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Abstract

This work concerns arbitrary active constrained layer damping (ACLD) treatments ap-
plied to beams. In order to suppress vibration, hybrid active-passive treatments composed
of piezoelectric and viscoelastic layers are mounted on the substrate beam structure. These
treatments combine the high capacity of passive viscoelastic materials to dissipate vibrational
energy at high frequencies with the active control effects of piezoelectric materials at low fre-
quencies.

The aim of this research is the development of a generic analytical formulation that can
describe these hybrid couplings in an accurate and consistent way. The analytical formulation
considers a partial layerwise theory, with an arbitrary number of layers, both viscoeelastic and
piezoelectric, attached to both surfaces of the beam. A fully coupled electro-mechanical
theory for modelling the piezoelectric layers is considered. Both the weak and strong forms
of the problem are presented.

From the strong forms, the equations of motion and electric charge equilibrium and the
electro-mechanical boundary conditions are derived and presented for the composite beam
with an arbitrary number of layers. Based on the weak forms, a one-dimensional finite ele-
ment (FE) model is developed, with the nodal mechanical degrees of freedom being the axial
displacement, trangverse displacement and the rotation of the mid-plane of the host beam and
the rotations of the individual layers, and the electrical elemental degrees of freedom being
the electrical potential difference of each piezoelectric layer. The damping behavior of the
viscoelastic layers is modeled with the complex modulus approach.

Three frequency response functions were measured experimentally and evaluated numer-
ically for a clamped aluminium beam with a partial ACLD treatment (viscoelastic layer sand-
wiched between the beam and piezoelectric patch): acceleration per unit force, acceleration
per unit voltage into the piezoelectric actuator and induced voltage per unit force. The numer-
ical results are presented and compared with experimental results to validate the FE model.
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Chapter 1

Introduction

1.1 Damping Treatments

Passive damping treatments have been extensively used in engineering to reduce vibration and
noise radiation [1]. The simplest form of passive damping is the one where single layers of vis-
coelastic materials are attached to the host structure. This is known as passive layer damping
(PLD). When the structure vibrates, energy is dissipated in the viscoelastic layer. Increasing the
thickness and length of the viscoelastic treatment would increase the energy dissipation and con-
sequently the damping [2]. However, in applications where the weight is of critical importance, a
more efficient treatment is required, and other alternatives to increase damping must be found.

It is well known that the inclusion of elastic constraining layers covering the viscoelastic layer
can enhance the energy dissipation through an increase in shear deformations (Figure 1.1). This
type of treatment is known as passive constrained layer damping (PCLD). Some examples can
be found in references [3—5]. However, while passive damping treatments can greatly improve
damping of the system, there are limitations. Viscoelastic materials have frequency and tempera-
ture dependent mechanical properties which can vary the damping properties, bringing limitations
to the effective temperature and frequency range of the treatment. In order to provide adequate
damping over a broad frequency band, different viscoelastic materials must be chosen which of-
ten complicates the analysis and design of the system. Therefore, while viscoelastic treatments
are easy to apply, the damping is often of limited bandwidth.

Passive layer (viscoelastic) Constraining layer (elastic)

Host structare

Host structure

Figure 1.1: Viscoelastic (PLD) and passive constrained layer damping (PCLD) treatments .

From the early 90’s the so-called active constrained layer damping (ACLD) approach has
been developed and applied to structures [6-9]. Those are hybrid treatments with constraining
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2 Chapter 1. Introduction

layers made of piezoelectric materials (Figure 1.2). One of the unique features of piezoelectric
materials is that they can serve both as sensors and actuators [10]. If utilized as actuators, and ac-
tuated according to an appropriate control law, the active constraining layer can increase the shear
deformation of the viscoelastic layer and overcome some of the PCLD limitations. The ACLD
treatments combine the high capacity of passive viscoelastic materials to dissipate vibrational
energy at high frequencies with the active capacity of piezoelectric materials at low frequencies.
Therefore, in the same damping treatment, a broader band control is achieved benefiting from
the advantages of both passive (simplicity, stability, fail-safe, low-cost) and active (adaptability,
high-performance) systems. Some examples can be found in references [11-13].

;/— Passive constraining layer (elastic})

Host structure “— Passive layer (viscoelastic)

Figure 1.2: Active constrained layer damping (ACLD) treatment .

Various configurations of active and passive layers have been proposed in an attempt to im-
prove performance. In general the so-called hybrid active-passive (or arbitrary ACLD) treatments
involving arbitrary arrangements of constraining and passive layers, integrating piezoelectric sen-
sors and actuators, might be utilized [14-18]. A survey of advances in hybrid active-passive vi-
brations and noise control via piezoelectric and viscoelastic constrained layer treatments can be
found in references [19, 20]. '

1.2 Modelling Considerations

Modeling this kind of structural system often requires a coupled model of the structure, which
comprises piezoelectric, viscoelastic and elastic layers. These treatments are applied to beams,
plates and shells. They can be modeled as either lumped or distributed parameter systems, and
usually have complicated geometries that make the analytical solution of the equations of motion
difficult, if not impossible. Alternatively, various discretization techniques, such as finite element
(FE) modelling, modal analysis, and lumped parameters models, allow the approximation of the
partial differential equations by a finite set of ordinary differential equations.

The temperature and frequency dependent material properties of the viscoelastic materials
complicate the mathematical model. Usually the temperature is assumed constant and only mod-
els concerning frequency dependence are utilized. The simplest way of modelling those materials
is achieved by a complex modulus approach (CMA) where the material properties are assumed
frequency independent [21]. The complex modulus approach is a frequency domain method
that is limited to steady state vibrations and single-frequency harmonic excitations. Time domain
models such as the Golla-Hughes-McTavish (GHM) model [22], the anelastic displacement fields
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(ADF) approach [23] or the fractional calculus approach [24], have been developed in the last
few years and represent good alternatives to the complex modulus approach when the study of
transient response is of interest.

In the development of FE models with piezoelectric actuators or sensors, different assump-
tions can be taken into account in the theoretical model when considering the electro-mechanical
coupling. A survey on the advances in FE modelling of piezoelectric adaptive structures is pre-
sented by Benjeddou [25]. These assumptions regard mainly the use (or not) of electric degrees
of freedom (DoFs) and the approximations of the through-the-thickness variation of the electric
potential. Therefore, they lead to decoupled, partial and fully coupled electro-mechanical the-
ories, which in turn can lead to different modifications of the structure’s stiffness and different
approximations of the physics of the system. Furthermore, these electro-mechanical coupling
theories can be considered by the use of effective stiffness parameters, defined according to the
electric boundary condition considered, as shown in [26,27] for a smart beam.

1.3 Objectives and Structure of the Work

The objective of this work is the development of a generic analytical model that can account for
the hybrid couplings in an accurate and consistent way. It can therefore be seen as an initial
step from which different analytical and discretization methods can be used for the solution of
arbitrary hybrid active-passive treatments on beams.

When designing hybrid active-passive treatments it is important to know the configuration of
the structure and treatment that gives optimal damping. The designer needs a model of the system
in order to define the optimal locations, thicknesses, configurations, control law, etc. Thus, there
are numerous options at design stage.

We start by presenting the structural analytical model of a composite beam with an arbitrary
number of layers of elastic, piezoelectric and viscoelastic materials, attached to both surfaces of
the beam. The kinematic assumptions, based in a partial layerwise theory, are first presented.
Then, the constitutive equations and electric model assumptions for the piezoelectric materials,
which account for a fully coupled electro-mechanical theory, are described. Moreover, the fre-
quency and temperature dependent constitutive behavior of the viscoelastic layers is discussed.

Hamilton’s principle is utilized to derive the weak and strong forms governing the motion and
electric charge equilibrium of the beam with arbitrary ACLD treatments. The strong forms of
the general analytical model are then presented by a set of partial differential equations, namely,
the equations of motion and electric charge equilibrium, and the electro-mechanical boundary
conditions.

Based on the weak forms of the analytical model a FE solution is presented and a composite
beam FE is developed. The spatial model and piezoelectric sensors and actuators equations are
then presented. The damping behavior of the viscoelastic layers stiffness matrix is modeled by
the complex modulus approach and the frequency response generation algorithm of the FE model
is presented. '

Finally, a case study concerning a clamped aluminium beam with a partial ACLD treatment
(viscoelastic layer sandwiched between the beam and piczoelectric patch) is analyzed. The de-
veloped FE is used in the prediction of three frequency response functions: acceleration per unit
force and voltage into the piezoelectric actuator and induced voltage per unit force. Numerical
results are presented and compared with experimental results to validate the FE numerical tool.
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Chapter 2

Analytical Model

2.1 Introduction

In this chapter the analytical model for a beam with arbitrary ACLD treatments is developed.
For the sake of brevity the development of the weak and strong forms, governing the motion and
electric charge equilibrium, is presented in Appendix A and the reader will be referred to it when
convenient. The resultant set of partial differential equations, namely, the equations of motion
and electric charge equilibrium and electro-mechanical boundary conditions, are obtained from
the strong forms. Concerning the weak forms, they will be used in the next chapter as the basis
for the development of a one-dimensional FE model.

