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Abstract

This report describes the design of an active vibration neutraliser. The aim of the
active element in the neutraliser is to reduce the internal damping of the device and thus
make it more effective. Six different control confipurations are considered and the input
mechanical impedance of each configuration is calculated. This is used to assess the
efficacy of each configuration. To study the behaviour of an active neutraliser a beam-
like neutraliser is designed and built with piezoceramic patches providing the active
element. An analytical model of this device is presented. Simulations and experimental
results show that for two control configurations the amplitude of a mass-like structure
with the neutraliser attached remains finite at a resonance of the composite system even
when damping is entirely removed from the neutraliser, by the control system.
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1 Introduction

The vibration absorber was developed by Frahm and Hartog at the beginning of the century
[1}. It works on the principle of impedance mismatching. If a single degree of freedom
{SDoF), mass-spring-damper system is added to a vibrating system the impedance at the
point of attachment becomes large at the natural frequency of the additional SDoF system.
In this report the additional system is referred to as a neutraliser, rather than an absorber.
The reasons for this are as follows: the neutraliser works by the reaction force of the
neutraliser mass equalling the force applied to the host structure, bringing it to rest, hence
the term neutraliser. Alternatively it could be viewed as the energy from the structure being
transferred into the motion of the mass of the neutraliser, hence the term absorber. What
is fundamental, though, is that no energy is actually dissipated unless there is damping in
the neutraliser. It is this damping that limits the behaviour of the neutraliser. This report
deals with the issue of using active control to reduce damping in the neutraliser and hence
improve its performance.

When the neutraliser is tuned to suppress vibration at a frequency much higher than the
structural resonance, only one peak in the response is produced, which is above the tuned
frequency. Brennan [2] has shown that the separation of the tuned frequency and this peak
is a function of mass ratio (the ratio of the neutraliser mass to the mass of the structure).
This report shows that this peak can be limited to a finite value even when the damping is
entirely removed from the neutraliser, by an active system.

Brennan [2] has shown that the effectiveness of the neutraliser is a function of the ratio of
neutraliser and structure impedances. For this reason the emphasis in this report is placed
on determining the input impedance of the active neutraliser. The improvement over the
passive case can be determined by assessing the increase in impedance of the neutraliser and
hence attenuation of the host structure, as a function of control gain. The control methods
investigated in this report look specifically at velocity feedback.

The report is split into five sections. Following this introduction, section two develops the
theory for a simple mass spring model of the neutraliser, and derives the input impedances of
six possible neutraliser control arrangements. Three of which are selected for further study.
The maxima and minima of the velocity of the host structure with these three neutraliser
configurations are studied as the feedback gain is increased. The third section develops
an equivalent two degree of freedom, mass-spring-damper system to model the behaviour
of a beam vibrating in it’s first mode. Experimental results obtained from a beam-like

neutraliser are presented in section four and finally, section five contains the conclusions.



2 Comparison Of Active Neutraliser Configurations

As described above the neutraliser is a SDoF system attached to a host structure. This
can be represented by the system shown in Fig (1). The structure is considered as an
impedance, Zs at the point of attachment and the neutraliser is a simple mass-spring-
damper configuration. Brennan [2] has shown that the attenuation of the vibration level
of a mass-like host structure of mass m;, at the neutraliser’s tuned frequency and point of

attachment, is a function of mass ratio and the damping.
7
Atten 2 — 1
2% (1)

Where p is the mass ratio, the ratio of the neutraliser mass to that of the structure, %1:
and ¢ is the damping ratio of the neutraliser. It can be seen from Eqn(1) that reduction of
the damping ¢ will increase the attenuation of the host structures vibration.

The response of a mass-like host structure when a neutraliser is attached is shown in Fig(2).
It shows that the neutraliser works best when there is little damping in the system. The
dip in the structural response is at the neutralisers resonant frequency. In both cases the
mass ratio p = (.1.

The purpose of the control system is to actively remove damping from the neutraliser by
opposing any forces created by the inherent damping. This requires an actuator to be
fitted to the neutraliser and/or host structure. An active neutraliser can be implemented
in several ways, and in this section the differences between the control configurations are
examined.

