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Abstract

Cochlear models, which refer primarily to the study of mechanics within the
cochlear partition (micromechanics) and interactions between the cochlear fluids
and cochlear partition (macromechanics), though incorporating widely accepted
techniques, show a large diversity in modelling approaches. Furthermore, there
is a tendency for expanding the number of parameters to which the model may
occur sensitive. The lack of uniform mechanical parameters effects greatly the
model’s response. Finally, in the absence of stability examinations, the cochlear
models solved in the frequency domain may provide false conjectures and/or
conclusions.

An attempt to generalise two locally active models of the cochlea is presented
along with stability considerations. Each of the models was considered indepen-
dently to examine its inherent assumptions and a generalised model was then
presented, used to represent either of the individual models. Furthermore, the
equations of motion of the generalised models were used to define a negative feed-
back system, so that the stability could be examined. Additionally, the stability
and phase behaviour of two other models was investigated on the basis of one
of the generalised models. Finally, the positive feedback system with a nonlin-
ear network component was derived to define a quasi-linear model of the basilar
membrane input-cutput function.
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1 Project Overview

Modelling is an important method of testing the physical properties of real
systems. In many cases it is the only way to provide a comprehensive data when
the system is complicated, and is vulnerable to direct measurements or reveals
considerable discrepancies between in vitro and in vivo investigations. Although
the idea of modelling may seem advantageous at first sight, it is, unfortunately,
not devoided of drawbacks.

It is crucial for the researcher who deals with modelling, to find a good com-
promise between simplicity and clarity, which may initially seem uncomplicated
for an experienced scientist. However, once the key assumption is stated it may
reveal certain constraints, which require further development of the model. In
other words, it forces an expansion in the number of parameters or introduction
of new constants to which the model may be very sensitive. Finally, it may occur
that the latter version of the model looses its generality.

One of the most active areas of research, which has found modelling to be a
powerful tool, is modelling of the function of the cochlea. The goal of modelling of
the cochlea is to uncover the mysterious phenomena of its tuning and compressive
properties that could help in further development of more sophisticated models
of sound perception or understanding it, in general 11, 2].

Theories of modelling cochlear micromechanics are based, in principle, on the
idea of discretising the cochlear partition (CP) into a number of independent
resonators. However, cochlear models comprising single resonator components
cannot achieve the fine tuning of the CP observed in in vivo measurements. One
solution is to introduce a secondary resonance, which is usually explained as being
due to the tectorial membrane (TM), about one octave below the resonance fre-
quency of the basilar membrane (BM) [5]. Whereas, the need for a two-resonant
model has been widely accepted, the process of defining the form of activity of a
potential internal agent varies with the different approaches.

It is postulated that the OHCs are responsible for the active processes occur-
ring in the cochlea and hence for the fine tuning of the BM. Their motile action
can be considered as a force generating mechanism, which in response to the BM
deflection, damps or enhances its vibration.

A conceptual model hased on the anatomical data can thus be built as a
lumped component model of an independent resonator, along with a set of equa-
tions of motion defining its dynamic properties. Provided that the mechanical
parameters of the system are known {usually extracted from the experimental
data), their implementation into the model allows us to calculate its response for
the known mput.

The main purpose of the present research, driven by the reasoning of de Boer
in [6], is to provide a comprehensive comparison and attempt of generalisation
of two active models of the cochlea: the model of S. T. Neely and D. O. Kim
[21] known as the Neely and Kim model, and the model of C. Daniel Geisler
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[11]. Both the first and the second, represent classic mathematical models of
the cochlear mechanics with outer hair cells (OHCs) postulated to be the active
elements.

In the first step, each model will be considered independently, with the orig-
inal notation, to examine its inherent assumptions. A generalised model is then
presented, derived only on the basis of mechanical analysis, used to represent
either of the individual models.

Next, a macromechanical model will be formulated to introduce the coupling
of the individual cochlear partition elements via the cochlear fAluid. Furthermore,
the stability of the generalised models, defined as the negative feedback systems
(inferred from the model’s equations of motion), will be checked by means of
Nyquist stability criterion.

Finally, the positive feedback system with a nonlinear network component
is derived to define a quasi-linear model of the basilar membrane input-output
function. The introduced nonlinear component, scheduled on the amplitude of
the system’s output, will adapt the gain of the overall feedback path and produce
a level-dependent system, to give, under tonal excitation, a compressive and
saturating characteristic.



2 Anatomy and Physiology

This section provides a brief introduction to the anatomy and physiclogy
of the peripheral hearing system of a man. The emphasis is laid on the prob-
lems concerning the structure and functions of the human cochlea (excluding the
vestibular system) regarded as the main unit involved in the processing of sound,
although not the only one. In addition, a short description of the outer and mid-
dle ears is also provided. The neural pathways of the auditory system are not
considered.

2.1 The Outer Ear

Figure one depicts the structure of the human peripheral auditory system. A
cartilaginous flange called the pinna, including a small cavity-concha, and exter-
nal auditory meatus (leftmost in Fig.1.) terminated by the tympanic membrane
on the right, constitute the outer ear. Together they form a complex resonant
cavity. In result, the incoming sound wave pressure is increased in the outer
ear, most effectively in the 2-7 kHz range, when leading from the pinna to the
tympanic membrane [23].

The second function of the outer ear is to provide cues in the localisation of
sound. The intensity and timing differences of the sound waves coming at the
two ears enable the localisation in the horizontal plane, whereas the cues for the
vertical plane are realised by the pinna and the concha.

2.2 The Middle Ear
2.2.1 The Ossicles

After the modification in the outer ear, the sound wave, through the vi-
brations of the tympanic membrane, is transferred to the middle ear (centre of
Fig.1.). The ossicular chain of auditory bones, respectively, the malleus, incus
and stapes, suspended in the middle ear cavity by a series of ligaments and ten-
dons, assembles the main middle ear apparatus. The malleus is attached to the
tympanic membrane and joined relatively rigidly with the tip of the incus. The
incus joins with the third of the ossicles, the stapes, which footplate is attached
to the wall of the cochlea, i.e. to the flexible window called the oval window
(see Fig.1.). Thus, the ossicles transfer the vibrations of the tympanic membrane
to the cochlea. However, the main function of the bony chain is to match the
impedance of the two media, the air, filling the outer ear and the fluid, which
fills the cochlea. The matching mechanism bases on three principles.

First, as the area of the tympanic membrane, A; is larger then that of the
footplate of the stapes, Ay, the force F, transferred from the tympanic membrane,
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Figure 1: The peripheral auditory system of a man with the indication of the
three main divisions: the outer, the middle and the inner ear.

applies a higher pressure to the oval window due to the ratio of A; and As

F =pA = p4, {1)
hence
D2 A4 .
CEa e 2
n Ay ( )

where p; denotes the pressure on the tympanic membrane and pg, the pressure
at the stapes.

The lever action between the longer, 1, and the shorter, [z, arms of the malleus
and incus, respectively, contributes the second component to the impedance
matching. The length difference, in effect, leads to an increase of the driving
force at the incus and hence at the stapes, £y, comparably to the force applied
to the malleus, F;. Furthermore, the increase of the force causes a proportional
decrease of the velocity at the stapes, vs:

Filh = Faly, (3)

thus
L K

h_f2 4
o (4)



which 1mplicates
FQ _ U
Fow
where v denotes the velocity of the malleus.

The third factor of the matching mechanism also results in the increase of
the force, thus the decrease of the velocity at the stapes, however, caused by the
buckling motion of the tympanic membrane.

Though the complexity of the matching mechanism, the contribution of the
second and third principle described above is comparatively small, hence the
impedance matching is mainly realised by the difference between the tympanic
membrane and the stapes footplate areas.

(5)

3.2.2 The Middle Ear Muscles

The movement of the ossicles is controlled by two muscles, tendon tensor tym-
pani muscle and tendon stapedius muscle, which are mainly responsible for the
middle ear reflexes. The reflex contractions of both muscles stiffen the ossicular
chain and reduce the transmission of sound. In general, the middle ear muscles
function. to some extent, as a protective mechanism and maintain the input level
at the cochlea relatively constant.

2.2.3 The Eustachian Tube

As depicted in Fig.1., the middle ear cavity proceeds to a long tube called
the Eustachian tube, which allows, when opened (e.g. by swallowing, yawning or
sneezing), the drainage of the fluids, ventilation and static pressure equalisation
on both sides of the tympanic membrane.

2.3 The Inner Ear

The last division of the peripheral auditory system, shown in Fig.1. (right),
is the inner ear, with the cochlea as its main apparatus, the semicircalar canals
and the vestibulo-cochlear nerve innervating the two structures.

The semicircular canals are a part of the peripheral vestibular system and,
responding to angular acceleration of head, participate in the sense of balance.
However, the vestibular system will not be discussed here.

The vestibulo-cochlear nerve (Fig.1.), is the most foremost part of the audi-
tory neural pathways, which, as mentioned hefore, are not a subject of present
research. Nevertheless, the cochlea innervation will be shortly describec.

2.3.1 The Structure of the Cochlea

The cochlea is a bony siructure, coiled around the bony tube called the modi-
olus and deep embedded in the temporal bone. Its shape reminds the shell of a
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snail with 2.5 coils. The overall dimensions amount to 1 ¢m in width and 5 mm
in height from base to apex.

Apex
Oval e , \
window —--—“'::,u .- .
TR - Helicotrema
Stapes — . I Scala h *
‘ fe \ vestibuli
/o Basilar
Round Scala membrane
window tympani

Figure 2: A schematical view of an uncoiled cochlea.

It is presented very often as an uncoiled system. Figure two presents the view
of an uncoiled cochlea and Figure three, its cross-sectional view. The cochlea
tapers along the whole length from the base to the apex. Two membranes, the
Reissner’s membrane and basilar membrane (BM) running through almost entire
length of the cochlea, divide it into three compartments, the scala vestibuli, scala
media, and scala tympani. The two utmost scalae are joined by the small opening
at the apex of the cochlea called helicotrema. The third, scala media, creates an
inner closed compartment. Furthermore, at the base of the cochlea, the upper
and the lower cochlear channels are terminated by the membranous, oval, and
round windows, respectively (see Fig.2.).

The scalae are filled with two kinds of fluids, which differ in the ionic com-
position. The scala vestibuli and scala tympani are filled with the perilymph
with high sodium ions content, whereas the scala media, with the endolypmbh, a
fluid with high potassium ions content. The properties of the cochlear fluids are
similar to those of the sea water and assumed to be inviscid and incompressible.

The length of the BM is estimated to 35 mm. Though the cochlea’s width
tapers from the base to the apex, the BM, widens from its narrow basal end to
the apex. Furthermore, the radial stiffness of the BM, is highest at the base and
decreases exponentially to the apex.

As shown on the Fig.3., an organ, called the organ of Corti {OC) rests on
the BM. It is a specialised structure containing receptor ceils, the hair cells,
innervating the cochlea through the connection with the synaptic ends of the
auditory nerve fibres (see Fig.4.).

There are two types of the hair cells in the OC. First, the flask-shaped inner
hair cells (IHCs), approximately 3500 in all, innervated mainly by the afferent
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Figure 3: A cross-sectional view of the cochlea with indication of the cochlear
channels.

(centripetal) nerve fibres and formed in one row running along the cochlea. The
second type, are the cylindrically shaped outer hair cells (OHCs), of which there
are about 12000, supported by the Deiters’ cells and innervated mainly by the
efferent (centrifugal) nerve fibres. The OHCs form three to five rows along the
cochlea. The rows of the hair cells increase their length along the cochlea, from
the base towards the apex. Both, the IHCs and the OHCs, separated by the
pillar supporting cells, are embodied in the OC, surrounded by specialised cells
and all bound tightly to form a close knit layer at their tops, the reticular lamina
(RL) (Fig.5.).

A small ciliary bundles, the stereocilia, emerge from the top of each hair cell.
The cilia are organised in rows of an increasing length outward the modiolus and
are connected to their sides and tips by the cross- and tip-links, respectively. The
cilia rows shape a shallow ”U” on the THC and "W or ”V” on the OHC tops [3].

The tops of the highest OHC stereocilia rows are embedded in the tectorial
membrane (TM), a gelatinous structure expanding over the OC, whereas the
IHC cilia are thought to be freely projecting from the cell’s body. The TM mass
changes along the cochlea increasing from the base to the apex.

2.3.2 The Cochlear Physiology

The BM dynamics, was studied in the XIX century by the German physi-
cist Herman von Helmholtz after the findings of the contemporary anatornists,
revealed the tonotopic organisation of the BM. Helmholtz introduced the idea
of the hypothetical radially mounted set of strings (simple harmonic oscillators)
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Figure 5: The view of the main structures of the organ of Corti after uncovering
the tectorial membrane {DC-Deiters’ cells, SC-stereocilia, see text for others).



constituting the BM, each to be excited at the characteristic place specific to the
stimulus input frequency. Though innovatory and sometimes regarded as a first
attempt of mechanical modelling of the cochlea, it was revised in 1928 by the
Hungarian scientist Georg von Békésy and confirmed in 1943 by the results of
series of his ingenious experiments on human cadaver cochleae, discovering the
travelling waves in the cochlea.

Since the Reissner’s membrane impedance is small, the scala vestibuli and
scala media form one compartment, called often the upper cochlear channel.
However, the BM, due to its impedance, constitutes a flexible border between the
upper cochlear channel and the scala tympani, hence called the lower channel.
The BM with the OC fixed on it and the TM, are often presented as a one, jointly
moving structure called the cochlear partition (CP).

The piston-like movements of the stapes cause a disturbance in the vicinity
of the stapes footplate, thus generates changes in pressure in the cochlear fluids
[3]. The pressure changes along the cochlea set the CP into vibration.

While the cochlear fluids are assumed to be inviscid and incompressible, the
disturbance propagates as a very fast wave but produces no forces on the CP.
However, due to the pressure difference between the fluids in the upper and lower
cochlear chanmels and a small impedance of the membranous round window,
which allows a pressure gradient wave to develop along the cochlea, the CP is set
into a travelling vibration, the von Békésy travelling wave. Figure six presents a
travelling wave in an uncoiled cochlea.

Travelling Cochlear
- wave partition

—_—
i- N _\iv
P : —— e,
ALY : "
I~ — ’

oy

e Cochlear fluid
at rest

Figure 6: The travelling wave. The arrows indicate the pressure fluctuations
along the cochlea exerting on the cochlear partition and inducing the travelling
wave.

The processes described above, referring to the study of the interactions be-
sween the cochlear fluids and the CP, are known as the cochlear macromechanics.
The cochlear micromechanics, on the other side, refers to the study of the me-
chanics within the CP, i.e. the interactions of the OC structures and the BM.

The vibrations of the BM cause the stereocilia of the hair cells to deflect. The
deflections of the OHCs stereocilia are induced by the shearing force due to the
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BM transversal vibrations and the TM radial movement, whereas the THCs cilia,
by the outward fluid flow from the closed space between the RL and the TM,
which decreases when they draw towards each other.

Through the deflection of the cilia, the tip-links open a putative ionic channels,
allowing the flow of the K™ ions from the endolypmh to the hair cell. Hence,
due to the difference in the endolypmh, +80mV, and the intracellular potentials,
A5 mV and —70mV in the [HCs and OHCs, respectively, the hair cells seize a
depolarisation and initiate the firing of the neural impulses. The process described
above occurs when the deflection of the cilia occurs in the outward-modiolus
direction. The deflection of the hair bundles in the inward-modiolus direction is
inhibitory, L.e. reduces the likelihood of the neurons firing (see Fig.7.).

Excitation Inhibition

Figure 7. The deflections of the OHC stereocilia. The outward-modiolus deflec-
+ions cause the excitation and the contraction, whereas the inward-modiolus, the
inhibition and elongation of cells’ body.

The cochlear dynamics, as described above, though consistent with the results
of the experiments on the dead cochleae, did not explain the high frequency
selectivity of the cochlea observed for the low sound pressure levels. The BM
response patterns, observed in the live cochleae, are sharply tuned contrary to
the broader response curves of the dead cochlea. Furthermore, the BM vibration
is nonlinear, with a compressive characteristic for the stimuli in the range of
approximately 30-90 dB SPL. This led to the hypothesis of the existence of an
active mechanism within the cochlea. The active mechanism should therefore
enhance and damp the BM response for the low and high sound pressure levels,
respectively. With the discovery of the electromotile responses of the OHLCs, the
active process in the cochlea found its potential generator.

The OHCs are assumed to work as an actuator, which undergoes instanta-
neous contractions and elongations due to the deflections of their stereocilia. The
outwards-modiolus deflections of the hair bundles depolarising the OHC, lead to
its contraction, hence to the local enhancement of the BM displacement (Fig.8.).
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The additional energy pumped by the OHCs to the BM is therefore mechani-
cally described as a negative contribution to the resistive component of the BM
impedance.

In result, the cochlear mechanics modelling approaches divide into the passive
and active. when describing the dead or live cochleae, respectively. Figure eight
depicts a schematical BM response of the passive and active cochiea.

A

Displacement

Base Position along the cochlea Apex

Figure 8: A schematical passive (dashed) and active (solid) basilar membrane
response curve in function of position along the cochlea.

The nonlinearity of the BM, as presented in Fig.9., reveals the compressive
characteristic of its response. For the stimulus input levels from 30 to 90 dB SPL,
the active process tends to compress the BM displacement, whereas below and
above this range the response is linear. It i3 assumed that the response safurates
above the upper limit of 90 dB SPL and becomes linear in effect. In summary,
the compression of the BM displacement in the live cochlea, reducing the gain
in the active process with the increase of the sound pressure level, results in
the broadening of the cochlear response curves as shown on the Fig.10. (data
obtained for the BM of the guinea pig cochlea).

Further evidence of the cochlear nonlinearity is the generation of the distortion
products, the fo— f1 and 2, — fo combination tones, and the two-tone suppression
phenomenon, which reveals in the stimulus response reduction by a second one
present in the input [23].

i1



4000

100

—_
[=)

<
S

0.01 L7 1 1 1 1 1 ]
20 40 60 80 100 120 ft40

Stimulus amplitude [dB SPL]

Basilar membrane displacement [nm]

Figure 9: The input-output curve revealing the compressive nonlinearity in the
live cochlea. The dashed line denotes the linear input-output function as observed

in the dead cochlea.
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Figure 10: The normalised basilar membrane amplitude (gain} in function of the
frequency {basal end of the cochlea) in the guinea pig.
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3 Micromechanics

3.1 The Model of Neely and Kim
3.1.1 The Equations of Motion

The left panel of Fig.11. depicts a lumped component model of cochlear
micromechanics proposed by Neely and Kim (NK). It is a two-degree-of-freedomn
(DOF) system with the mass of the BM lumped in the m; element and its stiffness
and damping, represented by the spring k; and damper c1, respectively. The
second mass mo, is the mass of the TM, which is attached to the spiral limbus
(left boundary of the OC [3]) by the k; and c;. Those two masses are coupled
by the stiffness ks and damping c;. Thus, the CP is now a set of components
(resonators) spaced equally at each position of z.