2.2 Displacements and Strains

Consider the layered beam illustrated in Figure 2.1. The composite beam consists of a host beam,
layer 0, of thickness 2hg, to which other layers (treatments) are attached. In order to be able to
model several configurations of the treatments, the composite beam theory allows an arbitrary
number of layers of elastic, piezoelectric and viscoelastic materials, in arbitrary positions. There
are 71 layers on the top surface and —/mn layers on the bottom surface. The displacement field
is defined according to a partial layerwise theory where the axial and transverse displacements,
iy (z, 2k, t) and Wi (z, t), of the top (n = 1,...,7), core (¢ = 0) and bottom (m = m,...,—1)
layers are given by

G (T, 20, t) = wo{z, t) + hobo(z, t) + Ti: 2hi0;(x,t} + (2 + ha)bn{z, 1), (2.1a)

Te(z, 2o, t) = u{:(_x, t) + 2000(z, t), (2.1b)

(2 2 1) = 10 (,8) — BoBo(8) = 3 DBO0) + o~ h)in(zt), @19
Wiz, t) = We(z,t) = 1&2,3_(2;) = W, (z, t) = we(z, t), (2.1d)

where 2k, is the thickness of layers k (k = m,...,—1,0,1,...,7), uo(z, 1), wo(z, t) and fo(z, )

are, respectively, the generalized axial and transverse displacements and the rotation of the beam’s
mid-plane, and 8, (z, t) and 8,,(z, t) are the rotation of each n-th top and m-th bottom layer. It

5



6 Chapter 2. Analytical Model

is worth noting that positive indices are used to denote the top layers and negative indices are
used to the bottom ones, 1.e., n > 0 and m < 0. The z-coordinates in Equations (2.1a) and
(2.1c) are measured from the interface between layers n and n — 1 and m and m + 1 through
the terms z, + A, and z,, — h.,. They represent a translation of the rotation axis of each top and
bottom layer from the layer mid-plane to the interface of the adjacent layer. Furthermore, note
that axial displacement continuity at the interfaces of the layers is assured, leading to coupling
terms in the axial displacements of the layers, and that a constant through-the-thickness transverse
displacement wo(z, ¢) is assumed.

2h;
piezoelectric :
material top layers
29 i
2
viscoelastic oy
material 2h  beam
RO 0
2k,
elastic
. 2h_.
material ~2 Vbottom layers
1 :
Yon,,

Figure 2.1: Layerwise displacement field of the beam with arbitrary ACLD treatments.

According to the displacement field (2.1) the extensional and shear strains of the layers are
determined by the usual linear strain-displacement relations, to be

Y n—1
Sno= —%?;” = ug+ holy + 3 200, + (20 + hy) 0, (2.2a)
i=1l

Se = % = ) + zo0h, (2.2b)

T aﬁm ! 12 e J '
S = T =yl — kol — S 2R+ (2m — B )0 (2.2¢)

Oz i=m+1
oy iy,
ko _ —

S =3, o~ Lo O, (2.2d)

where the notation (-)’ is used to denote the spatial derivative in the z-direction. The kinematic
hypotheses considered previously lead to null transverse strains and a first-order shear deforma-
tion theory (FSDT) for each layer.

2.3 Constitutive Equations

The linear piezoelectric constitutive equations in compact matrix notation [28] are given by

T =cfS - €'E, (2.3a)
D =eS +€7E, (2.3b)
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where T, S, E and D are, respectively, the stress, strain, electric field and electric displacement
vectors, and cF, eT and €% are, respectively, the elasticity (at constant electric field), transpose
piezoelectric and dielectric (at constant strain) matrices appropriate for the material.

The material of the piezoelectric layers is assumed to be orthotropic, with the axes of or-
thotropy parallel to the axes of the beam, z, y, z, and polarized in the transverse direction z,.
They have the behavior of normal piezoelectric materials, with the symmetry properties of an
orthorhombic crystal of the class mm2 [28,29]. Representing Equations (2.3), with their full
matrix and vector terms, for a generic piezoelectric layer p, yields

(TZ, ) [, dy ¢ 0 0 0 1 (52 0 0 ef
17, ﬁz ?2 ?3;3 0 0o 0 Sgy 0 0 egz P
¢ 2F s = LSy — Er S 2.4a
T?, 0 0 0 &, 0 0 SE, 0 e, 0 Ef; (2.42)
77 0 0 0 0 & 0 5P, el 0 0 z
7%, ) 0 0 0 0 O cgﬁ_ \Sgy, 0 0 0
4 ng '
- SP
Dr 0 0 0 0 €5 0 S%y g, 0 0 E?
Dhd=|0 0 0 ¢y 0 05 S;z b+ 10 & 0 EP S (2.4b)
Dr _e’;l ehy €3 0 0 0 Sg,z 0 0 & EP
\S:Fc’yJ

The displacement field considered in (2.1} is independent of the y-axis and null along that
direction. As consequence,
Sy, =55, =0. (2.5)
Moreover, assuming TP, =~ 0 as a priority choice to the one of 52, = 0, which results from the
kinematic assumptions, yields

St = g (2 - eST). 26)

Thus, considering (2.5) and substituting (2.6) in (2.4), the constitutive equations of a generic top
or bottom piezoelectric layer p can be written in the following reduced form,

T7, qr 0] (s [0 eF] [EP
- 15 E -8 SHE @m)
D? 0 ][5 [ 0] (B
{Dﬁ} [eiﬁf{ OJ{Sﬁw}+{0 ez| () 2.7)

where

SRR e BN . & 2800

Chs Cas s

The modification of constants ¢§;, e5; and £5, is due to the transverse stress assumption, T7, ~ 0,

and to the fact that the components T2, 7%, Sb_ and SZ,, and the y-component of the electric

field £7 and electric displacement D?, are considered negligible to the electro-mechanical energy.
Equations (2.7) are the reduced constitutive equations of a generic piezoelectric layer, tipi-

cally utilized when considering FSDT. As can be seen, the electro-mechanical coupling takes
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place between the extensional strain and the transverse electric field, and the shear strain and
axial electric field components. Furthermore, for the characterization of the core layer or any
other top or bottom viscoelastic or elastic layers, Equation (2.7a) can also be used by setting the
piezoelectric contants ez} and e, to zero and by using the appropriate values of the Young’s and
shear modulus i} and c; in the elasticity matrix.

2.4 Electric Field and Potential Assumptions

In the present work, a fully coupled electro-mechanical theory which takes into account the direct
piezoelectric effect with a non-linear distribution of the electric potential is utilized. The electric
displacement vector in Equation (2.7b) can be written as

De e, 0 EZ — E'£
{Dz} - { 0 ] {Ef - Ef} ’ @2
with
_g 815 SZE, — 631 ng, (2103,]3)
5:;1 4

where EP and E? are the electric fields induced by the mechanical strains.

According to reference [26], for electroded layers with the electric potential being prescribed
and with the assumption of zero electric displacement in the z-direction, the axial and transverse
electric fields, £? and E?, and the electric potential ¢, are given by

_ b, 1 [he
P .. fP EP — EP — P )
By = B2 B2 =~k + B - o Ezdzp, @2.11a,5)
0, = 2(’2; CRIORN B " BPdy, + 21w (z”hf’) f Erdz,, (2.12)
2

where ¢, denotes the electrical potential difference between the eiectrodes of each piezoelec-
tric layer. Substituting into Equations (2.11) and (2.12) the induced electric fields in (2.10) and
considering the strain definitions in (2.2), the electric field and potential become [27]

er ¢ es
p— 18 ol — FP=_-__"2 _ i 2,6 2.13ab
E$ 6{'1 ('wo BP)! z 2h’p E;g Zp p° ( a, )
1e?
© 3 (2 +hp) + 5 %81 (2,2 — hp2) 0, : (2.14)
p th 33 P

It is worth noting that the first part of Equation (2.14) is a linear through-the-thickness electric
potential term concerning the applied electric potential difference and that the second part is a
parabolic term concerning the electric potential induced by the mechanical strains.

2.5 Complex Modulus of Viscoelastic Materials

Viscoelastic materials are a class of materials which exhibit a strong temperature and frequency
dependent constitutive behavior. Assuming a fixed temperature, they can be characterized in the



2.6. Variational Formulation 9

frequency domain by a complex shear or extensional modulus, G*(w) or E*(w), and a loss factor
n{w) which accounts for energy dissipation effects. Considering simple harmonic excitation and a
fixed temperature, it is possible to use the complex modulus approach to describe the viscoelastic
behavior by putting

G*(w) = G'(w) + jG" (w), (2.15)

where G'(w) is the shear storage modulus, G"(w) is the shear loss modulus, w is the frequency
and 7 = v/—1. The loss factor of the viscoelastic materials is defined as

GH
nw) =& ((f:)) : (2.16)
and hence equation (2.15) becomes
G*w) = G'W) 1 + (). (2.17)

If we consider a linear, homogeneous and isotropic viscoelastic material, the Young’s storage
modutus £’{w) and shear storage modulus G'(w) are related by

E'(w)

= @

(2.18)
where v(w) is the Poisson’s ratio. In general, the complex moduli E*(w) and G*{w) are not
proportional because the Poisson’s ratio is also frequency dependent and the loss factors 7 glw)
and n{w) are not equal. However, for simplicity, one can relax that condition and put ngz(w) =

e (w) = n(w) and v(w) = v.

2.6 Variational Formulation

In order to derive the weak and strong forms, governing the motion and electric charge equilib-
rium of the composite beam with ACLD treatments, Hamilton’s principle is used. The Lagrangian
and the work of the applied forces are adapted for the electrical and mechanical contributions [30],
so that ,
1
6/ (T—H+W)dt=0, (2.19)
ig
where o and ¢, define the time interval, § denotes the variation, T' is the kinetic energy, His
the electro-mechanical enthalpy (energy stored in the piezoelectric and non-piezoelectric layers)
and W denotes the work done by the applied mechanical forces and electrical charges. In the
following, it will be assumed that all the top and bottom layers are piezoelectric. However, the
formulation still holds for non piezoelectric layers by considering only the mechanical virtual
work terms for those layers.