Because damping is proportional to velocity, the actuator can be fitted in a feedback loop
where velocity is fed back with the appropriate gain g. Such a system is shown in Fig(3)
Six variations of the control scheme are possible. Either relative velocity across the spring,
(Vo — V;), or absolute velocity, V;,, of the neutraliser is fedback. The control force can
be applied either to the neutraliser mass, the host structure or between the neutraliser
mass and the host structure. The following section considers which configuration is most

advantageous.

2.1 Input Impedance

The input impedance of a neutraliser can be derived by combining the impedance of each
element according to rules given in [3] and considering the neutraliser in the way shown by
Fig (4). Fig (4a) shows a free body diagram of the neutraliser, which can then be considered
as two impedances in series as shown in Fig (4b). Z is the total impedance of the spring
and damper given by Z = Z; + Z. = % + ¢. Zp, is the impedance of the neutraliser mass,
given by Z,, = iwm. The secondary forces, F; can then be made to act on either of the

impedances to model the control configurations. For instance if it acts on both ends of



the impedance Z it is equivalent to a force acting across the spring and damper of the

neutraliser.

2.1.1  Absolute Velocity Feedback

Fig(4b) shows the secondary force applied across the neutraliser spring. This is the most
general case and is the arrangement for the actual neutraliser used in the experimental work
in this paper. The other arrangements require independent locations for the secondary force
to react from, which in practice would be an additional proof mass. The equations describing

this system are

Fy =2V, - ZV3 + F, (2-a)
Fy=ZVy— ZVi ~ F, (2-b)
Fs=ZnVs (2-¢)

Because we are considering absolute velocity feedback the secondary force Fs is given by
gVa, where g is the gain in the feedback loop.

By applying the boundary conditions of Fy = —Fj and V, = V3, the resulting expression
for the input impedance of the neutraliser, the ratio of F1/V; is

ZZm

ZAS

The subscript AS refers to absolute velocity feedback, with the force applied across the

spring of the neutraliser. When the neutraliser is tuned (w = wy,) the impedance reduces to

Zas] _ Z(Ze — Znn) _ wnmn(1 + 2i()
e T 2=y 20¢-v)

k ¢ g
= —_ = d =
Wn V m’ ¢ 2w anc v 2w

are the natural frequency of the neutraliser, the passive damping ratic of the neutraliser

(4)

where

and the damping ratio due to the secondary force respectively. It can be seen that the
magnitude of the impedance at resonance is governed by the net damping ratio, when
¢ = v the impedance becomes infinite.

From Fig(4) it can be seen that the two other cases can be derived by setting the secondary
force on the mass or base to zero.

When the secondary force is applied only to the mass of the neutraliser, the three general
equations describing the system are given by Eqns{2-a—c). However now the secondary force
F; in Eqn(2-a) is set to zero. By solving the above equations as before an expression for

the input impedance can be obtained.

_ F _ Z(Zy ~ g}

VT Z.+Z-g )

Zam



The subscript AM refers to absolute velocity feedback when the force is applied to the

neutraliser mass only. When w = wy, this becomes

2 - 9)( B — Zm) _ iwnm(l+ 2i¢)(1 + 2iwlv)
R A ©

The magnitude of the impedance when the neutraliser is tuned is governed by ¢ — v, so
when the gain in the feedback loop is equal to the passive damping coeficient, g = ¢, the
impedance becomes infinite.
The third case is that of the secondary force applied to the base of the neutraliser/host
structure and being proportional to the absolute velocity of the neutraliser mass. Once
again using the general equations shown in Eqn(2-a-c), but setting the secondary force in
Eqn(2-b) to zero we get:
R Z(Z
ZaB = :‘71 = ——“'—émm++; ) %

When w = wy, this reduces to

(Zm — 9)(Ze — Zm) _ dwnm(l +2iC)(1 + 2v) ©
Zc - g 2’&(
1t can be seen that when the neutraliser is tuned the magnitude of the impedance is pri-

ZaBlu=w, =

marily governed by the passive damping coeflicient. This implies that the use of the active
element does not improve upon the attenuation of the host structure acheived by the passive

neutraliser.