Figure 11: Lumped component systems for cochlear micromechanics: the classical
model of Neely&Kim (left) and Geisler (right).

The cochlear micromechanics was described in terms of the cochlear partition
impedance Z,(x) (Note that because the fluid’s pressure within the cochlea is a
function of position and the CF ie. P(z,w), therefore the CP impedance, Z,,
should be denoted as Z,{x,w). However, for the sake of clarity the impedances
and pressures will be presented as a function of position z only.). The radial
shape of the CP displacement was assumed to be independent of z. so it always
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occurred in the same bending mode.

It is very important to understand that the above assumptions allow to con-
sider the model as a linear (described by the impedance) and one-dimensional
(same bending mode for any position z) system, which remarkably simplifies the
mathematical formulations and imposes its deterministic behaviour at the stage
of predictions. It states that there is no distortion in the waveform of the BM
response, in consequence there is no need of introducing a scaling factor for the
nonlinearities due to the compressive character of the function of the cochlea and
the representation of the relation between the pressure and the velocity in terms
of the partition impedance Z,(z), remains valid [13].

For any given position, the average displacement across the width of the CP
£, to the maximum displacement over the width of the BM &, was defined as the
ratio b, hence

£p() = bEplz), (6)
thus b < 1 according to this definition.

The cochlear Auids pressure difference across the OC depicted on the Fig.11.
as Py, is driving the BM causing its vertical displacement. In addition, this ver-
tical displacement leads to a proportional, radial shear displacement £, between
the RL and the TM (see Fig.2.). The relative shearing displacement is assumed
to be responsible for the mechanical excitation of the sensory hair ceils, both the
THCs and the OHCs.

This shearing displacement can be written as

Ea(z) = glz)b(z) — &(2), (7)

where g(z) is the lever gain between the OC displacement & and the radial
displacement of the RL and the &; is the radial motion of the TM. Note that &,
was used to describe the hair bundle displacement of both, the IHCs and OHCs.

The equation of motion in the frequency domain for the first DOF of the
system presented in Fig.11. (left) is

Py(x) — Pulz) = 9(x) Z1(2)6(2) + Za(z)e (@), (8)

where
Zl = kl/jw + €1 + jwml,
Zy = kyj/jw+ s

The impedances Z; and Zs represent the mechanical impedance of the OC and
the coupling between the OC and the TM, respectively, and P, is an acoustical
pressure source located within the OHC.

For the second DOF equation of motion is formulated by

0= Zo(z)é(z) — Za(z)ée(w), (9)
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where
Zy = kyfjw + 2 + Jwmg,

represents the mechanical impedance of the TM.

The active source in the NK model, P,, acts on the system due to the mechani-
cal force generated by the OHCs and is controlled by the sensory cell displacement
£.. It is, though, not an independent source and takes form

Pu(@) = —yZ{z)E(x), (10)
where
Z4 = k4/_j‘6u‘ -+ 4.

The ~ factor, which is independent of z and w, is an overall gain control in the
active element and can be considered as a measure of the physiological condition
of the cochlea. The impedance Z4, provides a frequency-dependent phase shift
between the F, and the &..

a)

b)

A
/

g,

Figure 12: Schematic illustration of the Neely&Kim model components displace-
ments. The planes of the displacements (positive direction indicated by arrows)
&(x), &(x), &(z) (a); graphic representation of Eq.7. (b}.

Tt is surprising that, although it is known that the stereocilia of the OHCs
make contact with the TM, in this model the active source is only assumed to
act on the BM with no apparent reaction.
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Depolarisation of the vestibular hair cell occurs when its tallest hair bundle
is deflected outwards the modiolus (towards the tallest stereocilium), i.e. when
¢. increases in the NK model. As a consequence, it leads to the OHC height
shortening and could be interpreted as an internal pressure decrease in the OHC.
Thus, the minus sign in Eq.10. accounts for the decrease of the pressure inside
the OHC, which is isometrically transmitted to the surrounding fluid, due to the
fluids incompressibility. These remarks are consistent with in vitro observations

of the hair cells.

3.1.2 The Partition Impedance

Having formulated the equations of motion for the system in Fig.11., the
driving-point impedance of the CP can be formulated as

Zy = Paf&, (11)

hence

Zp = g/b[Zl -+ Zg(Zg — ’}’24)/(22 + Zg)]. . (12)

Solving the Egs.6. and 11. for £, and integrating with respect to time, the
displacement of the BM &, is obtained

& = Pa/jwZy, (13)

and &, are expressed as

£ = glZ2/(Z2 + Z5)). (14)

3.2 The Model of Geisler
3.2.1 The Equations of Motion

A lumped component model depicting a segment of the CP for the model of
Geisler (G) is presented in the right panel of Fig.11. This system consists of one
mass m, which is the mass of the BM, its stiffness k, and damping 7. Again
the BM occurs in the traditional mass-spring-damper representation. However,
there is no second mass in this case, but the RL, which is joined to the BM by
the stiffness k, that is the passive axial stiffness of the OHC and the supporting
cells. The spring k. is the stiffness of the of the ciliary/TM complex attached
to the modiolus. Again, like in the NK model, the CP is represented as a set of
resonators spaced equally at each longitudinal position through he cochlear chan-
nel. However, the cochlear micromechanics was described in terms of dynamic
stiffness in this approach.
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The total acoustic force F, causes the BM displacement by z units {note that
£ now is not a longitudinal position on the BM) towards the scala vestibuli (SV),
which in turn acts on the OHC deflecting its cilia by the angle of v in the direction
away from the modiolus.

According to in vitro observation this ciliary deflection is excitory to the OHC,
thus it Tesults in contractile forces, which elicit on the BM and RL. In this model
the RL is assumed to rotate freely about the pillar heads, so the contractions of
the OHC displace the RL by additional z units towards the SV. In consequence,
the total deflection of the ciliary bundle v is proportional to the total displacement
z + z of the RL

v x Az + Bz, (15)

where A and B are ratios being a measure of z and z, respectively, when forced
by F, (see Fig.13.). For the detailed geometrical analysis check the appendix in
the Geisler’s article [11].

a)

b) 7

N \ N\

Figure 13: Schematic illustration of the Geisler model components displacements.
The planes of the displacements (positive direction indicated by arrows) z, z, ¥
(a); graphic representation of Eq.15. {(b).

The equation of motion for the first DOF of the system (right panel of Fig.rll.)
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takes form

F, = kyx + mi + ri — Fncosy — k.cos¢ + k.C(z + A/Bz), {16}

where C'is the measure of the torque of the RL and BM about the ends of the pil-
lar cells. The angle v is the angle between F.and F... Geometrical representation
of the applying forces is shown in Fig.14.

Figure 14: Geometrical sketch of the mechanical forces ﬁa, Fm and the passive
axial force k,z exerting on the BM and the RL with indication of the angle ¢
between the planes of the action.

The second relationship due to the relative displacement z + z (check Fig.11.,
right) takes form

0=F,+k=z+k(z+ A/Bx). (17)

In order to solve the model micromechanics, an explicit definition of the ac-
tivity within the cochlea has to be formulated. In the G model it is assumed

that

Foo=Flw)*~. (18)

This equation implies the linear proportionality of the OHC contractile force to
the angular deflection of its cilia v. Hence, according to Eq.15., the motile force
F,, is proportional to Az + Bz.

3.2.2 The Partition Impedance

Solving simultaneously Egs.16-18. for the relation of the acoustic force F,
to the BM displacement z, the dynamic stiffness of the cochlear model will be
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expressed, and formulated in the frequency domain as

k.k,DA/B }

kk, + Ffb(w) (19)

F./z = ky — mw?® + jur + [

where
D = C+ cosy,
Fp, = F(w) * constant.

The bracketed term in the formula above, appears in the classical negative-
feedback form with the feedback force Fjy (check [11] for the derivation).

It is to be noted that Eq.16. takes form of the dynamic stiffness, however,
dividing it by jw will define the impedance of the cochlear partition, likewise in
the NK model. First term, k, — mw? + jwr, will account for the BM impedance
and the bracketed term will state the impedance of the active load.

The mathematical representation of the G model will be completed after intro-
ducing the explicit formulation of the feedback-force Fpp, extracted from exper-
imental and theoretical works. In the Fourier transform notation this feedback-
force is formulated by

Wr—jw —'wT
Fa = K Jws 20
=1 L)T +jw] e (20)

This function consists of three components. The first one, Fg, is a force
constant amounting to
Fg = qkb, (21)

where g is a force factor, which defines the cochlear activity in a way similar to

v in the NK model.
The second factor determines the transfer function of an all-pass circuit. It is

specified by

[H{jw)| =1, (22)

and

zH(jw)=—tg'1( i ) (23)

2 _ 2
wi—w

thus it changes the phase of the force Fy, when passed through it. In addition,
the w, term is a cut-off frequency that is a function of characteristic frequency

(CF) wo

wy = wo/20. (24)
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Finally, the third component (the exponential term) of Fyp is a delay term.
The amount of delay, set by the location of the OHC in the cochlea, is specified

by T and

7= (25)

where n is a delay factor.
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4 The Modes of Vibration of Neely and Kim
Model

A dynamic system as one shown in Fig.11. (Neely&Kim model, left) is char-
acterised by its natural frequencies and principal modes, number of which equals
to the number of the DOFs. To find the principal modes of vibration for the
NK model, an undamped free vibration of the system will be assumed. Thus ali
damping components will be eradicated from the equations of motion, so that the
dashpots in Fig.11. {left) are omitted to give a simplified, two-degree-of-freedom
system with stiffnesses and masses, as depicted in Fig.15. Furthermore, the free
vibration implies no external excitation (forces/pressures) acting on the system.,
hence the pressures p; and p, are ignored.

AN

at
mt‘

Figure 15: Lumped component Neely&Kim model as a free, undamped system.

4.1 The Equations of Motion

The equations of motion describing the system shown in Fig.15. are formu-
lated by

migls = —kiglh —ka(g& — &)

~ (26)
ma& = —ka&  —ka{& — 9&b)-

Since g = 1 in the NK model it can be omitted in the EOMs to give

mi&y = —ki&% —kal6 — &)
me&s = —ka&; —k3(§t—5b), (27)
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expressed equivalently, after rearrangement, as

midy + (k1 + ka)ép — ks = 0 (28)
Moy + (ko + ka)& — k3§ = 0,

which in matrix notation gives

mp 0 & ky+ks  —ka &1 _ |0
[o mzHg;H ks k2+ks]{st}—[o]' 29
or, equivalently,

ME+FKE=0, (30)

where

m; 0 ki+ ks —ks : & &b

= [ 0 m2:|’_ [ —ks kot ks 3 & and £ &
Tt can be noted that M and K are real, symmetric and positive with the
off-diagonal terms representing the DOFs coupling, dynamic (mass) and static

(stiffness} coupling, respectively.
Assuming the solutions of form

& = A
= A, (31
so that
g"b — tw2Alejut
3 ) 32
& = —w?Age?, (32
and substituting to Eq.28. gives
—m1w2Alejwt -+ (kﬁl + kg)Aleth - k’3A2€jwt =0 (33)
-mngAgej‘”t + (kg + kg)Agijt — k’gA;ejwt = 0.
Crossing out the e’* terms, Eq.33. is formulated by
—m1w2A1 + (k‘l + k‘g)Al — k‘gAg =0 (34)
—mngAg + (JIL’Q + kg)AQ — k:SAl = O,
which after rearrangement will take form
(kl =+ kg - m1w2)A1 — kgAg =0 (35)

(kz =+ kg — m2w2)A2 — kgAl = 0.

First relationship in Eq.35. gives the solution of a form
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__ kl +k3 —m1w2

As Aq, (36)
ks
so that the second relationship becomes
ki + ks — 2
(ke = ks = M) L b — mge®) — kg | Ay =0 (37)

k3

Assuming A; = 0, the trivial solution is obtained with A; = Ay, = 0, which
implies no motion and the system stays at rest. Equating the bracketed term in
Eq.37. to nought (expanding the characteristic determinant), however, gives a

quadratic equation in w? with two real and positive values for w?, [26], 1.e.

(]Cl -+ k)g - mlwg)(kg + k’g - mng) - k% = 0, (38)

and

4 (k:l + ks N k2+k3>w2+ kiks + kaks + koks _ 0 (39)

wt -
ms i LLRELY)
from which the natural frequencies, of the first and second modes, wy and ws,
respectively, can be calculated as two roots of quadratic in «?.
According to the relations in Eq.35. the ratio of the amplitudes is formulated

by

A k ko + ks — 2

Al _ 3 _ Fat Ky - oW , (40)
AQ ki + kg — m1w2 ks

thus, for the two natural frequencies, after substituting wy
ﬂ: ks 2:k2+k3——mgw%, (41)
Azl kl + kg — My k:3

and we
ég _ k‘g 5 — kz + k3 - mzw% ] (42)
AQQ kJ1 + kg — MWy kg

where the second index denotes the natural frequencies w; and wa, respectively.
It should be noted that Eqs. 41-42. express the amplitude ratios, however,

choosing one of the amplitudes equal to some arbitrary value, the amplitude ratio

will be normalised to this value and the normal modes ¢ 2(&) obtained.
Choosing the A;; and Aj2 equal to one, the normal modes will be formulated

1
¢I:{A21}

1
¢2={A22 }7
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where Ay and Age can be derived from Eq.41. and 42.
Finally, the motion in the first mode will amount to

{eh-{a o
-l @

and in the second mode

or, equivalently

{ ?: } N { Alzl }(Asm wit + Beoswit) (46)
& | _ 1 (Csinwst + D t 47)
& f T\ A s+ Deosiat) |

where A, B, C and D are real constants of integration, which are determined by
the initial conditions [26].

The general free vibration is represented by the superposition of independent
free vibrations in each of the two modes expressed in Eqs.44-45. (46, 47) thus

{ & | _ { An } (Asin unt + Beoswit) + { Aw } {Csin wat + Dcos wat) .
& Ag Ago
(48)

Assuming the initial conditions at t = 0: & =1, § = 0, éb, ét and taking
A1 = A» = 1 and applying to following relations

{ | 2 { ! } (Asin wit + Beoswit) + { . } (Csin wat + Dcos wyt)
& An Ag
(49)

and

g-b = { ! (Acos unt — Bsinuwnt) + { ! } {Ccos wyt — Dsinwqt) ,
& Amn Ags
(50)
the constants A, B, C and D can be derived and will equal to
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— Azn
Azz—Asz?
(51)
C =0,
_ A
D= A21—2%422'

In summary, the actual motion will be time harmonic at two natural frequen-
cies, wy and weq, and defined as

{ 2, }z{ A121 }Bcoswlt + { A122 }Dcoswgt , (52)

where B and D defined in Eq.51. are the mode shapes, while the terms in curly
brackets on the right-hand side of Eq.52., the amplitudes of first (at wy) and
second (at wy) mode (compare Eq.43.).

4.2 The Results

The natural (radial) frequencies, w; and wp, were numerically evaluated using
a Matlab® script (see Appendix C) and then the frequencies , fi and f> plotted
in function of position along the cochlea, z. The distribution of the characteristic
frequency, f. (%m f;kalf)’ along the CP, was also plotted for comparison with the

f1 and f, resonance frequencies. Additionally, the ratio of fo/f1 in function of
position x was presented.

Next, after taking A;y = App = 1, the relative amplitudes As; and Agy were
calculated and also presented in function of position on the CP, z.

Finally, the amplitudes B and D were obtained for one position on the CP ie.
z = 0.0185m, so that the displacements &, and &, for the first and second mode,
could be plotted. In both cases the time vectors were set to show two periods of
vibration.

The mechanical parameters used for the computations were taken from the
Neely&Kim article (converted to SI} as listed in Table 1.
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Figure 16: Resonance frequencies of the first and second mode of vibration, h
and fa. respectively, with the characteristic frequency, f., (upper panel) of the
two-degree-of-freedom system (Neely and Kim model) depicted in Fig.15. and the
ratio of fo/f1 (lower panel), in function of the position on the cochlear partition,
z.
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Figure 17: Amplitudes of the TM vibration with respect to the BM vibration for
the first mode, Ay, and the second mode, Az, in function of position along the
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Figure 18: Displacements & and & for 2 = 0.0185m at the first mode of vibration.
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Figure 19: Displacements & and & for x = 0.0185 m at the second mode of
vibration.
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4.3 Discussion

The resonance of the BM occurs at higher frequencies than the one of the
TM according to Fig.4.2. Distribution of the first resonance frequency, f1 along
the cochlea starts at the value of 92.106 kHz {see Fig.4.2., solid line), which
corresponds approximately to the estimated value of characteristic frequency, f,
at © = 0, equal to 96.373kHz but the difference between f; and f. increases
with the position, z. Furthermore, the values of f; and f. for z = 0 do not agree
with the upper limit of the characteristic frequency derived for the cat cochleai.e.
~ 57kHz [17]. The value of resonance frequency of the second mode of vibration,
fa, equals to 30.764 kH z for the position z = 0m, which is about one third lower
then the fi as mentioned above (check the ratio fy/f1 in Fig.16.).

The amplitudes of the TM vibration for the first and second mode, As; and
Aqs, Tespectively, calculated with respect to the unit BM vibration amplitude
reveal that the amplitude of vibrations at the second mode is higher at the first
mode for all positions along the cochlea e.g. Ay = 10.526 Agp = 99.791 at z = (.
The difference in amplitudes is increasing rapidly above the characteristic place,
« = 0.0185 m, with relatively small difference of the amplitude at the first mode
as depicted in Fig.17.

Figures 18. and 19. show that the BM and TM vibrate in antiphase and
in phase at the first and second mode of vibration, respectively. There is also a
significant difference between the BM, &, and the TM, &, displacement, of 10°
and 102 order for the first and second mode of vibration, respectively.

The results are also in contrast to the measurements of Lukashkin and Russel
[19] who found that in addition to the resonance at the characteristic frequency,
at which the BM and TM are out of phase, a ’second resonance’, at low levels, is
observed about half an octave below the main resonance, at which the BM and

TM are in phase.
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5 Generalisation

It was shown that the EOMs can be derived using the lumped component
models in Fig.11. The NK model (left in Fig.11.) has two DOFs with the mass
my, stiffness &, damping ¢; and the mass ma, stiffness ko, damping ¢y as the
parameters of the first and second DOF, respectively. The masses are coupled by
the stiffness ks and damping cs.

