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Abstract

Many structures present symmetry that can be used to simplify calculations. In
this report, a method to estimate the wave motion in waveguides with uniform cross-
section is presented. The commercial FE package ANSYS is used to model a section
of the waveguide. The system matrices are then post-processed in MATLAB. The
dynamic stiffness matrix is found, partitioned and rearranged to find the transfer
matrix, which links the displacements and forces on both sides of the section. Wave
propagation characteristics are described by the eigenvalues and eigenvectors of this
matrix. The wavenumber dispersion relations, wavetypes and energy related quan-
tities are calculated for examples of a rod, beam, plate strip and laminated plate.
The main advantage of this approach, compared to other waveguide methods, is the
use of a standard FE-package, so that the full power of existing element libraries can
be used to model general structures. Also, the computational cost is independent of
frequency, the post-processing algorithm is stable and can be made generic.
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1 Introduction

1.1 Background

Structural vibrations in continuous systems can be described in terms of mode shapes
and natural frequencies or in terms of wave motion {1-3]. For higher frequencies, es-
pecially the audio-frequency range, the wave approach is most appropriate, because
the frequencies of concern are usually far above the fundamental structural frequen-
cies and a large number of modes would have to be considered. The transmission of
energy through a structure, for example from a source to a receiver, can be easily
described in terms of waves using the phenomena of interference, reflection, diffrac-
tion and scattering. The modal solution is a global approach, because each mode
depends on the structure as a whole, with all its parts and the boundary conditions.
The number of modes is infinite for the structure, but there is only a finite number in
a finite frequency range. In general, the motion of a structure can be considered as
the sum of modal contributions. In contrast, the wave approach is a local approach,
because only the properties at a point of the structure are needed to determine the
wave propagation characteristics at this point. The different viewpoints of vibration
are compared by a simple example in section 1.2

At low frequencies, a classical finite element model can be used to describe the
wave motion of a structure. There is a requirement of using 6-10 finite elements per
wavelength in order to get accurate results. At higher frequencies, the wavelengths
becomes very small and this results in a computationally expensive FE-model. It is
possible to reduce the computational load by using symmetry. Additionally, methods
have been developed that use a FE-model with a size independent of frequency. One of
such methods is the use of waveguide models. Alternatively, a statistical analysis can
be appropriate for high frequency vibration, which is also unaffected by uncertainties
in the structure. One such approach is statistical energy analysis (SEA) [4,5], where
a structure is modelled as a number of connected subsystems and the frequency
averaged energy-flow between them is considered. However, the properties of the
subsystems can still be found using wave analysis.

1.2 Wave and modal solutions for continuous systems

Continuous systems are characterized by continuously distributed mass and stiffness
properties. They also deform continuously and therefore have an infinite number of
degrees of freedom. The motion of such structures is described by partial differential
equations. To illustrate the modal and wave approach, a simple one-dimensional



partial differential equation of motion will be used. It is given in the form [1,86]

u 0%

52 " ba?

Equations of this form described for example axial vibrations of a rod, torsional
vibrations of a shaft and sound waves in air.

(1.2.1)

1.2.1 Modal approach

A solution to equation 1.2.1 can be found by separation of the variables {method of

Bernoulli)
u(z,t) = w(z)p(t) (1.2.2)

Considering harmonic motion, two ordinary differential equations for time and spatial
dependence can be found as

plt) +wip(t) = 0 (1.2.3)
2
w”(:c)+u;—2w(a:) =0 (1.2.4)

Solutions can be written in the form

p(t) = Tysin{wt) + Tecos(wt) = Teit (1.2.5)
w(z) = Asin((w/ec) z) + Beos((w/c) ) (1.2.6)

The initial conditions are used to determine the constants T and the boundary con-
ditions are used to determine the constants A and B. As an example, if the field
variable u is fixed at the two ends £ = 0 and z = L of the one-dimensional system,
the boundary conditions are

u(0,t) = w{0,t) = 0 u(l,t) =w(l,t) =0 (1.2.7}
Substituting in equation 1.2.6 gives
Asin(w?l) =0 (1.2.8)
which is satisfied for all w, = (nwc)/l since A # 0. Thus it follows that
walz) = Ansm("lﬁ) (1.2.9)

is the nth modeshape of the system at the nth natural frequency wp. The free
vibration of the system can be expressed as a modal superposition of the vibrations
in each mode, i.e.

u(z,t) = 3 An sin(ﬁ"lr—m)e%* (1.2.10)
n=1



1.2.2 Wave approach

The solution to equation 1.2.1 can be expressed as
u(z,t) = fi(ct — z) + falct + x) (1.2.11)

where f1 and fo are arbitrary functions which represent waves going in the positive
and negative z-directions respectively (method of d’Alembert). For time harmonic
motion at at frequency w, the solution to equation 1.2.6 can be written as

w(z) = Ae™™® 4 Bet® (1.2.12)

where k = w/¢ = 27/ is the wavenumber and represents the number of wavelengths
per 2m-metres. Together with equation 1.2.5 and A =TA, B=TRB it follows that

u(z, ) = Aeit=ke) L Beilwitha) (1.2.13)

which is in the form of equation 1.2.11 and shows the difference of this approach to
the modal approach (equation 1.2.10). The wavenumber k depends on the local wave
speed ¢ and on frequency w.

The cornparison to modes shapes can be done by looking at the reflection of the
wave at the boundaries. For a fixed end u = 0 it follows that B = —A. Therefore
equation 1.2.13 simplifies to

u(z, t) = 24i sin(kz) ™ (1.2.14)

where sin(kz) describes a standing wave, which compares to a mode of vibration.
The wavenumber k and the frequency w of a standing wave can be found by looking
at the total phase change experienced by a wave as it travels around the system.
Natural frequencies occur in the case of phase closure when the phase change is a
multiple of 2%. For a waveguide of length [ with fixed ends, it follows that

El+n+kl+n=2kl+2r=m2r — ki=nnm (1.2.15)
Therefore
nwe
Wp = knC = T

which is the same as found by the modal approach.