2.1.2 Relative Velocity Feedback

In the configurations discussed in this section the feedback force is controlled by the relative
velocity between the neutraliser mass and the host structure. This means that it behaves
more like a conventional damper element, The arrangement is the same as that shown in
Fig(4), except that the secondary force is now given by F; = g(Va — W1).

When the secondary force is placed across the spring it behaves like another damper whose
sign and magnitude is controlled by the gain g, which is equivalent to the damping coefficient
¢. The three equations are the same as Eqn’s (2-a-c) except that, as stated above the
secondary force is proportional to the relative velocity. This gives the following input

impedance.

The subscript RS refers to relative velocity feedback applied across the neutraliser spring.

ZRrs

When the neutraliser is tuned this reduces to an expression governed by the net damping

in the neutraliser { — v.



m{Ze~9— Zm n (C—v
ZRs|wmw, = Zm Z. _gg ) =2 (12_&2%_(5}) ) (10}

If the secondary force is applied to the mass the three fundamental equations are the same
as before except the secondary force in Eqn(2-a) is set to zero. These can be arranged to
give an expression for the input impedance.
L

Zrm = A (11)
The subscript RM refers to relative velocity feedback and the secondary force applied to
the neutraliser mass only. Equ (11) is the same as the expression for Z 45 shown in Eqn(3).
Which, when w = wy, reduces to Eqn(4).
In the final configuration that is considered in this paper, the secondary force is applied to
the host structure/base of the neutraliser and is controlled by the relative velocity between
the host structure and mass of the neutraliser. Hence the subscript RB. The three equations
are the same as Eqn’s(2-a~c) except that the secondary force in Eqn(2-b) is set to zero. The

input impedance is given by

Zm(Z - Q‘)
Zpp = ZiZ, (12)
Which at when w = w,, reduces to
ZmZ — =g~ Zm wr{l 4+ 2 — v
Ze 2(

It can be seen from Eqn(13) that the magnitude of this impedance depends primarily on
the passive damping,.

All of the above results and the asymptotic behaviour of the expressions at frequencies,
above, below and at the tuned frequency of the neutraliser are summarised in Table (1). At
low frequencies the impedances tend to mass-like characteristics for all apart from Zag and
Z 4B, which tend to Z,, — g. At high frequencies the impedances tend to the value of the
damping element, Z, apart from Zgrs and Zrp where this is modified by the feedback gain
to Z.—g. For effective control the magnitude of the impedance at the tuned frequency must
be dependent on g, as is the case when the secondary force is applied across the spring or
to the neutraliser mass only. It should also be noted that applying forces to the neutraliser

mass only is difficult to realise in practice as a proof mass is required.

2.2 Maxima And Minima Of The Impedance Of A Neutraliser Attached
To A Host Structure

The main objective of the active control of a neutraliser is to increase the acheived atten-
uation of the host structure at the neutraliser’s tuned frequency. However, the presence

of the neutraliser also produces a combined host structure and neutraliser resonance at a



frequency above the tuned frequency of the neutraliser. The magnitude of this resonance is
a function of the mass ratio and damping in the neutraliser. In this section the magnitudes
of the maxima and minima of the combined impedance are considered. The maxima and
minima in impedance correspond to dips and peaks in the response of the host structure.
As the impedance for relative velocity feedback with the force applied to the mass, and
absolute velocity with the force applied across the spring are the same, we shall consider
only three cases, Z45, Zrs and Zaps . It is also assumed that the excitation frequency is
such that the host structure is mass-like at this frequency. This allows the impedance of
the host structure to be simplified to that of a mass, m,. The combination of this simplified
structure and the neutraliser is the complete system which is considered here.

When the control force governed by the relative velocity is applied across the spring of
the neutraliser, and the gain is equal to the damping coefficient, the effect is to remove the
damping from the system. This sets the response of the host structure to zero at the working
frequency of the neutraliser but results in an infinite response at the adjacent resonance
which can be seen by examining Fig(5). To compare the benefits of the other feedback
strategies with this case, the response at the resonance of the structure is examined for a
gain setting of Z, = g.