The model of Geisler (right in Fig.11.) can be considered, similarly to the
NK model, as a two-degree-of-freedom system with the mass of the second DOF
set to zero and attached to the rigid bone by the stiflness k.. The first DOF,
corresponding to the BM, is represented by the mass m, stiffness k;, and damping
r. These two components are coupled by k,, which is the passive axial stiffness
of the OHC.

Note that the only significant difference in the dynamics of two presented
models lies in the assumed action of the active source. Therefore introducing some
generalisations, in order to obtain a comprehensive model, the above assumption
will be justified.

Denoting ks, k. and k. as ki, ko, ks, respectively, r as ¢; and finally m as
my, the EOMs and partition impedance Z, for both models as a function of
generalised variables will be derived. Now the mechantcal parameters occur in
the same form for both models. Furthermore, for complete representation, acting
forces with resulting displacements have to be designated.

The pressure P, in the NK model and the force F, in the G model are acoustic
sources acting upon the BM. Despite different representations, the character of
these acoustic sources remains physically the same because of the interaction
mechanism between cochlear fluids and the BM. Therefore, for the purpose of
uniformity, pg (Note the lower case) will define the acoustic source causing the
BM motion for both models.

For both models the active source is assumed to be located in the OHCs,
however, in the G model it exerts upon the first and the second DOF, whereas
in the NK model only upon the first DOF (BM). These sources act in a way
described in the previous sections and are assumed to be linearly proportional
to & in the NK model and z + z in the G model. In the general case it will be
represented in terms of the pressure located in the OHC and denoted as p,. The
gain factor appearing as < in the NK model and ¢ in the G model will be replaced
by gain g in the general approach.

In summary, after introducing new displacements v; (1DOF), vs (2DOF) and
vs (relative displacement) the complete set of the new generalised variables will
be as follows:

D pressure difference across the BM
Pa pressure source in the OHC
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vy displacement of the first DOF

Vs displacement of the second DOF
Uq relative displacement between the first and second DOF
k1 stiffness component of Z;

1 damping component of Z;

my mass component of Z;

ko stiffness component of Z

Ca damping component of Z,

Mg mass component of Z;

ks stiffness component of Z3

Cg damping component of Z3

k4 stifiness component of Z4

Cs damping component of Z4

g OHC force-generation gain

In consequence, the new lumped component models {NK-left and G-right) of
cochlear micromechanics was proposed as presented in Fig.20.

b T

v, k,
m,
v,

-

SR

m,
I
: g,

k k, J-c, Tpd
L L

Y i

Figure 20: Generalised lumped component models of cochlear micromechanics:
NK (left) and G (right).
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5.1 The Model of Neely and Kim
5.1.1 The Equations of Motion

In section 4, the new generalised variables were introduced. Now, the gener-
alised EOMs according to the systems shown in Fig.20. will be formulated. First,
she relative displacement in the generalised NK (Fig.20., left) model takes form

vs(z) = v (z) — valz). (53)
The generalised EOM for the first DOF for this lumped model is
pa(x) — palz) = Z1(@)0:(2) + Z3(2)03(2), (54}

where
Z1 = k}1/jw + 1 +jwm1,
Zg = kg/jw + ¢3.

The generalised EOM for the second DOF is expressed by
0 = Zy(z)y(z) — Zs(x)03(z), (55)

where
Zy = ka/jw + ¢+ jwma,
Zg = k‘g/jw -+ C3.

Finally, the active pressure source p,(z) is represented by

Pal) = —gZ4(z)0s(2), (56)

where
Z4 = k4/jw + c4.

The meaning of the impedances Z;, Zs, Zs and Z, remains the same as in the
section 3.1.1.

5.1.2 The Partition Impedance

Once the generalised EOMs has been formulated, the CP impedance Z, for
the generalised variables can be stated. The CP impedance for the generalised
NK model {left in Fig.20.) is given by

Z, =7 + [M} _ (57)

Zo + 23
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5.2 The Model of Geisler
5.2.1 The Equations of Motion

The right panel of Fig.20. characterises the lumped component model of
cochlear micromechanics based on the G model with a new variables. The relative
displacement v3 appears in the same form as in Eq.53. and just to recall

v3(x) = v (@) — va(x). (58)
For the first DOF of this structure the generalised EOM is formulated as

2a(7) + pa(x) = Z1(2)01(2) + Za(x)03(x), (59)
where
7 = ki/jw + e + Jjuwmy,
Z3 = ka/ jw.

The impedances Z; and Z; are the impedance of the OC and the impedance

of the ciliary/TM complex, respectively.
The generalised EOM for the first DOF is

0= —Zy(z)0a(2) + Zalz)is(z) + palz), (60)

where
Zg = kg/jw,

and represents the coupling between the OC and the RL.
Finally, the formulation of the active source in the Eq.58. expresses p, as

pa(z) = gZy(2)ia(7), (61)

where
Zy =k /jw.

The Z, impedance in the formula above signifies the impedance in the feed-
back loop acting as a resistive force in response to the BM displacement and
controlled by the OHC contractions.

Note that p, is a positive quantity in this case. However, if the negative sign
accounts for the pressure decrease in the OHC (check Eq.10. with description),
the positive value of p, can, on contrary, account for the pressure increase within
the OHC. Consequently, this increase should reflect in the elongation of the hair
cell body, hence denote its activity.

33



5.2.2 The Partition Impedance

Like for the NK generalised model, the partition impedance Z, for the new
system in the right panel of Fig.20. is introduced and takes form

yAVA ’
Lo =27 _— ] 62
i 1+[ZQ+ZB+QZ4:| (62)
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6 Calculated Results for Basilar Membrane Mo-
tion

6.1 The Parameters
6.1.1 Introduction

For examination of the generalised theoretical model described in Section 5,
the mobility of the cochlear partition, ¥, (Y, = 1/Z,), will be plotted. Thus, the
mechanical parameters of the Z, have to be stated.

The impedance parameters used to verify presented models were extracted
from the Liberman tonotopic function for cat cochleae [17]. This function was
derived from the experiment using labelling of auditory nerve fibres of known
characteristic frequency. Base of the cochleae was tuned to 57 kH z and the apex
to 90 Hz. The partition natural resonance frequency wy for location x can be
found from

wo = wye 2, (63)

The quantity ws: represents the natural frequency of the partition at the stapes
[rad/s], and o is a place-frequency length parameter [m™1] [3].

For the position of = equal to the length of the cochlea, namely z = L (L-
length of the cochlea), wp would represent the natural frequency of the CP at the
apex w,,. Hence, Eq.63. can be rearranged and solved for «

=2 ln(wap/wst). (64)

alI:L - L

Having evaluated «, after rearrangement of Eq.63. the stiffness £ and damping

¢ can be estimated. While
Ik
=4/ — 65
Wo m? ( )

k(x) = mwie ™™, (66)

hence

and, while ¢ = k/wy,

(@) = mwye 2, (67)
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6.1.2 The Data

The mechanical parameters were implemented into the Matlab seript (see Ap-
pendix C) solving the partition mobility, Y, given in Eqe.57. and 62., for the
generalised variables. Thus, the comparison was conducted only for the gener-
alised models with reduced number of factors.

The generalised NK model was examined using the parameters listed in Table
1. of the Neely&Kim article [21]. As concerns to the generalised model of G,
mechanical parameters were evaluated by the present authors on the basis of
theory [3] and the information given by Geisler in his article.

It was said, in the previous section, that the impedance parameters were
extracted from the tonotopic function for cat cochleae, with tuning to 57 kHz
and 90 Hz at the base and the apex of the cochleae, respectively. Hence, wa =
97 - 57000 rad/s and wep = 27 - 90 rad/s. Furthermore, the length parameter o
was estimated using wy; and w,,, according to Eq.64., with I = 0.035 m (Note
that, although the mechanical parameters were extracted for the cat’s cochleae,
the value of L has been extrapolated to 0.035 m corresponding to the length of
the human cochlea. The explicit relation between the position on the BM for the
cat and the human cochleae is given in Appendix A). This amounts the value of
a, for the G generalised model, to 368 m~!, Next, knowing «, wp was fixed to
97 . 57000e~ 134 rad/s (see Eq.32.). The mass of the BM, my, (the generalised
variables) is equal to 0.5 kg/m? (m-the mass in the G model). In the work of G,
the stiffnesses k.., k. and the damping coefficient r, were set to

k. =117k,
k. = 0.59k,
r = 0.6]% / wp.
In consequence, for the generalised variables
ky = 1.17Tky,
ko = 0.59k,,

C = 0.6k1/&){].

As for the active component of the Z,, the stiffness k4 (in terms of the gen-
eralised variables) takes form of the stiffness k; according to Eq.21. and the
representation of Z4 in Eq.61. Furthermore, the active impedance Z, was multi-
plied by two factors representing the all-pass circuit and time delay according to
F fb n Eq20

The OHC force-generation gain g was fixed to values of 1 (’fully’ active) and
0 (passive) for both models. Furthermore, the time delay T was set to 27 /wy and
0.47 /wy for comparison, thus n equals 2 and 0.4, respectively (check Eq.25.).

Recapitulating, all quantities of mechanical parameters are presented in the
ST unit system and are piaced in Table 1.
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(PARAMETER NEELY &KIM 1 GEISLER j
Fu(z) kg -m2-s2 | 1.1 10002 1 6.4 - 101% =%
Feo(z) (kg -m~2- 872 | 7 107e~ " 3.8 1003052
kea(z) kg-m—2-s72] | 10%e40% 7.5 - 1010368
kea(z) kg -m2-5 2| 6.15-10% " | 6.4- 10103652
ey [kg-m2-s71 [ 11- 10T0e200x 1.8 - 10%e~ 1%
coz) [kg-m 2571 | L1-100e™% 10
(@) [kg-m 2 s~ [ 1.1-1090%" 0
calz) [kg-m 251 | L1-1070% 2% 10
mi(z) [kg - m™> 0.03 0.5
ma(z) kg - m™* 0.005e* 0

Tabie 1: Mechanical parameters for the NK and the G generalised models.

6.1.3 The Results

Tn the following section the magnitude/phase (|Y,|/£Y;) and real/imaginary
part (Re Y,/ImY,) plots of the CP mobility, Y,, as a function of frequency
and distance from stapes, for the NK and G generalised models, are presented.
Additionally, for the G generalised model, adequate plots with the time delay
n set to 0.4 (according to the G model} are presented. In all cases the OHC
generation gain g was set to 1 and 0 as it was mentioned in the previous section.
Furthermore, in the ’place-function’ plots, the {requency, f, was set to 1 kHz.
In the “frequency-function’ plots, the position on the CP, z, was set to the value
corresponding to the place of maximum of absolute value of the CP mobility
function, |Yp(z)}mee (place-function), calculated for 1 £Hz stimulus frequency in
every case.

The CP was divided to 1024 components for both, the NK and G generalised
models. According to the G model’s simulation, where optimum results were
achieved for 1400 sections of the CP (integer multiples of 700 sections used [11]),
the computation for the generalised G model was run for 1400 and 1024 sections
revealing no discrepancies in the results. In the NK case the number of 500 sec-
tions was considered as a minimal value for the model to converge [16]. Therefore,
the value of 1024 satisfies both, NK and G convergence conditions and being the
power of two, it determines the best efficiency for the computation. Moreover, in
the plots of mobility vs frequency, the latter was limited to 25 kH z to encompass
the human’s audible frequencies range.
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Figure 21: The magnitude and phase of the CP mobility ¥, as a function of
position on the CP, for the Neely&Kim generalised model with f = 1kHz and
g = 1 (active, solid) and 0 (passive, dashed).
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Figure 22: The real and imaginary part of the CP mobility ¥, as a function of
position on the CP, for the Neely&Kim generalised model with f = 1 kHz and

g = 1 (active, solid) and 0 (passive, dashed).
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6.2 Discussion

The behaviour of the magnitude/phase and real/imaginary parts of the CP
mobility, Y,, reveals a significant difference between the active and passive cases
only for the NK generalised model. The active process simulated in the model
generates a big boost in the magnitude of the mobility forming a sharply tuned
peak. The same boost can be also noticed in the plot of the real component of
the partition mobility, which corresponds to a drop in the resistive componernt
of the partition impedance, Z,. This, in consistency with the assumption of
Neely&Kim, accounts for pumping of energy, expressed as a negative resistance
in the partition impedance, by the OHCs to the system. Thus, the reduction
of variables {generalisation) does not change the character of the mobility of the
CP.

The curves calculated for the G generalised model resemble only a passive
characteristic and does not differ qualitatively from the passive case of the NK
generalised model t.e. there is a difference of about one order (10~% and 107*
for the NK and G generalised model, respectively, see Sec.6.1. 3) in value of any
corresponding quantity excluding phase, which range in the same order of values
but with a steeper slope in the G generalised model. This is consistent with the
mathematical formulation for the CP impedance, Z,, where setting the gain, g,
to zero will eradicate the active term from Egs.57. and 62., hence expressing
the NK generalised model’s impedance as equivalent with the one calculated for
the G generahsed model. The discrepancies in the passive plots of both models
are therefore due to the divergence in the mechanical parameters implemented
in the calculations (Note that Neely and Kim and Geisler refer to the same
source from which the parameters have been evaluated [21, 11], namely from the
physiological data of Liberman [17]). Furthermore, setting the delay factor,
to 0.4, an optimum proposed by Geisler (compare [11]), provides even curves in
comparison with the curves obtained for the delay factor of 2. In summary, the
reduction of variables (generalisation) does change the mobility of the CP in case
of the G generalised model through the loss of active characteristic.
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7 Macromechanics

7.1 Introduction

In previous sections the micromechanical properties of the NK and G cochlear
models were examined. The description of the CP by the mechanical impedance
was a straightforward implication of the assumption, that there was no longitu-
dinal, mechanical coupling between the single components 51, However, for the
computation of the CP response the aforementioned interactions between the CP
and the cochlear fluids, referred to cochlear macromechanics (see section 2.3.2),
have to be defined.

" To facilitate the analysis, the geometry of the cochlea has been simplified.
Figure 33. depicts the geometry of the cochlea. with indication of the coordinate
system and the cochlea dimensions. The cochlea is divided into two channels
(Reissner’s membrane ignored due to its negligible impedance) of equal cross-
sections, which are connected by the helicotrema.

The cochlear fluids (properties compared to water), are assumed to be incom-
pressible and inviscid, which implies the fluid velocity to be equal at any location
of the cochlea as well as at the oval and round windows but with opposite phase.
Furthermore, the linearity condition holds also in this case.

Oval
window

Figure 33: A schematical drawing of the simplified geometry of the cochlea with
indication of its main parts, dimensions (i.e. L-length, W-width, H-height) and
coordinate system.

The following assumptions and derivations base on the ones commonly used
in the literature, but gathered and profoundly described in [18].
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The response of the CP is defined by means of the fluid pressure and fluid ve-
locity vectors [5, 18]. According to the coordinate system depicted in Fig.33. and
neglecting the lateral changes of the pressure and velocity [5, 18] (note that the
&, and the &, were averaged over the width of the CP and the BM, respectively),
the macromechanical variables at an instant of time ¢, take form

ps(z,2,t) fluid pressure
us(z,z,t) fiuid z-velocity vector
vp{z, z,t) fluid z-velocity vector

and the velocities at the fluid boundaries

ug{z,t)  stapes z-velocity vector
ume(z,t) round window z-velocity vector
vp{, t) the CP z-velocity vector

The symmetry of the model and incompressibility of the cochlear fluids imply
that in case, when a identical force loading is applied to both windows (see
Fig.33.), a fast wave is propagating through the channels inducing no transverse,
z, displacement of the CP. When the loading forces applied are opposite, the
pressure difference between the upper and lower cochlear channels generates the
CP deflection travelling along the cochlea, a travelling wave described in section
2.3.2. Both cases are described often by imaging the cochlear fluids driven by two
identical pistons at the stapes and round window, applying equal and in /opposite
phase (the *push-push’/’push-pull’ condition) forces [18].

Mathematical representation of the above conditions postulates the combina-
tion of the semi-sum, p, (push-push), and semi-difference, pa {push-pull), pres-
sures for the complete description of the wave propagation in the cochlea. How-
ever, according to the assumption of the incompressibility of the cochlear fluids
only the semi-difference pressure, py, contributes to the generation of the trav-
elling wave. Therefore the semi-sum pressure, p,, or push-push case will not be
considered here (for details check [18]).

The pressure difference generating the travelling wave, is defined as

1 1
pa(z,2,t) = §Pf($: z,t) — épf(m, —2z,t), (68)

for 0 < z < H, and is a complex, sinusoidally varying variable taking form of e?**

[5].
Also fluid’s velocity is unaffected by the ’push-push’ case due to the incom-
pressibility of the cochlear fluids. Together with the pressure it demonstrates

given antisymmetry
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urw('_z=t) = _ust('Z:t)a (69)

up(z, —z,1) = —uglx, 2,t), (70)
vi(z, —z,t) = v¢(T, 2, 1), (71)
pf($,z,t) = "’pf(z!_zrt)' (72)

Equations 69-71. are presented schematically in Fig.34. (after [18]). More-
over, it occurs from Eqgs.68. and 72., that the pressure difference, pqg, amounts
to

palz, 2,t) = pslz, 2, 1) (73)

(Xv 'Zv)

Figure 34: A graphical representation of the symmetry conditions in Eqs.69-71.
The velocity arrows indicate the direction of motion (positive sign according to
the coordinate system). The quantities uq, vy, are the velocity scalars and w1, 21,
the positive displacements.

7.2 The Wave Equation

For the derivation of the wave equation of the cochlear travelling wave, con-
ducted after [5, 18], a convenient long-wave approximation is used. The long-
wave assumption states that the wavelength of the propagating travelling wave
is substantially larger then the height (perimeter) of the cochlear channels. As a
consequence the transverse coordinate, z, is eliminated from the wave equation
obtaining a one-dimensional case, representing the pressure distribution in the z
direction (longitudinal position on the CP).

Though the long-wave approximation simplifies the macromechanical repre-
sentation, it is not devoided of drawbacks. In the region of the maximum dis-
placement of the CP, the long-wave assumption is not as evident as for the rest
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of the cochlea. Therefore, in general description, the cochlear travelling wave is
often featured as a combination of the long-wave and short-wave cases (check the
Appendix B} [3].