1.3 Waveguides

In general, a waveguide is a medium confined by parallel boundaries that allows wave
propagation in the direction of the waveguide only (Figure 1.1) {1,7]. Waves spreading
out in various directions are multiply reflected at the boundaries and transformed into
waves propagating in the direction of the waveguide axis. These guided waves involve
a characteristic {modal) distribution of the wave variable over the cross-section of the
waveguide, which is based on the interference of the reflected waves.

In this report, the waveguide is assumed to have a uniform cross-section, which
means that the cross-section has the same physical and geometrical properties at all
points along the axis of wave propagation. Waves can propagate in both directions
along the waveguide and the cross-section can be 0,1 or 2 dimensional. Examples
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for a 0-dimensional cross-section are a rod undergoing axial vibrations or a beam in
bending. The displacement u(z) is then a function of z only and therefore constant
across the cross-section. In this report, the focus will be on waveguides with one-
dimensional cross-sections, such as a plate strip in bending (Figure 1.2) or an infinite
plate. The displacement u(x,%) is a function of the coordinate z along the direction
of wave propagation and the coordinate y, which describes the characteristic shape
over the cross-section. An extruded section, an acoustic duct and a tyre are examples
of wavegnides with 2-dimensional cross-sections. For the tyre, the waveguide axis is
circular rather than a straight line (Figure 1.3).

Depending on the constraints that the boundaries impose upon the wave motiox,
there is a minimum frequency (resonance) for each wave mode to start propagating,
the so called cut-on or cut-off frequency. Below that frequency, a mode cannot
propagate energy and the amplitude decays exponentially.

1.4 Previous work

Many structures in reality are uniform in one direction. Structures with translational
or rotational uniformity and a constant cross-section are referred to as waveguides.
Structures with periodic symmetry, which means that a characteristic non-constant
cross-section repeats periodically, are referred to as periodic structures and also ex-
hibit waveguide behaviour. All work that considers such structures have the common
goal to make use of the symmetry to simplify calculations [8,9].

For simple waveguide structures, the wave approach can be used to find an ana-
lytical solution. For more general structures, the displacements in the cross-section
can be described by a finite element model while the variation along the waveguide
axis is expressed by an ordinary differential equation. This approach has been called
dynamic stiffness method [10] or also the spectral finite element method [11]. Com-
pared to classical methods, the FE model is now one dimension smaller, because only
the cross-section has to be meshed. Motion along the waveguide is assumed to vary
as e~ where k is the wavenumber. The characteristic finite element equation for
the cross-section can be put in the form [12]

(K(k) —w’M)q=0 (14.1)

where g is the displacement vector of the cross-section and M is the mass matrix.
The stiffness matrix K{k) is developed for various powers of the wavenumber % as

K(k) =Y Ki(k)' (1.4.2)

where the matrices K; are independent of wavenumber. However these are not stan-
dard FE matrices and must be determined for each application separately using
methods such as Hamilton’s principle [13-15]. The dispersion relations can be ob-
tained by calculating the frequencies for different given wavenumbers.

Another method, that has been used mainly to estimate wave propagation in
periodic structures, is the transfer matrix approach [9,16]. Wave propagation can
be described by propagation constants A as well as by a transfer matrix T, which
relates the displacements q and forces f from the left border to the right border of a



periodic element. This can be written in the form

[EJKT[?&]ZA{%J (1.4.3)

which is an eigenvalue problem. The propagation constants A are eigenvalues of the
transfer matrix T and can be written as A = e*® where k is the wavenumber and
[ is the length of the periodic element. The dispersion relations are obtained by
calculating the wavenumber for a given frequency. This is called the reverse problem
[17,18], because it is opposite to the spectral element approach. However, previous
works using this approach mainly deal with simple structures and the solutions are
found analytically.

1.5 Present report

Recently, Duhamel [19] showed how to use the transfer matrix approach to estimate
the wave motion in periodic structures and waveguide structures using models that
come from standard FE-packages. This report is intended to extend this work and
to apply the methods developed in [19] to various situations.

The FE-software ANSYS is used to obtain the system matrices for a cross-section
of a waveguide. The mass, stiffness and damping matrices are then post-processed
in MATLAB. The dynamic stiffness matrix is calculated, partitioned and rearranged
to find the transfer matrix T. Wave propagation characteristics are described by
the eigenvalues and eigenvectors of this matrix. Special attention is given to show
how the eigenvalues of T relate to propagating, attenuating and evanescent waves.
The wavenumber dispersion relations, wavetypes and energy related quantities are
calculated for different examples.

The main advantage of the approach compared to the spectral element method is
the use of a standard FE-package, so that the full power of existing element libraries
can be used. The computational cost is also independent of frequency, because the
finite element mesh of the cross-section requires only one element in the direction of
wave propagation.

The individual sections of this report address the following points:

Section 2 describes the finite element approach and the wave analysis.

Section 3 considers bending waves in a beam. Firstly, the analytical solution for
bending waves in beams is derived using an Euler-Bernoulli-Beam. Secondly,
the methods presented in section 2 are applied. The standard mass and stiff-
ness matrices for a beam are well known and therefore the numerical solution
is straightforward. Finally, an experiment to measure the wavenumber in a
beam is described and the results are compared with analytical and numerical
solutions.

Section 4 cousiders bending waves in infinite plates and free and simply supported
plate strips. The section of the waveguide to be modelled in the FE-software is
defined and the properties of the FE-mesh and the use of different element types
are discussed. A simple two element mesh with 10 degrees of freedom is used to
give a clear understanding of how the eigenvalues of the transfer matrix relate




to propagating, attenuating or evanescent waves. Therefore, the location and
the locus of the eigenvalues in different complex planes are visualized. Then a
50 element mesh is used to calculate the dispersion curves and the results are
compared to the two element case as well as to the analytical solution derived
from the wave equation for a beam in bending. For the simply supported plate,
the mode shapes are obtained from the eigenvectors and the cut-on condition
is discussed. Finally, the kinetic and potential energies, the power-flow and the
group velocity are calculated for each wave-type and their physical meanings
are discussed.

Section 5 shows the application of the previously discussed methods and techniques
to the advanced example of a laminated plate strip. Special phenomena like
the cut-on of waves with finite wavenumbers and the existence of waves only
over a certain frequency range are discussed in detail.