If the Z4g configuration, (absolute velocity feedback with the control force across the

spring), is considered the input impedance eg F,/V; to the complete system is given by

Ztyg = Zs+ Zas (14)

where Z, is the impedance of the host structure. Substitution of the expression for Z4s

found in Table(1) gives

Now, it has been shown by Brennan [2] that the resonance of the complete system (w = w;)

(15)

Zigs =

occurs when

_ —ZsZm
" Zm+ Zs
Substituting from Eqn(16) into Eqn(15) we can evaluate the magnitude of the minima in

Z (16)

the impedance, by setting g = Z.. This gives:

1
Zenslo=ye = 2 (1 + E) (17)

This is the minimam value of the input impedance of the system, which corresponds to
the maximum response of the host structure, this is shown by the point Mas,,,. in Fig(5).
For comparison, Zps, (relative velocity feedback with the resulting force applied across the

neutraliser spring) is zero for this condition. This shows that g = Z. does not produce an



infinite response at the resonance of the complete system. The solid line in Fig(5) illustrates
the mobility of the host structure when g = ¢ and absolute velocity feedback controls the
force applied across the spring of the neutraliser.

When the secondary force is proportional to the absolute velocity of the neutraliser mass
and is applied only to the neutraliser mass the total impedance of the system shown in

Fig(1) is given by

ZtAM =Zam+ Z; (18)

On substitution of the expression for Z45s found in Table (1) this becomes

ZtAM - Zm + Z___g (19)

On substitution of the expression for Z; given in Eqn(16)and setting g = Z, in the above

expression we can evaluate the magnitude of the minima in the impedance. We find that

2l Zp(Zm +225) — Zo(Z + Zs))
ZtAM|;’;§Z = ZZ (20)

If Zy > Zny, ie. p <€ 1, and { € 1 as is often the case in practice, then Eqn (20) becomes

27,
Z =y ==
tan | “5':%’0 I

This is the minimum value of the input impedance of the system, which corresponds to the

(21)

maximum response. This again shows that g = Z, does not produce an infinite response at

the resonance of the structure, as shown by the point M4y, in Fig(5).

By taking the ratio of Z;,,, |w= = to Z; As|w—§s the reduction of vibration level at the
9= 9=

complete systems resonance due to adopting AM control over AS control can be quantified.
Zt_,qM'Z’E?Z _ 1+p

(22)
Dyl po 2

By applying the condition 4 < 1, Eqn{22) tends to -é- This means the vibration level at the
combined resonance when adopting AM control is 6dB lower than when AS control is used.
This advantage has to be balanced against the practical difficulties of applying a secondary
force to the neutraliser mass only.

The previous analysis shows that for the AM and AS control configurations the amplitude
at the complete structure resonance does not become infinite when g = Z,. To calculate the
gain at which the response at this resonance does become infinite we can set the numerator
of the impedance expression to zero and solve for g. The resulting value of g is termed the
critical gain and for the AS control configuration is given by

ZnZ 4+ Zg(Zm + Z)
Geps = Z,

(23)



which can be evaluated at the resonance of the combined structure and neutraliser by
substituting for Zp from Eqn(16). This results in

Geps lw=w, = Ze(p+1) (24)

When the secondary force is applied to the neutraliser mass only, e.g the AM control

configuration the critical gain is given by

ZinZ + Zo(Zom + Z)
Geam = 7.+ 2

At resonance of the complete system Eqn(25) becomes

(25)

_ Z(1+ #)2

Yy = 26
gcAM’w oy, 1+%§(1+”) ( )

If ( «1and pu <1, then Z, 3» Z, and this can be reduced to

gcAle:ws = Zc(l + !-1')2 (27)

In both Zaar and Z4g cases the critical gain is a function of the mass ratio y. This is
illustrated in Fig(6) which shows the velocity of the host structure at the complete structure
resonance under control normalised to the passive case. It shows that the for the absolute
velocity feedback control configurations the response does not become very large until the
gain is greater than the passive damping coefficient of the neutraliser. This also means that
the condition g = ¢, which reduces the vibration of the host structure at w = w, to zero,

can be reached under broadband excitation without causing instability at w;.