Nevertheless, the highest frequency used in the present mode! amounts to
25 kHz, thus taking the value of the speed of sound in water ¢ = 1500 m/s,
the wavelength, A, equals = 60 mm, which is twice the length of the cochlea
(L = 35 mm in the present model) and sixty times the height of the cochlea
(H = 1mm in the present model)}.

The incompressibility condition (fluid’s density p is constant) formulated by
the relation

div ¥ =0, (74)

in terms of the u and v fluid velocity component vectors takes form

Ous(z,z,t)  Ov(z,2,1)
o + 52 =0 (75)
Furthermore, the conservation of momentum (nonlinear terms neglected due
to the small displacements and velocities of the cochlear fluid) applies to the, pa,
uy and vy as follows

Opa(z,z,t) _ Ous(z,2,1)
Oz =7 ot (76)
in the z direction, and
Opalz, 2,1) dug(z, 2z, 1)
P\, <0 TR v 7
0z P ot (77)

in the z direction.
The boundary conditions at the stapes, where the z-velocity is assumed to be

independent of z, and the helicotrema (Vz,t}, are formulated
ur(0,2,t) = ualt), {78)

us(L,z,t) = 0. (79}

The boundaries at z = 0 (CP) and z = H (ceiling of the upper cochlear
channel) (Vz,t), are stated as, respectively

vi{z, 0,t) = vp(w, 1), (80)

vi(z, H, t) = 0. {81)
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According to the Egs.80-81. and provided vs(z, 2,1} << ug(z,z,t) (check
Eq.77.), the linear variation of the fluid across the cochlea in he long-wave ap-
proximation amounts to

vi(z,z,t) = (1 - %) vp(,t). (82)

Differentiation of the Eq.82. with respect to z and substitution into Eq.75.
gives

Qup(z,z,t)  vp(z,t)

o T H

1t appears from the Eq.83. that, since its right side is independent of z, the

left side must be also independent of z. Furthermore, evaluation of the above

equation at the stapes and the assumption of the ug independence of z, leads

to the conclusion of u(z,z,t) being independent of z too. Consequently, as,

after Eq.76., the pressure becomes ’z-independent’, it remains (together with the

z-velocity) uniform across the channel and the z-independent variable may be

eradicated from the equations [18].

Differentiation of the Eq.76. with respect to z gives

(83)

32pd(:c f) auf(as z t)
) — 1 7 84
oz P ozor (84)
which combined with Eq.83. previously differentiated with respect to ¢, leads to
?palz,t) p Oup(z,1)
ANl et Y g A el 85
Dx? H ot (83)

or, having said that pg is a complex exponential of the form of &/, equivalently
in the frequency domain

Fpalz,w) _ jwp
= H Up(Z, W), (86)
As it was mentioned before, in the macromechanical representation, the trav-
elling wave is determined by the CP impedance, which is related to the CP

velocity, v,, by

pd(mvw) (87)

Zy(z,w) = —ZU o)
pldy

where the '—2' factor indicates that oaly the upper, stapes-driven, cochlear
channel was taken into account and following from the assumption of the semi-

difference pressure, pg, being antisymmetric with regard to the CP [5].
Rearranging the Fq.87. for the v, and substituting to the Eq.86. gives

?palz,w) 29wp
R HZp(:c,w)pd(m’w) =0 (88)
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By redefining the last equation to the form of the one-dimensional Helmhoeltz
equation (Note that the Eq.88. is distributed and frequency dependent) it appears
in the form

8 palz,w)

dx?
where the wave mumber of the cochlear travelling wave, ks, (1, w), is expressed as

+ k2 (z,w)pa{z,w) = 0, (89)

k wi = s T
W) = D) 0
and the wave speed ¢y
jwHZ(z,w
&, (z,w) = _T;J (91)

Finally, the boundary condition, referring to the Eq.88., at z = 0 and for
known stapes velocity, uy, is formulated as
dp4{0 :
20 _ pjupra (92)
while at z = L, provided the input frequencies are high enough i.e. the travelling
wave extinguishes basally with respect to the helicotrema [3], is given by

pa(L) = 0. (93)

7.3 The Finite Difference Approximation

Tn Section 3 the micromechanics of the NK and G models has been examined.
The CP was discretised into a number of independent two-degree-of-freedom sys-
tems with their mechanical properties changing with the position z. Having
introduced the wave equation of the cochlear travelling wave, consequently the
CP properties will be examined again in such way, that the aforementioned in-
dependent components will be presented as immersed in the fluid and therefore
coupled through it (the Z, term in the Eq.88.) to form a continuous system
(check Fig.35.). However, to solve the problem numerically, the wave equation
will be replaced by its Finite Difference Approzimation [16].

After the implementation of the finite difference approximation the Eq.88.,
for 2 < i < N — 1, takes form

pa(i) — 2pa(i) + pali — 1)  2jwp .
_ =0, 94
) Pl (99
where N is the number of points and A is the component length expressed as
L
A= ——. 95
N1 (95)



Figure 35: A schematical drawing of the cochlea upper channel (following the
ps antisymmetry assumption) where the CP is represented by a number of in-
dependent two-degree-of-freedom systems coupled via the cochlear fluid (B-base,

A-apex, P-perilymph, S-stapes).

Respectively, the boundary conditions are formulated by

pa(2) — pa(l)
A
at the stapes, while at the helicotrema

= _ijpusta (96)

pa(N) = 0. (97)

Taking the Y, = 1/Z,, the Eq.94., 96-97. can be conveyed to a matrix repre-
sentation [16] and formulated as

(C— M)pa = g, (98)
where
C A A -
1 -2 1 0
C = AA]'—Q s
0 1 -2 1
0 A?
o -
Voll) 0
M = 22 : :
0 V(N —1)
0




( pa(l) ) [ ~2jwpug )
: 0
pa=4 pa(t) p, ¢=1 : |
L pa(N) \ 0 J

The subsequent terms in the Eq.98. denote the fluid coupling matrix, Cy, the
mobility matrix, M, the pressure and the source vectors, ps and g, respectively.
Introducing a tridiagonal, N x N, matrix T such, thai

T=C-M, (99)
the Eq.98. can be rewritten to
thus according to the above, the vector of pressures, py, can be obtained from
pa=T"q (101)
According to Eq.87., the py is formulated as

Up(T, W) Zp(@, W)

pa(z,w) = - 5 : (102)
after reintroducing the ¥; (check Sec.5), Eq.102. can be rearranged to
' VA
palz,w) = —”1(5”"“)2 ) (103)
thus
W (z,w) = —2pg(z,w)Yp(z, w). (104)

Since the pressure difference, pq, calculated from £q.100., and the CP mobility,
Y, are known, the CP velocity ¥; can be computed according to Eq.104. In
addition, knowing that

v =1, (105)
Jw
the CP displacement can be inferred dividing Eq.104. by the jw factor, giving

_2pd(m19)};($’w}_ (106)

vi{z,w) = T
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7.4 The Results
7.4.1 The Data

The Matlab scripts (Appendix C) were rearranged including the components
defined in Eq.98. The CP was discretised into a number of points, N, equal
to 1024 (likewise Sec.6.1.3), thus the length of a single partition element A =
3.4 .10-5. The mechanical parameters of the CP were the same as in the pre-
vious section (check Table 1.). Furthermore, the length of the CP was set to
L = 0.035m, while the height of the upper cochlear channel H = 0.001m (see
Eq.94.). The cochlear fluid was assumed to have properties of water, hence the
Auid’s density p = 1000 kg/m®. The fluid was driven by the tonal signal, which,
according to Eq.96., was expressed in terms of stapes velocity us, set to unity in
both models. The QHC generation gain, g, was set to 1 and 0.

7.4,2 The Results

In this section the magnitude/phase plots, in function of frequency and dis-
tance from stapes, of the pressure difference pq, the CP velocity, 0, and the CP
displacement vy, for the NK and G generalised models, are presented. The mag-
nitude was expressed in dB with reference of Upef = 2- 1074 m/s and vref = LM
for the CP velocity and displacement, respectively, and in dB SPL with pro; =
2. 10~ Pg reference for the pressure difference p, (references of rer and vres
were chosen according to the values of velocity and displacement at CF neural
threshold, derived from comparisons with tuning curves of single auditory nerve
fibres, in cat for CF = 33 kHz as listed in Table 1. in {251). The G generalised
model was computed with the delay factor n = 2 and 0.4 (compare Sec.6.1.3).

For the NK generalised model, the frequency, f, was set to 1 kHz, in the
‘place-function’ plots, and in the frequency-function plots the position on the
BM., x, was set to the value corresponding to the place of maximum of absolute
value of, appropriately, [Dalmaz |91 ]maz 80d [V |maz, calculated for 1 kH z stimulus
frequency (Sec.6.1.3).

However, for the G generalised model, the frequency, f, was set to 1 kHz, in
the place-function plots, but in the frequency-function plots, the position on the
BM, z, was set to the value corresponding to the place for which the characteristic
frequency, CF, calculated from Eq.63. (see also Sec.6.1.2) amounts to 1 kHz i.e
x &= 0.022 m.
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Figure 38: The magnitude and phase of the CP displacement v (dB re 1 nm)
as a function of position on the BM, for the Neely&Kim generalised model with
f=1kHz and g = 1 (active, solid) and 0 (passive, dashed).
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Figure 39: The magnitude and phase of the cochlear fluid’s pressure difference
pq (dB SPL re 2 - 107° Pa) as a function of position on the BM, for the Geisler
generalised model with f = 1 kHz and g = 1 {active, solid) and 0 (passive,

dashed).
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Figure 40: The magnitude and phase of the CP velocity 0, (dBre2-107*m/s) as a
function of position on the BM, for the Geisler generalised model with f=1kHz
and g = 1 (active, solid) and 0 (passive, dashed).
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Figure 41: The magnitude and phase of the CP displacement v (dBre lmm) as a
function of position on the BM, for the Geisler generalised model with f=1kHz
and g = 1 (active, solid) and 0 (passive, dashed).
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Figure 42: The magnitude and phase of the cochlear fluid’s pressure difference
pg (dB SPL re 2- 1078 Pa) as a function of position on the BM, for the Geisler
generalised model with f = 1 kHz, delay factor, n = 0.4, and g = 1 (active,
solid) and 0 {passive, dashed).
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Figure 43: The magnitude and phase of the CP velocity iy (dBre 2-107*m/s) as a
function of position on the BM, for the Geisler generalised model with f = 1kHz,
delay factor, n = 0.4, and g = 1 (active, solid) and 0 (passive, dashed).
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Figure 46: The magnitude and phase of the CP velocity 91 {dB re 2-107% m/s)

as a function of stimulus frequency, f, for the Neely&Kim generalised model for

the position on the BM z = 0.0185m and g = 1 (active, solid) and O (passive,
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Figure 47: The magnitude and phase of the CP displacement v; (dB re 1 nm)

as a function of stimulus frequency, f, for the Neely&Kim generalised model for

the position on the BM z = 0.0185m and g = 1 (active, solid) and O (passive,

dashed). :
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Figure 48: The magnitude and phase of the cochlear fluid’s pressure difference
pa (dB SPL re 2 107° Pa) as a function of stimulus frequency, f, for the Geisler
generalised model for the position on the BM z = 0.022m and g = 1 (active,
solid) and 0 (passive, dashed).
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Figure 49: The magnitude and phase of the CP velocity ©; (dB re 2- 107* m/s)
as a function of stimulus frequency, f, for the Geisler generalised model for the
position on the BM = = 0.022m and g = 1 (active, solid) and 0 (passive, dashed).
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Figure 50: The magnitude and phase of the CP displacement v, (dB re 1 nm)
as a function of stimulus frequency, f, for the Geisler generalised model for the
position on the BM = = 0.022m and g = 1 (active, solid) and 0 {passive, dashed}.
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Figure 51: The magnitude and phase of the cochlear fluid’s pressure difference py
(dB SPL re 2-107° Pa) as a function of stimulus frequency, f, for the Neely&Kim
generalised model for the position on the BM z = 0.022m, delay factor, n = 0.4,
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Figure 52: The magnitude and phase of the CP velocity 7, (dB re 2- 10~* m/s)
as a function of stimulus frequency, f, for the Geisler generalised model for the
position on the BM z = 0.022m, delay factor, n = 0.4, and g = 1 (active, solid)

and 0 (passive, dashed}.
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Figure 53: The magnitude and phase of the CP displacement v; (dB re 1 nm)
as a function of stimulus frequency, f, for the Geisler generalised model for the
position on the BM z = 0.022m, delay factor, n = 0.4, and g = 1 {active, solid)

and O (passive, dashed).
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7.5 Discussion

Presented piots, likewise in the mobility plots case (see Sec.6.1.3), reveal dif-
ferences between the active and the passive modelled response only for the NK
generalised model. For all quantities active response is characterised by a sharply
tuned peak, stating the characteristic place of approximately 0.0185 m for the
1 kHz stimulus frequency, about 40 dB SPL above the maximum of the passive
response for the pressure difference, pg, and about 60 dB above for the partition
velocity, ¥1, and displacement, v;.The tuning does provide a rather steep roll-off
on the apical side of the curves i.e. approximately 149 dB Joctave (62 dB/octave
for passive response) 154 dB/octave (57 dB/octave for passive response) and 155
dB/octave (61 dB/octave for passive response) in the pressure difference, par-
tition velocity and partition displacement curves, respectively. Along with the
increase of the response’s peak a steeping of the phase slope, in comparison with
the passive phase curve, can be observed. The fast increasing phase lag, charac-
teristic in the peak region (highest activity), comparing to the slow cumulation
of phase below and above the CF (characteristic place) corresponds to the real
cochlea behaviour.

The active response plots of the G generalised model do not provide an en-
hancement characteristic for the active response of the real cochlea. Thus, in
the active and passive case the same broad curves represent the response of the
model. In the G generalised model, the roli-off on the apical side of the active
and passive response curves amounts to about 62 dB/octave, 69 dB Joctave and
76 dB/octave in the pressure difference, partition velocity and partition displace-
ment curves, respectively (for both delay factors, n = 2 and 0.4, used). The slope
of 62 dB/octave in the pressure difference plot corresponds to the slope of the
passive generalised model of NK. However, the slopes of the partition velocity
and partition displacement curves are steeper then those calculated for the NK
model. The reason for such behaviour is the one order bigger value of the BM
mass evaluated for the G model’s parameters, though there is no second mass
like the one represented by the TM in the NK generalised model (check Table 1.}.
Nevertheless, despite the above, reduction of the variables significantly changed
the response of the model as it mentioned in Section 6.2.

Finally, there is no change in the phase behaviour of any examined quantity,
between the active and passive curve. Although the slope of the phase may seem
steeper then the one in the NK case, the cumulation of phase amounts only to
about three cycles, whereas it ranges to approximately fourteen cycles in the NK
model. This small phase cumulatior also does not agree with the physiological
data.
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8 Backward ’Ifravélling Wave

This section, inspired by the research of Tianying Ren in [24], examines the
phase behaviour of the cochlear fluid’s pressure. It was assumed by Ren that the
slope of the phase curves, plotted in function of the position along the cochlea,
z, determines the direction of the BM vibration 124].

Considering a simple analogy of the wave propagation in an infinite duct as
presented in Fig.54., phase lags of the pressure will be detected in both positive,
+z. and negative, —z, directions from the source.

The phase of the pressure difference, p4, calculated for the generalised NK
and G models reveals increasing lags with the position, x, which corresponds to
the positive direction of the wave propagating from the source (stapes vibration
in the models) as depicted in Fig.54.

T~
T T
Hpta)i
e
F Y
Zp(x) -
>

Figure 54: An infinite duct with a sound source and sound receiver (top). Phase
lags of the propagating pressure wave will be observed in both, positive {(+z) and
negative (—z) directions from the source (bottom).

Representation of the source vector ¢ in Eq.98. enables a change in the posi-
tion of the stimulus (expressed in terms of stapes velocity, us) to any point on
the CP, thus, checking the phase behaviour of the pressure waves propagating in
both directions from the source.

In order to verify this assumption, the magnitude and phase of the pressure
difference, p4, evaluated from the macromechanical, generalised NK model, were

examined.
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8.1 The Results

The magnitude and phase of the pressure difference, pa, were calculated like-
wise Sec.7.4.2 with the source set to the position of the stapes footplate, z = 0m
(q, in the source vector, check Eq.98.) and z = 0.0185 m corresponding to the
place of the maximum value of absolute of the pressure difference, py, for the
active (¢ = 1) NK model, computed for f = 1 kHz stimulus frequency (gsq1 in
the source vector, check £q.98.). The stimulus frequency, f, was set to f = 1kHz
and the gain, g, to 0 and 1 in both cases. The response has been evaluated for
the unit stapes velocity, ug.
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Figure 55: The magnitude and phase of the cochlear fluid’s pressure difference
pa (dB SPL re 2- 107° Pa) as a function of position on the BM, for the passive
(g = 0) Neely&Kim generalised model with stimulus frequency, f, equal to 1kHz.
The position, marked with the dotted line, of the stimulus, z, == 0 {stapes, solid
line) and 0.0185 m (position of |palma= for 1 £H = trequency input, dashed line).
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Figure 56: The magnitude and phase of the cochlear fluid’s pressure difference
pa (dB SPL re 2- 107° Pa) as a function of position on the BM, for the active
(g = 1) Neely&Kim generalised model with stimulus frequency, f, equal to 1kHz.
The position of the stimulus, z, = 0 (stapes, solid line} and 0.0185 m (position,
marked with the dotted line, of |palmez for 1 kHz frequency input, dashed line).
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8.2 Discussion

The phase plots obtained for the passive generalised model of NK verify the
assumed behaviour of the propagating wave from the source (the source-receiver
analogy). The phase, depicted in Fig.55., lags in both directions (accordingly to
<2 and —z in Fig.54.) from the position of the stimulus i.e. & = 0.0185m (the
source in Fig.54.) towards the ends of the cochlea.

However, in the active model, the phase lags from the same position of the
stimulus towards the apex (positive, -+, direction in Fig.54.) but a lead of about
one cycle followed by the phase lag towards the base of the cochlea proceeds in
the opposite direction from the position of the stimulus. Therefore discerning the
_ direction of the BM vibration propagation by means of the phase slope seems not
as unequivocal as assumed by Ren.

The phase behaviour calculated for the passive case remains consistent with
the theoretical prediction, however, it reveals some peculiarities in case of the
active modelled response of the cochlea. In summary, the analysis of phase data
caleulated from active models of the cochlea, should be approached with greater
care and insight.
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9 Stability

9.1 The Introduction

It is proposed that the cochlea works as a physiological control system which
identification may determine its main characteristics. The models of the cochlear
dynamics define its characteristics in terms of a closed-loop system identifica-
tion. The open-loop characteristics (passive) of the cochlear function/response is
rather well examined, however, unravelling the mechanism of the cochlear activ-
ity stimulates the investigations on the feedback component of the loop, thus the
characteristic of the overall closed-loop system [14].