2.6.1 Virtual Work of the Internal Electro-Mechanical Forces

The work of the internal electro-mechanical forces is given by the sum of the virtual work contri-
butions of all layers. Considering a generic piezoelectric layer p = n,m = m,...,—L,1,...,70,
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and separating the total virtual work § H? into mechanical 6 HY,, piczoelectric 6/, and 61,
and dielectric 0 H f;¢ terms, for the piezoelectric layer of volume V,,, yields

SHP = 6HT, — §H?, — §HT, — §HZ,, (2.20)
where

§H?, = f (6SB,CESE, + 652,y SP,) AV, @.21)

VP
o117, = [ (6SnefBr + 6L, BDAV, 222)

Vp
518, = fv (BEPERSE, + SERER,SP,)dV,, (2.23)
SHE, = fv (§EZeE, EP + S EPeLER)AV,. 224)

F2

Furthermore, for the definition of the core’s internal forces virtual work, 6 H® = 6/, Equation
(2.21) can also be used by considering the appropriate elastic coefficients and strain components.
Substituting the strain definitions (2.2) and the electric field components (2.13) into Equations
(2.21)-(2.24) and integrating with respect to the cross section, the mechanical terms for the top,
core and bottom layers, are given by
n—1 _
SHT, = / [ (17 Anty + 5o Anty + <11 % 2hshal; e 10, ) + uh (s Antth
L i=
n—1 _
— g Anln ) + 305 (e5ThoAntty + CiTho Anfl + CiTho . 2hiAAnf; + ciihoL, 0, )
g=]
n—1 n—1 - —
+ 3 686, (c’{?ZhiAnug + 7 2hiho Anly + v 2h; Y Zthn(?; + cI?thInﬁ;) -+ 66, (c;’f g
i=1 i=1

— n—=1 -
TR L0 + € S 2L 0+ c}:TfInH;) + 86, (c;gAna; - CQSAnw{J)] dL, (2.25)
i=1

SHE, = fL [Suess vy + Bt (e At — iAo ) + 6401105

+860 (55 Ao — iAoy | 4L, (2.26)

-1 _
3 oA P b ) + S (s At

™o 7 TN ! *TVL 7 *TTL
5Huu —_— / I:éug (CH AmuO - Cll hoAmgo - Cll
L

-1 _
—cg’;,Amem) + 593( — o Aty + T2 Al + Ty S 2hiAnl — C;Thofmegﬂ)

i=m+1
-1 —1 _
+ 2 08 = il 2hiAnuy + T 2hiho Aty + GT2hs 3 2thm9;—c;?2hi1m9;1)

il j=m+1
. - - -1 _
88, (7 Tty — T hoTnfly — i 2 RIS I
i=m-t
880, (B3 Al cg;Amwg)] dL, @27
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where L is the length of the beam and Ay, fp and I represent the zero-, first- and second-order
moments of area, respectively. They are given by

_ (2hy)% - (2R )20 (2h,)%b (2h)%
= = —_— — = = 28a-
Ak thb, In 5 s Im 5 5 Ip 3 . I,: 12 5 (2 8a e)
where b is the width of the beam.
Similarly, the electrical terms become
SHP, = —SHEY) — GHES, (2.29)
o (®) (#)
§HE, = —HL — SHEY, (2.30)
_ 5 yp() (4)
SHE, = 6HTY + 6HLY, (2.31)
where )
SH™P — 831 S 9n(Andh + hody 50+ 3 2h;And8, + T,66,, )dL, (2.32)
ug i3 0 ~ i n
-1 B
S = / o1’ ¢m(A iy — hoAm8y— 3 2hiAnd0+ [u06,)dL,  (233)
i=m-+1
n—1 _
SHIY = f e 5%( st + hoAubly + 2. 2hiAnf; + 1,6, )dL, 2.34)
i=1
SHT _/ 4T 5 ( uly = ho Al — _zl 2hi At + T8, )dL (2.35)
du m T S 0L1mYp i4imty mYm s .
i=m+1
E
SHED) = Essy 55 5. o (236)

L (2hp)

5 Epgb) -5 If_;p(eb) Y, Erp(cb)

*p 2

_ /L {‘331 1300+ - [5w;, (wh — 6,) + 30, (8 = wh) | Jar. @37

The induced terms § H, (@) , 8H, #) and §H} (¢} in (2.37), are expressed only in terms of the
mechanical strains. Therefore those terms can be summed with the purely mechanical ones in
(2.25) and (2.27),

SHP® = s1ip, + XY 1+ AL — 5D, (2.38)

which after some algebra yields
n—1 _ _n(8)
SH™ = / [mo (ei7 Anth + cihoAntly + 57 > 2hidof, +c;?1n9;) + S} (055 A
i 2
TP Ant ) + 501 o (ciThoAutty + €iTho* Aufly + iTho z 2hiAntl; + o 1n8 )

n—1
+ 386 (c112h Ay + 2Rk Al + ¢12h, z 2h; A0, + So2R] a’) + 66, (i Tnp

=1

n—1

+eithol b +cif 3 2Tf] + 8O L.0,) -+ 0, (5% 4.6, - i A )|, @39)
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SH™P) — fL [5u6(cﬂ”’flmuo P hoAnbly = T S 2hiAnd+ L, 9')

f=m-+1

+ou, (c55(¢JAmw0 5(¢)Am9m) + 60, ( — g Aty + o At

- -1
TRy S WAl — T holnd) )+ 5 69;(—c{TthAmug—i-c;"l“ZhihoAm%

i=m+1 i=m-+1
_1 _ _
+amon S thAm(?}—c}TthImBLz)+(59;n(cﬂ”' ot — oI nd)
j=m+1
= o 7 ) (@)
& S on 8+ 9T, 9’)+59 (5 At — 3 )Amwo)]dL (2.40)
i=m-1
where \
8
Ci’gq{)) - ll 4 *p! Cp(¢) + ;5 (2413,[))
€33 11

Expressions (2.41) are the so-called effective stiffess parameters [27] and they represent the stiff-
ness increase due to the direct piezoelectric effect. As can be seen in (2.39) and (2.40), the param-
eter cﬁ‘ﬁ) only affects the bending stiffness and it represents the effects of the induced parabolic

electric potential. Regarding c§é¢), it represents the stiffness increase due to the assumption of
zero electric displacement in the axial direction and it affects only the shear stiffness.

Finally, the total virtual work of the internal electro-mechanical forces in all the layers (elastic,
piezoelectric or viscoelastic layers) is given by

SH = GHE +3° (JH;E"S) + 6HMD L SH®) 5Hg;¢’)
n=1

-1
3 ( SHR® 4 SH™® 4 sHT) — 5H;j;<¢)) (2.42)

m=mm

2.6.2 Virtual Work of the Inertial Forces

The virtual work of the inertial forces in a generic layer k& is given by
5T == — / o0 (m&k + 5rbk1§k)de, (2.43)
Ve

where p;, is the density of the material into layer. Substituting the displacement field defined in
¢quation (2.1) into (2.43) gives, after integration, for the top, bottom and core layers,

.- n—1 . -
5T — — f [0 Aniio + p,hoAndo + o X 2hiAnbs + puLabn ) + Busop, Antiy
L 3=1
. n—1 . _ .
+590 (pnhGAnuO + p'n,hOQAneo -+ pnho Z Qh‘n‘.An'Hz + pnhofngﬂ)
=1
n—1 . n—1 . .
) (pHthAnijg + pa2hihoAno + prdh 3 hyAul; + ,on2h,-1n0n)
i=1 i

+50,, (pn iio + poholufo + p, Z 2hi s + p 10 )]dL, (2.44)
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ST = — f (5u0pcAcﬁ0 + 680,00 + 5wopcAc7Ifg)dL, (2.45)
L

.. -1 . _ ..
§T™ = — / [5uo (Pm/—'imﬁo — prfioAmbo — P 2. 2RiARG;i + memﬁm) + 6wop Amo
L

i=m+1

3 _l . — an
+590( - pthAmﬁ'D + pthQAmQO + pth Z Qh'zAmgz - pmh(}[mgm)

i=m+1

-1 . -1 w _ .
. 59i(—pm2hiAmﬁ:0+ oo 2hihoAnbo + prdhs 3 thmé‘j—mehiImem)

i=m-+1 j=m-1

_ . -1 o .
480 (o + prhoTndo = . 3 20T+ prodndin ) AL, (2.46)

i=m-+1

The total virtual work of the inertial forces is then given by the sum of the virtual work of all
the layers,

i —1
§T = 6T°+ > 6T "+ 3, 6T™ (2.47)
n=1 m=m

2.6.3 Virtual Work of the External Forces
In the determination of the virtual work of the mechanical external forces, two types of applied
mechanical forces are considered, namely, axial and transverse volume forces F and F* The
virtual work of those forces for the generic layer & is given by
SW* = f (Ffaﬁk + Ffé?ﬁk) dvi. (2.48)
Vi
Substituting the displacement field (2.1) into (2.48) and integrating, yields

n—1
SW = f [(mo L hoBBo+ 3 2hidl; + hno"&n)Xn + 60, M, + 5ngn] dL,  (2.49)
L i=1

SWe = / (6u0Xc + 805M, + 5woZC) dL, (2.50)
L
-1
SWm = / [(6u0 — hodto — 3> 2hitt: - im0 ) X+ 80 M + 5w0Zm] dL, (2.51)
L i=m-+1
where
(Xk, M,, zk) = / (Ff 2 FE, F’“) dA,. (2.52)
A
Thus, the total virtual work of the applied mechanical forces is given by
fi —1
§W, = 6We + S 6Wr + S W, (2.53)
n=1 m=In

The virtual work of the electric charge density in each piezoelectric layer is defined by

Wy = - fA ippTpd A = - fL SppbrrpdLs, (2.54)



14 Chapter 2. Analytical Model

where A7 is the electrode area and 7, is the applied electric charge density at the electrode. Note
that from the definition of the electric potential (2.14), and considering only the applied potential
term, one finds that ¢, (2, = —h,) = 0 and ¢, (3, = h,) = ¢,. The total virtual work of the
applied electric charge density is given by

7t -1
Wy =3 6WZ+ 3 sWp. (2.55)
n=1 TM=17L

Finally, the total virtual work 6W of the applied external forces, comprising the virtual work
of the applied mechanical forces W, and that of the applied electric charge density at the elec-
trodes 6 W, is given by

SW = 6W, + 6W,, = Z SWE + Z SWp + > sW. (2.56)

k= m=m

2.7 Strong Forms

As derived in Appendix A, the equations of motion are obtained from the Hamilton’s principle by
substituting expressions (2.42), (2.47) and (2.56) into (2.19), integrating by parts and collecting
the terms involving the variations dug, dwy, 66y, 685 (A = 1,...,7 ~ 1), 885, 605 and 6654

(m=m+1,...,~1), independent and arbitrary in the interval {0, I]. They are given by
dug
i 1 -1 " i1 "

