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ABSTRACT

This report cover work funded by the EPSRC on the project ‘Modelling Human Tolerance
Limits for Transient Head Acceleration’. The second phase of the study, reported here, is
concerned with modelling the brain due to rotation of the skull and this is primarily
directed at lower frequency effects where the shear property of the material is important.
Investigations reported here cover the effect of elastic and viscoelastic (lossy) cerebral
material, the effect of the Falx protruding into the brain, the gap around the Falx and the
brain filled with non viscous fluid in addition to different models of the Falx with bending
or membrane stiffness. Analytical benchmark formulations are also described for the
simple 2D plane strain in a cylinder produced by a half-sine rotation on the outer
periphery. This allowed checking of the numerical(FE) predictions obtained using
DYNA-3D. The results show the importance of the material properties, duration of
loading, amplitude of loading as well as the influence of the partition and the results are
shown for predicted maximum Principal strains in the models as this may well be indicative
of whether damage of the brain tissue occurs.



NOTATION

The notation adopted in this report is as follows:

I: index or integer (if for fluid, s for solid,
m for membrane and p for plate)

a : inner radius of the container

pi: density of material i

B; : Bulk modulus of material i

E;: Young modulus of material i

v;: Poisson ratio of material i

(1) angular velocity

G: Elastic shear modulus of material
G{(w): Complex shear modulus
G;(w): storage shear modulus

G,(w): loss shear modulus

G(t): relaxation function

Go: short term shear modulus

G..: long term shear modulus

T: characteristic time scale of motion
¢: shear wave speed ((3/;))m

Qe magnitude of angular velocity
K: spring stiffness

k=wyc: shear wave wavenumber

d: partition penetration

h: thickness of the partition

Y. gap

= C/a

ay: relaxation frequency

B=ty/2n: viscoelastic decay constant
S=h.E..: membrane stiffness

Jm: first kind Bessel function of order m

Y..: second kind Bessel function of order m

®;=i" free vibration mode (elastic mat.)
u: tangential displacement

e=shear strain

€max = Maximum value reached by the
Maximum principle strain

r/a: dimensionless radius

h/d: dimensionless partition thickness

j : dimensionless gap (gap/a)

8=d/a: dimensionless penetration depth
k.: dimensionless spring stiffness K/a’E,
m: dimensionless membrane stiffness
:hE/aE;

p: dimensionless plate stiffness : h’E/a’E,
o : dimensionless frequency GY@er

M: dimensionless magnitude max/Oer
T*: dimensionless time t/T

g : dimensionless shear modulus G./Go

b : dimensionless relaxation frequency B/.r
ka: Helmholtz number

i
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1.0 INTRODUCTION

Investigators into head injury research are agreed that the head injury mechanism related
to the Diffuse Axonal Injury (DAI}) is due to a rotational acceleration of the head, normally
as the result of some specified impact. This rotation may cause considerable shearing
strains and distortions in the brain, particularly in regions where further rotation is
prevented by bony protrusions inside the cranium. Holbourn (1943), in one of the earliest
applications of photoelasticity to experimental biomechanics, observed the shear stress
distribution in a wax-skull and gelatine-brain model subjected to rotational acceleration.
Holbourn related the degree of strain, indicated by the model, to the amount of stretch of
the neural and vascular fibres in the region, and thus to injury severity. This was the first
study to draw attention to the relatively strong influence of rotational acceleration over
translational acceleration in causing brain damage. Further elucidation on the subject was
provided by Gennarelli et al. (1972), who reported that the average number of concussions
recorded was higher when squirrel monkeys were subjected to rotational acceleration than
to translational acceleration. Margulies et al. (1990) performed experiments on a physical
model to simulate brain injuries. They noted that when the head model was subjected to
tangential acceleration, the regions of the brain where shear strains were largest
corresponded to locations of diffuse axonal injury from clinical observation. It was
decided that shear strain could be used as an index for angular acceleration induced tissue
injury. It was then proposed that the angular acceleration limit for DAI in the human brain
was 16000 rads/s’.

Galbraith et al. (1993) investigated the response of the squid giant axon to strain. Ability
to conduct action potentials was monitored with respect to stretch injury. It was found
that 12% elongation performed within 14 ms suppressed nerve activity for 3 minutes. As
the loading rate increased, the injury response became more pronounced and longer
lasting. After 20% elongation, 90% of the nerve resting potential was eventually regained,
but after more than 20 % elongation, the axon would never fully recover. Elongation of 25
% resulted in structural failure. Similar results were reported by Thibault et al. (1992).

In recent years both numerical and analytical models have been used to study the
dynamic shear response of the brain (Firoozbaksh and DeSilva (1975); Liu et al. (1975);
Ljung (1975, 1980), Lee et al. (1987), Ueno and Melvin 1990, Chu and Lee (1991);
Trosseille et al. (1992). Most of these studies concluded that when the head is subjected to
rotational loading, large shear stresses are developed near the vertex of the brain where
the parasagittal bridging vein is located. This may lead to rupture of the vein and
consequently, subdural haematoma reported by Chu and Lee, 1991. In an earlier study,
Lee et al. (1987) reported that as the brain incompressibility increases, the influence of
rotational acceleration on the deformation of the parasagittal bridging vein becomes
stronger than that for translational acceleration.

From numerical studies Trosseille et al. (1992) concluded that if a blow is applied to the
head along the sagittal plane, in addition to the parietal region, relatively large shear
strains also develop at the cranio-spinal junction (brain stem). Similarly Ueno and Melvin
(1990) concluded that when the head is subjected to purely rotational acceleration in the
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sagittal plane, large shear stresses were computed in the parietal and brain stem region. In
a more recent three dimensional Finite Element study, Kurmaresan and Radhakrishnan
(1995) in which a head neck model was used, it was observed that the largest shear strain
developed in the region above the foramen magnum.

Previous studies have shown the influence of the partitioning membrane on the distribution
of pressure in the brain and on it’s modal behaviour (Trosseille et al. 1992, Kumaresan and
Radhakrishnan 1995, Ruan et al 1991). Bandak and Eppinger 1994, focused their work on
the effect of a combined rotational and translational acceleration loading on the evolution
of strain in the brain. To our knowledge, no previous explicit study discusses the effect of
the membrane on the dynamic shear response of the brain.

In studying the shear response of the brain, two semi-analytical solutions of the
forced response of the brain are described in this report. No exact analytical solution is
available for the general forced response and only numerical results can be obtained. The
first solution, valid for the viscoelastic material models and can be applied for elastic
models with non-zero damping , uses the Fast Fourier Transform technique. The second
procedure is based on a modal decomposition of the response in the time domain and is
applicable to elastic models with or without damping. The latter technique uses the free
vibration mode shapes as a basis for evaluating the response. Typically the problems being
considered are for rotations of short duration (i.e. transient or non-steady conditions) and
one is interested not only in the magnitude of the response but when the maxima occur.
For long duration events the problem becomes quasi-static and there are usually small
dynamic contributions involved . These solutions will serve as a reference to compare and
validate the parallel investigations using a Finite Element (FE) model and to evaluate how
well the FE code reproduces the physical behaviour.

