18. Wavenumber distribution for near-field — Figure 19. Wavenumber estimation at 500 Hz with
waves. corner excitation on free-free plate and limited area

scan. Damping loss factor of 1% is used.

2.5. Discussion

The correlation technique when applied to sampled data appears to have certain
Jimitations in its current form. These limitations are not only due to sampling. The excitation
location, scan arca and damping also appear to have influence on the accuracy of the
wavenumbers estimates. A most critical limitation is that of identification of only a few
directions of wave propagation at any frequency. Among others, this was seen to be primarily
dependent on number of scan points crossed by each travelling wave. Although by proper

planning each direction of propagation can be made to contain a similar number of scan points,

16



it is difficult to achieve this in practice. In the next section an alternative approach based on
singular value decomposition is used to remove the masking effect of large correlation

coefficients present in the scan.

3. USE OF SVD TO IMPROVE DIRECTIONAL RESOLUTION
A mobility or accelerance matrix W(x, y, @) at any frequency can be written in terms of its

singular values and unitary vectors. Using singular value decomposition, w can be written as

w(x, y,@) =USV ™

where § is a diagonal matrix of singular values, U and V are unitary matrices. Each singular

value of the accelerance matrix contributes partially in forming the matrix. Writing

[w_j_j =Upgs; Vg for j, k=1....n and i=1....m, then [w]=¥[w], . The relative amplitudes of
Uk
k

the singular values indicate the intrinsic relationships between elements of matrix. In the case of
dominance of a particular mode, one of the singular values will appear larger compared to the
others. The contribution to the FRF matrix by this singular value is expected to contain mostly
the information about the dominant mode. Even if the wavefield is reverberant i.e. larger modal
overlap, presence of a larger number of points in certain directions compared to others can also
result in related elements in the response matrix. If wavenumbers are estimated using partial
matrices, it might be possible to isolate the effect of dominant wave propagation direction or
waves relating to larger correlation coefficients allowing identification of wavenumbers in other
directions.

One of the accelerances estimated after the addition of noise using (6) is shown in
Figure 20. The corresponding accelerance without noise is also shown in the figure. Below
around 1000 Hz the structure has strong modal behaviour. Singular values of the accelerance
matrix at each frequency are shown in Figure 21. The effect of noise is seen predominantly at
some off-modal frequencies, there is hardly any influence at resonances. Only the first two
singular values are not affected by noise at the lower frequencies. Due to increased modal

overlap the dominance of the first few singular values reduces with frequency.
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Figure 20. Typical transfer accelerance on simply supported plate with 1% damping loss factor and excited at the

centre.
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Figure 21. Singular values of FRF matrix for simply supported plate with 1% damping loss factor and excited at

the centre.
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The first singular values contribution to correlation coefficient at 16 Hz is same as that
in Figure 17. The second singular value at this frequency results in a correlation contour that
appears at multiples of the wavenumber resolution, which are due to side lobes in figure 16.
Figure 22 shows the wavenumber correlation estimated using the partial contribution from the
third singular value. Only this singular value appears to contain some further useful
information. Even this estimate is larger than the actual wavenumber at that frequency. From
this discussion it can be concluded that it is still difficult to estimate wavenumbers at
frequencies where rigid body like motions dominate.

The calculations at the second mode i.e. 53 Hz are shown in Figures 23-26. At this
frequency the first two singular values are dominant as seen from Figure 21. If singular value
decomposition were not used, the correlation would appear as in Figure 23, which is actually
the contribution from the first singular value alone. The first singular value here is dominated
by flexural motion in contrast to rigid body like motion at 16 Hz. The contribution from rigid
body motion is seen as a small contour at the centre. The rigid body like motion, however,
appears to influence the second singular value as seen from Figure 24. The pattern of the
correlation contours corresponds to side lobes in Figure 16. The use of singular value
decomposition at 53 Hz leads to extraction of more information as seen from Figure 26.
Wavenumbers are identified in more directions compared to the full FRF matrix calculations.
Limitation of wavenumber resolution results in values that are different for the X and Y

directions.
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Figure 22. Third singular value contribution to wavenumber estimation ar 16 Hz with centre excitation on simply

supported plate with damping loss factor of 1% and large area scan.
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Figure 23, First singular value contribution to

wavenumber estimation at 53 Hz with centre excitation

on simply supported plate with damping loss factor and

large area scan.
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Figure 25, Third singular value contribution to
wavenumber estimation at 53 Hz with centre excitation
on simply supported plate with damping loss factor and

large area scan.
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Figure 24. Second singular value contribution to
wavenumber estimation at 53 Hz with centre excitation
on simply supported plate with damping loss factor and