7"

FIGURE 1.1: Waveguide with uniform cross-section

FIGURE 1.2: Simply supported plate strip with height h and width L

FIGURE 1.3: Cross-section of a tyre



2 FINITE ELEMENT
ANALYSIS OF WAVE
MOTION

2.1 Modelling of a section of a waveguide

In section 1, waveguides with 0,1 and 2-dimensional cross-sections have been intro-
duced. In order to predict the characteristics of the wave motion, a section of the
waveguide will be modelled using conventional FE methods. A condition for the wave
analysis is to have an equal number and identical distribution of degrees of freedom
on each side of the section. Figure 2.1 shows a 3-element mesh over a 1-dimensional
cross-section using rectangular 4-node elements.

Depending on the application, the nodes will have different numbers of degrees
of freedom giving linear, quadratic or cubic shape functions. In the direction of wave
propagation a length A is covered by one finite element. To obtain good results
in the wave analysis, the length A should be less then one sixth of the expected
wavelength. This corresponds to the more familiar requirement of using 6-10 elements
per wavelength. However, if the length A is very short compared to the longest
wavelength, computational problems will arise [19]. The number of elements over
the cross-section has to be high enough to characterize the wavemode. The higher
the order of the wavemode, the more elements and degrees of freedom are needed to
get good results. The width-to-height ratio should comply with standard modelling
techniques.

GL2s fL2 qurfR2 Yy

qu’le qu’le O T

—e ~—
A

FIGURE 2.1: Finite element mesh of cross-section
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The equation of motion of the section can be found in the form of
Mg+Cq+Kg=f (2.1.1}
Substituting q = iwq and § = —w?q gives
(K +iwC — w?*M)q=1f (2.1.2)

where q is the displacement vector containing all degrees of freedom and f is the
loading vector containing the nodal loads. The stiffness matrix K, the mass matrix
M and the damping matrix C can be combined to a dynamic stiffness matrix D{w) =
(K +iwC—w?M), which depends on frequency. The equation of motion of the section

now becomes

After partitioning the displacement vector q and the loading vector f into their left
and right components qr,, f1 and qg , fr respectively, equation 2.1.3 can be written

in the form
D;r Drr qr [ fr }
= 214
[DRL DRR:! [QR} fr ( )

The dynamic stiffness matrix D is symmetric, hence the sub-matrices Dy and
Dpgg are also symmetric .and D{R = Dpgy. If n is the number of the degrees of
freedom, D is a n x 7 matrix and the submatrices are of size n/2 x n/2.

Duhamel [19] shows how to calculate the dynamic stiffness matrix for periodic
structures. Several cells in the direction of the wave propagation are considered and
left and right propagation matrices are introduced. Finally, a global dynamic stiffness
matrix can be calculated with a computational cost that is independent of the number
of cells.

2.2 Transfer matrix approach

We introduce a transfer matrix T that relates the displacements and forces between
two adjacent cells n and n + 1 along the direction of wave propagation. In terms of
the nodal values at the left border of each cell this can be expressed as

i1 n
qr _ qar
3] -2[ 3]

In the case of a uniform cross-section and no external loads applied, the following
continuity and equilibrium conditions are satisfied at the nodes connecting two cells:

apt ] _ [ ok
[ gt | = | pn (2.2.2)
Therefore equation 2.2.2 can be written in the form
ar | _ qar
{ _fn } —T{ £ ] (2.2.3)

relating now the left and right nodal values within one cell to each other.
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From the first row of equation 2.1.4 it follows that

Drrar+Dirar = i (2.2.4)

ar = [ -D;pDiz Dij | [ ?f } (2.2.5)
The second row of equation 2.1.4 with equation 2.2.5 substituted gives

Dgrar +Dgrrar =fr (2:2.6)

hence
fr = [ Dgr, — DreD7pDrr DarDip | [ ‘flff } (2.2.7)

From equations 2.2.3, 2.2.5 and 2.2.7 it follows that

-D7L Dy D71 i|
T= LR™ &> LR _ 2.2.8
—Dgr +DrpDiiDrr —DrrDip (22:8)

Thus the transfer matrix depends only on the dynamic stiffness matrix of one cell.

2.3 Free wave propagation and
eigenvalue problem

When a free wave travels along the waveguide, the displacements and forces at dif-
ferent cross-sections differ only by a propagation factor. Using the borders of two
adjacent cells and introducing the factor A, we can express this in the form

n+1 7 n
qr, _| 9r | - dr,
[ =[] [ 231

In more detail, the factor A relates to a change in wave amplitude and a change in
phase over a certain length, in this case over the length of a cell A. Substituting
equation 2.2.1 or 2.2.3 in equation 2.3.1 gives the eigenvalue problem

qy | _ q7
] - o[ ¥

[T — ] [ ‘gf] = 0 (2.3.2)

where the superscript n can be omitted.
Substituting qg = Aqy, and fp = —Afy, in equation 2.2.4 and equation 2.2.6 gives

Drrar +Dirrar = fg (2.3.3)
Drrar +Drriqr = —AfL (2.3.4)

which can be written in matrix form as

Dy +ADrp —{ qar. | _
Dgr+ADrr M ] [ fr =0 (2:35)

12



Nonzero solutions to equation 2.3.5 only exist if the matrix is singular, therefore the
determinant has to be zero.

DLL+/\DLR -1 .

det | o TApt Sy [ =0 (2.3.6)

)\DLL+/\2DLR+DRL+)\DRR:0 (2.3.7)
1

Drr +ADrg + :\’DRL +Dgrr=0 (2.3.8)

Taking the transpose of equation 2.3.8 and noting the symmetry conditions D}: L=
D, D%, = Dre and D], = Dy gives a further equation as

1
DLL+XDLR+/\DRL+DRR:0 (2.3.9)

By comparing equation 2.3.8 and equation 2.3.9 it follows that if A is an eigenvalue,
then % is an eigenvalue as well.

The same relations can also be obtained by substituting equation 2.3.3 into equa-
tion 2.3.4 which gives directly

1
(DLL + XDLR + ADpgr + Dg}%) qr =0 (2.3.10}

This formulation ig also known as a polynomial eigenvalue problem, where the eigen-
value A appears in different powers.