A two dimensional FE plane strain model consisting of a simple rigid cylinder filled with a
material, and partitioning membrane, subjected to a prescribed rotational velocity has been
developed. For expediency, the container will be referred to the skull and the contents to
the cerebral matter. Linear elastic as well as linear viscoelastic material properties were
assigned to the brain tissue. The viscoelastic properties used here were to investigate the
influence of a time-dependent constitutive material model on the head’s response, rather
than to make an attempt 10 accurately describe its material behaviour.

A qualitative assessment of the effect of the partitioning membrane has been
obtained by studying different container-partition attachment and different material
formulation of the partition as:

(i) rigid partition attached to the skull,
(i) membrane description of the partition(tensile effects)

(iii) plate formulation(allowing both tensile and bending contributions).
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A sliding interface is imposed at the Brain-Skull boundary. Additional complexities
were gradually introduced by including a cerebrospinal fluid layer between the partition
and the brain, as well as between the skull and the brain. The effect of the depth of
penetration of the partition, as well as the thickness of the layer of fluid between the
partition and the brain, namely the gaps, on the rotational response of the material have
been also studied.

The computations were performed using an explicit commercial code (DYNA-3D) and the
various material models were the standard formulations available in the software. The
numerical models used for validation purposes were considered only for models without
partitions as the model with partitions requires a model with both shear and normal
stresses.
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INVESTIGATION OF MATERIAL MODELS
Experimentation on Brain Tissue

In the analysis of the viscoelastic properties of the brain tissue, the most commonly
employed stress histories or strain histories are step function stress histories (creep), step
function strain histories (stress, relaxation), ramp function strain histories, and sinusoidal
stress or strain histories. Many attempts for measuring these properties are reported in the
literature (Fallenstein and Hulce 1969, Galford and McElhaney 1970, Hirakawa et al.
1981). Generally, the characterisation of brain tissues is given in term of a complex shear
modulus [G(w) = G()+jG2(w)]. Experimental values of the shear modulus lie in the
range 1 to 82 kPa (see table 1). Hicling and Wener (1973), in discussing a mathematical
mode! for head impact problems, indicated that the value of the complex shear modulus is
required for the frequency range of 0 to 2200 Hz. It is evident, therefore, that further
experimentation on human brain tissue is needed at the higher frequencies.

Table 1: Literature review of rheological properties of human brain tissue

Author G, [kPal G; [kPa] Loss comments
tangent
Fallenstein 6.9-1.1 35-6 0.4-055 [9-10Hzat37°C
1969
Galford 66.74 26.2 Compression
1970 Bulk = 2E+09 Pa; 1040 Hz
Shuck 8.350-33 345-814 5-350Hz
1972
Hirakawa White matter: 6,5-12 | White matter: 4 - 12 temp = 36 °¢c
1981 Grey matter: 1.5-2.5 | Grey matter: 2.4-5.4 3-35Hz

The most interesting data given for Gy and G, ,for human brain tissue, were reported by
Shuck and Advani (1972). They performed a torsional response experiment on human
brain tissue in the frequency range from 5 - 350 Hz. The tabulated complex shear modulus
results can be expressed in terms of the shear relaxation function G(t) by:

G(@)+ jG, () = [ G(ne ™™,

with

G)=G, +G,e'B"+...+G,,e’B*’ can be used to determine the shear modulus constants
G.., Gy, ... G, and relaxation constants B,.., B,
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Different rheological models (see section 2.3) have been used to describe the shear
response of the brain. For a specific model, the relaxation function constants were
obtained by fitting the complex shear modulus described by the model to experimental
data. The values used in the literature for these three viscoelastic material components are
cover a wide range. Figure 2.1 shows how these values differ.

G(t) = G + (G- GL)exp({HY)
Dimensionless

Relaxatlon frequency Wei =0/, opi*®

600

550 + -] [==— Galbraith ‘88
[=8—Cheng '90

500 —— DiMasi ‘91

4301 o Kuipers 05

400 7 —— Bandak ‘95

350 + —~ Turaier ‘96

300 + + —%— ISVR '87

250 1 ~+— McElhaney

Brtdver

200 T

5 T

10+

X
501 3]
0t @ !
-50 t + + + + o
0 0. 0.2 0.3 0.4 0.5 0.6 07

Dimenslonless shear modulus G _ /G

Figure 2.1 Published values of the viscoelastic parameters for brain tissue

Previously published experimental data by Shuck and Advani (1972) are limited to a low
frequency range(10-350 Hz). It is not possible to have a very good fit in this range of
frequency for the Boltzmann model (see section 2.2.3) used in this work, because the loss
modulus is very sensitive to frequency. However, it is believed that the complex shear
modulus at high frequency is more representative to the shear modulus of brain tissue.
Hence the fitted data are based on the range over 80 Hz. The values which give a good fit
were taken as Go = 320 kPa, G.=20 kPa and B = 1360 s”. In addition the bulk modulus
used for the nearly incompressible brain material is 2.083¢9 Pa. Figure 2.2 illustrates the
experimental complex shear modulus components (Gi(w) and Gx(®)) and the fitted
Boltzmann model components.
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Shear modulus
components [Pa)
100000
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—o—G1 Human (Shuck 3

K1

G = kg = 2604 Pa
Gu- kﬁb‘MSPa

Guw-wk1/c1uB57 Trad/

B=1360¢

Frequency

Figure 2.2 Standard model matched to previously published human brain tissue shear
modulus data (Shuck and Advani. 1972).

Modelling Brain Tissue

In all models presented the different biological tissues were assumed to be homogeneous
and isotropic. The main difficulty in the material modelling is at the constitutive equation
level of the brain material. As a first approximation, nearly all models suppose a linear
elastic solid and use small-deformation theory. More recently explicit FE codes use large-
deformation theory. The elastic linear material properties frequently used are the Young’s
modulus of Elasticity, E, and Poisson’s ratio, v. The Bulk modulus, B, and shear
modulus,G, are deduced using the following relationships:

G=—-E-—-— and B:—E—
2(1+v) 3(1-2v)

This is despite the well-known fact that the head accelerations during a typical automobile
crash can lead to irreversible mechanical changes and even rupture surfaces in the brain

tissue.

Modern finite element codes allow for the introduction of linear viscoelastic constitutive
equations. The simplest material behaviour is characterised by a time dependant shear
modulus with a single non-zero relaxation constant as follows:

G(t)=G_+(G,—G.)e™
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where Go, G.. and P correspond to the instantaneous and long term shear moduli in time
and the relaxation constant respectively(see following section).

23. Constitutive Viscoelastic Models
2.3.1 Maxwell and Kelvin-Voigt Models
The Maxwell and Kelvin-Voigt viscoelastic models are shown in figure 2.3.1 below.