> i+ (3 cithodn— & cifhodn)ly+ S (3 p2hadi+ palh)o

k=m n=1 m=rn fi=1 “i=h+1

a7 o T T /! = ot I 63?
et L+t Ity + Y (= % p2hadi+ paln )0 + ZA
h=rn+1 i=m 2h,
< 331 i .
+ 2 An Z P Axtio + ( > Puhodn — Z pmhoAm) Boi
m=1in n=1 m=rn
A=l “i=f+l
-1 h—
. (— S i 2 s + I )0 2.57)
m=1+1 i=m
51[)0 :
(z o3P An + By Ao + z B A Yl — 5548 S 49 A0, — P A,
fr=1
(4) S ) ¢
—655 A 9' Z 655 A B’ + Z Zk Z pkAk’lbg, (258)

th=m+1 k= k=
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580 .
7 —1 7 -1
(3 cithodn = 3 cilhodn Jup+ (30 cithatdn +illo+ 3 ciTho’ A )b
= ™M= n=1 7

fi~-1 T _ _ —
+ Z (2h0hﬁ Z CHA + CT ho]ﬁ) 9;'; + C;?h(}.[ﬁgr pmhg 8”
=1

i=fi+1
A

-1 m—1 " et
+ 3 (zhghﬁ,, Y &t A — &Rl )9 + & Aquly — ¢ Ay + 2 2;1 hoAndl,
m=m+1 i=m

-1 7 -1
B+ 3 hoXn+ My — 3 hoXm = ( z b hodn — 55 phodn )
n=1 m=m

831
Z mM=Tm

m=m

. -1

1—-n+1

tphoTsbs — P ho Lo+ 3 (Qhohm 5 piAi-—pmhgfm)ém (2.59)

m=rn+1 =M

53,3, 4
fi #i ) o fi—1 7
( T oA -]—cﬂ‘f) (2h0hﬁ 3 cﬁAz-+c;?hOIﬁ)96’+Z( > phahiA;

i=f+1 i=fi41 i=1 M j=A+l

+pa2ila ) + ( S ciang24,+ 80T, Von+ + 5 ( i ciidhahiA; + {20 )0

i=f+1 _7 =f-+1

R T8 + D Al — TP A0, + 2L air &, + z 2hs Ay 31¢> + hi X
2ha L M ap,

+ Y Xt M= S p2hadi+ pal I )it + (2hoha S i+ pahols )80
i=f+1 i=n+1 i=fi+1

+Z( S pidhahid; + pﬁ2hifﬁ)éi+( Xﬁzlpiélhﬁzfli-i- pﬁfﬁ)éﬁ
i=ht

i=1 *j=n+l
-1 n N - —
+ 5 (5 pdhahsAi+ 0,251 ) 0 + pr2haTib, (2.60)
=Rl iy
(Sgﬁ .
Ll + o IR0 + Z i ohala07 + O Lo + &) Ao, — &9 4,0,
S’;{ Tod + haXn + My = pyJaiio + pahoTaflo + 2 po2halnbn + palabn,  (261)
5951 .
P Inull — T holnbl + 2P 107 — z R Tl + e At — 24P A0

m=rm+1
- R -1 [ ”
;;l mﬁb — hnXm + Mp, = pgdntio — thofﬁzgo - E Pm2hmfm‘9ﬁq + Pt bms
i h=m+1
(2.62)
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(59,5‘.,, :
- P P s
(- S o 0hads + e ) + (2hohn N i Ay koI o+ ¥ (T ciiahmbsa
S i =4l Ni=m
*f " -l *d 2 —m(qﬁ " = T "
~cianal; )0y + (3 ciidha®As+ ) It 5 1 ( z piAhahids — pa2hil )0,
i=m =1+
— b Tl + a9 At — 29 AL 0, + ;;1 Tadl, z 2 di 631 2Lg; — haXo
m—1 — v
- D 20 X+ My, = ( Z P2 Ai + pi i )’Uo + (%oh Z piA thofm) by
i=m i=
h—1 N ey "
> ( z pilhanhi s~ p2ha ;)b + ( S pdhaA; + Pl )b
J=m+1 i=1M
s (f: pihuhiAy = paliln )Bi+ pu2haTafn, (2.63)

i=rh+41 N j=m

In a similar way (see Appendix A), the electric charge equilibrium equations are obtained

by collecting the terms related to the variations d¢, (n = 1,...,%) and d¢,, (m == —1,...,70),
yielding
0, :
5T p ity B g Al + nf 831 oy udntl + G g g, - By (2.64)
2h, ™ to oh, " &2 2h, gh2 v ™ '
0,
21 €3’ ), el 3 er €35 Am
9 il T = —brp,.
o Amtlo = g ~hodnly + i =Ll — 3, 5 iy Om T
(2.65)

Finally, as derived in Appendix A, the electro-mechanical boundary conditions at z = 0, L
are expressed as

- i AT hoAm )9' + Z ( i Pz-ZhﬁAmLPﬁfﬁ)H%

m=rh Ai=1 “i=fit+1l

Ouo[ z Al + (z Ry Ay
n=1
o o -1
WL A O SRS ( S p2hihi+ paln )
'rh—'ﬁ?,+1 t=m

6‘1
+ZA 31 h 2Lo ]—0, (2.66)

M=

[( Z c5(¢’)A + B3 A0 + Z 055 )w0+c55A fo + E EQ§¢)A 0s+C (¢)A 8.

m=m

T At S G A0, a) =0 (2.67)

m=rn+t1
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590[( Zcuhg z o A ) (zc; hoZ A, + 18 Ig—i—mi:l:mcj{”hg?flm)ﬂf)

_ _ _ _ -1 hm—1 X
+ z (2h0h S i A4 e hgfﬁ)ra;, + P holnll — prholntls + S (thhm S A,
i=f41 m=rm+1 i=m
-1

, ex
— ol )a + 2 L A, — ) 221 hoAmd } (2.68)

594( 3 i 2had, +c;’ffﬁ)u;,+ (thhﬁ S A+ choli )95

i=fi41 t=f+1

A-i, @ _ A
+z( > ppthahids + pa2hila )0+ (% il + 0L )6,

i=1 *j=A+1 i=h+1
n—1 n
+ T {3 ciidhahya;+ci{2ha L,)8, + cii2halat), + G g+ 3 hads 631.;;51] 0,
Gl Simytl 2h il
(2.60)
56, (CHI wl + o laf) + z Cmoh, T6 + P10, + 26;1 Ligs) =0, (2.70)

[p— _1 — s
58m(c’{§" it — L)+ T Ll — S ST 2hm I, 21l ):0, Q.71)

ma=m+1 2h m

-1 o -1 -1
305 (= 3 cHi2hadi+ T Tn)up+ ¥ (Zhola Y A= ilholn )b

=7 j=7ﬁ+1 i—m

.*rﬁ, F ot ol = *5 L) T / *7 2 i) !
—Emon L S (_z cn4h,ﬁthz-—cnzhﬁ,,fj)9j+ ( S et 24, + &, )em

j=m+1 i=m
-1 _ e¥ er
+ 5 (z pyhshiA; — pa2hiln )8+ o 31 o Inda _ 5 oh Ais 31 qu} 0. @72
i=rht+1 i=m

Equations (2.57)~(2.72) represent the analytical electro-mechanical model of the layered beam
with arbitrary ACLD treatments, where the electric potential differences and the generalized me-
chanical displacements are the unknown independent variables.
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Chapter 3

Finite Element Model

3.1 Introduction

In this chapter a FE model based on the weak forms of the analytical model presented in Chapter
2 is developed. The weak forms are derived in the Appendix A and the reader is referred to it
for further details. First, the FE spatial model governing the motion and electric charge equilib-
rium of the layered beam with piczoelectric and viscoelastic layers is presented. Then, the FE
piezoelectric sensor and actuator equations are described and the viscoelastic complex stiffness
matrix is presented. Moreover, the frequency response model is discussed and an algorithm for
the solution is shown.

3.2 Spatial Model

The weak forms of the analytical model presented in Chapter 2, governing the motion and electric
charge equilibrium of the layered beam with piezoelectric and viscoelastic layers, are derived in
the Appendix A. For convenience, the generalized mechanical displacements and electric poten-
tial differences are grouped in the generalized vectors of displacements and potential differences,

u(z,t) = {ug(z,t), wo(z, t}, Bolx, 1), 01(z,t), ..., 0a(z, 1), Om(z, 1), .. ,G_I(m,t)}T, 3.1
& (2,1) = {$,(@,0), -, da(®, ), 0 (5, 8), . S (@D} 3:2)

The weak forms given in equations (A.26) and (A.27) are
/ [6uTJi + 6uT (L), YLy + L, GL)u+ Su'Ll PTo| dL = f su'f dL, (3.3)
L L
/ (8¢ PLyyu+ 8¢ C)dL = f ST dL. (3.4
L L

The non-zero terms of the symmetric positive definite inertia matrix J and of the symmetric semi-
positive definite extensional and shear stiffness matrices Y and G, of size [(k — 1)x(k — 1)), are
defined in (A.19), (A.20) and (A.21), respectively. The piezoelectric equivalent stiffness and
capacitance matrices P and C, of size [x(k — 1)] and (F x p), have non-zero terms defined by
(A.22) and (A.23). The applied mechanical forces and electric charge density vectors f and 7,
of size [(k — 1)x1] and (§ x 1), have clements defined by (A.24) and (A.25). Here, p = — ™

19



20 Chapter 3. Finite Element Model

is the number of piezoelectric layers and & — 1, with & = § + 4, is the number of generalized
displacements. Furthermore, the differential operators

L., = diag (%,O, 8_6;’ e, %) , L. = diag (O, %, 1,..., 1) , (3.5a,b)
of size [(k — 1)x(k — 1)], are used for the definition of the generalized extensional and shear
strains.