2.3.1 Eigenvalues

The n eigenvalues come in m independent pairs, where m = n /2 is the number of
degrees of freedom on each side of the cross-section. The set of m eigenvalues given by
|Xs| < 1 describes waves travelling in the positive direction, the set of m eigenvalues
given by |A;| > 1 describes waves travelling in the negative direction. In general the
eigenvalues are complex and can be written as

Aj = e Hibe TR (2.3.11)

with i = v/—1, £ € R represents the change in amplitude and k € R represents the
change in phase, which has been previously introduced as the wavenumber. The signs
have been chosen in such a way that x and k are positive for waves travelling in the
positive direction. A more convenient way to present numerical results can be found
by using a complex number with real part y and imaginary part k. Equation 2.3.11
is therefore rewritten such that

—li/\-*i = U+ ikj (2.3.12)
A
In the absence of damping, which will be assumed from now on, the amplitude
of propagating waves remains constant, which is given by |A;| =1 and p; = 0 and
Aj = e~ A since
¥ =1 forallzeR (2.3.13)

The direction of wave propagation is determined by the direction of power-flow.

13



A [A] M k wave direction index

imaginary 1 0 >0  propagating a
real <1 > (0 0  evanescent positive b
complex <1 >0 >0 attenuating c
imaginary 1 0 <0 propagating d
real >1 <0 0 evanescent negative e
complex >1 <0 <0 attenuating f

TABLE 2.1: Properties of eigenvalues and associated waves

For attenuating or evanescent waves, given by |[A;| S 1, the amplitude decreases
in the direction of wave propagation. The amplitude of an evanescent wave decays
rapidly without oscillation by a factor of e #2 over the length A. An attenuating
wave oscillates with the wavenumber k and the amplitude decays at the same time
by e48,

The different types of waves are summarized in Table 2.1 and Figure 2.2. The
properties of waves can be related to the location of the eigenvalues in the com-
plex A-plane (equation 2.3.11) and in the complex (i, k)-plane (equation 2.3.12). A
corresponding visualization is given by Figure 2.3.

propagating evanescent attenuating
Y
g nimm (g_, zr ——e
negative z positive

FIGURE 2.2: Different types of waves

2.3.2 Eigenvectors

The jth eigenvector, calculated from the eigenvalue problem (2.3.2), is of size n and
contains a set of m displacements q;, and and a set of m forces f;; associated with
the left border of the cell. The nodal displacements and forces at the right border of
the cell can be obtained using equation 2.3.1 and are given by

Qjr = Aqj, fip = — A

The change of the eigenvectors of the jth wavemode over an arbitrary distance D

14



eigenvalues in the complex A~plane
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FIGURE 2.3: Location of eigenvalues in complez A-plane and complexr u, k-plane.
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along the direction of wave propagation is given by
[ Qi :| - )\(_g} [ Qi }
be Joamy 7 b Jia)
If the polynomial eigenvalue problem 2.3.10 is solved, the jth eigenvector only
contains a set of m displacements g;,. The associated forces can then be found by

equation 2.2.4.
f;, = (Do + ADrRr)q;, (2.3.14)

The characteristic displacement of the cross-section of the waveguide, associated
with the jth wavemode, is given by the nodal displacements at the left and right
border and will be denoted by

q; q;

q>-=[ i } :[ i ] (2.3.15)
! Qir Ay

Similarly to the eigenvalues, the n eigenvectors can also be split into two sets of

m eigenvectors, one associated with waves travelling in the positive direction and one
with waves travelling in the negative direction. Therefore we define

+
[ }I;L ] for [A;] < 1

[ ?“i"‘ ] for [A] = 1

JL
The general wave motion in the waveguide is then given by a linear combination of
the eigenvectors with amplitudes a;.

-2 (o]

=1

+ —
; _ | q;
?&f } +q { S D (2.3.16)

j JL

2.4 Energy related quantities

2.4.1 Kinetic, potential and total energy of waves

The energy related quantities in this section always refer to one wave, therefore the
subindex 7 will be left out in order to simplify the equations.
The kinetic energy of a mass m is given by

1
Fiin = %m’ug = Em(f (2.4.1)

Using complex notation, the time-average kinetic energy can be written as
- 1 1 - 1 c ms. 1 9, 12
Epin = gm5Re{q"q} = ymRe{(iwg)" (wg)} = ymw lql (24.2)

wheére * denotes the complex conjugate.
The potential energy of an element with stiffness k is given by

1
Epot == §kq2 (243)
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Similarly to equation 2.4.2, the time-average potential energy can be found as

= 1.1 .

In order to find the time-average kinetic and potential energies of the section n
of the waveguide under the passage of a wave, the previous equations can be written
in matrix form using the mass and stiffness matrices and the displacement vector of
the section. Thus )

ﬁ%=1mﬂm@HM@@n (2.4.5)

= 1
E&fzzRﬂéHKQ} (2.4.6)

where @ is defined in equation 2.3.15 and H now denotes the conjugate transpose.
The time-average total energy associated with a section is then given by

Epy = Efi + Epot (2.4.7)

Furthermore the time-average total energy per unit length is

Em:}%* (2.4.8)
2.4.2 Power-flow and group velocity
The transmitted power at a point is given by
P=fq (2.4.9)
Using complex notation, the time average power-flow is given by
P::%Rﬁf%m@n (2.4.10)

The power-flow through the section of the waveguide can be calculated either at the
left or at the right border. The power-flow is constant for freely propagating waves
and positive in the direction of wave propagation. It is given by

P = JReft{livar} = yRe{~Effiwar) (2.411)

The speed at which energy travels along the waveguide is called the group velocity

¢g and is defined by
_ P

P=E,c ¢ = (2.4.12)

ey

=tot

The preceding equations show a simple way to calculate the group velocity, which is
an important parameter for many applications where noise and vibration transmission
are of interest, i.e. statistical energy analysis.
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3 WAVE PROPAGATION IN
BEAMS

3.1 Analytical solution

The equation of motion or the wave equation of a beam in bending is (see Cremer [3],
Fahy [1])
w 8w
El— + pA—— 3.1.1
5zt " o8 B-11)
where F is the Young’s modulus, I the moment of inertia, p the density, A the cross-
sectional area and w the transverse displacement. Substitution of the expression for

a propagating wave w(z,t) = ae~#%e™* yields

EIkY — pA? =0 (3.1.2)
where k is the wavenumber 4
4_ PA o
E* = i Iw (3.1.3)

Equation 3.1.3 has four roots, which are in the form of k, —k, ik and —ik. Therefore,
a general solution to equation 3.1.1 can be written in the form

w(z, t) = (Ae"”’.k”‘" + Be*® 1 Ceh 4 Dekx) et

or ’w(.’E, t) _ Ae_ik$+iut + Beikrtiut + Ce—kz+iwt o Dekerivt (3.1_4)
The terms associated with A and B in equation 3.1.4 represent waves that propagate
in the positive and negative direction respectively. The other two terms represent
evanescent waves that decay exponentially with distance. Therefore, the solution to
the bending wave eguation in a beam can be expressed as a linear combination of
four waves.