The active processes responsible for the sharp tuning and high sensitivity of
the cochlea are represented in the NK and G models as an additional source
stimulated by the deflections of the OHCs cilia and pumping the energy into the
system. This mechanism {active sources) is postulated to act as a controlling
device in the overall feedback loop within the cochlea.

In the NK model the feedback component in the closed loop is formulated by
the active pressure p, (Eq.10.), in which an additional element —vZ, is introduced
to account for the gain control and frequency-dependent phase shift between p,

and &, (see Fig.57.).

it

gibL
m.f

Figure 57: The lumped component system of the Neely&Kim model with indi-
cation of the feedback loop. The element —vZ, accounts for the control of the
input pressure P, to acquire a particular velocity & in the output of the loop.
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The fluid pressure pg, represents the input and shearing velocity, €., the output
of the feedback loop for this case.

In the G model, the feedback loop is expressed by the bracketed term in
Eiq.19. with introduction of the feedback force Fp{w). By this formulation the
negative-feedback term describes an effective loading that exerts upon the BM.
Figure 58. depicts a block diagram of the feedback loop for the model of Geisler
(compare Fig.2. in [10]). Here, the displacement of the BM z and the acoustic
force F, account for the input and output terms, respectively, as seen from the

BM [10].

+ F
X kckr L
( 2 > E+k ¢ °

=~
+
~
A

Figure 58: A block diagram of the feedback loop for the Geisler model. The
‘input’ z is controlled by Fy,(w)/ke.+ k. (controller) to arrange particular acoustic
force F, at the output of the loop.

In this section the feedback loop systems for the generalised NK and G models
will be introduced. Next, the stability of the systems will be analysed using the
Nyquist stability criterion. The theoretical formulation of the feedback loop will
be conducted on the basis of the EOMs derived in Section 5.

For both generalised models the control term will be represented by the active
pressure p, whereas the input and output of the feedback loop by the pressure
difference py and velocity s, respectively [16]. A block diagram of the proposed
control system is shown in Fig.59., where G denotes the plant and H the controller
of the feedback. Explicit formulation of the G and H will be derived from the
generalised EOMs, as it was mentioned before.

9.2 The Model of Neely and Kim

Differentiating Eq.53. with respect to time gives the formulation of the relative

velocity va{z)
Ug(iﬂ) = ’Ul(ﬂ?) — ’[)2(37), (107)
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H

Figure 59: A block diagram of the feedback loop for the Neely&Kim and Geisler
generalised models. The acoustic pressure py is the input and the 73 velocity
the output of the feedback loop. The G and H terms denote the plant and the
controller, respectively.

0(z) = vg(z) + 02(x). (108)
After rearranging Eq.55. the expression for 0,(z) takes form
zZ
o) = 73@3(3;), (109)
2
and substituting to Eq.108. the velocity 91(z) equals
Z3\ .
onfz) = (1 + —3) vs(a), (110)
Za

Substituting above equation and the expression for p, from Eq.56. to Eq.54.,
the first DOF of the NK generalised model, the EOM takes form

pa() — (—gZ4)in(z) = [Zl (1 + %)] 03(x) + Zsvs(z), (111)
ot equivalently
palz) — (—9Z4)0s(z) = [Zl (1 + %) + zg} 03(2). (112)

Dividing Eq.112. by the bracketed term of the right-hand side

1 1 : =13(x).
A I T I =~

¢ ¢
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where G denotes the plant and H the controller of the closed feedback loop.
Equation 113. expressed by means of G and H amounts to
Gpa(z) — GHs(z) = Us(x), (114)

therefore

in(a) = TPl (115)

which appears in the form of a classical negative-feedback system and the formu-
lation of G and H components is given in Eq.113.

9.3 The Model of Geisler
Following the same procedure likewise in Sec.9.2, first, rearranging Fq.60.

(formulation for the second DOF of the G generalised model) for v5(x) gives

in(z) = %@3(9;) + 9—222—4@3(33). (116)

Applying this expression to Eq.108. along with the expression of the active
pressure p, in Eq.61., the velocity ¥,(z} takes form

By substitution of Eq.117. and Eq.61. to 1q.59. (EOM for the first DOF in
the G generalised model) the EOM will amount to

pd(m) + gZ4’£-}3($) = |:Zl (1 -+ % + %)] ﬂg(x) + Zgﬂg(m), (118)

and after rearrangement

euivalently

Dividing Eq.120. by the bracketed term on the right-hand side gives the final
form
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1 Pe) = 1 92T = 20) o ) — ()
lZl (1 + 5—2) + 231 \[Zl (1 + %) + 23])—-—-5;“—-—’ :

-~

G G

(121)
where & denotes the plant and H the controller of the closed feedback loop.
Formulation of Eq.121. by means of G and H is

Gpa(z) — GHis(z) = s(z), (122)

and

G

i0(2) = Tz Pala) (123)

which describes a classical negative-feedback system for the G generalised model.
The formulation of G and H components is given explicitly in Eq.121.

9.4 The Results

Stability of the NK and G generalised models, expressed as the negative feed-
back systems, was examined by means of the Nyquist stability criterion. Accord-
ing to the definition, system becomes unstable when the Nyquist plot encloses the
point (-1,0) in the complex plane (the pole in the inferred transfer functions of the
negative feedback systems, check Egs.113. and 121. for NK and G generalised
models, respectively) when the transfer function of the loop is being evaluated
for frequencies from zero to infinity [14, 9].

The contours of the G H (jw) open loop were calculated in Matleb for a band
of frequencies ranging from 0 to 10° Hz, and presented in the Nyquist plots
(Im GH(jw) vs Re GH(jw)}. The stability of the considered systems was exam-
ined for different positions on the CP i.e. x = 0.0085, 0.0135, 0.0185, 0.0235 m
with the gain, ¢ = 1, and for different values of gain, i.e. g = 0.7, 1 and 1.1,
with the position, z set to 0.0085 (apical), 0.0185 (point on the CP corresponding
to the maximum displacement, vy, for 1 kHz stimulus frequency) and 0.0235 m
(apical region) for every model.
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Figure 60: Nyquist plots of the negative feedback loop for z = 0.0085 m (basal
site}, derived for the Neely&Kim generalised model with the values of gain, g,
equal to 0.7 (solid), 1 (dashed) and 1.1 (dash-dotted). The circle indicates the

point (-1,0).
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Figure 61: Nyquist plots of the negative feedback loop for = = 0.0185 m (the

CP maxirum displacement site for f = 1 kHz), derived for the Neely&Kim

generalised model with the values of gain, g, equal to 0.7 (solid), 1 (dashed) and

1.1 (dash-dotted). The circle indicates the point (-1,0).
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Figure 62: Nyquist plots of the negative feedback loop for x = 0.0235 m (apical
site), derived for the Neely&Kim generalised model with the values of gain, g,
equal to 0.7 (solid), 1 (dashed) and 1.1 (dash-dotted). The circle indicates the

point (-1,0).
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Figure 63: Nyquist plots of the negative feedback loop for ¢ = 1 (active model),
derived for the Neely&Kim generalised model with the values of position on the
CP, z, equal to 0.0085 (dash-dotted), 0.0135 (dashed), 0.0185 (solid} and 0.0235m

(bold). The circle indicates the point (-1,0).
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Figure 64: Nyquist plot of the negative feedback loop for = = 0.0085 m (basal
site), derived for the Geisler generalised model with the value of gain, g, equal to
0.7. The circle indicates the point (-1,0).
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Figure 65: Nyquist plot of the negative feedback loop for x = 0.0085 m (basal
site), derived for the Geisler generalised model with the value of gain, g, equal to
1. The circle indicates the point {(-1,0).
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Figure 66: Nyquist plot of the negative feedback loop for & = 0.0085 m (basal
site), derived for the Geisler generalised model with the value of gain, g, equal to
1.1. The circle indicates the point (-1,0).
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Figure 67: Nyquist plot of the negative feedback loop for z = 0.0185 m (site of

the maximum displacement of the CP for f = 1 kHz), derived for the Geisler

generalised model with the value of gain, g, equal to 0.7. The circle indicates the

point (-1,0).
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Figure 68: Nyquist plot of the negative feedback loop for z = 0.0185 m (site of
the maximum displacement of the CP for f = 1 kHz), derived for the Geisler
generalised model with the value of gain, g, equal to 1. The circle indicates the

point (-1,0).
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Figure 69: Nyquist plot of the negative feedback loop for x = 0.0185 m (site of
the maximum displacement of the CP for f = 1 kHz), derived for the Geisler
generalised model with the value of gain, g, equal to 1.1. The circle indicates the
point (-1,0).
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Figure 70: Nyquist plot of the negative feedback loop for z = 0.0235 m {apical

site), derived for the Geisler generalised model with the value of gain, g, equal to

0.7. The circle indicates the point (-1,0).
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Figure 71: Nyquist plot of the negative feedback loop for z = 0.0235 m (apical
site}, derived for the Geisler generalised model with the value of gain, g, equal to
1. The circle indicates the point (-1,0).
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Figure 72: Nyquist plot of the negative feedback loop for z = 0.0235m (apical
site), derived for the Geisler generalised model with the value of gain, g, equal to
1.1. The circle indicates the point (-1,0).
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Figure 73: Nyquist plot of the negative feedback loop for z = 0.0085 m {basal
site), derived for the Geisler generalised model with the value of gain, g, equal to
1. The circle indicates the point (-1,0).
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Figure 74: Nyquist plot of the negative feedback loop for z = 0.0135 m, derived
for the Geisler generalised model with the value of gain, g, equal to 1. The circle
indicates the point (-1,0). '
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Figure 75: Nyquist plot of the negative feedback loop for z = 0.0185 m, derived
for the Geisler generalised model with the value of gain, g, equal to 1. The circle
indicates the point (-1,0).
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Figure 76: Nyquist plot of the negative feedback loop for x = 0.0235 m (apical
site), derived for the Geisler generalised model with the value of gain, g, equal to
1. The circle indicates the point (-1,0).
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9.5 Discussion

The Nyquist plots evaluated for the NK negative feedback systems show that
increase in gain, g, to 1.1 leads to the instability, i.e. enclosure of the -1,0 point
(circle in all figures), of the single system at z = 0.0085 m (Fig.60.), while the
systems become more stable as the position shifts from the base to the apex of the
cochlea (Figs.61-62.). This is qualitatively consistent with the results obtained
for the NK model without generalisation examined in [16], where it was stated
that the systems were set very close to instability in order to achieve the best
tuning in the cochlea in regions of highest activity (basal sites). The estimation
of boundary value of gain at two positions on the CP, for which the system is
still stable will be presented in the next section.

Figure 63. depicts the stability check of a fully-active model for different
positions along the cochlea calculated for constant gain {g = 1). In this case
system is set close to instability at the position of x = 0.0085 m and, as the
curves move further away from the -1,0 point, it becomes more stable with the
increase of z.

The Nyquist plots evaluated for the G negative feedback systems, on the other
hand, do not seem to prove the instability as the -1,0 point (circle in all figures)
is not enclosed by any of the calculated curves. Nevertheless, there is a tendency
for deterioration of stability of the single system while the gain is increased to
1.1, however, there is no significant difference between the curves calculated for
corresponding gains at various positions « (compare e.g. Fig.66.,69. and 72.).
Furthermore, plots in Figs.73-76. do not reveal significant differences between
each other and remain stable for any examined position.
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9.6 Investigation of Kolston’s model

Tt has been argued by Kolston that an increase in the generation of the OHCs
force exerting on the BM leads paradoxically to a decrease of the cochlear ampli-
fier’s gain and therefore to a decrease of the BM displacement [15].

In order to verify this result, the stability of the feedback system (with the CP
velocity 9, as the system output), the magnitude and phase of the CP velocity
9, and the real and imaginary parts of the CP impedance, Z, of the generalised
model of NK has been investigated. Two cases, for stimulus frequencies fi =
1k H z (reference) and f» = 30k Hz (Kolston’s case), were computed. Additionally,
for every case, three values of cochlear amplifier’s gain, g, have been used: 0
(passive case corresponding to no OHC motility case in the Kolston’s model}, 0.5,
1 (fully’ active case corresponding to normal OHC motility-330 pN/nm case in
the Kolston’s model) and 1.7 (Cenhanced’ activity case corresponding to enhanced
OHC motility-360 p/N/nm case presented in [15]). The response was computed
for the unit stapes velocity, ug = 1, and referenced to the value of 2 - 107*m/s
{compare Sec.7.4.2).

First, the stability of the negative feedback loop as formulated in Sec.9.2 was
also examined. The Nyquist plots were calculated for x = 0.0185 (reference) and
0.0023m (Kolston) (corresponding to 1kHz and 30k H z site on the CP in the NK
generalised model, respectively) and three values of gain as mentioned before.

Secondly, the response {magnitude and phase) of the CP in terms of the
partition velocity, ¢, are presented in function of position on the BM, z, with
the values of stimulus frequency and cochlear amplifier’s gain as described above.

Finally, the corresponding (for 1 kH =z, 30 kH z stimulus frequency and three
aforementioned values of the OHC force-generation gain, g) real and imaginary
parts of the CP impedance, Z,, have been plotted for comparison with Fig.4. (b,
¢, e, f)in [13].

As it was reported that the magnitude of the response tends to increase ini-
tially and then decrease with an increase of the amplifier’s gain, the critical value
of gain, Geriticar (i-6. the value of g as the transition from an increasing to de-
creasing magnitude of the response), was also estimated by calculating the peak
response |0 }maz for changing gain, g, from 0 to 2. The geriricar was also estimated
for two stimulus frequencies i.e. 1 and 30 kH z.
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Figure 77: Stability of the negative feedback loop for z = 0.0185 m site corre-
sponding to the maximum velocity, ©1, for f = 1 kHz and g = 1. The solid,
dashed and dash-dotted lines refer to the plots for g equal to 0.5, 1 and 1.7,

respectively.
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Figure 78: Magnitude (re te; = 2 - 107* m/s) and phase of the cochlear parti-
tion velocity, 91, of the generalised Neely&Kim model in function of position, z.
Stimulus frequency f = 1 kHz and the OHC force-generation gain, g, set to 0.5
(solid), 1 (dashed) and 1.7 (dash-dotted).
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Figure 79: Real and imaginary parts of the cochlear partition impedance, Z,, of
the generalised Neely&Kim model in function of position, z. Stimulus frequency
f =1FkHz and the OHC force-generation gain, g, set to 0.5 (solid), 1 (dashed)
and 1.7 (dash-dotted).
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Figure 80: Stahility of the negative feedback loop for z = 0.0023 m site corre-
sponding to the maximurm velocity, #1, for f = 30 kHz and g = 1. The solid,
dashed and dash-dotted lines refer to the plots for g equal to 0.5, 1 and 1.7,
respectively. '
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Figure 81: Magnitude (re 9.y = 2- 107" m/s) and phase of the cochlear parti-
tion velocity, @1, of the generalised Neely&Kim model in function of position, z.
Stimulus frequency f = 30 kHz and the OHC force-generation gain, g, set to 0.5
(solid), 1 (dashed) and 1.7 (dash-dotted).
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Figure 82: Real and imaginary parts of the cochlear partition impedance, Z,, of
the generalised Neely&Kim model in function of position, z. Stimulus {requency
f =30kHz and the OHC force-generation gain, g, set to 0.5 (solid), 1 (dashed)
and 1.7 (dash-dotted).
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Figure 83: Apparent maximum magnitude (re 9,.; = 2-107*m/s) of the cochlear
partition velocity, [91|maz, Of the generalised Neely&Kim model in function of the
OHC force-generation gain, g. Stimulus frequency f = 1kHz.
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Figure 84: Apparent maximum magnitude (re 0,.; = 2- 10~%m/s) of the cochlear
partition velocity, |U1|maz, 0f the generalised Neely&Kim model in function of the
OHC force-generation gain, g. Stimulus frequency f = 30kHz.
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9.6.1 Discussion

According to Figs.78. and 81., with an increase of the gain, g, the CP velocity
7, increases subsequently to about 217 dB (active case, g = 1) and 154 dB (active
case, g = 1) for f = 1 and 30 kHz, respectively, however, it decreases in the
next step to about 80 and 95 dB, appropriately, though g was increased to 1.7.
Appropriately, the phase plots show that the phase lags for g = 0.5 and 1 shift
to phase lead with the increase of the amplifiers’ gain to 1.7.

The system’s response falls with the increasing gain but since for g = 1.7 the
system is unstable, according to Nyquist plot in Figs.77. and 80., the frequency
domain model is not valid and conclusions of Kolston not justified. Additionally,
the critical value of gain, geitica, estimated for both stimulus frequencies, f=1
and 30 kHz, indicate that the response of the models will start to fall with values
of gain higher than 1.17 and 1.01, appropriately. The maximum of the response
decreases with the increase of gain as depicted in Figs.83-84. and so that the
Jeriricay values determine the point of singularity, which causes the instability of
the system.

Furthermore, the existence of a pole/s in the right half of the jw plane defines
a nonminimum-phase system, which, according to de Boer [7], may represent a
characteristic of a non-classical but not a classical or three-dimensional model
like the one of Kolston. '

Finally, the real part of the CP impedance, Z,, resemble the characteristic of
the ones presented by Kolston in Fig.4. (b, ¢) in [15]. However, the imaginary
part plots of the partition impedance depicted in Fig.82. of present work are not
consistent with the ones of Kolston for the normal (g = 1) and enhanced activity
(g = 1.7) of OHCs (see Fig.4., e and f in [15]). There is some similarity for the
imaginary curves in the region between 0 to 40 pgm from the spiral lamina (Fig.4.
e, fin [15]) but due to the assumption that the displacement of the NK model is
averaged across the width of the CP (assumption holds also for the generalised
model), it may not represent the behaviour of the BM impedance imaginary part.
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10 Nonlinearity

Along with the improvement in techniques for measuring the BM response,
new phenomena have been discovered. The most prominent and crucial in light
of the modelling efforts, was the finding of the BM nonlinearity (see Section
2.3.2). The BM displacement in function of the stimulus level, as observed first
by Rhode (Rhode, 1971), revealed a highly nonlinear dependence. Precisely, the
nonlinearity of the BM response appeared to be most pronounced in the region of
its highest sensitivity (peak of the response), frequency dependent and, primarily,
of a compressive character [1].

Initiated by the Rhode’s findings, the studies on the cochlear nonlinearity
confirm the former discovery and show a number of phenomena commencing
with the level-dependent nonlinearity of the BM response, two-tone suppression
or the generation of the distortion products (see section 2.3.2).