@) ®) K

—/\/\— |0 o o

K, G {
C] ——

Figure 2.3.1. Schematic of {(a) Maxwell Model and (b) Kelvin-Voigt Model

For the Maxwell model
'+ N « S o] . 1 G
¢, K, e ¢ 'K,

where G, € are the frequency spectrum of the stress and strain, and G(w) is the overall

complex modulus.
For the Kelvin-Voigt model,

c=Ke+C¢ =>  G)=

In the time domain, the stress-strain relaxation models are described in terms of the
convolution integral of the relaxation function and the strain or strain rate terms. For

numerical purposes the commonly used formulation is in terms of strain rate:

c(t):j;G(r—t)%dr

The corresponding relaxation functions in time are:
(a) Maxwell model:

K
G(t)=Ke © (i.e. relaxation only)
(b) Voigt model
G()=K,+Co(1) (i.e. elastic with no relaxation of the real modulus)

2.3.2. Maxwell - Kelvin Voigt Model-Standard Model
The constitutive relationship for this system
(see figure 2.3.2) is:
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K>

K,CE+K,K,e=(K,+K,)0+C,6 _/\/\/_ —
1

(KK, + joK,C,)e = (K, + K, + jaC,)o _
G
The complex shear modulus is: Figure 2.3.2. Schematic of Maxwell
K2 Kelvin-Voigt Model (Standard Model)
By
G((D) = KlKZ + jCOK2C1 — KZ _ C]
(K1+K2)+ij, K1+K2+jm

1
This mode! has relaxation in the real modulus and the complex modulus has a peak value
K +K,

atw=w,= , the relaxation frequency.
2

In the frequency domain one can write

K
Go(@)=Gyyp = K& » 6.(w)=G,.,. =K, andmd=K‘+ 2

w=0 = Q)=poo
K +K, C,

In the time domain, the relaxation function is defined by:

KK 1 K,+K, ..
12 and B =———2(in Hz)
,+K, 2 C,
where Gy, G.. and B correspond to the short term shear modulus, the long term shear
modulus and the viscoelastic relaxation constant respectively.

G(t)=G,_+(G,—G.)e™® with G, =K, , G, =

2.3.3. Boltzmann Model -Three Parameter Maxwell Model

For a three parameter Maxwell model known as Boltzmann model (see figure 2.3.3
below), the complex shear modulus is defined in the frequency domain by,

G@) =K LSk C
UK+ jwC,

By substituting
K
GO((D) = Gw—m(m) =K,, G.(w)= Gm-.u(w) =K, +K,, and W, = -C+ ,

1

one can write,

(G.. () — Gy () jo
w0, + jo ’
The relaxation function is defined as

G(w) =G,y(m) +
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G)=G_+(G,-G.)e® with G,=K +K,,G_=K, and ﬁ:%%ﬁnl—lz).

1

K,
NP _
LA~
1]
X, C

Figure 2.3.3, Schematic of Three Parameters
Maxwell Model (Boltzmann Model)
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BENCHMARK TEST

This section focuses on the response of
elastic and viscoelastic materials contained
within a rigid cylinder that undergoes
axisymmetric rotation, Q()=Q__ sinm,r,
as shown in the figure 3.1, below.

Material
{brain)

Rotating Container
(cylinder)

X
L - —

Zb Qi
L. — .4

Figure 3.1: Rotating container filled with elastic material

Analysis for Harmonic Time Dependent Boundary Conditions
The analysis 1s based on the following assumptions:

(1) only plane motion occurs, i.e. the cylinder of outer radius a, can be considered as
infinitely long and deformation does not occur in the axial (z) direction,

(2) there is no slip at the interface of the material and the container (i.e. the outer radius
of the material r = a, rotates with the container),

(3) The material is incompressible,

-10-
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(4) axisymmetric rotation causes displacement (u = ug) to only occur in the
circumferential (8) direction and no displacement in the radial r direction.

Assumption (3) can probably be relaxed as axisymmetric rotation would not, for this
simple cylindrical geometry, be expected to cause compressible wave/effects to be
generated. The displacement u is then a function of radius r and time t. The non-zero shear
strain is given by € = &, where
1 ou u
€ Z(Br r) (3.1.1)
For elastic material the constitutive relationship is

g=0t (3.1.2)

Previous work of Margulies and Thiobault 1989 considered the response of the material
due to a harmonic component of a fourier series with specified initial condition. The
present solution describes the response of the material to any frequency harmonic rotation.
The boundary conditions used here are:

r

u(r=0,1)=0 u(r=0,1=0
and {and (3.1.3)

w(r=a,r)=U,.e™

U. .
ulr=a,t)=—Le*
@

The equation of motion for the displacement of the elastic material in the © direction is
given by
o0'u ., 9°u 10u u
= (s +—— - 3.14
at? (ar" ror r? (319

where c is the shear wave speed.

The solution of egunation (3.1.4), similar in form to the wave ecjuation in cylindrical
coordinates (Skudrzyk 1971), does not require the introduction of potentials. A separable
form of the solution is used,

u(r,t) =u(r)T(r) (3.1.5)
Substituting into equation (3.1.4) gives

dZT 3, 0w u| U
—_—= (U +—-—)T 3.1.6
4 dr’ ( r rz) ( )

or

T LoUou
'"],':=;(u +'r--;'2‘) (3.1.7)

211 -
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The left-hand side is only a function of time t, and the right-hand side is only a function of
r. Hence both sides must be equal to an arbitrary constant, A%, say.

T+MT=0 (3.1.8)
has solutions T = Ae™ + Be™™ (3.1.9)
with arbitrary constants A and B.
The equation for u is

du ldu 1 ¥

ar* radr r? ¢

2 2
du ld“+(7‘_2_;‘2_)u=o (3.1.10)

ie. =+ =
dr rdr ¢

Equation (3.1.10) has a similar form to the general Bessel equation that occurs in
problems such as sound propagation in circular tubes (Skudrzyk 1971). The solution of
this equation is:
A A
u(ry=CJl,(—=r)+ DY, (—r) (3.1.11)
c c

where J; and Y, are the Bessel functions of the first and second kind of order one.

. ® . . .
By putting A = and k =—, equivalent to the shear wave wavenumber, the solution for
c

the steady-state displacement of the elastic material is then given as
u(r,t) = (Ae’™ + Be ' Y(CJ,(kr)+ DY, (kr)) (3.1.12)

Using the boundary conditions defined by equation (3.1.3),

u(r =a,t) = J(:: PRAL 50

rotation u(0,0)=0 = CJ,(0)+ DY, (0)=0
u(a,t) = —U.T—"ue"“” A(le(ka)+Dy](ka))=gﬂ.
= jo

Equation (3.1.13-3.1.15) respectively.

As J1(0) = 0 and Y,(0) = - <o, the finite solution requires

-12-
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D=0
AC = ‘T““%—
jaJ, (ka)
The final solution is: u(r,r) = y—"--‘!ﬂeﬂ“‘ = u(r,t) =U, _‘ﬂ.(_k.r_).efw (3.1.16)
J J;(ka) J] (ka)

Equation (3.1.16) has singularities at the zeros of Ji(ka), corresponding to the natural
frequencies of the elastic material in shear, i.e. ka = 3.83,7.02, 10.17, etc.

Likewise the transfer function H(w), equal to the displacement of the material divided by
the rotational velocity of the boundary at frequency @, is given as

,
J\| kat

ur) _ 1 Gy _ 1 ’[aa) (3.1.17)

U™  JjoJ,(ka) jo J(ka)

H(w)=

h(t), the impulse response function, could be obtained by inverse Fourier transform of
H(w). No analytical result is available and only numerical results can be produced using
Fast Fourier Transform techniques.

The transfer function for the strain £(¢), due to unit velocity, can similarly be obtained by
substituting for the displacement u(r,t) into equation (3.1.1) and using the relationships for
the derivatives of the Bessel functions (Kreyszig 1992).

r
J‘(ka{{) i (ka)J,_(kaEJ

(ka)Jy(kas) = 2=t | = = e (3.1.18)
a

glw) = L !
jo  2al (ka)

jo 2al, (ka)
a

In equations (3.1.17) and (3.1.18) it has been possible to introduce non-dimensional
parameters using the term “ka”, known as the Helmholtz number, and r/a the ratio of the
radial position to the outer radius.