3.2 Finite element solution

The mass and stiffness matrices for a beam element of length I are (see Petyt [20])

12 6 12 6l 156 221 54 —13l

o 1| 6l 42 61 207 N PAL | 22 42 131 -3
B | —12 -6/ 12 -6l 420 | 54 131 156 —221

6 202 —61 412 131 312 -221 42
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The dynamic stiffness matrix is D = K — w?M. The transfer matrix is then given
by
T [ ~D;iDip D7 x
—Dgz +DgrDiDr. —DgrrDig
where Dy, Digr, Dgrr and Dgg are the 2 x 2 submatrices of D. The matrix T
has four degrees of freedoms and therefore the solution of the eigenvalue problem
[T — A]q = 0 has also four eigenvalues. They are such that

|A1] = [Aa] =1 Al = Ao

1

T

In the complex {u, k)-plane the four eigenvalues are given by

MmeR, MeR, A3

k1 > 0, ky <0 pr=pa =0

,Ut3>0, H4<O; k3=k4=0; kl:_k2zﬂ3=”,u'4

The four eigenvalues represent the four waves from solution 3.1.4, whereby A1 and
Ay are the waves propagating in the positive and negative direction respectively and
Az and My are the evanescent waves.

3.3 Wavenumber measurement

A steel beam with a thickness of A = 0.0055 m will be considered. The material prop-
erties are given by a Young’s modulus £ = 2.1- 10! Pg and a density p = 7800 kg/m>.
Figure 3.1 shows the experimental set-up for the measurement of the wavenumber
in a beam. Three transducers to measure lateral acceleration are attached to the
beam a distance d apart. Their mass is small compared to the properties of the
beam and therefore the wave motion isn’t affected considerably. An electrodynamic
shaker excites the beam. The distance between the excitation and the transducers is
long enough so that the evanescent waves decay to a negligible amplitude. Since the
beam is finite, both ends are damped in order to minimize the amplitudes of reflected
waves. The assumption is made, that two time harmonic propagating waves in the
positive and negative direction respectively are present at the accelerometers. Thus,
the lateral displacement and acceleration are given by

wz,t) = {(ate ™ g eT) et (3.3.1)

alz,t) = —uw?(aTe o+ o~ ee) et (3.3.2)

Substituting the locations of the accelerometers (z1 = —d, z2 =0, 3= d) gives
a;(t) — _wz (a+6ik:d + a-—e—z‘kd) eiwt

as(t) = —w?(at+a)e* (3.3.3)
ag(t) — _w2 (a—i-e*ikd + a——eikd) eiut

The beam is excited by a random signal and the frequency transfer functions A, Az
and As are determined. In the post-processing, the frequency spectra are combined
such that :
A+ As ateibd 4 g e ikd L gt e—ihd | g gikd Iy
As at+a" =€
= 2cos(kd) _ (3.3.4)

+ eikd
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FIGURE 3.1: Measurement set up

With the assumption that the wavenumber is given by

the constant o can be found by fitting cos(kd) to the measured data, as shown in
Figure 3.2. The comparison of the analytical and finite element solutions with the
measurement can be seen in Figure 3.3. While the finite element solution cannot be
distinguished from the analytical solution, the curve obtained from experiment does
differ slightly. This is primarily due to an inaccurate estimation of the dimensions

and properties of the beam and also to the idealized beam model and to general
measurement errors.

Wavenumber measurement in a beam - data fitting
1.5 T T T T Y T 7
- measurement: (A1+A3)/(2*A2)
eta = 0.8297 — fitted curve: cos(kd)

cos(kd) , {A1+A3M(2*A2)

0 200 400 800 800 1000 1200 1400 1600
frequency [Hz]

FIGURE 3.2: Fitting of cos(kd) to the measured data
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wavenumber in 2 beam
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FIGURE 3.3: Wavenumber curve for a beam - analytical and numerical solution and
measurement
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4 WAVE PROPAGATION IN
PLATES

In this section one-dimensional bending waves in flat uniform isotropic plates are
considered. Although various types of waves can propagate in plates, bending waves
are often of most interest, because they involve out of plane displacements. The
dispersion relations will be derived from theory and compared with numerical results
from the finite element analysis. ANSYS is used to obtain the mass and stiffness
matrices of a cross-section. Structural damping will be neglected in order to present
the numerical results in a more clear form. Post-processing of the system matrices is
done in MATLAB.

4.1 Bending waves in free plates

4.1.1 Theory

Figure 4.1 shows a plate of thickness h in the z-direction and infinite dimensions
in the (z,y)-plane. The bending wave equation in such a plate is (see Cremer [3],
Fahy [1])

84w 8w g Pw
2 = —ph—— 4.1.1
b (ari t e 5y4) " (4.1.1)
where £
D= _.h_
12(1 — v2)

is the bending stiffness of the plate and rho its density. A solution to Equation 4.1.1
can be found in form of harmonic wave motion as

w(z,y,t) = e HFePe Ry glvt (4.1.2)
where k., and k, are the wavenumbers of the wave-components in the z and y direction
respectively. Substitution into Equation 4.1.1 and simplification gives

D(E2 + k2)* — phw? =0 (4.1.3)
With k2 = k2 + kf,, the wavenumber of a free bending wave travelling in the (z,y)-
plane of the plate can be expressed as