large area scan.
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Figure 26. Summation of normalised contribution from
first three singular values in estimating wavenumber
estimation at 53 Hz with centre excitation on simply
supported plate with damping loss factor and large

areq scan.
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The process of considering singular value decomposition for estimating wavenumbers
definitely helps in identifying more wavenumbers in different propagation directions at low
frequencies as seen above. The question posed being, is it helpful at frequencies where more
modes contribute significantly to the FRF anyway? For example, at 500 Hz nearly 7 singular
values are quite similar in amplitude indicating good participation from many modes. But these
singular values are distinguishable from each other indicating some intrinsic dependence of
elements of the mobility matrix at this frequency. This might prove to be a hindrance as in the
low frequencies. For further investigation analysis is carried out at 500 Hz.

The wavenumber correlation at 500 Hz due to contribution from the first singular value
is shown in Figure 27. It shows the presence of contours at four locations which were also
present in Figure 6. If the information of the first singular value is removed from the mobility
matrix and correlation is then performed, the correlation contours look as in Figure 28. This
figure shows 6 prominent locations of contours which can be extracted. These contours are
more than were seen in Figure 6. Figure 29 shows correlation contours for contribution from the
second singular value. This extracts information for wavenumbers in four more directions. The
effect of removing the contribution from the first two singular values is shown in Figure 30.
Here extra information appears about wavenumbers with x direction values being zero. The
third singular value here extracts wavenumbers in two more directions out of four possible as
shown in Figure 31. The combined effect of the first three singular values is shown in
Figure 32. When compared to Figure 6, more number of contours are present and the locations
appear to be more clearly defined i.e. actual location of the centres of the contours. This
analysis supports the usefulness of singular value decomposition even at higher frequencies.

However, it is not known a priori how many singular values would be significant.

21



Figure 27. First singular value contribution to
wavenumber estimation at 500 Hz with centre excitation

on simply supported plate with damping loss factor and

&, tm)

Figure 29. Second singular value contribution to
wavenumber estimation at 500 Hz with centre excitation

on simply supported plate with damping loss factor and

large area scan.
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Figure 28, Contribution from all singular values except

Figure 30. Contribution from all singular values except
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Figure 31, Third singular value contribution to Figure 32. Summation of normalised contribution from
wavenumber estimation at 500 Hz with centre excitation  first three singular values in estimating wavenumber
on simply supported plate with damping loss factor and  estimation at 500 Hz with centre excitation on simply

large area scan. supported plate with damping loss factor and large

area scan.

4. EXPERIMENTS

4.1, Centre excitation

Experiments were conducted on a curved sandwich panel to validate and compare with
some of the findings from previous sections. The panel was hung from a frame using flexible
chords. A shaker was attached to the structure through a stinger and was driven by a broadband
random signal to excite the structure. To improve the efficiency of measurements and avoid
mass loading of the panel, a laser vibrometer has been used to measure the velocities on the
surface. Initially shaker attachment location is at the centre of the panel. A PCB 218C force
gauge was used measure force input. The scan area used for the first experiment is shown in
Figure 33. It is shown projected on to a plane surface. There are 22 points along the X direction,
which is the direction of curvature, and 21 along the X direction. The laser beam is expected to
hit the panel at an angle larger than that for a plane panel for majority of scan points. Although
this will result in measurements that show smaller amplitudes compared to actual velocity, the
correction is not applied as the effect is similar to a type of windowing. The correction is,

however, made for the distance between scan points accounting for the curvature. Since the
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curvature does not allow full area measurement with one set-up, the measurements were made
in two stages i.e. left half and right half. Typical measured transfer mobility 1s shown in Figure

34. The structure shows strong modal behaviour up to around 700 Hz.
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Figure 33. Scan area on curved sandwich panel shown projected on a plane.
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Figure 34. Typical measured transfer mobility on curved sandwich plate.
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The singular values of measured FRF matrix are shown in Figure 35. Notice the
difference between the variations in Figures in 35 and 21. Since here the matrix is constructed
using measured mobilities, singular values tend to a constant value with increasing frequency.
The measurement noise level appears to be large at high frequencies. The panel has its first
natural frequency at approximately 72 Hz. Below this frequency noise contaminates the

measurements.

Singular valus

Freguency [Hzf

Figure 35. Singular values of mobility matrix of curved sandwich panel excited at the centre.