Numerically, the impulse response function for the displacement and the strain can be
more easily obtained for viscoelastic or damped materials as the transfer functions are
finite at all frequencies. For the undamped elastic material consider the point on outer
radius, r = a. Then H(w)=1/jo and the impulse response function, for the velocity on the
periphery, is the Dirac delta function as expected.

- 13-
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One could, in general, also use a modal approach to obtain the solution for finite duration
inputs by expressing the solution in terms of the corresponding modes (eigenfunctions)
with the natural frequencies {(eigenvalues) (Stephenson 1974). This is described in the
following section for a particular imposed boundary condition for the elastic case.

- 14 -
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3.2 A modal solution for harmonic imposed boundary conditions and for a half sine
input.

3.2.1. General solution

The previous analysis of the steady state response of the elastic material can be extended,
using a modal expansion (Stephenson 1974), to include free vibration effects that are
important for lightly damped systems or for predicting the response of the system to short
duration (transient) or non-steady conditions. As an example of the approach consider the
following boundary conditions on the boundaryr=R =a,

Asinox 0gr< X
u(a,t) = => w (3.2.1)
0 KL
)

This is known as a half sine pulse and is used to investigate the maximum response as a
function of oXor usually @w, for a system with natural frequency ). By linear
superposition the boundary condition can also be written as,

Asinor 0<r <X (32.2)
u(a,1) = = @

. . b8

Asin®r+ Asinw(1—7 /) o <! (323

And the problem reduces to the solution of the elastic material due to a harmonic input

(for t <7 /) and the summation (for ¢ > ® /@) of a delayed version of the solution with
the original solution.

for 1 < m /w consider the solution for the imposed boundary conditions:

ula,t)y = Asin(t t>0
u(r=0 . (3.24)
u(r,0y=0 (3.2.5)

The last two conditions are due to the material being initially at rest. The displacement, u,
of the material is given by the steady-state solution (see previous section) and the free
vibration in the modes @;(r) of the elastic material. The total solution consists of a linear
combination of the modes (eigenfunctions) with an infinite set of coefficients (A;and B;) in
conjonction with the steady-state solution. The coefficients are chosen such that the
boundary conditions (equations 3.2.4) and (3.2.5) are satisfied (Stephenson 1974), i.e.

Jl(ka-[) )
u(r.t) = Asinot——=2+ Y (A, cosw,z + B, sinw,))®,(r) (3.2.6)
Jl(ka) i=]

@ is the corresponding natural frequency for the &; mode.

-15-
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The modes @, could be obtained for various boundary conditions (on r = ( and r = a) but
if one chooses the modes corresponding to zero displacement at the centre (r = 0) and the
outer periphery (r = a) the solution, as given by equation (3.2.6), would then automatically
satisfy the boundary condition on r = a {equation (3.2.4)).

The modes corresponding to the specified boundary conditions are,
O, (ry=J,(kr)
where k; are the values such that J;(kia)=0, i.e. kia = 3.83, 7.02,..., etc. The undamped

natural frequencies, o are given by (k;c) with ¢ = JE .
p

Substituting the series solution, equation (2.6), into equations (2.4) and (2.5) one has

i AD,(r)=0 (3.2.7)
i=1
and
JAkr) <
A= Bw®.(rN=0 3.2.8
J,(ka)+§ w0, P, (r) | (3.2.8)

It can be shown that the modes of the system are orthogonal (Stephenson 1974 p.67-73
for a similar boundary value problem, and Gradshteyn and Ryzhik 1983, expression 6.52),
ie.

rJ,(A;r)J (h ;r)dr =0 i#jand J,(A,a)=J,(A,a)=0 (3.2.9)

Ot—

a a2 ‘ 1
grjlz(l‘.}")dr =?{J1 (kia)z +(]_'i":'2a_2)-]]2(7\,-a):|
az 2
=20 ha) (3.2.10)

Hence using the orthogonality property one can show, using equation (3.2.7), that Ai=0
for all i. The coefficients B; can also be obtained.

OJAj rd (kr)d (k)
% J, (ka)

B,

L

- By putting W = ka and Y = k,a, we can define B; as,
@, [ kir)dr
[

1
[BARIACE
A 0

YT LW

(3.2.11)

- 16 -
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NB. Assumption that , the excitation frequency, is not equal to any o, natural frequency,
otherwise J, (ka) =0 (see later for the result when w=@).

The integral in the numerator of equation (3.2.11) _[r] ((kr)J, (k;r)dr , is a particular finite
0

Hankel transform . Margulies and Thibault 1989, used it to transform the original equation

of motion. Herein it is used to obtain the modal contributions.

The final solution is,

1
Jl(kagj g |9

+ - [i
J, (ka) Z Y L)

u(r,t) = Asinmt sinw, ¢, (k,r) (3.2.12)
Case 0 =

The special case is when =, i.e. frequency of applied harmonic boundary condition is at
the i" natural frequency of the material (equivalent to k=k;).

The coefficient B;=0 for i=j, due to the orthogonality relationship equation (3.2.9), and,

-0A 1
B.= yijy — 3.2.13
/ lim W . J](ka) ( )

J
W ;
J

The solution then simplifies to

J(kr) @A sine u, (kjr):i 3210

Y= 4 Asinot
u(r,1} = lim [ sin T @, 70

0o ;

J
First inspection would indicate that the response becomes infinite, as J ,(k;a)=0, but
taking the limit (using ’Hépital’s rule):

J

J (k.r
u(r’t)=££_"1'—|:Ji(kjr)tcoswjf+Sin£0j{.f;'(kﬁ’)£——""—]( ! )II
a c

J,(2)
Z

As J ()= J,(2) - (see Kreyszig 1992) and J,(k;a) =0, then,

Ac 1 . r J](kjr)
riy=— J k- rytcosw f+sinw | J, (k. r)y-——m—
u(r,t} p Jo(kja){ ]( ,:r) j 1 j[ l( J )C (0}—

=17 -
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Ac 1 sinw ;t . J, (k.r)
u(r,t):Tjo(kja) Jy(k;r)tcosw 2+ - j (rj, (kjr)---z-ji— (3.2.15)

NB. Equation (3.2.15) shows that the response on the boundary is finite, and equal to
Asinayt, but at interior points the response is increasing due to the “tcoscwyt” term. The
analytical solution for the response can now be obtained for any harmonic component, or
half sine impulse, using equations (3.2.3) and (3.2.6) with relevant coefficients B;.

3.2.3. Case Study: Applied Half-Sine Velocity Input to 2D Cylindrical Sample

Let the outer periphery attached to the elastic or viscoelastic material, be subjected to a
velocity that is described by a half-sine pulse. i.e.

Asine?  Q<re™ (3230
wa,r) = . @
0 —<I (3232}
w

The corresponding displacement on the periphery is

A ks
= (1-coset) 01« s (3233)
ula,t) =+
"y - (3234)
=L —_—< ]
L @ w

The factor A/ ensures that ua,0)=0. i.e. the motion has zero initial velocity and
displacement.