{ph- [12(1 — v2)p

It can be noted that this wavenumber is similar to that for a bending wave in a beam,
apart from the factor (1 — »?).
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FiGURE 4.1: Free plate

o~

—

FIGURE 4.2: Mesh of section by plain strain elements and shell elements

4,1.2 Numerical results

First, the section of the waveguide that will be modelled in FEA has to be defined.
The dimension of the direction of wave propagation has to be infinite. For the infinite
plate the cross-section will therefore be infinite in one dimension and very smail in
the other direction. The simplest FE-mesh is a rectangular plane-strain element over
the thickness h and with length A. For a finite plate, the wavenumber of a bending
wave will be about the same as given in equation 4.1.4, as long as the width is large
compared to the wavelength. In this case, the cross-section can be modelled by a
number of shell elements with thickness h distributed over the width L. The use of
plane-strain and shell elements is illustrated in Figure 4.2

Consider a steel plate with a thickness A = 0.001 m and a width L = 1m. The
length of the section is chosen to be A = 0.01m and 50 elements will be used across
the width. The structural model is assumed to be linear, isotropic, with Young’s
modulus E = 2.1 - 101 Pa, density p = 7800kg/m? and Poisson’s ratio v = 0.3.
Figure 4.3 shows the dispersion relations, whereby the numerical solution for the
finite plate is compared to the analytical solution for an infinite plate and a beam.
The wavenumber in a beam is slightly higher, because the lateral contraction is not
prevented (v = 0) as it is the case in plane bending.
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dispersion refations for bending waves
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FIGURE 4.3: Dispersion relations for bending waves in free plates and beams

4.2 Bending waves in a simply supported plate strip

4.2.1 Theory

Figure 4.4 shows a finite plate strip of width L and thickness A that is simply sup-
ported along two edges. The boundary conditions along the edges are

w{z,0) =w(z,L) =0 7 (4.2.1)
w(z,0) J*w(z, L)
= =0 4.2.2
A solution to equation 4.1.1 can be written in the form
w(z,y,t) = e *Tsin(kyy)e™* (4.2.3)
which satisfies the boundary conditions if
nm
k, = —
¥ L

There are characteristic displacements, referred to as modeshapes, over the width of
the cross-section in the form of multiples of a half sine wave with discrete values of
the wavenumber. Thus

wly) = sin(kyy) with ky = % for n=1,2,3,... (4.2.4)

In order to find the wavenumber of the waves travelling in the z-direction, we can
substitute k&, into equation 4.1.3 and solve for k., which gives

2
k2 = k2 =t wy /Eg - (%) for n=1,2,3,... (4.2.5)
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The number of wavenumbers k, is infinite, their values however are discrete since
they are associated with the mode shapes as defined in equation 4.2.4. Because the
wavenumber k is real for propagating waves, from equation 4.2.5 it follows that there
must be a minimum frequency for the nth wave to start propagating. This frequency
is called the cut-on frequency and is given for the nth wavemode by

D /nmw

wy, = o (T)z (4.2.6)

The cut-on phenomenon can be compared to the condition that the wavenumber of
a bending wave propagating in a free plate is just large enough such that kL is a
multiple of . In terms of the eigenvalues, the cut-on condition is satisfied when the
magnitude of A equals one. At the cut-on frequency, A = 1 and from equation 2.3.12

it follows that'u =0 and £ =0.
The group velocity is defined as

Ow
= o 4.2.7
Cy gk ( )
Taking the derivative of equation 4.2.5 with respect to w gives
h h
Ok 1 D g2 (4.2.8)
w2 kn o

Tt follows that the group velocity for the nth wave is given by

Ow 4D
_Ow _ 4.2,
CQn akn ph kn ( 9)

FIGURE 4.4: Simple supported plate

4.2.2 2-element-mesh

Consider a simply supported steel plate as in Figure 4.4 which is meshed by two
clements over the width of the cross-section, which hence has a limited number of
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degrees of freedom. The thickness is h = 0.001m and the length of the section is
chosen to be A = 0.01m. As equation 4.2.6 shows, the width L of the plate has
a strong influence on the cut-on frequency and in general the wider the plate the
more waves and modes appear in a certain frequency range. With the objective of
using two finite elements only, a width of L = 0.3m is chosen. Two rectangular
shell elements are used to mesh the cross-section with nodes at y = 0, y = L/2 and
y = L respectively, which gives 6 nodes overall. The mass and stiffness matrices can
be obtained by performing a dynamic simulation in ANSYS. In general, there are 6
degrees of freedom per node, therefore the system matrices will be of size 36x 36. Since
the interest is only in bending, all degrees of freedom describing in-plane motion can
be neglected. The associated rows and columns in the system matrices are removed,
which reduces them to size 18 x 18. Furthermore, the boundary conditions at y = 0
and y = L are applied by removing the associated rows and columns from the mass
and stiffness matrices. The remaining degrees of freedom are

== at =
By at y=10,
Sw  Ow
— — =1L/2 4.2.1
w, S y=Ip, (4.2.10)
Jw
—  at =L
dy a ¥

Since there are nodes on the left and the right border of the section, there is a total
of 10 degrees of freedom left, resulting in 10 x 10 mass and stiffness mairices. In
order to build up the transfer matrix, the global node numbering has to be as shown
in Figure 4.5, beginning on a corner on the left and ending at the opposite corner
on the right. In general, the global node numbering in ANSYS is different, therefore
appropriate rearrangement of rows and columns of the system matrices has to be
done.