3 Analytical Model of a Beam-like Neutraliser

The active neutraliser used for the experimental work in this paper takes the form of a
double cantilever beam, a schematic of which is shown in Fig{7). Note that this is also
equivalent to a free-free beam with a force acting at it’s center point. The secondary force
is provided by the two moments applied at a distance d, from the centre of the beam,
(these moments would be generated by a piezo-ceramic patch glued to the beam). The
centre point is the point of attachment to the host structure. This section shows that the
beam-like neutraliser can be approximated by the system shown in Fig(8). This is similar
to the neutraliser discussed in the previous section, but with the addition of a mass m;.
Conceptually m; can be attached to the host structure, leaving a system which is identical
to the neutraliser discussed previously. The aim of this section is to relate the secondary
force, Fy, the stiffness of the neutraliser spring, k& and the neutraliser mass, my to the applied
moments, M and material properties of the beam. To develop this equivalent two degree of
freedom (2DoF) system the point impedances (F,/V1, F,/V(0}) and transfer impedances,
(Fs/V1, M/V(0)) of the SDoF model and the beam respectively must be considered.

3.1 Response To A Point Force

If an undamped free free beam is considered as in Fig(7) the point force mobility can be

written as the summation over all the modes of vibration [4}.

v _ 1 & jwgl(0)
B0~ domr 2 @l =) (28)

Where ¢,.(0) is the r** mode shape of a free-free beam at d = 0, my is the total mass
of the beam and w, is the resonant frequency of the r*» mode. The main assumption in
the development of this equivalent model is that higher order modes do not significantly
contribute to the dynamic response in the frequency range of interest.

Because of this, only the rigid body mode and first mode of vibration are considered, so

mobility can be written as

Vi) 1 iwg?(0) (20)
F(0)  dwmr  mr(w? - w?)
This can be rearranged to give the impedance
Fp(0)  dwmrp(wi — w?) (30)

V(0) T wi - w?(1+41(0)
The above expression shows that the beam impedance is zero at w = wy, the first resonance

of the beam and is infinite when

DN B (31)
B ERI0)

the first anti-resonance of the beam.



Now consider the two degree of freedom system shown in Fig(8). The impedance of the

system is given by

F ——-L-——Zm tm w — w?
L= zw( = 2) 5 (32)
Vl —m_l(wﬂ - W )
This is infinite when w = w, and zero when
W= wp = 4 fu T (33)
my

where wy, = 4 /r—f—;. If we set w, = wy, ie equate the frequencies at which the point impedance
of the beam and the impedance of the equivalent 2DoF system are both zero, then we get

2 1 2 ™

=w 34
w11+¢§ Mg + Mo (34)

If we set w; = wyy,, ie equate the frequencies at which the point impedance of the beam and
the impedance of the equivalent 2DoF system are both infinite, then we get a relationship
between the ratio of the masses g—f and the square of the mode shape evaluated at the

centre of the beam i.e,
T2 _ 42(0) = 1.478 (35)
my

Hence the equivalent mass spring system has masses in the following ratio mgp = 0.596mr
where mp is the total mass of the beam. This means that only 0.596 of the beam mass
is effective in the beam-like neutraliser, the remaining 0.404my is effectively added to the

mass of the host structure.

3.2 Response Due To The Piezo-Ceramic Elements

The development of an equivalent system for moment excitation is fandamental in success-
fully modeling the active control of the neutraliser in a simple 2DoF form. Consider the

moments applied in Fig(7), the general form of the response to a single moment is given

by [4] as -

V{0 iwel (dy) (0

1. 5 (stigi)
where ¢/(dp) is the spatial derivative of the mode shape at d = d;, and ¢,(0) is the mode
shape at d = 0. The suffix d,, refers to the location of the moments. In the case illustrated
in Fig(7) the excitation is symmetrical about d,. By considering only the first bending
mode and noting that the beam is being excited by two moments M (d,) Eqn(36) reduces

to

M(d,) mypws w?
V()  2id(d p)¢1(0)( -1) (37)