The level-dependent nonlinearity appears to be a mainly compressive function,
even though, a case of an expansive characteristic has been also reported (see
Fig.11. in [25]). Different results, however, are observed in different species,
as well as some dependence on the site of the BM investigated (base or apex),
which lead to different sensitivity functions and cochlear gains. The gain at the
9 — 10 kHz site (more apical region) of the guinea pig cochlea showed ranges
of cochlear gain from 35 — 58 dB, for example, while the value of 35 dB at the
17— 18k H z site (more basal region) of the chinchilla cochlea (Table 1. in [25]. The
gain is measured in terms of displacement and defined by the difference between
the peaks in the sensitivity functions estimated for low- and high-intensity tones
or in vivo and post-mortem responses [25]). In conclusion, since the activity
in the cochlea (cochlear amplifiers gain) appears to be inseparably related with
the nonlinear effects (most pronounced in the peak region of the BM response),
the building of a nonlinear, active model of the cochlea seems to be important
for the full understanding of the cochlear dynamics as well as for elimination of
the discrepancies in the physiological results by verification of the experimental
artefacts resulting from the measurement method used or condition of the cochlea
preparation.

In the following section a nonlinear cochlear model will be presented. A
compressive nonlinearity was introduced into the NK and G generalised, active
models solved in Section 5. The model works by iteratively calculating the level
and hence the nonlinear gain and so is similar to the quasilinear approach of

[13, 16].

10.1 The Nonlinear Positive Feedback System

It was suggested by Yates that a nonlinear cochlear model can be considered
as a simple positive feedback system with source of energy as input, some sort
of output and a nonlinear element in feedback path [27, 28]. Figure 85. shows
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a block diagram of such conceptual model in which the feedback path consists
of a plant G (feedforward gain), nonlinear network ® and a frequency-selective
network, 3 (a bandpass filter to select the fundamental component of v(t), the
loop output). The latter network provides the gain 0 the input signal {(also 3),
which amplifies the fundamental frequency and attenuates the harmonics when
the input is tonal [8].

+

+

z(1)

p 1) o -

Figure 85: A block diagram of the feedforward loop as proposed by Yates [28].
The parameter z(¢) represents the input, whereas the y(t), the output of the
loop. The G denotes the plant while the ¢ and § the nonlinear network and
frequency-selective network, respectively.

From the analogy between the cochlea and the proposed model, the input of
the feedback loop refers to the pressure difference in the cochlear fluids and the
plant, G, to the BM with its motion. The nonlinear network @, as suggested by
Yadtes, is of a form of a simple Boltzmann function (check [28] for details), while
the frequency-selective network, 3, can account for the changes in the cochlear
displacement-sensitivity as in the case of damage to the OHCs [28].

As assumed by Yates, the nonlinear feedback network, ®, is a saturating
function with an input/output characteristic given by

o Ay(d)
u(t) = Ao (124)

where y(t) represents the input of ®, whereas (t), its output. The parameter A

is an arbitrary threshold amplitude set to 10% in [27].
Following from the Eq.124., the instantaneous gain, @, is explicitly expressed

by
A
O(t) = ———.
(t) A+y(t)
With such input/output characteristic, the nonlinear element, ®, will be = 1
and so v(t) & y(t), thus behaving linearly when subject to a low-amplitude

(125)
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input, ie. |y(#)! < A. However, at high amplitudes, |y(t)] > A, the gain. &.
will approximate to A/y(t), therefore reaching the threshold A and saturating
ie. v(t) ~ A[8].

In the frequency domain the overall gain, Gusseq (ratio of the complex output,
Y, to the complex input, X), of the nonlinear feedback system depicted in Fig.85.,
is formulated by

G
1 - A%pG
where G and 3 are linear constants, chosen to give a product of 3G slightly
less than unity (typically 8 = 0.999), while ®p (index D denotes the describing
function) is a real number that reflects the average value of ®(t), which depends
on the output signal amplitude [27, §].

The feedback system described above, can be defined by a describing function
being the Eq.125. itself as y{t) = Y [8]. Additionally, since it was assumed by
Yates that |G| = 1 and £ = 0, the complex input and output signals, X, ¥, V,
respectively, can be taken as real numbers, so that the gain of the feedback path
will take form

Gclosed = (126)

V]

bp = 127
and
__bA
B0 = i (128)

10.2 The Model of Neely and Kim

For the derivation of the nonlinear NK generalised model the plant, &, and
controller, H, have to be first defined as the positive feedback components. Fur-
thermore, the output of the feedback loop referred to y{t) in Fig.85., is now
assumed to be the CP velocity, 7, in contrast to Section 9.2. A block diagram,
showing the analogy of the NK generalised model feedback loop to the positive
feedback loop proposed by Yates (Fig.85.}, is depicted in Fig.86.

Similarly, as in Sec.9.2, differentiating

va(z) = 1 (z) - volz), (129)
with respect to time gives the formulation of the relative velocity ¥3(x)
’Ug(iﬂ) = ?;’1 (.I‘) — {)Q(I), (130)

and

92



P Z G | o

A

H

Figure 86: A block diagram of the feedforward loop for the Neely&Kim gener-
alised model. The acoustic pressure pg represents the input, whereas the velocity,
#;, the output of the loop. The G and H terms denote the plant and the con-

troller, respectively.

While
Zz'f)g(ﬂ?) = Zs’f)g(:b’), (132)
after rearrangement, 9a(z) takes form
Z,
o(z) = 731;3(:5). (133)
2
Substituting Eq.133. to Eq.131., the velocity ¥:(z) equals
. Z3\ .
in(zy = | 1+ — ) v3(z), (134}
Zy
thus
o(z) = 22— () (135)
3 Zat 25 1
The equation of motion (EOM) in the frequency domain is formulated by
pa(z) — pa(z) = Z100 () + Zav3(). (136)
Subsequently, substituting the expression for p,
pa(x) = "AQZ47')3($): (137)
to Eq.136., the EOM takes form
pd(:t:) — (-Q'Z4)‘Z')3($) = Zﬂ);(ﬁ) +- Zg'Ug(ZL’) (138)
Equivalently
gZaZy , . VAYA .
= ) 1
pa{T) + (22 n Zs) n(z) = Z1t(z) + (22 7 01{x) (139)
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or

nil)+ (225 o) = | BB DEDD 40 a)

Dividing Eq.140. by the bracketed term of its right-hand side gives
Lo+ Zs Za+ Za ( 9707y

x)+
Z1(Z2 + Z3) + 2074 () 217 + Zs) + ZaZs) \ Zs + Zs
G G "

)1}1(3:) = 01(x).

- -

(141)
where (& denotes the plant and H, the controller of the closed feedback loop.
Equation 141. expressed by means of G and H amounts to

Gpa(z) + GHU:(z) = t1(z), (142)
therefore
0(z) = 1 WGGde(m), {143}

which appears in the form of a classical positive-feedback system with the G and
H components formulated in Eq.141.

The gain of the feedback path in the nonlinear, positive feedback loop now
takes form of the one presented in Eq.128. and it will replace the gain, ¢ in
the formulation of the generalised NK positive feedback loop introducing the
nonlinear element to the model. Taking the maximum of the absolute value of
the CP velocity, maz(|#1]), corresponding to the maximum of the absolute value
of the output signal |Y| in Eq.128., maz(]Y'}), the & term can be omitted and
the controller H defined in Eq.141. will be now formulated as

A ZnZy
H = : 144
(A+ |T.)1]maw) Z2+ZS ( )
dp=g

Finally, with the formulation in Eq.144., the entire system can be represented
as a positive feedback loop with the input of the pressure difference, pq, the plant,
&, and the controller, H, which is adapted instantaneously by the nonlinear
network, ®p {through the instantaneous change of the gain, g), scheduled on the
output, the CP velocity, ©1. The components of the aforementioned system, will
be described by the Eqgs.141. and 144. and is depicted in Fig.87.

10.3 The Stability of the Positive Feedback System

The formulation of the positive feedback loop components, the gain of the
plant, G and gain of the loop, H (controller), enables us to check the stability
of the system by means of the Nyquist criterion (Note that the formulation of
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Figure 87: A block diagram of the feedforward loop for the Neely&Kim gen-
eralised model with the nonlinear network @ scheduled on the output ¥; and

adapting the controller H.

stability differs from that presented in Sec.9.2., since it was determined for a
negative feedback and not a positive feedback system as in this case). Figures
88-91. show the stability of the positive feedback system described in previous
section for different values of the position z i.e. 0.0085, 0.0135, 0.0185, 0.0235m
with the gain, g set to one, and for different values of the gain, g Le. 0.7, 1
and 1.1, with the position, z set to 0.0085 (basal site), 0.0185 (point on the CP
corresponding to the maximum displacement, v, for 1 4Hz) and 0.0235m (apical
region) for every case.
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Figure 88: Nyquist plots of the positive feedback loop for z = 0.0085 m (basal
site), derived for the Neely&Kim generalised model with the solid, dashed and
dash-cotted lines referring to the values of gain, g, equal to 0.7, 1 and 1.1, re-
spectively. The circle indicates the point (-1,0).

Im GH{j)

Figure 89: Nyquist plots of the positive feedback loop for z = 0.0185m (site of
the maximum displacement of the CP for f = 1kHz), derived for the Neely&Kim
generalised model with the solid, dashed and dash-dotted lines referring to the
values of gain, g, equal to 0.7, I and 1.1, respectively. The circle indicates the

point (-1,0).
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Figure 90: Nyquist plots of the positive feedback loop for z = 0.0235 m (api-
cal site), derived for the Neely&Kim generalised model with the solid, dashed
and dash-dotted lines referring to the values of gain, g, equal to 0.7, 1 and 1.1,

respectively. The circle indicates the point (-1,0).
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Figure 91: Nyquist plots of the positive feedback loop for g =1 (active model),
derived for the Neely&Kim generalised model with the dash-dotted, dashed, solid
and bold lines referring to the values of position on the CP, x, equal to 0.0085,
0.0135, 0.0185 and 0.0235 m, respectively. The circle indicates the point (-1,0).
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10.4 The Results

As in the previous sections, the nonlinear model was also solved in a Matlab
(see Appendix C). The generalised NK model script used for computation of the
CP response (macromechanical model solved in Sec.7.4), was modified to include
the nonlinear component. The gain, g, was set to one ("fully’ active model) to
calculate the initial CP velocity, oy, (for the frequencies from 10 to 10000 Hz)
and altered, according to Eq.144., iteratively in a loop sequence, recalculating
the response (output), 71. The whole sequence was calculated in six steps {in-
cluding the first value of g = 1) for the gain, g, to stabilise. Additionally, the
gain component in Eq.144. was multiplied by the factor of 5/6 to advance the
saturation (stabilisation in the whole range of frequencies or for every position
on the cochlea) of the gain, g, as it was found to oscillate for some values of the
input level (transition region observed for 60 dB SPL input level).

The input level was changed through the changes of the stapes velocity, ug
(see the source vector, ¢, in the formulation of the finite difference approximation
of the wave equation in Eq.98.), to give a certain value of the response level in
terms of the pressure difference, py, (in dB SPL) for the linear model with g set
to unity. This gives a value of stapes velocity, uy = 2.5016 - 107'° m/s to reach
the 20 dB SPL stimulus level (linear, active model; g = 1), and every increase of
one order to increase the level by 20 dB SPL.

The threshold amplitude, A (check Eq.144.), was estimated through trial and
error method and set to 1.54 - 107° (amounts approximately to the half and one
order decreased maximum of the absolute value of the CP velocity |1/, calculated
for ¢ = 1 and u,; corresponding to 20 dB SPL level of the input stimulus i.e. 20
dB SPL pressure difference, pg, in the cochlear fluid.

Next, dividing the results for the CP velocity o1 by the factor of jw, the
response in terms of the CP displacement was calculated. The plots for both,
the CP velocity in function of position, z, and the CP displacement in function
of frequency, f, are presented for five different stimulus levels i.e. 20, 40, 60, 80
and 100 dB SPL (the lowest and highest value of the stimulus level, namely 20
and 100 dB SPL, correspond to the estimated limits of the compression region in
the BM response. Check Sec.2.3.2).
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Figure 92: The CP displacement v as a function of position, z, for the NK
generalised nonlinear model for five stimulus levels (frequency f = 1kHz, the
values of gain, g, calculated for the applied stimulus levels are also indicated on

the plots).
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Figure 93: The CP displacement v in function of frequency, f, for the NK
generalised nonlinear model for five stimulus levels (position z = 0.0185 m, the
values of gain, g, calculated for the applied stimulus levels are also indicated on

the plots).
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10.5 Discussion

This nonlinear model does provide compression. The nonlinearities modelled
on the basis of cochlear amplifier’s gain, g, thus through the activity of the
OHCs, produce a physically realistic response. The response curves (the CP
displacement v;) in Fig.92. and 93. have the main features of the function of
a healthy cochlea. An increase of the stimulus level causes a decrease in the
gain of the cochlear amplifier, g, so that the response becomes less active to
finally resembles the one of a passive cochlea i.e. for the stimulus level of 100
dB SPL (compare Fig.10.). Furthermore, the magnitude of the CP displacement
decreases at the position of the characteristic place (Fig.92.) and characteristic
frequency (Fig.93.) i.e. for z = 0.0181m and f = 1020 Hz, respectively. Also the
characteristic shift of the maximum of the modelled responses towards basal sites
of the cochlea models the hehaviour of the responses recorded in the real cochlea.
Parallel curves below and above the characteristic place (CF in Fig.92.) indicate
that the response remains linear outside these loci, which is also consistent with
the results of physiological experiments.

The gain, g, decreases with an increase of the stimulus level, however, 1t
reveals a very strong dependence on the frequency of the stimulus. The factor
of 5/6, chosen to accelerate the saturation of gain, is rather satisfactory in the
presented range of frequencies (up to 25 kHz), however, for the high frequencies,
e.z. 25kHz, the gain oscillates at 80 dB SPL stimulus level. Thus the number
of steps in the loop sequence (see Sec.10.4.), used to recaiculate the output,
determines which of two oscillating values of gain will define the output for the
given stimulus level. Therefore, it may occur that the curves calculated for 60
and 80 dB SPL intersect, thus designate the transition region, which was closer
analysed for estimation of the multiplication factor of 5/6. Furthermore, as the
gain, g, is strongly frequency-dependent, it saturates slower for lower frequencies
than for the ones from the end of the 25 kHz range, hence the curves in Fig.93.
do not demonstrate a roll-off for the below CF frequencies.

The threshold amplitude A remained constant for all computations, however,
it showed a big influence on the stabilisation of gain while being estimated. First,
the estimation of the threshold amplitude A should be performed on the basis of
physiological data. Secondly, using a distribution of value of A on the frequency,
since the threshold of saturation changes with the frequency of the stimulus {Note
also that in previous sections a negative feedback was used, which might widened
the bandpass of frequencies for which the parameters of the whole system were
constant), seems more appropriate for the calculation of the gain (see Eq.144.)
and may eliminate the need of advancing the saturation (multiplication factor
5/6).

Finally, the Nyquist plots show that the positive feedback system is stable for
any position on the CP (becoming more stable while moving towards the apical
sites of the cochlea). Likewise, a change in gain (from 0.7 to 1.1) does not cause
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the instability of the system on the contrary to the negative feedback system
becoming unstable for gain of 1.1 (system set close to instability at the basal
sites of the cochlea as examined for the gain of 1, check Sec.9.4.).
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11 General Discussion and Conclusions

The presented results show that the mechanical analysis enabled a generalisa-
tion of the two models of cochlear mechanics, the classical models of Neely&Kim
[21] and Geisler [11]. A reduction in number of variables and constants led to a
more clear representation of each of the models, however, a check of the models’
response revealed the elimination of the characteristics of cochlear activity in the
response of the G generalised model. No significant discrepancies between the
‘original’ and generalised NK model were observed (compare [16]). At every stage
of investigation, both models showed a need for a physical (mathematical) clarity,
simplicity and consistency e.g. the lack of uniform representation of the mechan-
ical parameters (noticed also across the literature of the topic, compare [20]),
which, along with the mathematical complexity of the Geisler model, impeded
the comparison of the models.

Investigation of the modes of vibration derived for the NK model, presented
in Sec.4, determined the mechanical properties of the lumped component model.
Existence of two modes of vibration and the in- and anti-phase vibrations of the
BM/TM complex is consistent with the theory of vibrations as well as with the
results in [19, 4]. However, the peculiarities of the presented mechanical analysis,
state the necessity of comprehensive study of the vibrations in the cochlea.

The stability check states that the NK model defined as a negative feedback
system is set very close to instability, particularly for the basal positions in the
cochlea, so that a small change in the gain may cause the system unstable. The
model of G is stable for any of the values of gain examined and every position
on the CP. In conclusion, every model built in the frequency domain, should be
checked in terms of stability by means of an appropriate stability test in order
to justify the assumption of the steady output of the system (see Sec.9.6). In
case of the positive feedback system evaluated for the NK generalised model the
Nyquist plots indicate the system is stable at every position on the CP (each
single component) as well as for every value of gain examined.

Additionally, all the assumptions concerning either the mechanical (physical)
or physiological properties of the model should be supported by a relevant analysis
to avoid false conjectures and/or conclusions like in [15] or [24].

Finally, the response of the quasi-linear model of the cochlea, evaluated for the
NK generalised model, resembles the main features of the real cochlea responses
recorded for different stimulus levels. Therefore, the level-dependent model of
the nonlinearity scheduled on the output of the positive feedback system, with
notes presented in Sec.10.5, is satisfactory for the modelling of the compressive
characteristic of the cochlear response.
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12 Recommendations for Future Work

Tt is recommended that for the future research concerning the modelling of
the cochlea a thorough review of the literature be undertaken to estimate a com-
prehensive set of mechanical parameters corresponding to the physiological and
anatomical data from the real cochlea. The parameters and physical properties
should correspond to one extracted from the cochlea of a single selected species.
Furthermore, the values of all variables and constants should be made realistic
e.g. the models should be calculated for the u,; corresponding to the stimulus
level of 20 dB SPL (maximum activity) for the comparison with the physiological
data.

Next, the main features of the modelled response such as maximum sensitivity
for the CP/BM velocity and displacement along with the phase examinations,
the Qy factor, should be checked and compared with the physiological results of
experiments made on the same species.