The response of the material can be described by the superposition of two displacement
inputs, namely

u(a,t) =-&(l —COos?)
o)

0<t (3235
and

u(a,n = i(1 — cosmr) —i(l +cosw(r—-T) i (3.2.3.6)
w W T=—«y
w

The solution is based on the steady state solution of the equation of motion of the material
with the boundary conditions described by (3.2.3.3) and (3.2.3.4) or correspondingly by
(3.2.3.5) and (3.2.3.6) with the transient solution given in terms of the free vibration modes

of the cylinder, namely u(r,t) = J, (k,r)e’* , where “k;a” takes certain values for a boundary
free of displacement. '

In particular for elastic material, considering equation (3.2.3.5), the steady state solution
when the displacement on the periphery given by u(a,t) =Acoswt/w1s

- 18-
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u(r,r) = i—;—]-(%%cosmr (3.2.3.7)
Ka

This satisfies the boundary condition and the equation of motion of the elastic material.
The steady state solution for u(a,t)=A/w ( a constant for prescribed values of @) is a
solution at zero frequency so one require u(r,t) to satisfy

u(a,1) = A . . (32.38)
® independant of time (3239)
u(r,t) = u(r) -
and
2
du Ydu u _, (3.2.3.10)

dr® rdr r?

A solution that satisfies these conditions and satisfies u(0)=0 is the linear solution with r

wan=21 (32.3.11)
wa

This corresponds to a rigid body rotation of the cylinder through an angle (A/cwa).

n
For t < — the one has

w
i Jl(ka—r—) ]
a .
r.t)=—(———=——=cosw!) + A cos® .+ B sinw.0)P.(r 3.2.3.12
(1) =—(= 7 ) ;"5‘ sinw, )P, (r) ( )

The solution must satisfy the initial conditions

u(r,0)=0 (32.3.13)
w(r,0) =0 (32.3.14)

Substituting (3.2.3.12) into (3.2.3.13) and (3.2.3.14) one obtains

Alr J1(kr) —

— || — i ———— R . —_— 3.2- .15
(a Jl(ka))+i§=1(A‘d)‘(r) 0 (3.2.3.15)
and S’ Bw,®,(r})=0 (3.2.3.16)

i=]

Orthogonality of the modes (J:d)‘.(r)@ JAryrdr =0, for,i# J) implies, from (3.2.3.16) that

B;=0. The coefficients Ai are then given by,

219 -
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J’“(’ Jilkr )]d) (ryrdr

4 ="AZN /. (ka) (3.2.3.17)
® }-D & (ryrdr
and
Jka j“i—J(kr)dn()dr
Ar A a J (ka)
u,(r,1)= E(E — =2 cost) = — ) cos, 1P, (r)

I\ (ka ) Lo lr=] L CIDI (r)rdr

For the second displacement input given in (3.2.3.6), —ﬁ(l +cosw(t—T), onecan
©

likewise obtain a solution for zero initial conditions at time t=T.

w (r,1) = ‘COA <+ Jy(kr) cosw(r ~T)) + i(c‘. cosw, (t = T)+ D, sinw, (t = THP,(r)

J,(ka) oo
(3.2.3.18)

f diti w(ra=T)=0 (3.2.3.19)
or conditions

wra=T)=0 (3.2.320)
one obtains D=0
and,

A E( j (: )]d) (ryrdr
C = 2 (ka) (3.2.3.21)

)

® L CDI. (r)rdr

the solution is then,

. "(14. % ("r)}b (ryrdr

—A r J(kr) o\a  J,(ka)
w(r.r)= (—+ cosw(r—-T)N+
o a Jka) ;w jﬂ @ (r)rdr

cosw; (t = T)D.(r)

(3.2.3.22)
The solution for the cylindrical model is then

u(r,t) = uy (r,t) for t < ww

-20-
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and

u(r,t) = u; (1,0) + w2 (r,0) for t > .

The corresponding strain being obtained using the relationship in equation (3.1.1).
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Numerical Prediction of the Viscoelastic Response for Transient Excitation.

The procedure followed is based upon the Input-Output relationship of linear systems,
namely,

y(£) = h(1) ®x(1) (3.3.1)
and,

Y (f) = H(f).X(f) or Y(w)=H(w).X(w) (3.3.2)

where ® represents the convolution integral (J:h(t—‘t)x('r)d‘c ); x(t) and X(w) are the

inputs in the time domain and its Fourier ransform; h(t) and H(w) are the impulse
response function and its Fourier transform (known as the transfer function) and y(t) and
Y(w) are the responses in the time domain and its Fourier transform, respectively.

In section 3.1, the transfer functions for the material due to harmonic boundary conditions
have been derived. Multiplying these functions by the Fourier transform (spectrum) of the
inputs, e.g. for a half sine input velocity on the periphery, and then inverse Fourier
transforming one can obtain the response of the material in the time domain. Analytically
the Fourier transform of the input can be expressed but the inverse Fourier transform of
the material response can only be evaluated numerically for damped (lossy) material using
Fast Fourier Transforms.

The case considered in detail is for a half sine velocity input (figure below), as equation
3.2.1

Asinw,t Dsre< =
w
ia,t) = = : (3.3.3)
0 LAY
wl

Half-sine Velocity input

1,2 Ao e AR AR IR AR AT E AR R ARt nr e
A=1
-]
E " sin(mt) OcteT
E V(1) =
g Tt
£ o
-y
[
L
S
a?
T
—
nﬂ o 3-8 ags e -3 am
time [s]

-2
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The Fourier transform of the half-sine velocity is given by:

V() =—“—92—fﬂ°’—;(1+e_ﬂ57j, (3.3.4)
-

where @ is the input frequency, Qe =1 for unit angular velocity.

The strain transfer function, £(w), for a harmonic velocity applied to the boundary is given
as equation 3.1.18.

| (), (ka 1}
c(w)=—— 4

— e (3.3.5)
jo  2al (ka)

g(w) is then multiplied by the Fourier transform of the input X(w) for the Fourier
ransform of the strain,

1 a0, 0 (k"”z("ai) i
s(m).V(m):«--_—a max 1 a [1+e ‘“IJ (3.3.6)
J

wo’-0 2 (k)

The inverse Fourier transform of this quantity gives the strain time history due to the half
sine velocity input.

r

(ka)J (ka-—) @

e)=[ - 1 a0, N a7 b (3.3.7)
—  jo o, -w* 24/ (k)

For numerical implementation the procedure evaluates expression (3.3.6) for a range of
frequency 0 - fnax (& Wna/27). The shear wave wavenumber k, frequency dependent for
viscoelastic material, is evaluated using the following relationships:

k=

9c= _’

2] G
¢ P

where G = G(w) varies with frequency and defined for a Standard model (see section
2.3.2) as:

Gw)=(K,+K,)- —[-(—’—CE-“-'— where @, = -K—‘ the relaxation frequency.
W, + jo C,

.23
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The inverse Fourier transform, given by equation 3.3.7, is calculated using finite fast
Fourier transforms with appropriate scaling due to the number of points in the transform
and the sampling rate. The Fast Fourier transform actually processes the data for
0<w<w_, with a reflected complex conjugate version defined for @, s < 20,
so that a causal real solution is numerically produced in the time domain, The following
results are figures showing the maximum principal strain, equivalent in these cases to the
maximum shear strain, as a function of position and non-dimensional time in the cylindrical
model. The results are produced from the analysis described here and also shown are the
predictions from the FE models for a suitable value of the shear modulii (long term and
short term) and an appropriate relaxation frequency.