The FE method is utilized here with the purpose of obtaining an approximated solution of
Equations (3.3) and (3.4). That involves a transformation of the global integral forms to a rep-
resentation composed of the sum of the elemental integral forms, leading to the definition of the
local (elemental) matrices and vectors. Thus, the beam’s total length L is divided and the domain
of integration is discretized into g finite elements of length L,. With the sum taken over all ¢
clements, the global weak forms become

)
3o uT [Ji® + (L, YL, + L, GL,,) u* + LLPT¢° — f] dL, = 0, (3.6)
e=1JL,
)
S| 69T (PLu + Co® — 7¢) dL, = 0. 3.7
e=1J L,

The mechanical (and its second time derivative) and electrical variables of (3.6) and (3.7),
ué(z,t) and ¢°(z,t), are restricted to the domain of integration and an approximation is con-
sidered at a local Ievel in each sub-domain, where only the nodal values of the variables at the
element boundaries contribute to the approximation. The FE mesh is then composed of g + 1
nodal points and the global mechanical degree of freedom (DoF) vectors, Gi(¢) and ¢{t), of size
[{(g+ 1) (P+4) x 1] and (gp x 1), are defined as

a(t) = {..., (), T (t), 5 (), 61 8). -+, 65 ), Ot 0L, (1), -} . (BB)

() ={ .., ¢5(t),- - da(E), n(t), -~ 021 (), ) s (3.9)

wherer=1,...,g+1ands=1,...,q.

For the definition of the local approximation of the generalized mechanical and electrical
DoFs in each sub-domain, a generic element with two nodes (1 and 2) is isolated from the FE
mesh (Figure 3.1). The correspondence between each node of the element and the global node
enumeration is established through the mechanical and electrical connectivity matrices R¢ and
R, of size [k(g + 1)x k(g + 1] and (Fg x pg), expressed as

i¢ = R4, ¢'=R;0, (3.10a,b)
where the mechanical and electrical elemental DoFs vectors G°(¢) and ¢°(¢) are defined as
- — _1r Al =1 A A =1 _
ue(t) = {u(])-(t)a wé(t): Ho(t)a Gl(t)a oy ﬁé(t), 9111’1(’4’)1 Tt 6—1(t): ug(t):
A ONAONACREERH OR ORI ) SR EA T

—e ~ 5 = < T
¢ (t) = {6:(t), -, 8a(t), 1), (D)} (3.12)
The superscripts 1 and 2 denote the node at which the DoF is defined, while the subscript identifies
the layer to which the DoF refers. As usual, a variable from the mechanical DoFs global vector
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Figure 3.1: One-dimensional FE of the beam with arbitrary ACL.D treatments.

appears on two elemental DoFs vectors, except for the boundary nodes of the global domain.
However, for the electrical DoFs global vector that won’t be the case because continuity of the
electric potential difference between adjacent FEs won’t be assured.

From the differential operators (3.5) it is possible to see that the variational Equations (3.3)
and (3.4) contain at most first order derivatives of the generalized displacements and zero order
derivatives of the electric potential differences. Thus, the displacement variables within each el-
ement domain must be, at least, approximated by linear interpolation functions. For the electric
potential differences, constant functions are utilized and the electric potential difference becomes
constant in each element. The interpolation functions are grouped in the mechanical and electri-
cal interpolation matrices N, (z) and N,. Therefore, the generalized displacement and electric
potential vectors in each sub-domain are approximated by

u®(z,t) = N, ()a(t), ¢°(t) = Nyd“ (). (3.13a,b)

Substituting Equations (3.13) into (3.6) and (3.7) yields

g —e _ —e
zl st (M2, i + Ki,0° + K¢ — F°) =0, (3.14)
.  __ —e .
5887 (Ko, ° + K5,0° — Q) =0, (3.15)
e=1

where the elemental matrices and vectors are defined as

M, = [ N,IN,dL., K}, = / (B, YB,, + k,B,GB.,) dL,, (3.16a,b)
Le Le
ts =K5, = fL Bl PTdL, K, = fL N;CN, dL., (3.17a,b)
Fo= [ NifdL, Q°= / N7 dLe, (3.18a,b)
Le L,

and the extensional and shear deformation matrices utilized are given by

B,. = L..N,, B,. = L;,N,. (3.19a,b)
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Furthermore, a shear correction factor k, was introduced in Equation (3.16b) in order to approxi-
mate the effects of the non-linear shear deformation distribution [31]. Moreover, reduced integra-
tion of the higher order terms of the shear stiffness matrix should be used in order to overcome
the over-stiffening of the element at low thickness (shear locking).

Considering Equations (3.10) and substituting them into (3.14) and (3.15), yields

Véu: on’ (Mwi‘i + Koo di + Kygp — F) =0, (3.20)
Vip: 8¢ (Keii+Kesdp— Q) =0, (3.21)
where the global matrices and vectors are given by
q q
M, = 3 RIM,RE, Ko, = > RIKS RS, (3.22a,b)
e=1 e=1
q q
K=K, =5 RzTKde,Re, Koo =2, R;TK$¢R3, (3.23a,b)
e=1 e=1
g )
F=3YRJIF, Q=3 RYQ" (3.24a,b)
e=1 e=1

Finally, the global equations of motion and charge equilibrium of the discrete system are given
by the non-trivial solution of Equations (3.20) and (3.21), yielding

M iift) + K Ti(t) + Kug@(t) = F (), (3.25)
K (1) + Kge@(1) = Q(2). (3.26)

Therefore, the FE model of the beam with arbitrary ACLD treatments is described by the elemen-
tal matrices and vectors in Equations (3.16)-(3.18) and by the global FE equations of motion and
charge equilibrium in Equations (3.25)-(3.26).

3.3 Sensors and Actuators Equations

The electrical DoFs vector in Equations (3.20) and (3.21) can be partitioned into the actuating and
sensing DoFs, @(t) = {,(t), &, (t)}", where the subscripts *a’ and ’s’ denote the actuating and
sensing capabilitics. Furthermore, the stiffness matrix can be written as the sum of the elastic and
piezoelectric layers stiffness matrices KZ, and KZ,. Hence, considering open-circuit electrodes,
and in that case Q(¢) = 0, the non specified potential differences in (3.21) can be statically
condensed in (3.20), and the equations of motion and charge equilibrium become

M, ii(8) + (KZ, + KEDU() = ~Kugd,(t) + F(2), (3.27)
by(t) = —Kg 5 Kousti(t), (3.28)

where
Ky =K, — KoK Keus. (3.29)

It’s worth to note that a non-null parabolic through-the-thickness distribution of the electric poten-
tial within the piezoelectric layers was already considered in the variational formulation through
the use of effective stiffness parameters. Moreover, the static consensation in Equation (3.29)
only considers the linear term of the electrical potential distribution, which is the one that in fact
contributes to the sensor voltage.
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3.4 Frequency Response Model

Considering the frequency dependent physical properties of the viscoelastic materials presented
m Section 2.5 and assuming a fixed temperature, the FE equation of motion in (3.27) can be
written as

Mmﬁﬁ(t) - [Kfu + K'f;f + Kzu(w)]ﬁ(t) = &Ku‘i)aq_ba(t) + F(t)’ (330)
where KV (w) is a complex global stiffness matrix of the viscoelastic layers, whose terms are
frequency dependent.

Considering simple harmonic mechanical or electric excitation,
F(t) = Fe™, ¢,(t) = &7, (3.31a,b)

where F and ®, are the applied mechanical forces and electrical potential difference amplitude
vectors, the steady state mechanical and electrical harmonic responses of the system can be writ-
ten as

a(t) = Ue™t, ¢,(t) = B, (3.32a,b)
where U and ®, are the complex response vectors of mechanical and electrical amplitudes (dis-
placements and sensors voltages). Substituting (3.31) and (3.32) into (3.30) and (3.28) yields

[Kuow(w) — *M, U = K3, Pa + F, (3.33)
@, = —K, KU, (3.34)

where K, (w) = KE, + KP* + KV (w), from which the complex solution vectors U and &, can
be obtained.

The frequency response function (FRF) for a mechanical force DoF input ¢ and mechanical
displacement DoF output o, can be obtained by solving (3.33) for different values of frequency,

[Kou(wi) — wiM,,JU' = F¥, (3.35)

where F* denotes a force vector with a unit force in the i-th DoF and all other elements equal to
zero, and U' is the resulting response vector (displacements) solution at frequency w;. Moreover,
the resultant sensor voltage vector ®! is obtained by substituting the displacement response vector
Ul in (3.34), yielding

Bl = —K;; K U (3.36)
Thus, the displacement and induced voltage per unit force frequency response at frequency wy,

Tx and T%¥, are given by

oi ?

U, U
e — 20 . @ 3.37
&°  avg{—K;; K U]
T — IS o S 38
ot E E 3 (3 )

where F; is the amplitude of the mechanical force input, U, = U’ is the displacement amplitude
extracted from the o-th DoF of the vector UY, and ®¢ is the o-th sensor averaged voltage output
determined with the electrical DoFs of the o-th sensor. The notation avg|] is utilized to denote
that the sensors voltages are calculated from an average of the electrical DoFs where an electrical
FE separation of the electrodes was performed.
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Similarly, for a piezoelectric i-th actuator voltage input vector ®Z, where a unit voltage is
considered only in the electrical DoFs which correspond to the i-th actuator, the mechanical
displacements amplitude vector is given by solving

[Kuu(wr) — wi M, U = —Koug P, 1 (3.39)

and the o-th sensor output voltage vector is given by substituting U’ into (3.36). Thus, the dis-
placement and induced voltage per unit voltage applied into the actuator frequency response at
frequency wy, T and 7%, are given by

U, U
T e 22 = 2 3.40
= 5 . -1 Tl
T — % _ vl Kg’;K‘ﬁ“sU ! (3.41)

where ®! is the amplitude of the voltage applied to the 7-th actuator.

Finally, the frequency response model (FRFs) can be generated from the results of many
discrete frequency calculations of Equations (3.35), (3.36) and (3.39), in which the complex
stiffness matrix of the viscoelastic layers is recalculated at each frequency value of the discrete
frequency range w = wy, ..., wy, - . ., wy, as shown in Figure 3.2.