Finally, the vibrations of the lumped component models should be examined
to determine the modes of vibration of the system and the mutual influence of

the system’s components i.e. BM/TM complex.
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13 Appendix A

The CF, related with the position z along the BM (referred also as the cochlear
frequency-place map), proposed by Greenwood is formulated as

CF = A (10°/F - K), (145)

where:

F  characteristic frequency
constant controlling the high frequency properties of the map [Hz]
constant controlling the slope of the map
distance from the apex [mm]
length of the BM [mm]
constant controlling the low frequency properties of the map [Hz

SR e e 0

There has been a number of experiments done on the cochleae of different
species to estimate the parameters given in Eq.145. Table 2. presents the param-
eters for the human and cat cochleae evaluated by [12] and [17], respectively.

[SPECIES | A [ a [L] K|
Human 165 |21 | 35| 1.0
Domestic cat | 456 1 2.1 | 25 1 0.8

Table 2: List of parameters referring to the cochlear frequency-place map function
evaluated for the human [12] and domestic cat [17] cochleae.

According to Table 2., the constants given above differ, with exception of a,
for the human and cat cochlea. Denoting

Ay constant A for a human cochlea [Hz]

Ac  constant A for a cat cochlea {Hz)

a constant controlling the slope of the map
zy « in a human cochlea [mm!

Tc in a cat cochlea [mm]

Ly L in a human cochlea [mm]

Le  Lin a cat cochlea [mm]

Ky K in human cochlea [He]

Ke K in cat cochlea {Hz]

the human CF function is expressed as
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CFy = Ay (10828 — Ky}, (146)
and for the cat’s cochlea

CFg = Ag (10°0/te — K¢) . (147)

Equating Eqgs.146. and 147., after simple arithematical development, the
relationship between the zm and x¢ can be evaluated

Ap (10%5/8% — Ky) = Ac (10972 — Ko) , (148)
Ag10%a/ i — Ag Ky = Ac10°7e/te — AcKo, (149)
Ag10e=n/ls _ Ag10%¢/be = AgKy — AcKc, (150)

log (Ag10%#/P8} — log (Ag10%c/te) = log(AnKg) — log(AcKc), (151)

A K
log(Ag) + log (IO“mH/LH) —log({Ac) + log (10““G/LC) = log AH Y (152)
AcKe
AgK A
a:BH/LH - CLI‘C/LC ﬁl H H _ H
log (10 ) —log (10 ) = log ( AcKc:) log (Tlc : (153)
Az azc ApKn Ac
S 10— { &€ .y il 154
(Lﬂ)log( 0) (Lc)log(lo) 09 (ACKC AH), (154)
TH ¢ Ky
A= —_ 155
¢ (LH Lc) ZOQ(KO)’ (155)
L
Lexy — Lgzo = Lolu log (f—(ﬁ) , (156)
a Kc
Ly Ly Ky
o P g (2R 157
TH chc—l— - log (Kc) (157)

After numerical evaluation, using the values given in Table 2., the relationship
in Eq.157. amounts to

oy =2 1dzc + 1.62, (158)
and depicted in Fig.94.
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Figure 94: Graphical representation of the relationship between the distance from
the apex evaluated for a human and cat cochlea, zy and z¢, respectively.
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14 Appendix B

Considering the cochlea as an opened channel, filled with fluid, in which
the CP would stand for the fluid surface and the otic capsule for the channel
boundaries, the travelling wave will start as a propagating, nondispersive wave
with uy independent of the wavelength A (long-wave), and a dispersive wave at
the CF site (short-wave).

In consequence, in the vicinity of the CF place, the pressure, pg, is less uniform,
being concentrated close to the CP (compare with [25]). However, while the
cochlear fluids are assumed to be inviscid and incompressible, the travelling wave
remains determined by the CP physical properties [3, 18] so that the BM (CP)
stiffness changes along the length of the cochlea, decreasing from the base to the
apex (see Section 2.3.1), cause the CP velocity and the wavelength, A, decrease
with the position z, for a given frequency, f.

Since at the CF place the travelling wave is a dispersive short-wave, the de-
crease of the A, causes a decrease of the group velocity, thus a slowing of the
energy and propagation until its stopping at the CF site. While the fluid is as-
sumed to be inviscid , the CP impedance resistive component takes part in the
dissipation of the wave's energy, which reveals in an increase of the CP displace-
ment amplitude at the CF.
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15 Appendix C

15.1 The Neely&Kim Generalised Model
15.1.1 Mobility

Matlab script! for calculation of the CP mobility for the NK generalised model

for chosen stimulus frequency, f.
File: 'nkyf.m’

% Cochlear partition mobility of the generalised
% Neely&Kim model for chosen frequency ’f’

% Parameters

L=0.025; % Length of the BM
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

fe=input (’Choose frequency [Hz] £=’); % Stimulus frequency
f=fc;
a=num2str (fc/1000) ;

Y Parameters for Z1

m1=0.03; % Mass of the BM
ki=1.1*1leiOxexp(-400%x); % Stiffness of the BM
c1=200+15e3%exp(~200*x) ; % Damping of the BM

% Parameters for Z2

m2=0.005%exp(x) ; % Mass of the TM
k2=T*1eT*exp(-440%x) ; % Stiffness of the TM

c2=100%*exp (~220%X) ; % Damping of the TM

% Parameters for Z3

k3=1e8%exp (-400%x) ; % Stiffness of the O0C/TM coupling
¢3=20*exp(-80%x) ; % Damping of the 0C/TM coupling
% Parameters for Z4

k4=6.15¥1e9%axp(-400*x) ; % Stiffness of the active source
c4=10400*exp (-200%x) ; % Damping of the active source
g=1; % OHC force-gemeration gain

% Impedances
Zl=cl-ix((k1./(2%pi*f))-(24pi*f*m1)};
Z2=c2-1* ((k2./(2*pi*f)) - (2¥pi*xf*m2)) ;

LAl} scripts written by Robert Pierzycki
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Z3=c3-i*(k3./(2%pi*f));
ZA=c4-ix (kd./ (2xpixf));

Y, Partition impedance/mobility
Zp=71+((Z2.*(Z3-g*Z4)) ./ (Z2+Z3));
Yp=1./Zp;

% Plots of magnitude/phase

% of partition mobility in function of position ’x’

figure(1)

subplot(2,1,1)

plot(x,abs(Yp)),grid on

title([’Partition Mobility for Neely&Kim Active Model for f=’,
a,’kHz’], ’FontSize’,14);

xlabel(’Distance from Stapes {m]’,’FontSize’,14)

ylabel(’ |Y_pl| [m~3/Ns]’,’FontSize’,14);

subplot(2,1,2)

plot (x,unwrap(angle(Yp})/(2*pi)),grid on

wlabel (’Distance from Stapes [m]’,’'FontSize’,14)
yilabel(’\angle Y_p [cycles]’,’Font8ize’,14);

% Plots of real/imaginary parts

%, of partition mobility in function of position ’x’

figure(2)

subplot(2,1,1)

plot{x,real(Yp)),grid on

title([’Partition Mobility for Neely&Kim Active Model for f=’,
a,’kHz’], ’FontSize’,14);

xlabel{’'Distance from Stapes [m]’, 'FontSize’,14)

ylabel{(’Re Y_p {m~3/Ns]’,’FontSize’,14);

subplot(2,1,2)

plot(x,imag(¥p)),grid on

xlabel(’Distance from Stapes fm]’,’FontSize’,14)
ylabel(’Im Y_p [m~3/Ns]’,’FontSize’,14);

Matlab script for calculation of the CP mobility for the NK generalised model
for chosen position on the BM, .
File: ‘nkyz.m’
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% Cochlear partition mobility of the generalised
% NeelyZKim model for chosen position ’x’

% Parameters

xc=input (’Choose the BM site [m] x="); 7’ Position on the BM
X=XC;

f=[10:10:25000] ; % Stimulus frequency
a=num2str(xc);

¥ Parameters for Zi
ml=0.03;% Mass of the BM

kl=1.1*1el10%exp(-400%x) ; % Stiffness of the BM
c1=200+15e3*exp (-200%x) ; % Damping of the BM

% Parameters for Z2

m2=0.005%exp (x) ; % Mass of the TM

k2=T*1le7*exp (-440%x) ; % Stiffness of the TM

¢2=100*exp (-220%*x) ; % Damping of the TM

% Parameters for Z3

k3=1e8*exp (-400%*x) ; % Stiffness of the OC/TM coupling
c3=20%exp(-80%x) ; % Damping of the OC/TM coupling
% Parameters for Z4

k4=6.16%1e9%exp (-400%x) ; % Stiffness of the active source
c4=10400%exp (-200*x) ; % Damping of the active source
g=1; % DHC force-generation gain

% Impedances
Zi=cl-ix((kt./(2*pi*f))-(2*pi*f*ml));
72=c2-i%((k2./(2%pi*f)) - (2*pi*f*m2}) ;
Z3=c3-1* (k3. /(2*pixf));
Zd=c4-1i*(k4./(2*pi*f));

% Partition impedance/mobility
Zp=Z1+(22.%(Z3-g*24)) ./ (Z2+Z3) ;
Yp=1./Zp;

% Plots of magnitude/phase

% of partition mobility in function of frequency ’f’

figure(1)

subplot(2,1,1)

semilogx (f,abs(Yp)),grid on

title([’Partition Mobility for Neely&Kim Active Model for x=’,
a,’m’],’FontSize’,14);

xlabel (’Frequency [Hz]’,’FontSize’,14)
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ylabel(’ |Y_pl [m~3/Ns]’,’FontSize’,14};

subplot(2,1,2)

semilogx (f,unwrap(angle(Yp))/(2%pi)),grid on
xlabel (’Frequency [Hz]’, 'FontSize’,14)
ylabel{’\angle Y_p [cycles]’, ’FontSize’,14);

% Plots of real/imaginary parts

% of partition mobility in function of frequency ’f’

figure(2)

subplot(2,1,1)

semilogx(f,real(¥p)),grid on

title([’Partition Mobility for Neely&Kim Active Model for x=’,
a,’m’],’FontSize’,12);

xlabel(’Frequency [Hz]’,'FontSize’,14)

ylabel(’Re Y_p [m~3/Ns]’,’FontSize’,14);

subplot(2,1,2)

semilogx (f,imag(Yp)),grid on
xlabel(’Frequency [Hz]’,’FontSize’,14)
ylabel{’Im Y_p [m~3/Ns]’,’FontSize’,14)

15.1.2 DModes

Matlab script for calculation of the resonance frequencies and modes of vibra-
tion for the NK undamped, free vibration model.
File: 'nkmodes.m’

% Modes and resonance frequencies for
% free undamped system of the NeelyZKim model

¥ Parameters

N=1024; % Number of points
L=0.035; % Length of the cochlea
del=L/(N-1}; % Length of the division
¥=[0:del:L]; Y Position on the cochlea
t=0:pi/50:2%pi; % Time

% First degree of freedom
ml1=0.03;
k1=1.1e10¥exp(-400%x) ;

% Second degree of freedom
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m2=0.005*exp(x) ;
k2=TeT*exp(-440%x);

% 0HCs/cilia stiffuness
k3=1e8*exp(-400*x) ;

% Constants of the quadratic

% equation for omega~2

a=1;

b=-(((k1+k3)/m1)+((k2+k3)/m2) ) ;
c=((kl.*k2)+(kl.*k3)+(k2.%k3))./(mi*m2);
delta=(b."2)-{4=a*c);

% Roots squarerooted

% (radial frequencies)
wl=sqrt{(-b+sqrt(delta))/(2*a));
w2=sqrt ((-b-sqrt(delta))/(2%a));

% Resonance frequencies

% Characteristic frequency
f1=w1/(2*pi);
f2=w2/(2%pi);
fo=sqrt(ki/ml)/(2*pi);

% Ratio of frequencies
ratio=r2./f1;

% Relative amplitudes (A11=412=1)
% (Mode shapes)
A21=(k1+k3-(ml*wl."2)) . /k3;
A22=(k1+k3~(m1*w2.72))./k3;

% Solution constants
B=A22./(A22-A21);
D=A21./(A21-4A22);

% Displacements

% Corresponding at 0.0185 m site

xib=B(542) *cos{wl(542)*t)+D(542) *cos (w2(542)*t) ;

xit=(A21(542)*B(542))*cos (w1 (542) *t)
+(A22(542)*D{542) ) xcos (w2 (542)*t) ;

T1=1/£1(542); % Period for fi1
T2=1/£2(542); % Period for £2
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£1=0:pi/5e6:2%T1; % Time scale for first mode
£2=0:p1/5e6:24T2; % Time scale for second mode

¥ Motions at the first mode
xibl=cos{wl(B42)*t1);
xitl1=A21 (542) *cos (w1 (542) *t1);

¥ Motions at the second mode
xib2=cos(w2(542)*t2);
xit2=422(542)*cos (w2 (542)*t2) ;

% Plots of resomance frequencies

% characteristic frequency

% and the ratio f2/f1

¥ in function of position ’x’

figure(1)

semilogy(x,fl,x,fQ,’r—-’,x,fc,’k—.’)

grid omn

xlabel(’Distance from Stapes [m]’,’FontSize’,14)
ylabel(°f_{1,2} [Hz] ’,'FontSize’, 14);

figure(2)

plot(x,ratio)

grid on

xlabel (’Distance from Stapes [m]°,’FontSize’,14)
ylabel(’f_{2}/f_{1}’,’FontSize’,14);

Y% Plots of relative amplitudes

% in function of position ’x’

figure{(3)

subplot(2,1,1)

plot(x,A21)

grid on

xlabel (’Distance from Stapes [ml’,’FontSize’,14)
ylabel(’A_{Ql}’,’FontSize’,14);

subplot(2,1,2)

plot(x,A22)

grid on

xlabel{’Distance from Stapes [m]’,’FontSize’,14)
ylabel(’A_{QQ}’,’FontSize’,14);
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% Plots of motion at first mode
% at 0.0185 m site

figure(4)

subplot(2,1,1)

plot(tl,xibl)

grid on

xlabel(’Time {s]’,’FontSize’,14)
ylabel(’\xi_{bl}’,’FontSize’,14);

subplot(2,1,2)

plot(tl,xitl)

grid on

xlabel(’Time [s]’,’FontSize’,14)
ylabel (’\xi_{t1}’, ’FontSize’,14);

¥ Plots of motion at second mode
% at 0.0185 m site

figure(5)

subplot(2,1,1)

plot(t2,xib2)

grid on

xlabel(’Time [s]’,’FontSize’,14)
ylabel(’\xi_{b2}’, ’FontSize’,14};

subplot(2,1,2)

plot(t2,xit2)

grid on

xlabel(°Time [s]’,’FontSize’,14)
ylabel ("\xi_{t2}’,'FontSize’,14);

15.1.3 Coupling

Matlab script for calculation of the pressure difference in the CP fluid for the
NK generalised model for chosen position on the BM, z and stimulus frequency,

I
File: ‘nkpd.m’

% Pressure difference in the cochlear fluid

% of the generalised Neely&Kim model for chosen:
% 1) position ’x’ (rows of the ’pd’ matrix)

% 2) frequency ’f’ (columns of the ’pd’ matrix)
% The micromechanical model
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¥ with the coupling via cochlear fluid

% Parameters

L=0.035; % Length of the BM
H=0.001%; % Heigth of the SV
ro=1000; % Fluid demnsity

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]l; Y Position on the BM

% Coupling matrix
C=zeros(N);
C{N+2:N+1:end-1)=-2;
C(2%N+2:N+1:end)=1;

C(end- (2#N+1) :=(N+1) : 2)=1;
C(1)=-delta;

C(N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

Y Parameters for Z1

ml=0.03; ¥ Mass of the BM
k1=1.1el10%exp(~400%x) ; % Stiffness of the BM
c1=200+15e3*exp (-200%x) ; % Damping of the BM

% Parameters for Z2 '
m2=0.005%exp(x); ¥ Mass of the TM

k2=7e7+exp (-440%x) ; % Stiffness of the TM

c2=100%exp (-220%x) ; Damping of the TM

% Parameters for Z3

k3=1e8%exp(-400%x) ; Y% Stiffness of the OC/TM coupling
c3=20%exp(-80%x) ; % Damping of the OC/TM coupling
% Parameters for Z4

k4=6. 15e9%exp (-400%x) ; % Stiffness of the active source
c4=10400%exp (-200%x) ; % Damping of the active source
g=1; % OHC force-generation gain
freq=[10:10:25000]; % Stimulus frequency

for n=1:length(freq);

f=freq(n);

% Impedances
Z1=c1l-i*((k1./(2*pi*f))-(2xpixf*m1));
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Z2=c2-i%{((k2./{(2xpi*f))-(2%pi*xf*m2));
Z3=c3-i*(k3./(2*pi*f))};
Za=cd-i* (k4 ./ (2xpi*f));

% Partition impedance/mobility
Zp=71+(Z22.%(Z3-g*Z4)) ./ (22+Z3);
Ypl=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(Ypl);
M=zeros(N);
M(N+2:N+1:end-1)=1;
M=M+Yp;
M=sparse(M);

% Total matrix
T=[((1./(delta. 2))*C)-(((4*j*pixf*ro)./H) .=M)];

% Source vector
S(1)=-dxj*pixfxro*ust;
S(2:M)=0;

% Pressure difference

pd=(inv(T))*8’;

pref=2e-5; % Pressure reference
end

Matlab script for calculation of the CP velocity for the NK generalised model
for chosen position on the BM, z and stimulus frequency, f.
File: 'nkvidot.m’

% Cochlear partition velocity of the generalised
% Neely&Kim model for chosen:

% 1) position ’x’ (rows of the ’vidot’ matrix)

% 2) frequency °f’ (columns of the ’vidot’ matrix)
% The micromechanical model

% with the coupling via cochlear fluid

% Parameters
L=0.035; % Length of the BM
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H=0.001; % Heigth of the SV

ro=1000; % Fluid density

ust=t1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]; ¥ Position on the BM

% Coupling matrix
C=zeros(N);
C(N+2:N+1:end-1)=-2;
C{2*N+2:N+1:end)=1; _
C(end- (2%N+1) : - (N+1) : 2)=1;
C(1)=-delta;

C(N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

¥ Parameters for Z1

m1=0.03; % Mass of the BM

k1=1.1e10%exp (-400%x); % Stiffness of the BM
c1=200+15e3%exp (-200%*x) ; % Damping of the BM

% Parameters for Z2

m?2=0.005*exp (x) ; % Mass of the TM

k2=7eT*exp (-440%x}; % Stiffness of the TM

c2=100*exp (-220%x) ; % Damping of the TM

% Parameters for Z3

k3=1e8*exp(-400%*x) ; Y Stiffness of the 0C/TM coupling
c3=20*exp (-80%x) ; % Damping of the OC/TM coupling
% Parameters for Z4

k4=6.15e9*exp (-400%x) ; Y Stiffness of the active source
c4=10400xexp (-200%x) ; % Damping of the active source
g=1; % OHC force-generation gain
freq=[10:10:25000]; % Stimulus frequency

for n=1:length{freq);

f=freq(n);