Now Eqn (37) can be arranged fo give:

10



2iwM (dp); (dp)$1(0) _ w?
mywiV (0) W : )

If a mass spring system as shown in Fig(8) is considered, the transfer impedance between

the secondary force and the velocity V] is

Fe —w?my + w2 (m1 + ma)
127 w

(39)

Noting that w; = wy, this can be rearranged to give

F myw? (w2 1)
i iw 2

Setting
2
2 ol

R
as before and rearranging yields,
_wFy(14¢3(0) _ o

w
=—-1
Vimrw? wi (41)

It can be seen that Eqn(41) and Eqn(38) are equivalent. Thus this yields the relationship

between a moment applied to a beam and the secondary force in the simple mass-spring

_ _{2¢'(dp)¢1(0)
Fe= ( 1+?61(0)2 )M “

The derivative of the mode shape ¢'(d,) is proportional to the flexural wave number k,

system.

which is in turn proportional to the square root of frequency. This means that the equivalent

secondary force in the 2DoF model has a frequency dependance, ie

F i
-— O Wy

M

This means that if the beam-like neutraliser is tuned to a high frequency, the secondary
force will be very effectively produced by applying a moment to the beam. However at low
frequency the secondary force will be much smaller.

The above analysis shows that an equivalent 2DoF system can be developed for a beam-like
neutraliser, by dividing the total mass of the beam into two masses as a function of the mode
shape. It has also shown that moments applied to 2 beam and the secondary forces acting

on the 2DoF system are related by a function of mode shape and it’s spatial derivative.

3.3 The Effect of Residual Modes

The above analysis assumess that the error in calciulation of response of the first mode
caused by ignoring higher order modes is small. Fig 9 shows that this error is of the order

of 2 x 107%%, at the frequency of the first mode, although it increases with frequency.

11



4 Experimantal Work

The neutraliser discussed in section 3 was physically realised as a perspex beam (6 x 40 x
200mm) with two piezo ceramic (PZT) actuators (0.5 x 31 x 40mm) symmetrically attached
to the top surface as shown in Fig(10) to generate the moments M [5]. Perspex was used
because it has high internal damping allowing any improvements due to active control to
be easily measured and reducing the dynamic range of the measurements. The purpose of
the experimentation was to verify the predicted active and passive impedances.

Fig(10) shows the experimental set up used to measure the point mobility of the beam.
A Hewlett Packard 3567/A analyser produced a narrow band (200 — 400Hz) random
excitation signal used to drive an electro-dynamic shaker attached to the center point of
the beam. The applied force was measured directly using a B&K force gauge (type 8200),
and acceleration at the center and end points of the beam was also measured. These
accelration signals were intergrated using the B&K charge amplifiers (type 2635) to give
the velocities. The relative velocity between the end and center of the beam was passed
through a low pass filter, with a -3dB cut-off point at 1kHz. This was then fed into a B&K
power amp type 2713 and was used to control the PZT actuators. The point mobility was
then measured over the frequency range of 200 — 400Hz, and the feedback gain was set so
that g & ¢. Setting the gain exactly equal to the damping coefficient ¢ was not possible as
the system would become unstable. The mobility with absolute velocity feedback employed
was then measured. In both cases the secondary force was effectively acting across the
neutraliser spring. The results are shown in Fig(11).

Fig(11) also shows the theoretical mobility, using the equivalent 2DoF system developed
in section 3. For the theoretical results the gain was set such that g = 0.9¢c. The smaller
amplitude of the structure-neutraliser resonance suggests that absolute velocity feedback
with the secondary force applied across the spring of the neutraliser is the preferred method
of control. It also has practical advantages as it only requires one velocity to be measured.

The agreement between the experiment and the equivalent 2DoF system is considered good.
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5 Conclusions

This report has presented an active control method for reducing the damping in a vibration
neutraliser, hence increasing the attenuation of the host structure at the point of attachment
that it can provide. It has been shown that the use of absolute velocity feedback has
distinct advantages over the use of relative velocity feedback. The most important of which
is achieving a finite amplitude at the complete system resonance, whilst still obtaining
maximium attenuation at the working frequency of the neutraliser.