W= Wyyeoey Wyyen oy Wy

Y

K, (=K, +K;] + K, ()

Y

[Ku-u (U.J) - w2Muu }I_J-[ = Fi
[K-wu.(w) - szﬂu ]Ul = _Kugﬁa.@;
F - IGK, T

) 4
e Téu Tutﬁ T¢¢

oi P~ o0i 3 Tol Yol

Figure 3.2: Frequency response model generation diagram.
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41 Introduction

In order to validate the FE model some measurements were taken on an aluminium beam with
a partial ACLD treatment (viscoelastic layer sandwiched between the piezoelectric patch and
the base beam). The aims were the validation of both the dynamics of the system and the ac-
tuating and sensing capabilities of the piezoelectric patches. Thus, three FRFs were measured
experimentally and evaluated numerically: acceleration per unit force (accelerance), acceleration
per unit voltage into the piezoelectric patch and induced voltage per unit force. The FE model
implementation was realized in MATLAB®.

4.2 Test Rig and Experimental Setup

The test rig comprised a beam that was 400 mm long, 2.92 mm thick and 30 mm wide, and a
partial ACLD treatment that was 50 mm long and 30 mm wide, with viscoelastic and piezoelectric
layers of thickness 0.127 mm and 0.5 mm, respectively. Taking one end of the beam to be z = 0,
the ACLD treatment was positioned slightly off-center on the beam, starting at = = 202 mm, and
was realized with a passive viscoelastic layer of a material manufactured by 3M (ISD112) and a
piezoelectric constraining patch manufactured by PI (PIC 255).

The mechanical and electrical material properties of the aluminium beam, viscoelastic layer
and piezoclectric patch are presented in Table 4.1. The shear storage modulus and loss factor

Aluminium IMISD112 PIC 255
c;; 69GPa — ¢, 6211GPa e;  —11.18C/m*
Cs5 26.54 GPa b Crs 23.89 GPa €15 11.94 C/m?

p  2700Kg/m® 1130Kgm® p 7800Kgm® e 12.6 x107° F/m
et, 9.96 x 107° F/m

Table 4.1: Properties of the aluminium, viscoelastic layer and piezoelectric patch.

of the viscoelastic material at the ambient temperature (22 °C) were extracted from the man-
ufacturer’s nomogram [32] and are presented in Figure 4.1. The Young’s storage modulus was

25
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obtained assuming a frequency independent Poisson’s ratio equal to 0.45. Moreover, an hysteretic
damping model with a loss factor equal to 2 x 10~% was considered in the numerical evaluations.

1.2

W

b
b W
e
oo

=
(=
Loss factor,n

Shear storage mod., G' [MPa]
h

1t 0.4
0.5 0.2
O 1 ]
10° 10" 10% 109
Freq. [Hz]
Figure 4.1: Frequency dependent properties of 3M ISD112 at 22 °C: _ _. _, loss factor; R

shear storage modulus.

The analysis concerned free-free boundary conditions. The beam was suspended on two
wires attached to the beam approximately at 22.4% and 77.6% of the total length of the beam as
schematically presented in Figure 4.2. The placement of the wires was chosen at the locations of
the nodes of the first flexural mode which minimizes the interference of the attached wires in the
system. The beam was excited by an impact hammer from PCB Piezotronics (inodel 086C03)
with a hard tip (model 084B03) mounted on it. The impulsive force was applied at z = 275 mm
and measured by the hammer’s force sensor. The response (acceleration) was measured with a
PCB Piezotronics accelerometer (model 352C22), with a frequency range up to 10 kHz and a
weight equal to 0.5 g, placed on the other side of the beam at the same location of the excitation
force. The location of the impact was chosen in order to excite only one of the rigid body modes,
swinging back and forth, and the excitation of the torsional modes was avoided.

In the measurements both the impact hammer and accelerometer were used in ICP mode and
an 8-channel dynamic signal analyser HP 35650 with a signal generator module was utilized for
the data acquisition, signal generation and computations of the FRFs. Furthermore, in the anal-
ysis the frequency span was set to 1.6 kHz and a frequency resolution of 0.5 Hz was defined.
The impact excitation was utilized for the measurement of the acceleration and induced voltage
per unit force FRFs and 10 averages were considered in that procedure. For the acquisition of
the piezoelectric patch (sensor) induced voltage a Bruel & Kjaer charge amplifier (type 2635)
was utilized. Concerning the measurement of the acceleration per unit voltage into the actuator,
the beam was excited with a stepped sine voltage into the piezoelectric actuator which was pre-
viously amplified by a PCB Piezotronics single channel power amplifier (AVC instrumentation,
series 790) with a output voltage range equal to 200 V. The acceleration was measured by the
accelerometer which was kept at the same location referred to above.
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Acceleration

Figure 4.2: Test rig and ACLD patch.

4.3 Results and Discussion

The three measured and predicted FRFs, namely, acceleration per unit force (accelerance), accel-
eration per unit voltage into the piezoelectric patch and induced voltage per unit force, are shown

in Figures 4.3 to 4.5.

N? 60
I:n
B
w40
2
B 20
&
s 0
180¢—
= 90
2 0
= E
90
_180: 1 PP S I ' 1 I L L E
100 200 300 400 500 600 700 800 900 1000

Freq. [Hz]

Figure 4.3: Frequency response function (acceleration per unit force) of the beam with ACLD
, measured.

treatment: _ _ _, predicted;
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Figure 4.4: Frequency response function (acceleration per unit voltage) of the beam with ACLD
treatment: _ _ _ | predicted; , measured.
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Figure 4.5: Frequency response function (voltage per unit force) of the beam with ACLD trcat-
ment: _ _ _, predicted,; , measured.

As can be seen, there is a very good agreement between the predicted and measured FRFs.
Small differences are found around the fourth natural frequency in all the FRFs. The reason for
that discrepancy might be related to uncertainties concerning the viscoelastic material proper-
ties and wiih the fact that the wavelength at the fourth natural frequency is closer to the ACLD
patch length than at the lower natural frequencies. Furthermore, the ACLD patch is located
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between consecutive nodes of the fourth mode, where the modal strains are higher, and as a con-
sequence the influence of the uncertainties of the viscoelastic material properties becomes more
pronounced. Moreover, the accelerometer adds a little mass, the wires have some effect, the -
FE involves assumptions and approximations, ¢tc. However, the agreement in general is very
good and both the dynamics of the system, beam and ACLD patch, and the actuating and sensing
capabilities of the piezoelectric patch are validated.
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Chapter 5

Conclusion

In this work a generic analytical formulation for the study of beams with arbitrary active con-
strained layer damping (ACLD) treatments was presented. The hybrid behavior of the elastic,
viscoelastic and piezoelectric materials was considered in an accurate and consistent way.

A partial layerwise theory was considered for the definition of the displacement field leading
to a first shear deformation theory (FSDT) for each layer. For thick laminates this allows a more
accurate representation of the intra- and inter-laminar effects and the strain and stress distributions
become better approximations to the three-dimensional elasticity theory. Moreover, the rotatory
inertia is considered in a more accurate way, which might be of importance at high frequencies.

For modelling the electric ficld and potential of the piezoelectric layers a fully. coupled elec-
tromechanical theory was utilized. The use of effective stiffness parameters allowed a represen-
tation of the system similar to the pure mechanical one to be obtained merely by modifying the
elastic constitutive parameters.

A complex modulus approach was utilized to model the damping behavior of the viscoelastic
materials. While the material properties and damping are modeled in a precise way, the solu-
tion model algorithm requires the re-calculation of the stiffness matrix of the viscoelastic layers,
which, for a relatively large number of degrees of freedom can be very time consuming, requiring
a high computational effort.

The developed strong forms, comprising the electro-mechanical equations of motion, elec-
tric charge equilibrium and electro-mechanical boundary conditions, can be used for analytical
solutions. However, in some situations the solution of the partial differential equations can be
difficult or even impossible to obtain. The presented finite element (FE) model solution has the
well known advantages of the FE method and allows the study of partial ACLD treatments where
the solution by analytical methods might be difficult to obtain.

The FE model was validated against experimental results. A very good agreement was ob-
tained validating both the dynamics of the system and the actuator and sensor capabilities of the
piezoelectric layers. The results demonstrate the capacity and robustness of the proposed theory.
Thus, the presented analytical formulation and FE model solution can be utilized for the study of
arbitrary ACLD treatments on beams with various configurations and arrangements of the layers
and with different control strategies.
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Appendix A

Weak and Strong Forms

A.1 Hamilton’s Principle

From Hamilton’s principle in Equation (2.19) we have
t1
5] (T — H +W)dt =0. A1)
2

Substituting the virtual works of the total internal electro-mechanical, inertial and external forces
and electric charge density, presented in Chapter 2 in Equations (2.42), (2.47), (2.53) and (2.55),
into (A.1), and considering the contributions of all the layers, yields

n=1

i i
7 n n{¢) n{¢} n(g) i i Y als c
-1
—Wi+ L [— ST™ + SHIX® + HI® + SH® — 6HP — sW — 5wﬂ }det.
(A2)

For convenience the signs in the previous equation were reversed and it will be used in the fol-
lowing for the definition of the weak and strong forms of the analytical model.

