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As models of acoustic propagation within the near-surface oceanic bubble layer have 
developed over the last four decades, the assumptions inherent within them have been 
refined.  The earliest models assumed that only resonant bubbles contributed.  Later models 
incorporated the effects of non-resonant bubbles, but assumed that all the bubbles would be 
undertaking linear steady-state and monochromatic pulsations.  Without such assumptions it 
is not, for example, possible to exploit many convenient mathematical techniques, such as 
complex representation of propagating wave.  Nevertheless the elimination of these 
assumptions reveals certain features, such as the time- and amplitude-dependence of bubble-
mediated attenuation, which might be exploited in enhancing underwater communications or 
active sonar in bubbly waters.   

1. INTRODUCTION 
 
Acoustic propagation through bubbly water has been modelled only with the introduction 

of the assumption of bubble linearity, or linearisation of the bubble dynamics, at an early 
stage. Probably the most notable example is the pioneering work of Commander and 
Prosperetti [1], which has been cited over 100 times since publication and used in many more 
acoustic investigations. If this linearisation is not done, not only do the formulations become 
inherently more complicated, but several useful mathematical techniques are not valid. These 
include complex representation of oscillations, small amplitude expansions, Green’s function, 
Fourier transforms, superposition and addition of solutions. A nonlinear approach was 
recently proposed by Leighton et al. [2], which shows how attenuations and sound speeds can 
be calculated in inhomogeneous time-dependent bubble clouds subjected to time-dependent 
insonification (e.g. pulses of arbitrary time history). It was shown how the method can be 
applied to populations of bubbles which are undergoing linear or nonlinear pulsation [2,3]; 
which are in free field or reverberant conditions [4]; or to bubbles which are constrained by 
structures [5,6], or surrounded by media other than pure water (such as tissue, sediment, or 



interacting bubbles) [7-10]. The characteristics of propagation in bubbly water have been 
known for decades, although new applications (such as in the operation of the bubble nets of 
humpback whales [11] and other marine creatures [3,12]) are still being discovered. The 
possibility of predicting and interpreting nonlinear effects, however, which the new model 
provides, opens up exciting possibilities, and these will be the topic of this paper. 

The theory [2] for non-linear acoustic propagation through bubble clouds has been used to:  
 
• Invert measured acoustic propagation characteristics in the surf zone to determine the 

bubble size distribution [2,13], and compare the results with inversions undertaken 
using the linear technique of Commander and McDonald [14], which exploits the 
linear propagation of Commander and Prosperetti [1]; 

• Predict the amplitude dependency of attenuation in oceanic bubble clouds [2]; 
• Predict the pulse-length dependency of attenuation in oceanic bubble clouds [2]; 
• Compare the errors which might accrue through neglect of the nonlinearity of bubble 

pulsations in high amplitude fields, with those which occur through neglect of bubble-
bubble interaction [2]. 

• Investigate techniques by which sonar echoes from solid objects (such as mines) could 
be enhanced in comparison to those from bubbles in the vicinity of the mine, and vice 
versa [3,12] 
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Fig.1: Acoustic extinction cross-section for a single bubble, as a function of the radius of 
that bubble, for insonification by a 1 ms duration pulse of 33 kHz centre frequency and 0-

peak pulse amplitudes in the range 0.5-50 kPa. The cross-section calculated by the 
formulation of Leighton et al. [2] varies over time, and the figure plots its mean value.  

Although the 0.5 kPa and 5 kPa lines differ (particularly close to the fundamental 
resonance), they are barely distinguishable on this scale. Because the cross-section is not 
defined during ring-down [2], losses in that period cannot of course be included in this 

figure. 

  



One obvious scenario where insonification amplitudes sufficiently high to excite 
nonlinearities might be used is when the void fraction is high, generating severe attenuation. 
Leighton et al. [2] showed that, in such circumstances, the errors which accrue from neglect 
of the nonlinearity, during propagation which is of sufficiently high amplitude to excite it, 
can be much greater than the errors which result from neglect of bubble-bubble interactions.  

However the ability to incorporate nonlinear bubble dynamics into models of acoustic 
propagation is not restricted to their use in systems where the void fraction is so high as to 
make high amplitude insonification an unavoidable necessity. With any bubble cloud, 
nonlinear pulsations can be generated and the results exploited as an additional diagnostic 
tool. The scatter from the bubbles might be enhanced or suppressed, relative to those from 
other structures, by exploiting the nonlinearity [3,12].   

 
  

(a) (b) 
Fig. 2: (a) Various bubble populations, expressed in n(R0)(bubbles/m3 per micron bin width 
in radius) scaled such that the attenuation at low power levels in (b) will be the same for all 

bubble distributions (b) Cloud absorption for various power law bubble distributions 
n(R0)∝ (R0)x (for x=0,-1,-2…-10) where the number of bubbles is scaled as described in (a), 
for insonification as in caption for Figure 1. Note that the constant offset at high power for  
-7 to -10 power laws might be due to rounding errors for the bubble response of 1 micron 

bubble which is amplified by 1014 number of bubbles. The difference is not noticeable on the 
extinction cross-section plot. 
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2. IMPLICATIONS OF THEORY 

A not unexpected nonlinear effect in the steady-state would be a decrease in attenuation as 
the amplitude of the driving pulse increases (equivalent to a decrease in the acoustic 
absorption cross-section, with commensurate decrease in the acoustic scattering cross-
section).  This might be expected if the attenuation (and scatter) scale with the amplitude of 
pulsation of the bubble. That is to say, we are assuming for the moment that, in the bubble 
population in question, it is the fundamental of the pulsation resonance (rather than, say, a 
geometrical affect) which is causing attenuation and scatter (for discussion of such 
circumstances, see Leighton [12]). As the driving amplitude increases, the amplitude of the 
bubble pulsation cannot increase proportionately: in the simplest illustration, the 
displacement on compression cannot of course be greater than the bubble radius. One source 
of this nonlinearity is the bubble stiffness [12]. Hence if the driving amplitude increases, the 

  



bubble response cannot increase proportionately, and we see a decrease in the ratio of the 
powers scattered and absorbed by the bubble, to the intensity of the incident driving field (the 
acoustic scatter and absorption cross-sections, respectively). This can be illustrated in Figure 
1, where the peak corresponding to the bubble pulsation fundamental resonance decreases 
with increasing driving amplitude.   