Solving the eigenvalue problem (2.3.2) gives five pairs of eigenvalues and five pairs
of eigenvectors for each frequency. Figure 4.6 shows the location of the eigenvalues in
the complex A-plane, Figure 4.7 shows their location in the complex {u, k)-plane, each
for four selected frequencies. A description of these Figures can be found in Table 4.2
and Table 4.3 respectively. The wavenumbers of the first and second wave are shown
as functions of frequency in Figure 4.8, with the analytical and numerical solutions
being compared. The wavenumber of the first wave is estimated very accurately, the
second wavenumber differs from the analytical solution, which is due to the use of
only two elements and a poor width-to-height ratio of the elements. Figure 4.9 shows
the improvement in the estimation of the second wavenumber when the number of
elements is increased. Energy related quantities are presented in Figure 4.10. The
peaks in the energy and power-flow curves at the cut-on frequency of each wave
represent resonance. The numericaly estimated group velocities are compared to the
analytical solutions and the results agree very well.
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FIGURE 4.5: two-elemenit-mesh

4.2.3 50-element-mesh

As a further example, the steel plate from section 4.1.2, with thickness A = 0.001m
and width L = 1m, is modelled. The length of the section is chosen as A = 0.01m
and 50 rectangular shell elements are used to describe the cross-sectional displace-
ment, resulting in 612 nodal degrees of freedom. The mass and stiffness matrices are
then rearranged to order the global node numbers in the required way. Neglecting
the in-plane motion and applying the boundary conditions reduces the system to 298
degrees of freedom. Figure 4.11 shows the location of eigenvalues in the complex
(u, k)-plane at 60Hz. There are 8 eigenvalues ou the imaginary axis, which can be
identified as propagating waves, 4 of them in each direction. The 5th wave is close to
cut-on. There are some eigenvalues on the real axis that represent evanescent waves.
The complex eigenvalues are attenuating waves.

An algorithm finds the eigenvalues representing propagating waves and the as-
sociated eigenvectors. Additionally, the path of the eigenvalues before they reach
|A\| = 1 is determined, which gives an imaginary wavenumber before cut-on. Since
the eigenvalues with |A| < 1 change their position with frequency, it is hard to trace
them. However it is possible to identify them using the eigenvectors. The algorithm
uses a criterion analogous to the modal assurance criterion (MAC) to compare the
eigenvectors before and after a frequency step. It is defined as

| (Qf,ﬂ_l QLw) i

(4.2.11)
(o, ar.-.) (af, az.)

MAC, 1, =

Depending on the application and the size of the frequency step, the eigenvector of
an eigenvalue will usually change only slightly or not at all from one frequency to
another, which gives a correlation coefficient (MAC) of nearly one. With this method,
the eigenvalues can be clearly identified at each frequency. Figure 4.12 shows the first
5 wavenumbers, before and after cut-on, for the plate. In Figure 4.13 the eigenvectors
of the first 5 propagating waves are plotted against the node number across the strip.
As expected, the modeshapes are multiples of a half sine wave.
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imaginary part of A

real part of A

FIGURE 4.6: Eigenvalues in complex A-plane

Figure 4.6
f =20Hz: all eigenvalues (ev.) are real, no propagating waves
ev. 1-5 (1A;] < 1) describe waves going in the positive direction
ev. 6-10 (|A,| > 1) describe waves going in the negativ direction
f=60Hz: ev. 5 and 6 become complex and lie on the unit circle (|A;} = 1)
f=100Hz: ev. 5 and 6 move around the unit circle
ev. 3 and 8 move towards |A;| =1
f=130Hz: ev. 3 and 8 also become complex and lie on the unit circle

TABLE 4.2: Description of Figure 4.6
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two element mesh, eigenvalues in complex {1, k)-plane
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FIGURE 4.7: Figenvalues in complex (u, k)-plane

Figure 4.7

f=20Hz: k; =0, pisl
no real wavenumber, no oscillation, only evanescent waves
f=60Hz (ks >0, us=0) propagating wave in the positive direction
(ks <0, pg = 0) propagating wave in the negative direction
f=100Hz: (|ks|, |ke|) increase with frequency
(

f=130Hz: (ks, kg) second wavemode cuts on

TABLE 4.3: Description of Figure 4.7
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dispersion relations for bending waves
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FIGURE 4.8: Dispersion relations for bending waves in o simply supported plate
strip
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FIGURE 4.9: Improved wavenumber estimation with higher number of elements
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FiGURE 4.10: Total energy per unit length E .., power-flow P and group velocity ¢,

imaginary part, k [1/m}
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’ dispersion relations for bending waves
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FIGURE 4.12: Dispersion relation for bending waves in o simple supporied plate
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FIGURE 4.13: Mode shapes of bending waves in o simply supported plate strip
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5 WAVE PROPAGATION IN
LAMINATED PLATES

5.1 FE-modelling of a laminated plate

The transfer matrix approach will be used to calculate the wavenumbers and the
wavetypes in a laminated plate. A symmetric sandwich panel with a 15mm thick
core and 0.6 7mm thick skins on both sides is considered. Other dimensions are infinite
and there are no boundary conditions. The material properties of the core are those
of a linear elastic isotropic material with Young’s modulus E = 3- 107 Pa, density p =
48 kg/m? and Poisson’s ratio ¥ = 0.2. The skins are of Aluminium with properties
given by E = 7.1 - 101%Pa, p = 2700 kg/m? and v = 0.3296. Figure 5.1 shows the
finite element mesh of the cross-section that describes the displacement field over the
thickness h. Rectangular plain strain elements were used, one each to mesh the skins
and fifteen to mesh the core, giving a total of seventeen elements. The elements have
two nodal degrees of freedom, a displacement in the direction of wave propagation x
and a displacement in the z direction. Therefore the in-plane and the out-of-plane
motions of the cross-section are described by linear functions between the nodes. The
dispersion curves will be calculated for frequencies up to 40kHz. The length A of
the cross-section is A = 0.001 m, which gives good accuracy for wavenumbers up to
about k£ = 1000/m.

0.6 mm

z

FIGURE 5.1: Mesh of the cross-section of a laminated plate
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dispersion relations for waves in a laminated plate
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FIGURE 5.2: Dispersion relations for waves in a laminated plate up to 15 kHz

5.2 Dispersion relations

The wavenumbers are shown in Figure 5.2 and Figure 5.3. Below 5kHz, two
propagating waves exist. Extensional waves and bending waves in this isotropic
plate appear as straight lines on the log-log plot of Figure 5.2. While the lower line
seems to be straight, the upper line shows some curvature, which could refer to a
change of the modeshape. At 5kHz a third propagating wave cuts on and at about
8kHz a 4th wave appears with a real nonzero wavenumber. This phenomenon is
considered in detail in the next section. At 18 kHz the a fifth wave cuts on and at
28 kH z a sixth wave appears.