A.2 Weak Forms

Substituting the virtual work terms defined in Chapter 2 into Equation (A.2) and collecting the
terms relative to the variations of the generalized displacements and electric potential differences,
yields

/ f { {OUO pnAﬂUO +,0nh0A 90 “+ Pn E 2h A 9 -+ ,On.!r 9 ) + 5prnAn'L‘t}g

600 (puhoAnio + paho® Anflo + o S ohnhs + pabolibn ) + S (pu2hsAniiy
=1 i=1

.. n-1 . _ . _ _ .
o 2hihoAnlo + pdhy S hyAnd; + pHth-Inf?n) + 80, (pnfﬁﬁg + p, holbo
i=1
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Taking the following properties of sums into consideration in the previous equation,

2 fufidt =3 (3 Suli) 50 (A
n=1 i=1 i=1 n=z-);}.l
>3 fmfiaeﬁi(i INALA (A.5)
) X m=m t=m-|;} e AR 7] .
SIS INTUES ol (D SN TA USRS (B SN
n=i+1 j=1 =1 “n=i+l =i “n=j+1
i—1 -1 -1 i—1 i
Y 3 fufifiti= B (T dnfifs)0; > (z: Infifi)85 (AT
m=m j=m4tl J=i+1 Jj=m+1

where f,, fm, f; and f; are generic functions of the displacements and electric potential differ-
ences with the n, m, i and 7 subscripts, the variational terms are transformed to a more convenient
representation where the variations become decoupled from the sums. For the sake of brevity only
some changes in the terms are shown in the following equations. However, similar transforma-
tions are obtained for the stiffness terms and for the bottom layers.

i n—1 . A A . 7L i .

n= 3 i=1 n=1+1 n=1{=n-+1
S b, Z_jizhA b= 5 S phohidndi= 3 S pihe2hnddn,  (A9)
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Thus, considering the transformations, after some algebra Equation (A.3) becomes
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f=n+

+ethol, }9 + z { S b A; + 2k, }9;+{ z"j i dh A + 89T, }9;
i=n+1

Jj=n+1

2

+
> Ci2hahod;

+

n—1 7 7
+ 3 { Z i dh,hi A +c;'{2h1}9 +c;"f2h19’+1 n+ 3 2hAe31¢)
j=n+1 Pt 2h;

+68, (c55 B — c§5Anw6) — Sup X, — 600ho X — 59n{ S 20X + haXp + M,
i=n+1
€31 €31 31 ;€31 7 g5y
—5w0Zn] 0, (S Aty + 2 ho Al + Z - 2heAnl + 2t A8, — 68, o,

2h, Sh,
8, b7y + Sutop,Adiic + Swop,Actiio + 00p Lo + 5u0cﬁAcu0 + du (c§5Acw6 - cgsAceg)

-1
60,5 L4 + 56, (c55A 6o — casAcwf,) — SuoX, — 806M, — SwoZe+ 3 [éuo (pmAmiig

m=m

—p o Amby + { - ﬂf P2k As + pmfm}ém) + Swop,, Amiiiy + 66, (—pmhoAming
p,hA 9@+{ z piho2hmAs — pmhofm}ém) + 66, ({ —E‘_l pithAi-i-pmfm}iig

+{ ; pi2hmhoAi = prihoLn }Bo -+ 5 {mf pidhphiA; — pmzhjm}é,;

i=m+1

+{ S ol s + Puilm b + T Z pilthuhi Ai = 2y ), - Pmthfﬁtéﬁ%)

i=m =4+l
mel _
6y (i Amty = 7o Anfh + { 5 —Cii2hmds + 5P O+ A i Sy

o, (css(% wh — a;’;<¢>Am9m) + 604 — T hoAmt + T Ao Aty + { S he2ho As
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e } — hoAn ;3; o )+59;1({:;Z;-c112h A+, } { Z 5 2hho s
TR }9’ + 3 { S ctldh, Ay — T2l } { z Gl 4hmhmAi+éﬂ(¢)Im}0;n

i=m+1 ~ j=m

—I—Z{:,Zlc’“ﬁih hiA; — G 1}9'+I Z?h A631¢>)
= 11 N 2h pa oh;
m—1
s (c'g;Amem —cg;Amw’O) — Sug X + 600hoXom — 59m{ > ~2hnXs = hn X+ M }
_ €31 &t : = &l L Gl 7
5wgzm+5¢m(2h Antty =~ S2hoAnlly = 3 S ohiAnl+ T, )
E*mAm
~0¢,, f;mQ ¢m+6¢mbrm}}det = 0. (A.14)

Considering the generalized mechanical displacements and electric potential differences grouped
in the generalized vectors of displacement and potential difference

n(z, t) = {ug(x, 1), wo(z, 1), 6oz, 1), 01(z, 1), ..., 0a(z, 1), 0m(z,0),. .., 6_1(z, 1)}, (A.15)
z,t) = {$y(2,1), .., (@, 8), 6 (2, 8), ., 61 (2, D)}, (A.16)

and since Equation (A.14) can only be satisfied if the integral term relative to L is zero, the weak
form of the analytical model can be expressed in matrix form as

f [5uTJﬁ + (Lgedu) "YLgou + (Lzdu) ' GLogu + (Lypéu) PTg—u'f
L

+3¢TPL,,u + 5¢Tc¢—5¢TT] dL = 0. (A.17)

The differential operators

L. = diag (68 0, 5,...,;),Lm=dz’ag (0,%,1,...,1), (A.18a,b)

are used for the definition of the generalized extensional and shear strains and the non-zero terms
of the symmetric positive definite inertia matrix J and of the symmetric semi-positive definite
extensional and shear stiffness matrices Y and G, of size [(k — 1)x(k — 1)], piezoelectric equiv-
alent stiffness and capacitance matrices P and C, of size [px(k — 1)] and (5 x p), and applied
mechanical forces and electric charge density vectors f and 7, of size [(k — 1)x1] and (F x 1),
have elements defined in (A.14). Here, 7 = 72 — . is the total number of piezoelectric layers and
k— 1, with & = p+ 4, is the total number of generalized displacements. The non-zero symmetric
inertial terms Ji; ;) = Ji;5), extensional stiffness terms Y(; ;) = Y{;;) and shear stiffness terms
G,5) = G(j4), and the piezoelectric equivalent stiffness terms Py ;) and capacitance terms Cjy py,
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withi, 7 =1,...,k—landl =1,...,p, of the matrices utilized in (A.17), are given by

Joy = Z P, Jazy = Z prhoAn — Z PrboAm, J1a48) = Z pi2haA;

=T i=n41

+p:15, Ja,ne3) = Patrns Jaeay = P Lis Jafpm) = — E_ p:2kaAi + pa I,

S22 = Z prfys J(3.3) = Z prhg An + Z Pl Am + polo,

m=rh

J(s,ﬁ+3) = 2hphy Z PiAi + Pﬁhojﬁ, J(3,ﬁ+3) = pﬁhﬂjﬁ: J(s,ﬁ+4} = —thofrﬁ,

i=A+1
J(a k4m) = = 2hohs, Z piA thofm, J(ﬁ+3,:&+3) = Z ' pz‘4hﬁ2Ai + putas
=77 =7+

Jass s = 2 1 pidhahiAi + pi2hal;, Jissassy = palhaln, Jaisars = palns
i=j4

J(TL-+-4 at+d) = mem’ J(n+4 E+m) = pmzh Im’ J(k+m E+m) = E p14h 2A + pmfm’

J(E-{-T'h,fc-lni) = Z pjﬁlhmhzx‘lj - pm2h¢fm, (Alg)
J=m

1

Y = Z CnAk: Y = Z cirhoAs, Z i1 hoAm, Yaaes) = > CﬁzhﬂAi

m=im i=fn-+1
h—1

+C§?fﬁ, Yoaye = C;?fﬁ, Yoarg = CTTfm, Y jism) = — Z_ CﬁthAi + Cﬂn L,
=m

A -1 n .

Yo = 2 Ctho®An+ Y, ATho®Am + €1, Yisatsy = 2hoha 2, ¢f14s
n=1 m=m i=A+1

L= = o ol

+ci1 ol Yisars) = cirholn, Yisa+ey = —¢ii folam, Y3 f4m) = 2hohs Y i

=

—eiT oI, Yiaranen = 30 ) ciidhs? A + BV L, Yiags ey = 21 ci1dhah;A;
=t i=j

+c32haT;, Yiaesars = ¢ii2haln, Yinrs i = 5?§¢)Iﬁ, Yinranra) = Eﬂ(¢)fm,

Z Cidhp A, + EO L,

i=m

Y(ﬁH,EJﬂh) - cylﬂln2h Im’ Y(k+m k+m)

h—1 i ) _
Yiermpss) = j; cidhahiA; — AT 2h; I, (A.20)

z - ~
G = Z1 587 Anct i Aot Z G A, Gaz) = —cls Ao, Gains) = —Cond An,
n=

m=in
G(2,ﬁ+3) = _5?é¢)Aﬁs G(2,ﬁ+4) = _Esﬁé(¢)Aﬁ1, G(2,I_c-f-ﬁ1) ='.—C—3;?;(¢)Am’ G(3,3) = Cgson
Glatanrsy = 5?5((36)-4&, Ga+sars) = E§§¢)Aﬁ, Glatants) = 5235(@ A,
G x =i A, (A21)

k41 k—}-m)
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Poty = L A, Py = SR A, Prosisy = BLohidn, Ponyyy = ST
(n,1} th ns 4 {n,3) 2h., 040y L (n,i+3) 2hn i4ns £ (n,n+3) ., s
e e &5 -
P(.ﬁ+1+m,1) = EAm, P(ﬁ+1+m,3) = —th hoAm, P(ﬁ+1+m,fc+m) = Efm,
€1
P(rﬁ+1+m,l'c+i) = —Eth/—lm, (A.22)
ey exn - Am
Cnmy = ——43?1”2 s Corltmpirim) = —————Ze}z 5 (A.23)
where it = 1,...,7a—1landm = m + 1,...,—1. Furthermore, the applied mechanical forces

and electric charge densities terms f(;y and 7 ;) are defined as
i n 7 -1
foy = kZ X, fioy = kz Zi, fi3) = ZlhoXn + My — 30 hoXom,

Jors) =haXa+ 3 20X + My, fars) = haXsn + M,

i=fi+1
m—~1
Fasa) = —haXon + Ma, f(ran) = —hnXa = ¥ 2haXi+ Ma,  (A29)
T(n) = —0Tn, T(p414m) = —bTrm. (A.25)

Splitting Equation (A.17) into two matrix equations in terms of the variations of the gener-
alized displacements and electric potential differences, du and §¢, and rearranging the terms,
yields

/ [5uTJii + 6u" (L, YL, -+ LLGL,; )u + 5uTL1$PT¢] dL = / su'fdl,  (A26)
L L

/ (6¢"PLy;u+ §¢"Co)dL = f ST dL. (A.27)
L L

Equations (A.26) and (A.27) are the weak forms, governing the motion and clectric charge
equilibrium, of the layered beam with arbitrary ACLD treatments, and the generalized displace-
ments and electrical potential differences vectors are the unknown independent variables.