An equivalent 2DoF model of a2 beam has been developed and shown to accurately model
the dynamics of a beam-like neutraliser. This greatly simplifies the analysis of beam-like
neutralisers.

Experimental results agree with the predictions from the 2DoF model and show that using
a secondary force to remove damping is a valid method of improving the performance
of vibration neutralisers. This, combined with active tuning technology, produces a very

versatile vibration control device.
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6 Tables

Impedance Impedance at the | Impedance as | Impedance as
tuned frequency w =0 W= 00
Absolute Feedback
ZmZ -z
Force across spring || Z45 = = +mZ . Zm(ZZc . m) Zn Z,
7T — c =
Do — Zm— gl Z, —
Force on mass Zam = Z( m+ Zg)Zg (Zm g)( cg Zm) Zm—g Ze
m - e
-g)Z - giZ. - Z
Force on base Zap = ézm_*_ Zg—)i— . (Zrm Zg)(—F:} m) Zm—g Z
m [+
Relative feedback
Z—-qZ GGy~ g — 7,
Force across spring | Zgrs = Z( +%) mg m( CZ gg m) Zm, Ze—g
m - c
Z InlZs— Z
Force on mass Zrm = Z f—mZ . SZC p m) Zom Z,
m - ¢
ZelZ — Zel e —q — Z.
Force on base Zpp = ;( n Zg) m{Ze Zg ) Zm Ze—g
m c

Table 1: Summary of Input Impedances To Neutraliser Configurations
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7 Figures

Neutraliser

Host Structure

N

Fp

Figure 1: Neutraliser attached to a host structure of impedance Z,.
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Figure 2. Host Structure velocity, normalised to the velocity without a neutraliser attached
solid line:- neutraliser has low damping, { = 0.01. Dotted line:- neutraliser has high damping,
¢ =0.1. wy is the tuned frequency of the neutraliser. = 0.1
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Figure 3: An active neutraliser attached to a host structure of impedance Z;
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Figure 4: Analytical model of an active neutraliser
(a) Free body diagram (b) Impedance representation. Z = Z¢ + Z,
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Figure 5: Host structure velocity normalised to the velocity without a neutraliser attached for
the three control configurations.

Mpgs, (dash-dot line):- relative velocity feedback with the force applied across the spring.
Mg, (solid line):- absolute velocity feedback with the force applied across the spring.

M ang, (dotted line):- absolute velocity feedback with the force applied to the neutraliser mass.
The maz values o, = correspond to the minimum impedance expressions shown in Eqns(17 and
21) respectively. g =¢, ( =0.01,u = 0.1
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Figure 6: Velocity of the host structure for three control configurations, at w = w, normalised
to the passive velocity vs the feedback gain. p =0.1

Mpg, (dotted line):- relative velocity feedback with the force applied across the spring.

Mg, (solid line):- absolute velocity feedback with the force applied across the spring.

M 437, {dashed line):- absolute velocity feedback with the force applied to the neutraliser mass.
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Figure 7: Idealization of free-free beam used in experimental work. Fj, is the excitation force
and M are moments provided by the piezo ceramic element
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Figure 8: Basic two degree of freedom model of a beam-like neutraliser
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Figure 9: Percentage error as a function of frequency due to ignoring modes of order > 1
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Figure 10: Diagram of the Experimental set up to measure the mobilities of AS, (absolute
velocity feedback with the force applied across the spring), and RS, (relative velocity feedback
with the force applied across the spring}, control configurations
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Figure 11: Comparison of experimental and theorectical plots for mobility.
(a),RS, relative velocity feedback with the force applied across the spring. Dash dot - Model,

Dotted :- Experimental data.

(b), AS, absolute velocity feedback with the force applied across the spring, Solid line:- Model,
Dashed :- Experimental data. For models, g = 0.9¢, ¢ = 0.0311 and p = 0.67
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