Generally there are two main comments to note. The FE predictions predict an earlier
arrival of the strain then is predicted based on simple wavespeed assumptions and this is
more noticeable in the latter figures showing the response nearer to the centre of the
model. Secondly the peak values of the strain are lower for the FE results and may be a
consequence of there being some energy that has propagated faster in the numerical
model, before the time of arrival of the main shear wave.

Max-Princ-Strain in Viscoelastic Material
{g = 0.318, b = 16.26, wiay = 10}

8.00E-00 -
9= GGy
------ rfa s O 8545 {Nun)
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o —_—ia = 08545 (Thee) i
5.00E-01 Gy = ol
o~ (Gop)”*
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E 2008015
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Max-Princ-Strein * { @, {0.a)
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Max-Princ-Strais * { oy o)

Mazx-Princ-Strain in Yiscoelastic Material
(g = 0.378, b = 16.26, w'ugy= 10)

2.50E-01

2.00E-00 +

1.50E-01 4

T00E-01 4+

5.00E-02 4

g= (L0
...... 1a = 0.5{Num}

be oy
wininc g8 w 0.5(T huo)

By = Gyl

o= (Gop)*

0.00E. 00
0.00E-00

4 00E-D1 1.00E.00 1.50E . 00 200E- 00 2.50E+00 3.00E+00 3 50E.00
Nendimeasionsd Ume LT

Theoretical max.=0.2162, Numerical (FE) max.=0.18327

- 26 -

4.00E-00

Section 3.3



4.

4.1

4.1.1.

4.1.2.

Investigation of Elastic and Viscoelastic Materials under Rotational Velocity Loading Section 4

FE STUDY OF THE DYNAMIC SHEAR RESPONSE OF THE BRAIN
Cylinder filled with Elastic/ Viscoelastic Materials

Introduction

As a first step towards studying the shear response of the brain, A plane strain model, consisting of
a simple cylinder filled with a cerebral material was used (figure 4.1.1). The analysis is based on
the same assumptions as in the previous section related to the analytical analysis, namely, the no-
slip at the boundary (Brain-Skull interface) is assumed and nearly incompressible brain material is
used (Bulk modulus Bs=2.083 E09 Pa). As explained previously, the maximum principal strain in
the brain matter induced by a half-sine velocity input is of interest. Three models (A, B, and C)
have been investigated, and models A and C give the best accuracy, but model A is numerically
smaller. Hence, the model A is used in this investigation.

(A) (B)

]
eda] |1

Figure 4.1.1. 2D Finite Element Models used

Scaling
From the differences in shape, size, and properties between animal and human brain material it
follows that no direct conclusions regarding tolerance levels for man can be made from animal
tests. Thus, scaling techniques have been used to correlate results obtained on animals to the
human (Holbourn in 1943, Ljung in 1980, Margulies et al. in 1985). In the present work, scaling
used assume that compressive wave effect could not be expected for this geometry and loading
type. Hence, the shear strain in the brain at a given point is a function of the following set of
parameters,

£ =¢€(t,a,¢,Q(0),T,B.0) 4.1)

where t denotes time, a radius of the cylinder, (1) the velocity input, T characteristic time scale
of motion, 8 is the shear moduli ratio (G./Go) and P is the viscoelastic decay constant Ge.B=0,
and & = 1 for elastic material).
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According to the Buckingham Pi Theorem (cf. Baker et al., 1973) the shear strain € can be written
as a function of a complete set of independent dimensionless groups, formed from the variables
and parameters on which € depends. Dimensional analysis yields that the maximum value (peak) of
the shear strain depends on the following parameters,

[$]
e =g max B 5, 4.2)
[43] [0}
ref

ref ref

where . =c/a, 0= T/t* the half-sine velocity pulse fundamental frequency

For an elastic material, the relationship (4.2) is reduced to:

® Q
£ =g (—— , 8%, (4.3)
max oW ()]
ref T ref

For a fixed angular velocity magnitude ..., the relationships above become, for a viscoelastic

material,
e —e2 P 5 (44)
max w W
ref ~ref
and for an elastic material,
€ o £( ) (4.5)
ref

This scaling has been adopted for this investigation.
4.1.3 Non-linear response

To identify possible nonlinear response of the brain, the maximum value reached by the Maximum-
Principal-Strain (€.) is computed for different values of the angular velocity magnitude applied to
the cylinder. All simulations have been performed for Wt = 5, where er is defined by,

®, = 1 F for elastic material and by ® . = 1 }g-"- for viscoelastic material (i.e. G, denotes
P p

a a
the short term shear modulus).

Figures 4.1.3.1 and 4.1.3.2, show that the dynamic shear response of the brain is linear for a
velocity magnitude less or equal to the shear wave propagation speed in the brain

Q. S0, =£). The non-linearity appears when Qmax, the imposed angular velocity, become
a

greater than the shear wave speed in the circumferential direction.

-28 .
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Figure 4.1.3.1. Maximum principal Strain in Elastic Material vs. Dimensionless Angular Velocity Magnitude
Mz Onr, With /W= 5
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The effect of the relaxation decay is illustrated by figure 4.1.3.3. In fact, this decay has a
noticeable effect when it is ten times greater than the natural frequency of the shear wave in the
material, 1.e.b=B/w.>10. For b<10 the solution obtained is not significantly different than the
elastic solution. Figure 4.1.3.4, shows that the shear strain is very sensitive to the ratio g=G./Go
and “b”. The maximum values of the strain are proportional to the relaxation decay and inversely
proportional the shear modulus ratio.

Max-Prins-Strain in Viscoelastic material
Glt) = Gun + (Go - Goaloxp(-Bt), e z 5; Ha » 0.9545, Bulk=2ed Pa

l

ey & o0
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Figure 4.1.3.3: Effect of the Relaxation Decay on Maximum Principal Strain in Viscoelastic
Material
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Mex-Prins-Strain in Viscoelastic material (No Partition}
Git) = Goo + (G0 - Goo)exp{-bt), whwref = 5; ris = 0.9545, Bulk = 2 DEEGS e

Max-Princ-54ain * { o /T wa!
[4)
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05
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Figure 4.1.3.4: Contour plot of on Maximum Principal Strain in Viscoelastic Material vs.
Dimensionless Relaxation Decay and Dimensionless Shear Modulus.

Particular cases are shown in figure 4.1.3.5, which illustrates the evolution of the strain with
respect to the duration of the loading (i.e. Tr/T =0y W), for elastic material, viscoelastic materials
(i) LSBM data , Turquier 1996) and (ii) ISVR data obtained by model fit to the data from Shuck
(see figure 2.2). This figure shows that LSBM data characterised by “b=1.626" agrees well with
the elastic solution. The effect of the relaxation is insignificant. However, the ISVR curve shows
that the relaxation has a significant effect on the strain in the brain. Moreover, it indicates that the
brain is more sensitive to the low frequency contribution (W@ <6 ), (i.e. in this example, Ws=
16.2). This result is in agreement with previous work by Willinger et al. 1995, when discussing
the rotation-translation duality in head trauma. They reported that the mechanism of the diffuse
axonal injury (DAI) which is a result to exceeding a certain value of strain in the cerebral tissue, is
related 1o the loading spectrum energy and thus to the duration of loading.
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Figure 4.1.3.5: Maximum Principal strain reached in the brain for different materials

One can observe that previously published values of “b™ and “g”, used in finite element modelling,
vary over the range 1.6-21 for “b” and 0.318-0.5 for g. From this parametric study, one should
take care when interpreting their results. Furthermore, this study shows the need to conduct more
experiments on brain tissue to evaluate its mechanical properties (i.e. the shear modulus
components (G, G and B)). It is premature to discuss human tolerance limits until human brain
tissue properties are well determined.