A.3 Strong Forms

In order to get rid of the differentiation in the L,,éu and L, du terms, Equation (A.17) is inte-
grated by parts, yielding

L
3" YLegu + (L, 6u) " GLoou + 5uTPTg)
0
. f [uT38 - STV L, Lyou — SuTGLE, L2, u + SuTLITGL
L
— 6uTPTLyp — U™ ~ §¢TPL 1 + 6¢TCh — b7 T ]dL —0, (A.28)

where

L., = diag(0,1,0,...,0), L2, = diag (0, ai,o, ey o) , (A.29a,b)
xr
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0 2
3 e i —di
Ly, == diag (0,0,1,...,1), Lgs = diag (82:’ ey 8x) . (A.30a,b)

Rearranging Equation (A.28) and collecting the terms involving the variations yields

[5uT(YLm:u+L£GLmu+PT¢)] f 6uT (It — YL,pLopu — GL2, L2, u

+GLi,u — P'Lygp — £)dL + / 3¢" (PLggu + C¢p — 7)dL = 0. (A.31)
L

Since the variational generalized displacements and electric potential differences in Equation
(A.31) are independent and arbitrary in the interval [0, L], the equation can only be satisfied if
the coefficients of the variational displacements and electric potential differences are zero. Thus,
the electro-mechanical equations of motion, electric charge equilibrinm equations and electro-
mechanical boundary conditions can be derived accordingly.

A.3.1 Electro-Mechanical Equations of Motion

The electro-mechanical equations of motion are derived from Equation (A.31) by considering the
integral term involving du,

/ su"(Jil — YLypLpgu — GLE L2 u+ GL3 u — PTLyy¢p — £) dL =0, (A32)
L
where the non-trivial solution is given by

YL, Ly,u+ GL2 L2 u— GL: u+PTLyp + f = Jik. (A.33)

Thus, rewriting the previous equation in non-matrix form, the system of partial differential equa-
tions involving the variations dug, dwg, 66g, 085 (2 = 1,...,7 — 1), 885, 065 and 68, (M =
m+1,...,—1),is given by

51.50 :

Z ik Al + (é cthoA, — Z Th )9”-{* z ( z p:2hiA; + ppd )9"

A=1 “i=n+1l

m—1

— 3 02+ pnin )9" +ZA 2621

i

/"—"\

+e b + el L0, + E
h=1m+

+ Z Xy = E prAxtio + ( Elpnhofln - Z_ thoAm) Boi

k=m

L5 ( S ciona A+ 1) B + pulaba + pr T
A=1 “i=fi+1
m_l . - .
+ Z ( = 22 Ai2hadi+ CT?IﬁL) O, (A.34)

h=m+1
(5’11)0 :

(z FXD A, + 2 Ay + z & g ) — S Al ~ zc5§¢)A g, — &%) A.0.

n=1

_C55(¢‘)A o — E o (¢')A 0. + Z Z = kZ:_ P Apii (A.35)

m=m+1



A.3. Strong Forms 45

660 .
ft -1 7 9 0 -1 9 "
(2_3 thodn = % cilthodn )ug + (2 citho’An + il + L cifho An )8
+ z (2hoha S et Ag 4 ot ol )8 = iihoTadh — paholnfn
i=A+1
= *i # 0 / 0 n,oesr
+ 3 (2hoh,ﬁ S A, — b L )Bm + Aoy — Aol + 5
m=ra+l i=m n=1 2hn
-l g -1 i )
- 5 o Kot My= 5 haXn = (32 puhosin = 5 thoAm)Uo
m=m n=1 m=m
2 n—1 7 _ .
"‘90( E Pahi An + polo + E Pmbg A ) + > (zhohﬁ, > o +pﬁh‘01ﬁ)5ﬁ
m=rh fi=1 i=fi+1
— . m—1 N e
o hodniin — P holnin + 5 ("zh,oh,ﬁ S pAi — pmhofm)ﬁﬁl (A.36)
m=m-+1 i=mn
éﬁﬁ :
T n » n—1 fi
(3 ciiohad+ et up+ (hohn 3 ciidi+cithola )04 + %, (5 phahid,
i=fi+1 i=A+1 i=1 j=n+l

- 3 fi-el i
+pﬁ2hifﬁ)9;’+( S A+ 8P I, )9;;+ > ( pol c dhah; A; + 2Ry I)a”

i=f+1 F=n+1

2 i=fi+1
LSS 2Re X+ My = ( S p2badi + pale )u0+ (2h0h S ol + pohols )9’0
i=A+1 i=A+1 i=At+l
+ j ( > pythahid; + pa 2l Yoo (% pthaAi + pala ) Bs
=1 “j=f+ i=f+1
j ( 3 pdhahsAs+ p,2haT;)B; + pa2halabn, (A37)
j=n+1 “i=j+1
59,7,, .
SRl + CTho L6 + 2 CRha I8 + D Lo + &9 ALl — &P Anl,
- — n—1 e .
2}3; Lads + haXn + Ma = pylatio + prholabo + 3 pa2halbs + 071505, (A.38)
(1) fi=1
5977!, :
- -1 _ - _ -
AT Iy - ThoInby + E1 0 Inly — % ici‘}“zhml’m&’,;—l—égg{@Amwg — &P Abim
m=m-+
- - =1 o w“
;;1 Tndl, — hinXon + My = poIniio — prbolnbo — S 2B Lwb + prLinbims
7 =m+1

(A.39)
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59m .
-1 o m—1 - j—1
(— T oA, +cﬁ”fﬁ)ug + (2h0hﬁ, S A — PRl )9” + 5 ( > cifhnhA
1= i=m j=m+1
(9) = =
2k 1) (z ctidha? A+ 5915 ) o + zl(z pj4hmhiAj—pm2hiIm)9£'
i=1h+ =m
h—1 *1
— 2 I + D) Aty — GO A6 + 2621 - z 2hﬁ1Ai@¢; — b X
f—1 -1 = \x
= 3 X My = (= X 2+ pala)iio + (Zhoh z pidki = prholn )y
m—1 7
3 (szﬁlh hidi = p,2h, 1)9 —[—(szﬁlh 2Ai + Pt )b
j=m+1 “i=m 1=
1 —_ .. P
£ 3 (Z p Ak hiAs — pa2hils )i+ pa2hialafs. (A.40)
i=rh+1l

A.3.2 Electric Charge Equilibrium Equations

Similarly, the electric charge equilibrium equations are derived from Equation (A.31) by consid-
ering the integral term involving ¢,

f 6¢" (PLu+Ceo— 1) dL =0, (A.41)
L
where the non-trivial solution is given by

PL,u+ C¢ = 7. (A.42)

Thus, rewriting the previous equation in non-matrix form, the system of partial differential equa-
tions involving the variations of the electric potential differences of the generic top and bottom

piezoelectric layers, 8¢, (n = 1,...,7) and §¢,, (m =, ..., ~1), is given by
dp,, :
L Ay + B g 4,8, +n§ e;? - 2hidntl + 3 P i DR (A43)
Qh, PO op 0 &2 2h, 4h,2 " s ‘
G,
esr’ esr e 7 3 ey £33 Am
— A u — = —bry,.
2, ~ O hom ~ 2 oh itz o= b

(A.44)

A.3.3 Electro-Mechanical Boundary Conditions
The electro-mechanical boundary conditions are obtained from the boundary terms at z = 0, L in
Equation (A.31),

L
Su’ [YLmu +LIGL,u + 511TPT¢] — 0, (A.45)
0
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47
which can be expressed in non matrix form as
5uu[ki EE Al 1+ (z hodn — 5 c;;“thm) 93+n§( Elpﬂh A+ pals )0’
=m =i A=1 Ni=At
e Tl T Ll - S 1( 5 pidhads + pals )
th=mt i=m
+ZA 831 TR Z 831 } =0, (A.46)
5w0[(zi: DA, 4 B Ag + Z e A )w0+c55/1 8o + X_: 2P A8 + P A6
) I hiz_jﬂcsﬁ*’”A 0, ] 0, (A.47)

7 -1 7
08| 3 cithodn — 3 cilthodm )up + ( 3 ciiho®An + o + S aThyAn )%
n=1 m=m n=1 m=m
n—1 7 . . _ _ _ _ m—1 ,
3 (:zhghﬁ > i+ ThoLa )0 + T hoTafh — pnho Tl + > (Qhohm T e,
fA=1 t=n+1 m=m+1 =

—1

6
b T )9’ - 21 1 po A, — > 2;‘ hoAnd ] (A.48)

59,,1[(2”; ok A + )u0+(2hoh 3 c;iAz-Jrc;’}hJﬁ)eg
i1, .
+ 3> ( 3 pidhahiA, +pﬁ2hz-fﬁ)9;+ ( SO efahalA; + E?”U;,,)H}l

=1 N j=Al i=nt+1

fi—1 7
+ % (Zc1§4hhA+c 28 )0} + ciT2haLnfly + B fn+ S0 2had, S ¢]—o,
j=n+1 2h i=n-+1 Zh

(A.49)

50, (cu h + S ho Tl + Z PO In0, + TP L0 + 5;‘: Inga‘)n) =0, (A.50)

- -1 _ -
59,ﬁ(c;f‘1,ﬁug CPhoI 0+ &I g~ S emop T.6 + 2631 Indsn) =0, (ASI)
m=rm+1 i

-1 o 1 el
59,1-1( -y cﬁthAi—!—cﬂ”Lﬁ)uf]—l- v (thhm S et Ay — cPho T, )95

j=mtl i=mn
_ _ th—1 ij-1 i N _ m-1
~ei2halalt 3 ( S cidhhyA; — c;§2hm1j) ¢, + ( Y Gihs? 4+ A 015) 0
F=m m =m

-1 —1 _ h—1
+ 3 (z pAhahiA; — pa2hiln )3’ L Tt — 5 2hmAs 31¢] =0. (A52)
i=rh+1 7 7 i=mn “2h

j=m
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