Using the experimental data, wavenumbers were estimated at 72 Hz, 500 Hz, 1000 Hz,
1200 Hz and 2000 Hz. Figure 36 shows wavenumber estimation at 72 Hz using the full
mobility matrix i.e. contributions from all singular values are included. The process identifies
definite correlation peaks at two locations only. This is explained by dominance of the first
singular value at 72 Hz as seen in Figure 35. This is also confirmed by wavenumber estimation
using partial mobility matrix contributed by the first singular value as shown in Figure 37. Two
similar locations of contour centres are identified here. The wavenumber information of the
second singular value is shown in Figure 38, where four more correlation contours are
identified. The third singular value appears to contain wave information, Figure 39, that does

not match with the wavenumbers in Figures 37 and 38. This can be attributed to the presence of
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side lobes for scan areas covering less than half the wavelength. The effect of limited resolution
can also be seen in Figures 37 and 38. In these figures, due to coarser wavenumber resolution, it
is difficult to identify directional variation of the wavenumber that is expected due to the
curvature effect. Since curvature runs along the X direction, wavenumbers should increase in

that direction.
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Figure 36. Wavenumber estimation at 72 Hz with centre Figure 37. First singular value contribution to
excitation on curved sandwich panel. wavenumber estimation at 72 Hz with centre excitation
on curved sandwich panel.
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Figure 38. Second singular value contribution to Figure 39. Third singular value contribution to

wavenumber estimation at 72 Hz with centre excitation  wavenumber estimation at 72 Hz with centre excitation

on curved sandwich panel. on curved sandwich panel.
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Figure 40 shows wavenumber estimation at 500 Hz. More numbers of contours are
identified here compared to Figure 36. However, a large number of the wave propagation
directions are still missing. Use of singular value decomposition at this frequency might help in
identifying a few more wavenumbers. The contribution of the first singular value is shown in
Figure 41. Four wavenumbers are identified in this case. The contribution of all singular values
except the first is shown in Figure 42. This shows the presence of at least six more wave
propagation directions that are identifiable. Wavenumber estimations for contributions from the
second and third singular values are shown in Figure 43 and 44. The combined effect.of the first
three singular values is shown in Figure 45. Comparing Figure 45 with Figure 40, more
propagation directions are identified using singular value decomposition. The curvature effect
also becomes clearer in Figure 45, where wavenumbers vary from minimum 15 rad/m in the X

direction to nearly 10 rad/m in the Y direction.
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Figure 40. Wavenumber estimation at 500 Hz with Figure 41. First singular value contribution to
centre excitation on curved sandwich panel. wavenumber estimation at 500 Hz with centre excitation

on curved sandwich panel.
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Figure 42, Contribution from all singular values except Figure 43. Second singular value contribution to
first one to wavenumber estimation at 500 Hz with wavenumber estimation ar 500 Hz with centre excitation
centre excitation on curved sandwich panel. on curved sandwich panel,
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Figure 44. Third singular value contribution to Figure 45. Summation of rormalised contribution from

wavenumber estimation ar 500 Hz with centre excitation  first three singular values in estimating wavenumber
on curved sandwich panel. estimation at 500 Hz with centre excitation on curved

sandwich panel.

The wavenumber estimations at some higher frequencies are also shown in
Figures 46-51. Above 1000 Hz, SVD may not result in significant additional information for
centre excitation for all the cases considered. However, by applying SVD no information is lost.

It is also clear from these figures that there is a diminishing effect of curvature on the
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directional variation of wavenumbers at higher frequencies. At 2000 Hz wavenumbers

estimated are almost equal in amplitude in all of the directions considered.

Figure 46. Wavenumber estimation at 1000 Hz with

centre excitation on curved sandwich panel.

Figure 48. Wavenumber estimation at 1200 Hz with

centre excitation on curved sandwich panel.
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Figure 47. Summation of normalised contribution from
first three singular values in estimating wavenumber
estimation at 1000 Hz with centre excitation on curved

sandwich panel.
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Figure 49. Summation of normalised contribution from
first three singular values in estimating wavenumber
estimation at 1200 Hz with centre excitation on curved

sandwich panel.
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Figure 50. Wavenumber estimation at 2000 Hz with Figure 51. Summation of normalised contribution from
centre excitation on curved sandwich panel. Jirst three singular values in estimating wavenumber

estimation at 2000 Hz with centre excitation on curved

sandwich panel.