Cylinder with Fixed Rigid Partition filled with Elastic/ Viscoelastic Material

The mode! studied here is shown in Figure 4.2.1, characterised by introducing a rigid partition and
a non viscous fluid between the partition and the brain. A sliding condition is assumed
everywhere, namely, at the boundary, between the material and the skull (cylinder), between the
fluid and the rigid partition and between the fluid and the brain.

These entities were connected through a contact prescription (contact surface) implemented in the
FE code to release under pre-specified tensile and shear loading levels. The contact surfaces used
here can be separated, but at any case cannot be penetrated (no penetration between surface(i) and
surface(j) is possible). An Arbitrary-Lagrangian-Eulerian formulation is assumed to the fluid
elements, with the possibility of auto-smoothing the mesh when it is very distorted. This possibility
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is very useful, since the fluid has no resistance to shear, and hence the mesh of the fluid elements
will, as expected, become very distorted.
In discretizing the model, specific care has been taken to ensure a high mesh density around the
regions where the largest strains are expected to develop. These include the brain skull interface
and at the regions of the brain adjacent to the partitioning membrane which were believed to be
exhibiting large strains (see figure 4.2.4).

Rigid Cylinder

depth d Rigid Partition

Non Viscous Fluid

Thickness h
——————d

Gan: )

Elastic/Viscoelastic
Material

Figure 4.2.1: Schematic Mode! with Rigid Partition Fixed to the Cylinder,

Influence of fluid physical properties

As expected, the maximum value of strain in the brain is located at the tip of the partition (or Falx
in the human head). As shown in figure 4.2.1.1 and figure 4.2.1.2, the physical properties of the
fluid, namely the density and the bulk modulus, have no significant effect on the dynamic shear
response of the brain. This conclusion assumes that the bulk modulus and the density of the brain
are very close to those of the fluid. having limited this investigation to the following ranges:

0.5<ByB. <5 and 0.8<py/ps<1.2

In the following simulations, the bulk modulus and density ratios will be fixed to unity, namely
By/B.=1 and pi/p.= 1.
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4.2.2. Influence of the Gap

The effect of the gap was elucidated by increasing the gap from j=J/a=0 to 0.06. As shown in
figure 4.2.2.1. Further care was taken when meshing the region around the partition and the fluid,
where the maximum values of strain are expected. This study will be more focussed on the gap
§=0.03, since this value corresponds closest to the human anatomy.

(A) (B)
e, AT
S, T ——
— T ] [~ ] ] I ™
e g
1 }|
1 i
\l— 1
Sy ~
T ] =,
o o T 1|
)1 ] >
|~

Figure 4.2.2.1. Zoom on the Mesh around the Rigid Partition
(A) gap=0.03, (B) Gap = 0.06

It is observed that the peak Max. principal strain in the brain moves around the tip of the
partitioning membrane as shown in figures 4.2.2.2 and 4.2.2.3.

Generally, for the elastic material, the maximum value is reached for a zero gap (j=0), when the
brain is in contact with the partition (Falx). The special case when the loading frequency is very
low(i.e. quasi-static), the gap increases the strain level, but this difference is not very significant.

Max-Princ-Strain computed in Elastic Material for differen\ Gap
{with Rigid Partition/ Sliding/ Gap)

Locasmer of Compated Mas Prc-Stran

=0 Gap= 0
e G ape .03
—0— Gap » 0.06

Max-Princ-Strain * (wref/Wmax)

X U .. 2 .. F T & 2z 8 9 b}

Nondimensiondl frequansy & = wavrad
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Figure 4.2.2.2. Maximum Value Reached by the Maximum Principal Strain in Elastic Material for
Different Gap.

However, for the viscoelastic material, the gap has a strong effect on the strain in the brain by
decreasing the strain level. As mentioned above, the strain is very sensitive to the loading at low
frequency or long duration loading (see figures 4.2.2.2 and 4.2.2.3).

Max-Princ.Strain computed in Relaxing Material for different Gap j=Jid
{Rigid Pariition/ Sliding/ g = 0.067/ b= §3.8)

Locx geon ¥ Camputit b Pros Srme

——0
—— 003
g 0.06

Mux-Prino-Strain * { ey /Mime}

¢ + + t + —t ¥ + + 1
Q 1 2 3 4 5 4 7 L] 9 10
Nondimensionsl Hequanty g = ety

Figure 4.2.2.3. Maximum Value Reached by the Maximum Principal Strain in Viscoelastic
Material for Different Gap.
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Effect of the Gap on Max-Princ-Straln In Relaxing Material
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Figure 4.2.2.4. Contour plot of Maximum value reached by the Max. Principal Strain in
Viscoelastic Material for Different Gap.
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Figure 4.2.7. Contour plot of Maximum value reached by the Max. Principal Strain in Viscoelastic
Material (Gap = 0.03)
4.2.3. Influence of the Partition Penetration Depth

Figure 4.2.3.1 shows the mesh refinement for two different partition depths, showing the
increased mesh density necessary for a doubling of the depth.
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Figure 4.2.3.1: Illustration of Different Partition Depth, (A) 8=0.36, (B) 6=0.73

Max-Prin-Strain in Elastle Material for difierent Partition Depth
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Figure 4.2.3.2 Variation of the Max. Principal strain as a function of the depth of the partition and

the duration of the applied load.
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Figure 4.2.3.2 is typical of the results for the effect of the penetration depth for a fixed gap size
and for a range of loading duration for elastic material. The maximum strain response is not, as
might be expected, corresponding to the maximum depth of the partition but is somewhere in
between the minimum and maximum values possible. The response has both shear and direct
strain components in the general case and probably, as the partitition depth increases, the results
tend to a predominantly shear strain response. It is also worth noting that the location of the
maximum response is always at the tip of the partition. A similar effect is shown in figure 4.2.3.3
for the viscoelastic material and, apart from the difference in the magnitude of the strain, the
characteristics are very similar.
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Max-Princ-Strain in Relaxing Material For Different Depth Penetration of the Rigid Partition
(Skding/ Gap = 0.03, g = 0.067, b= 83.5)
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Figure 4.2.3.3 Variation of the Max. Principal strain as a function of the depth of the partition and
the duration of the applied load for relaxing material.
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4.2.4  Influence of the Fluid at the Container-Material Interface

The effect of the CSF fluid has been considered by modelling a partitition with a gap, as previously
described, and introducing fluid elements inbetween the parttion and the cerebral material and
between the skull and brain. A thin layer of a non viscous fluid between brain and skull has been
introduced (see figure 4.2.4.1), This configuration is the most realistic and representative to the
human head. The fluid here has a Bulk modulus of 2.08 MPa and density of 1040 Kg/m3. This
fluid has no resistance to shear.