However the picture is more complicated than the simple correspondence between 
fundamental resonance pulsation and attenuation/scatter assumed above.  It is true that if the 
bubble population were to be dominated by resonance bubbles, the attenuation would 
decrease with driving amplitude. However with the decrease of the fundamental resonance 
peak in the acoustic extinction cross-section, there are corresponding increases in the cross-
section corresponding to bubbles having radii of about 50, 35 and 25 microns, corresponding 
to bubbles whose pulsation resonances would be multiples of the insonifying frequency (66, 
99, 132 kHz respectively). If the bubble population were to be biased such that there were 
sufficient numbers of bubbles responding at the second harmonic, the growth in the peak 
would mean that attenuation could in fact increase with driving amplitude.  Figure 2a 
illustrates a range of bubble population distributions characterised by a power law, and Figure 
2b plots the predicted attenuation as the amplitude of the driving field increases. Whilst the 
general trend is that attenuation decreases with driving amplitude (as described above), it is 
clear that for bubble populations with power law exponents of ~5.5, increasing the driving 
amplitude can first decrease and then (at even higher drive amplitudes) increase the 
attenuation. Therefore by measuring the attenuation at various driving powers, it would for 
example be possible for a single-frequency source to gain information on the bubble size 
distribution over an octave or more. 
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3. TESTING 

 
Fig.3: Schematic of experiment. 

Figure 3 shows the experimental setup. Bubbles were generated in the large tank using a 
venturi system with the water flow supplied by an underwater Hippo pump and the air was 
sucked down through a hose by the pressure drop created by the venturi. The airflow was 
regulated by the use of a valve to adjust the bubble distribution and the void fraction. The 
bubble population was determined using a transmitter receiver pair (Tx2-Rx1) to measure the 
attenuation over 1 m for several frequencies in the 10-100kHz range at low power levels. A 
high power directional transmitter (Tx1) transmits sonar signals through the bubble cloud, 
which were then detected by an omni-directional receiver (Rx1) 1 m away and the 

  



backscattered signals from the cloud are detected by omni-directional receiver (Rx3). The 
transmit signals were generated by a signal generated (output +/- 2V peak) which was fed 
into a Krohn-Hite power amplifier (x100 output +/- 200V peak). The receive signal was 
filtered and converted by an analogue digital converter (ADC) and then recorded in the SUN 
workstation, which contained the analysis software. 

Features, which complicate such an experiment, include the variability of the bubble 
cloud. If, for a constant bubble size distribution, the bubble numbers fluctuate by a factor ε, 
the dB/m attenuation in the measurement scales accordingly. If the attenuation of a plane 
wave of intensity I with distance z is / CdI I dz= −Ω , then the attenuation (dB) due to the 
bubble cloud is given by ( ) ( ) ( ) CC

z
C zee C Ω=−= Ω−

101010 log10loglog10α C II −=0 10/ , where I0 
& IC are the intensities before and after the cloud respectively and zC is the distance across the 
cloud. If the cloud cross-section fluctuates from 1CΩ  to 2 1C CεΩ = Ω , the resulting attenuation 
increases from ( ) ze C110log ΩC1 10=α  to ( ) 12 CC ze102 log10C εαα =Ω= . Figure 4 shows some 
preliminary measurements for attenuation measured through the cloud, for groups of three 
pulses of 0.75 ms duration and spaced 15 ms apart. The three consecutive pulses in each 
group have amplitudes 0.5, 5 & 50 kPa, measured at the cloud. The interpulse time is a 
compromise: it must be sufficient to allow reverberation and natural bubble oscillations from 
the preceding pulse to decay, but short enough so that the three pulses interrogate a nominally 
identical bubble population. Each 0.5 s the insonification is repeated. Figure 4 shows that 
fluctuations in the cloud cause the attenuation to vary between 13 and 33 dB. The data in 
figure 4 should not be taken to imply a measured amplitude-dependent effect: the results are 
preliminary tests of the experimental protocol only. 
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Fig.4: Bubble cloud attenuation for each group of 3 different peak acoustic pressure 

amplitudes (as stated in legend, as measured in bubble-free water at location where cloud 
centre will be). 

 
In such a test, calibration is critical, before, after and during experimentation. Heating of 

the source, and bubble attachment to transducers etc., are just two sources of systematic drift 
in the calibration. Similarly, the no-bubble calibration should be done both in still water, and 
with the venture pump active but no air injected, so that the effect of such flow (and any 
sediment it carries) can be ascertained. Diffraction and refraction around the bubble cloud 
must be considered. Since the bubble population changes with depth [2], it must be measured 
along the relevant propagation path. 

It is often the case that the importance of such artefacts decreases as the entity to become 
measured becomes larger. Here however that entity is the attenuation, and as this increases, 

  



the path length over which the bubbles behave nonlinearly (and so give rise to the effects of 
interest) also decreases. Backscatter measurements might therefore provide a simpler route 
for verification of the theory. 
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