5.3 Cut on with nonzero wavenumber

Figure 5.4 shows the dispersion curves between 7600 Hz and 8200 Hz. Above 5000 Hz,
three waves (a,b,c) exist. At 7810 Hz two waves (d, e} cut on with the same finite
nonzero wavenumber. While the wavenumber of wave d increases, the wavenumber of
wave e decreases, which means that the wave has a negative group velocity. There-
fore it is a wave going in the negative direction, but with a positive wavenumber.
At 8016 Hz, the wavenumbers of wave e and b have the same value and both waves
disappear, meaning they become attenuating waves and no longer propagate. At
8039 H z, two more waves f and g cut on with the same nonzero wavenumber. While
wave g only seems to exists over a frequency range of 1 — 2 Hz, wave f is stable and
has an increasing wavenumber.

Now it will be demonstrated how a plot showing the location of the eigenvalues in
the complex A-plane can be used to obtain more detailed information. The frequency
range from 8015 Hz to 8040 Hz will be considered and the critical eigenvalues are
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3 dispersion relations for waves in a laminated plate
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FIGURE 5.3: Dispersion relations for waves in a laminated plate up to 40 kHz

dispersion relations for waves in a laminated plate
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FIGURE 5.4: Wavenumbers of a laminated plate in a frequency range from 7600 Hz
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eigenvalues in the complex (uk)~plane
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FIGURE 5.5: Location of eigenvalues in complex A plane in the frequency span from
8015 Hz to 8040 Hz

shown in Figure 5.5.

The eigenvalues are plotted with a frequency step of 1 Hz. Eigenvalues e and b
move along the imaginary axis towards each other. They leave the imaginary axis at
the same point (8016 H z), one with a positive real part, the other with a negative real
part. After the real parts increase for about 15 Hz, they then begin to decrease. At
8039 H z the eigenvalues become purely imaginary again and show up as propagating
waves f and g on the wavenumber plot. Eigenvalue f moves up the imaginary axis,
but ¢ becomes purely real and this wave becomes evanescent,

The phenomena of waves appearing with finite nonzero wavenumbers, waves with
decreasing wavenumbers and wave pairs that coalesce are quite unusual. However
Figure 5.3 shows that these phenomena repeat at about 32 kHz. Similar results have
be found by an alternative approach using spectral elements by Shorter [14].

The effects of a change in the material properties on the dispersion relations have
been studied and the density of the core material seemed to have strong influence on
the wavenumber curves. Figure 5.6 shows the dispersion curves for an increase in the
density of the core by a factor of 10.

5.4 Modeshapes and wavetypes

The modeshape of a wave is characterized by in-plane {z) and out-of-plane displace-
ments. The eigenvectors can be decomposed in a set of 50 nodal z and y displace-
ments respectively, giving a spatial variation with z and y for each modeshape. While
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FIGURE 5.6: Wavenumbers for different values of density of the core material of a
laminated plate.

the y displacements are real valued, the displacements in the z-direction are purely
imaginary, since it is in the direction of wave propagation.

In Figure 5.7, the z and y shapes of the first three waves (a, b, ¢) at about 7000 Hz
can be seen (normalized to an amplitude of one}. Wave a seems to be a bending
wave, since the cross-section moves up and down in the out of plane direction. At
the same time, there is some shear motion in the skins and in the core. Wave b is an
extensional wave, with compression and extension in the z-direction and associated
lateral contraction. Wave ¢ is characterized by an out of phase motion of the skins
in the z-direction, which is adopted by the core. Additionally, there is some bending
like motion in the cross-section.

Figure 5.8 shows the modeshaps at 7900 Hz, after two more waves cut on with
nonzero wavenumbers, with b waves now being present. The new propagating waves
d (positive direction) and e {negative direction), are characterized by an extensional
wave motion in the core including lateral contractions. The skins adopt this motion
and themselves show only some small shear motion.

Finally, the modeshapes of the four waves at 9000 Hz are presented in Figure 5.9.
After the extensional wave b disappeared at 8016 Hz it seems now to be similar to
the wave mode f.

While the main characteristics of a wave remain the same over a large frequency
range, the proportions seem to change quickly as frequency changes.
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FIGURE 5.7: Modeshapes of waves in a laminated plate at 7000 Hz
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FIGURE 5.8: Modeshapes of waves in a laminated plate at 7900 Hz
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5.5 Energy related quantities

The total energy, the power-flow and the group velocity have been calculated for
the first three propagating waves up to 8 kHz and are plotted in Figure 5.10. The
results of wave a vary substantially with frequency, which could be compared to the
curvature of the dispersion line, observed in section 5.2. The power-fow and the
group velocity of wave b show a rapid decay after 8 kHz, which agrees with the fact
that this wave is close to cut-off. The energy related quantities of wave ¢ show a
resonance peak at the cut-on frequency.
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FIGURE 5.10: Total energy per unit length E ., power-flow P and group velocity ¢,
of waves in o laminated plate



CONCLUDING REMARKS

In this report, a method to calculate wave propagation characteristics in uniform
wavegnides was presented. Firstly, the commercial FE package ANSYS is used to
model a section of the waveguide. Then, the mass, stiffness and damping matrices
are post-processed in MATLAB. The dynamic stiffness matrix is found, partitioned
and rearranged to find the transfer matrix, which links the displacements and forces
on both sides of the section. The propagation constants and the wavetypes are given
by the eigenvalues and eigenvectors of the transfer matrix respectively. It has been
shown, how a physical interpretation of the eigenvalues can be easily made by looking
at their location in different complex planes. The dispersion relations for real and
imaginary wavenumbers were found. Using the FE-formulation, the determination
of wavetypes and the calculation of energy related quantities, i.e. the group velocity,
are straightforward.

The method has been applied to examples of a rod, beam, plate strip and a lami-
nated plate. When possible, numerical and analytical solutions have been compared,
whereby no substantial differences occurred. The example of a laminated plate let
to interesting and important results, which proofed the ability and usefulness of the
approach.

The major advantage of the method is, that the full power of finite element
libraries in standard FE packages can be used to mesh a general cross-section. The
computational cost only depends on the size of the finite element mesh of the cross-
section. The post-processing algorithm is stable and can be made generic for a given
range of applications.

Future work is the advancement of the post-processing algorithm to increase the
range of applications, for example to waveguides with rotational symmetry and a
circular axis of wave propagation. A general generic code, together with widely spread
and well known FE-packages could be used easily by a large number of people.
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