(A) (B)

Rigid Cylinder

T e =
Rigid Partition ”
=
) T
Pl
i |\
Non Viscous Fluid o =
I {
J
Elastic/Viscoelastic

Material

Figure 4.2.4.1: (A) Schematic Model with Rigid Partition with Fluid all around the
Elastic/Viscoelastic Material, (B) Zoom on the Mesh around the Sensitive Regions

The effect of this layer, illustrated by figures 4.2.4.2 and 4.2.4.3 for elastic and viscoelastic
material models, is characterised by a reduction of the strain level in the brain as expected. This
effect is more significant in the case for elastic material than in viscoelastic one (i.e. 25% in elastic
material vs. 8 % in viscoelastic material). One can notice, as mentioned in previous sections, that
the dynamic response of the brain in shear reaches its maximum value for the excitation frequency
close to the frequency of shear wave propagation in the brain.
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Figure 4.2.4 4a: Contour of maximum
principal strain at 20 ms under 50 ms half-
sine pulse duration. Note that the maximum
value is reached at the tip of the Falx where Figure 4.2.4.4b: Laceration of corpus

Diffuse Axonal Injury is very frequent (figure  callosum, septum and formix. Motor

4.2.4.4b) in case of rotational loading vehicle accident (Kirkpatrick 1984)
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Figure 4.2.4.2. INustration of the effect of the fluid at the brain-skull interface on maximum
principal strain in elastic material
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Figure 4.2.4.2. Nustration of the effect of the fluid at the brain-skull interface on maximum
principal strain in viscoelastic material
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Hinged Rigid Partition with Spring

Additional complexity has been introduced by considering the partition as rigid but
being hinged at its connection with the skull. This is a step in the progression in the
modelling to introduce flexibility to the partition, representing the Falx. Figure 4.3.1
shows the introduction of the rotational stiffness.

Revolute Joint
with stiffness

Rigid Cylinder
depth d Rigid Partition
Thickness h Non Viscous Fluid
Gap: }
——— ey

Elastic Material

Figure 4.3.1: Mode! with Hinged Rigid Partition with Spring

For high spring stiffness, greater than 1.0e07 Nmy/rad, the results are as if the partition is
securely attached to the skull. As the stiffness is reduced, see the results given in figure
4.3.2, there must be rotation of the partition about the pivot and this consequently leads to
a reduction of the peak values of the Principal strains. The peak strains are still calculated
near to the tip of the partition and figure 4.3.3 illustrates the variation of the peak strains
as a function of the spring stiffness (non-dimensionalised against the stiffness of the elastic
material).
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Figure 4.3.2: The Max. Principal Strain in elastic material due to the introduction of a
rotational spring at the base of the partition.
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Figure 4.3.3 Variation in the peak strain at the tip and near the base of the partition for

rotational spring at the base.
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4.3.2 Flexible Partition Attached at its ends

The partition flexibility can be included in two ways. Either one can consider the partition
to have negligible bending stiffness and the stiffness that it possess to be due to membrane
restoring forces. The second alternative is to assume that the partition has significant
thickness and bending stiffness associated with it. As the thickness increases the bending
stiffness increases in proportion to the third power of thickness.

The effect of the partition stiffness is given in figure 4.3.4 and compared against the
membrane stiffness for the same dimension partition in figure 4.3.5. Increasing the
stiffness of the partition produces more deformation in the cerebral matter and the bending
stiffness produces approximately double the peak strain, figure 4.3.5, compared to a
partition exhibiting membrane stiffness only. The results tend towards the reponse for a
completely rigid partition as the stiffness is further increased, see figure 4.3.6, and are as
one would expect.

Max-Princ-Strain at the Tip: Effect of Bending
{Thin shell formulation, h.Em = 3.15 E+06 N/m)
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Figure 4.3.4 The effect of the bending stiffness of the partition. Increasing values of h
corresponding to increased bending stiffness.
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Bending and Straining effect on Max-Princ-Strain in the Brain
{h.En= 3.15 E+06 N/m)
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Figure 4.3.5 The effect of the bending stiffness(using thin shell elements) versus the
membrane stiffness of the partition on the Principal Strain as a function of the membrane

thickness.
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Figure 4.3.6: The increase in peak strain with increasing bending stiffness of the partition .
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Similarly, using membrane elements for the partition, simulations have been performed for
increasing membrane stiffness and, as in the case for increased bending stiffness, the strain
is increased.  Figure 4.3.7 for membrane stiffness can be compared with figure 4.3.6 for

bending stiffness changes.

Max-Princ-Strain computed in Elastic Material for ditferent Membrane stifiness
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Figure 4.3.7: The effect of increased membrane stiffness of the partition

Graphs of the peak values of the Principal strains are given in figures 4.3.8 and 4.3.9 and
show the variation as the stiffness is increased. Likewise increasing the partition stiffness,
by changing the modulus of elasticity, produces a similar result for fixed values of partition

thickness (see figure 4.3.10).
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Max-Princ-Strain vs dimensionless Plate Stifiness of the Partition
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Figure 4.3.8: Peak value of the Max. Principal Strain vs partition bending stiffness
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Figure 4.3.9: Peak value of the Max. Principal Strain vs partition membrane stiffness
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Max-Princ-Strain vs dimensionless Plate Elasticity
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Figure 4.3.10: The effect of changing partition stiffness by increasing Young’s modulus of
elasticity for fixed values of partition stiffness.
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5.0 Conclusions

Benchmark solutions have been developed for a 2D plane strain model for shear strain
predictions that can be solved for elastic and viscoelastic cerebral material models. These
solutions have been compared with numerical(FE) predictions and the limitations of the
numerical models have been identified. The numerical solutions showing an early arrival
of response compared with the analytical result. The actual values of the Principal Strain
are in reasonable agreement between the two approaches. The numerical results also
show that the response of the 2D model is linear with the magnitude of the applied
rotational velocity to the periphery when the maximum velocity is lower than the angular
shear wave velocity.

For relaxation effects there is increased peak strain compared to the elastic case, when the
relaxation frequency is greater than approximately ten times the reference frequency W

(=—). This is a significant effect and the strain is more sensitive to lower frequency
a

contributions, i.e. longer duration input. The introduction of a rigid partition (modelling a
Falx) produces a model with both shear and compressive strain effects. The maximum
strain occurs close to the tip of the partition and is relatively insensitive to reasonable
variation in the material properties of the cerebral matter or the non-viscous fluid
surrounding the partition. The gap, with no fluid included, produces a maximum response
in the elastic models for a zero gap and for viscoelastic material the effect is similar but
with much greater sensitivity to variation of the gap size. The inclusion of non viscous
fluid in the gap reduces the strains as would be expected.

The partition depth, how it is fixed to the skull and its stiffness properties alter the strain
response. The maximum strain response is not obtained for the longest partition although
more rigidly attaching the partition to the skull, that has the imposed rotation applied to it,
does cause the strains to increase. One would expect this latter result to be produced as
more load is applied to the cerebral matter if the partition does not rotate at its base. By
introducing either membrane stiffness or bending stiffness of the partition it appears that
the strain in the cerebral material is higher due to the bending compared to the membrane
property of the partition. In both cases increasing the stiffnesses causes the strain to
approach that obtained for the rigid partition, as anticipated.

Further work can now be directed into producing realistic 3 D models of the skull and
brain and applying loads, simulating typical impacts. The viscoelastic models have shown
some need for improvement, possibly by reformulating, and there is still no suitable
viscous fluid model available that may be needed for the CSF. Measurements of the
cerebral and Falx material properties are still limited, although this study has assisted in
quantifying the frequency range for which the properties are required.
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