4.2. Corner excitation

Experiments were also carried out with corner excitation. The wavenumber estimations
at 500 and 1000 Hz are shown in Figures 52-55. Some amount of extra information appears to
be extracted due to finer resolution in wavenumbers compared to centre excitation, which is
clear from comparison of Figures 52, 54 and 40,46 respectively. This coniirms the simulation
on a rectangular flat plate. The SVD application appears to improve directional resolution

significantly compared to centre excitation (Figure 53).
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Figure 52. Wavenumber estimation at 500 Hz with Figure 53. Summation of normalised contribution from
corner excitation on curved sandwich panel. first three singular values in estimating wavenumber
estimation at 500 Hz with corner excitation on curved
sandwich panel,
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Figure 54. Wavenumber estimation at 1000 Hz with Figure 55. Summation of normalised coniribution from
corner excitation on curved sandwich panel. first three singular values in estimating wavenumber

estimation at 1000 Hz with corner excitation on curved

sandwich panel.
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5. IMPROVED RESOLUTION OF WAVE PROPGATION DIRECTIONS USING AN
ALTERNATIVE APPROACH '

As discussed in the previous sections, provided satisfactory wavenumber resolution
existed, the predominant wavenumber is estimated accurately by the correlation technique.
However, due to varying number of points crossed in different directions of propagations a
weighting is applied to the correlation coefficient in the calculations using equation (2). This
results in masking of several wavenumbers in different directions. If equation (1) is slightly
modified to enable processing in isolated directions of wave propagations, it may be possible to
improve directional resolution. The modified correlation coefficient can be written as

L2 L2
W(kﬁ,a))= j J‘w(x, y,w)e—ikcos(e)x e—fksin(a)ydxdy o

121,12

For sampled data it can be implemented as

V l l S —ikcos{@)x, _—iksin
W(k,e,a))E ;]; Zzw(xpva7w)e kcos(8) F € k (G)yq (8)

p=l g=1

In the above equation, although every scan point is checked for correlation, only few
points contribute significantly to the correlation coefficient. In some directions, the number of
scan points significantly contributing is much reduced to that the correlation coefficient might
be masked by noise floor and spurious wavenumbers are estimated. Expected smooth variation
of wavenumbers with angle &, provided large number directions are chosen for analysis, can be
taken as a guideline in isolating spurious wavenumbers. Effectively the correlation function in
equation (1) and (8) is just a function of wavenumber k i.e. estimation of the wavenumber
magnitude for specified €. It may be possible to automate the process by a properly defined
algorithm in rejecting spurious wavenumbers. The data generated in section 2, is used here to
validate this modification.

The two cases considered here are the large scan area on a flat plate, using either corner
excitation with low damping or centre excitation with high damping. Figures 56-59 show
wavenumbers estimated at 500 Hz and 800 Hz using above technique. Each dot indicates an
identified wavenumber. Comparing Figure 56 with Figure 6 for corner excitation at 500 Hz, a
first observation is that more directions of wave propagations are identified. The only limitation

being wavenumber resolution that is dependent on scan area, It is more evident in the v
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direction as the scan dimension in that direction is very small {less than 0.6 m). For centre
excitation, the resolution is much poorer as only half the scan dimension can be used for
calculation. This significantly affects wavenumber estimation as shown in Figure 57. At 800
Hz, again a larger number of directions are identified for centre excitation (Figure 59), curiously

many missing for corner excitation (Figure 58).
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Figure 56. Wavenumber estimation at 500 Hz with Figure 57. Wavenumber estimation at 500 Hz with
corner excitation and large scan area. Damping loss centre excitation and large scan area. Damping loss
Jactor is 1%. factor is 10%.
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Figure 58, Wavenumber estimation at 800 Hz with Figure 59. Wavenumber estimation at 800 Hz with
corner excitation and large scan area. Damping loss centre excitation and large scan area. Damping loss
Jactor is 1%. Jactor is 10%.
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This modification to the original formulation appears to have potential in resolving more
directions of wave propagation than the original one. But it needs further study and may be

combining with SVD for rejecting spurious estimate of wavenumbers.

6. CONCLUSIONS
Numerical experiments were performed on simply supported and free-free supported
rectangular flat plates to further study the correlation technique. Different ‘measurement’ plans
were investigated for their performance in improving the identification of wavenumbers in
particular directions. Later the singular value decomposition technique was introduced to
resolve more directions of wave propagations. Also, the formulation was implemented in polar
co-ordinates (section 5). For the validation purpose, some experiments were performed on a

curved sandwich panel. The following are some of the conclusions of the study.

a) The measurement procedure using central excitation with large damping provides similar
weighting to all directions of wave propagations. Provided the wave number resolution is
fine enough, this arrangement should result in a greater number of wavenumbers being
identified.

b) Apart from damping and excitation position, the wavenumber resolution is critical in
estimating more wavenumbers in the measurements.

¢) The application of singular value decomposition technique has been found to improve
directional resolution of wavenumbers. It was seen to be effective in both low and high
modal overlaps.

d) The polar co-ordinate implementation appears promising provided the wavenumber

resolution is fine enough.

It might therefore be possible to combine the effectiveness of SVD and polar co-ordinate

implementation, so as to achieve an overall improvement.
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