% Impedances
Zi=cl-i*{(k1./{(2+pi*f))—(2*pi*xf*ml));
72=c2-i%{ (k2. /(2*pi*f)) - (2xpi*f+m2));
23=c3-i*(k3./(2%pixf});
Z4=c4-i* (k4. /(2*pixf));
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% Partition impedance/mobility
Zp=Z1+(Z2.%(Z3-g#Z4)) ./ (22+23);
Ypi=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(Ypl);
M=zeros(N);
M(N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse(M);

% Total matrix
T=[((1./(delta. 2))*C)-{{(4*jxpixf*ro)./H) .*M)];

% Source vector
S(1)==-4*j*pi*fxro*ust;
S(2:N)=0;

% Pressure difference
pd=(inv(T))*5’;

% Partition velocity

vidot (:,n)=Yp*(-2*pd);

vdotref=2e-4; % Velocity reference
end

Matlab script for calculation of the CP displacement for the NK generalised
model for chosen position on the BM, z and stimulus frequency, f.
File: nkvl.m’

% Cochlear partition displacement of the generalised
% Neely&Kim model for chosen:

% 1) position ’x’ (rows of the ’v1’ matrix)

% 2) frequency ’f’ (columns of the ’v1’ matrix)

% The micromechanical model

% with the coupling via cochlear fluid

% Parameters
L=0.035; % Length of the BM
H=0.001; % Heigth of the SV
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ro=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]; ¥ Position on the BM

% Coupling matrix
C=zeros(N);
C(N+2:N+1l:end-1)=-2;
C(2*xN+2:N+1:end)=1;
C(end-(2%N+1) :—(N+1) :2)=1;
C(1)=-delta;

C(N+1)=delta;
C(N,N)=delta. 2;
C=sparse(C);

Y Parameters for Zi

ml=0.03; Y Mass of the BM
kil=1.1e10*exp(-400%x) ; ¥ Stiffness of the BM
c1=200+15e3*exp(-200*x) ; % Damping of the BM

% Parameters for Z2

m2=0.005%exp (x); % Mass of the TM

k2=7e7*exp (-440%x) ; % Stiffness of the TM

c2=100*exp (-220*x) ; % Damping of the TM

% Parameters for Z3

k3=1e8xexp(-400%x) ; % Stiffness of the 0C/TM coupling
c3=20%exp(—-80*x) ; % Damping of the O0C/TM coupling
% Parameters for Z4

k4=6. 15e9*exp (—400%x) ; Y Stiffness of the active source
c4=10400*exp (-200%x) ; % Damping of the active source
g=1; % OHC force-genmeration gain
freq=[10:10:25000]; % Stimulus frequency

for n=1:length(freq);

f=freq(n);

% Impedances

Zi=c1-ix ((k1./(2%pi*f))-{(2*pi*f+ml));
72=c2-i% ((k2./(2%pi*f) ) - (2*pixf*m2)) ;
Z3=c3-ix(k3./(2*pixf));
Z4=c4—ix(k4./(2*pixf));

% Partition impedance/mobility
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Zp=Z1+(Z2.%(Z3-g*Z4)) ./ (Z2+Z3);
Ypl=1./Zp;

% Mobility matrix
Yp=zeros (W) ;
Yp=diag(¥Ypl);
M=zeros (M) ;
M(N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse(M);

% Total matrix
T=[((1./(delta. 2))*C)- (({4=j*pixf*ro)./H).*M)];

% Source vector
S(1)=-4*j*xpi*xf*ro*ust;
S(2:N)=0;

% Pressure difference
pd=(inv(T))*5’;

% Partition displacement

vidot=Yp*(-2%pd);

vi=vidot./(i*2*pixf);

vref=1le-9; % Displacement reference

end

15.1.4 Stability

Matlab script for calculation of the Nyquist plots for a negative feedback sys-
tem (derived from the NK generalised model) for chosen position on the BM,
and the cochlear amplifier’s gain, g.

File: mknegu3dot.m’

% Stability of negative feedback system
% of the generalised Neely&Kim model
% for specific position/gain ’x’/’g’
% Velocity wv3dot-output of the loop

% Parameters
xc=input (’Choose the BM site [m] x=’); 7% Position on the BM

X=XcC;
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£=0:10:1e8; % Frequency band

¥ Parameters for Z1

m1=0.03; % Mass of the BM
ki1=1.1*1e10%exp(-400%*x) ; % Stiffness of the BM
c1=200+15e3*exp(-200%x) ; % Damping of the BM

% Parameters for Z2

m2=0.005%exp (x} ; % Mass of the TM
k2=7*1eT+exp(-440%x) ; % Stiffness of the TM

c2=100%exp (-220%x) ; % Damping of the TM

% Parameters for Z3

k3=1e8xexp(-400%x) ; % Stiffness of the 0C/TM coupling
c3=20*exp(-80%*x) ; % Damping of the OC/TM coupling
% Parameters for Z4

k4=6.15%1e9*exp (-400%x); % Stiffness of the active source
c4=10400%exp (-200%*x) ; % Damping of the active source

% OHC force-generation gain
gc=input (*Choose cochlear amplifier’’s gain g=");

g=8c;

% Impedances
Zi=cl-i*x((k1./(2%pi*f))-(2xpi*f*ml));
Z2=c2-ix ((k2./(2*pi*f)) - (2xpixf*m2));
Z3=c3-i*(k3./(2*pix*f));
Za=c4-ix(k4./(2*pi*f));

% Feedback components
G=1./(Z21+((Z1.%23) ./Z2)+Z3); % Plant
H=-g*Z4; % Controller

% Nyquist plots of imaginary vs real
% of negative feedback system for

% specific position/gain ’x’/’g’
plot(real(G.*H),imag(G.*H)),grid on
xlabel ("Re GH(j\omega)’, FontSize’,14)
ylabel(’Im GH(j\omega)’,’FontSize’,14)
hold on

plot(-1,0,'ro’)
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15.1.5 Nonlinearity

Matlab script for calculation of the CP nonlinearity for the NK generalised
model for chosen position on the BM, z and stimulus frequency, f.
File: ’nknonlinearity.m’

% Cochlear partition nonlinearity
% of the generalised NeelyZKim model

% Parameters

L=0.035; % Length of the BM
He=0.001; % Heigth of the SV
r0=1000; % Fluid density
ust=2.5016e-10; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

% Coupling matrix
C=zeros(N);
C(N+2:N+1:end-1)=-2;
C{2*N+2:N+1:end)=1;

C{end- (2%N+1) : - (N+1) : 2)=1;
C(1)=-delta;

C(N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

Y Parameters for Z1

ni=0.03; % Mass of the BM
k1=1.1el0%exp(-400%x); % Stiffness of the BM
c1=200+15e3*exp(-200%x) ; % Damping of the BM

% Parameters for 22

m2=0.005*exp(x) ; % Mass of the TM

k2=TeT+*exp (-440%*x) ; ¥ Stiffness of the TM

¢2=100%*exp (-220%*x) ; % Damping of the TM

% Parameters for Z3

k3=1e8*exp(-400%x) ; % Stiffness of the 0C/T¥ coupling
c3=20*exp (-80%x) ; % Damping of the OC/TM coupling
% Parameters for Z4

k4=6. 15e9%exp(-400%x) ; Y Stiffness of the active source
c4=10400%exp (-200%x) ; % Damping of the active source
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g(1)=1,; % OHC force-generation gain

freq=[10:10:250001; %» Stimulus frequency
for 1=1:length(freq);
f=freq(1);

% Evaluation of partition velocity
% to define a feedback system output

% Impedances

Zi=c1-i*((k1./(2%pi*f))—(2*pixf*ml));
Z2=c2-i*((k2./(2*pixf))—(2*pi*f*m2});
Z3=c3-i*(k3./(2%pi*f)};
Za=cd-i*x(k4./(2%pi*f));

% Feedback components
G=(Z2+Z3) ./ (Z1.*%Z2+7Z1 .%Z3+Z2.%Z3); ¥, Plant
H=(-g(1)*Z2.%Z4) ./ (Z2+Z3); % Controller

% Partition impedance/mobility
Zp=Z1+(Z2.%(Z3-g(1)*Z4)) ./ (22+Z3);
Ypi=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(Ypl);
M=zeros (N);
M(N+2:N+1:end-1)=1;
M=Mx*Yp;
M=sparse(M);

% Total matrix
T={((1./(delta. 2} )*C)=(((4xj*pi*f*ro)./He) . *xM)];

% Source vector
S(1)=-4xj*pi*f*ro*ust;
S(2:N)=0;

% Pressure difference
pd=(inv(T)}*S’;

% Partition velocity
vidot=(G/(1-G.*H) )*pd;
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% Recalculation of partition velocity
% to saturate OHC force-generation gain
for n=2:6;
g(1)=1;
g{n)=(5+1.54e-5)/(6+(1.54e~b+max (abs(vidot))));

% Partition impedance/mobility

Zp=21+(Z2.%(Z3-g(n)*Z4)) ./ (Z2+Z3) ;
Ypi=1./Zp;

H=(g(n)*Z2.xZ4) ./ (Z2+Z3);

% Mobility matrix
Yp=zeros(l);
Yp=diag(Ypl);
M=zeros(N);
M(N+2:N+1:end-1)=1;
M=M+*Yp;
M=sparse(M);

% Total matrix
T=[((1./(delta."2))*C)~{({(4xj*pi*f*ro)./He) . *M)];

¥ Pressure difference
pd={inv(T))*S’;

% Partition velocity
vidot=(G/(1-G.*H))*pd;

% Partition displacement
vi(:,1)=vidot/ (i*2%pi*f);
vref=1le-9; % Displacement reference

end
end

15.2 Investigation of Ren and Kolston Models

Matlab script for investigation of the Ren model on the basis of NK generalised

model,
File: ‘ren.m’

¥ Pressure difference in the cochlear fluid
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% of the generalised Neely&Kim model for chosen
% position 'x’ 7

% The micromechanical model

¥ with the coupling via cochlear fluid

% and two positions of stimulus

% Parameters

1=0.035; % Length of the BM
H=0.001; % Heigth of the SV
r0=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

% Coupling matrix
C=zeros{lN);
C(N+2:N+1:end-1)=-2;
C(2#N+2:N+1:end)=1;

C(end- (2%N+1) : - (N+1) :2)=1;
C(1)=-delta;

C(N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

¥ Parameters for Z1

mi=0.03; % Mass of the BM
ki=1.1e10%exp(-400%x) ; % Stiffness of the BM
¢1=200+15e3*exp (—200%x) ; % Damping of the BM

% Parameters for Z2

m2=0.005%exp(x}; % Mass of the TM

k2=Ta7*exp (-440%x) ; % Stiffness of the TM

c2=100*exp (-220%x) ; % Damping of the TM

% Parameters for Z3

k3=1e8xexp(-400%*x) ; ¥ Stiffness of the OC/TM coupling
c3=20%exp(-80%x) ; % Damping of the OC/TM coupling
% Parameters for Z4

k4=6.15e9%exp{-400%x) ; v Stiffness of the active source
c4=10400*exp(-200%x) ; % Damping of the active source
g=1; Y% OHC force-generation gain
f=1000; % Stimulus frequency
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% Impedances

Z1=cl-ix ((kl./(2%pi*f))-(2*pi*f*ml));
Z2=c2-i% ((k2./(2%pixf))—(2*pi*f*m2));
Z3=¢3-1i* (k3. /(2%pixf));
ZA=ca-ix(k4./(2*pixf));

% Partition impedance/mobility
Zp=21+(22.%(Z3-g+Z4)) ./ (Z2+Z3);
Ypi=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(Ypl);
M=zeros(N);
M(N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse(M);

% Total matrix
T=[((1./(delta. 2))*C)-(((4*j*pi*f*ro)./H).*xM)}];

% Source vector

% Source at stapes
S1(1)=-4*j*pixf*ro*ust;
S1(2:¥)=0;

% Source wvector

¥ Source at 0.0185m site
82(1:N)=0;
S2(542)=-4*j*pixf*roxust;

% Pressure difference

% (Source at the stapes)

pdi=(inv(T))*S1°;

pref=2e-5; % Pressure reference

% Pressure difference
% (Source at 0.0185m site)
pd2=(inv(T))*82’;

Matlab script for investigation of the Kolston model on the basis of NK gen-
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eralised model.
File: ’kolston.m’

% Cochlear partition maximum velocity of the generalised
% Neely&Kim model for chosen:

% 1) position ’x’ (rows of the ’vidot’ matrix)

% 2) gain ’g’ (columns of the ’vldot’ matrix)

% The micromechanical model

% with the coupling via cochlear fluid

% and

% Parameters

L=0.035; % Length of the BM
H=0.001; Y Heigth of the SV
ro=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1)}; % Length of the element
x=[0:delta:L]; Y Position on the BM

% Coupling matrix

C=zeros (N);
C(N+2:N+1:end-1)=-2;
C{2*N+2:N+1:end)=1;
Clend—-{2+N+1) : - (N+1):2)=1;
C(1)=—delta;

C{N+1)=delta;
C{N,N)=delta. 2;
C=gparse(C);

% Parameters for Z1

ml1=0.03; % Mass of the BM

ki1=1.1e10*exp (-400%x); % Stiffness of the BM
c1=200+15e3%exp (-200%x) ; % Damping of the BM

% Parameters for Z2

m2=0.005*exp (x); % Mass of the TM
k2=7e7*exp(-440%x) ; % Stiffness of the TM
c2=100%exp(-220%x) ; % Damping of the TM

% Parameters for Z3

k3=1e8*exp(-400%*x) ; % Stiffness of the OC/TM coupling
c3=20*%exp(-80%*x) ; % Damping of the 0OC/TM coupling
Parameters for Z4

k4=6.15e9*exp (-400%x) ; % Stiffness of the active source
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c4=10400%exp (-200%x) ; % Damping of the active source

gain=[0:0.05:2]; % OHC force-generation gain
£=1000; % Stimulus frequency

for n=1:length{gain);

g=gain(n);

% Impedances
Z1=c1-i*((k1./(2%pi*f))-(2*kpi*f*ml));
Z2=c2-i* ((k2./(2*pi*f))-(2*pixf*m2));
Z3=c3-1x (k3. /(2*pixf)};
Z4=cd-1i* (k4. /(2+pi*f));

% Partition impedance/mobility
Zp=Z1+(Z2.#(Z3-g+24)) ./ (Z2+Z3};
Ypi=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(Ypl);
M=zeros(¥);
M(N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse (M) ;

% Total matrix
T=[£((1./(delta. 2))*C)-(((4xj*pi*i*ro)./H) . *M)];

% Source vector
S(1)=—4&x*jxpixf*ro*ust;
S(2:8)=0;

% Pressure difference
pd=(inv(T))*S";

% Partition velocity

vidot=Yp*{-2*pd) ;

vlidotmax(:,n)=max(abs(vidot)); % Velocity maximum
vdotref=2e-4; % Velocity reference

end
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15.3 The Geisler Generalised Model
15.3.1 Mobility

Matlab script for calculation of the CP mobility for the G generalised model
for chosen stimulus frequency, f.
File: ‘gyf.m’

% Cochlear partition mobility of the generalised
% Geisler model for chosen frequency ’f’

% Parameters

L=0.035; % Length of the BM
N=1024; % Number of peints
delta=L/(N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

fc=input (’Choose frequency [Hz] f=’); 7 Stimulus frequency
f=fc;
a=num2str{fc/1000);

Y Parameters for Z1

ml=0.5; % Mass of the BM
k1=6.4*1el10*exp(-368%x) ; % Stiffness of the BM
c1=1.8*1eb*exp(-184*x) ; % Damping of the BM

% Parameters for Z2

k2=3.8%1ei0*exp(-368%x) ; % Stiffness of the TM

% Parameters for Z3

k3=7.5*1e10%exp(-368%x) ; % Stiffness of the coupling
% Parameters for Z4

wo=24pi*57e3%exp(-184%*x) ; % Characteristic frequency
T=2%pi./wo; % Time delay

g=1; % QHC force-generation gain

% Impedances

Zl=cl-ix((k1./(2%pi*f))-(2*kpi*xf+ml));

72=-1i*(k2./(2*pi*f)};

Z3=-i*(k3./(2+pi*f));

Z4=(-i*k1./(2%pi*f)) . *x (((wo/20)-ix2xpixf) ./
((wo/20) +i*x2xpixf)) . * (exp (~i*2*pi*f*T)};

% Partition impedance/mobility
Zp=21+((22.%Z3) . /(Z2+Z3+g*Z4)) ;
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Yp=1./Zp;

% Plots of magnitude/phase

% of partition mobility in function of position ’'x’

figure(1)

subplot{2,1,1)

plot(x,abs(¥p)),grid on

title([’Partition Mobility for Geisler Active Model for f£=’,
a,’kHz’],’FontSize’,14);

xlabel(’Distance from Stapes [m]’,’FontSize’,14)

ylabel(’ |Y_p| [m"3/Nsl’,’FontSize’,14);

subplot(2,1,2)
plot{x,unwrap(angle(Yp))/(2*pi)),grid on

xlabel (’Distance from Stapes [m]}’,’FontSize’,14)
ylabel(’\angle Y_p [cycles]’,’FontSize’,14);

% Plots of real/imaginary parts

% of partition mobility in function of position ’x’

figure(2)

subplot(2,1,1)

plot(x,real(Yp)),grid on

title([’Partition Mobility for Geisler Active Model for f=’,
a,’kHz’],’FontSize’,14);

xlabel(’Distance from Stapes [m]’,’FontSize’,14)

ylabel(’Re Y_p [m"3/Ns]’,’FontSize’,14);

subplot(2,1,2)

plot(x,imag(¥p)),grid on

xlabel{’Distance from Stapes . [m]’,’FontSize’,14)
ylabel(’Im Y_p [m~3/Nsl’,’FontSize’,14);

Matlab script for calculation of the CP mobility for the G generalised model
for chosen stimulus frequency, f, and delay factor, n equal to 0.4 (optimum value
estimated in G model).

File: ’gynfom’

% Cochlear partition mebility of the generalised
% Geisler model for chosen frequency ’f’
% with the delay factor n=0.4
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Y Parameters

L=0.035; % Length of the BM
N=1024; % Number of points
delta=L/{N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

fc=input(’Choose frequency [Hz] f=’); % Frequency of the signal
f=fc¢;
a=num2str (£¢/1000) ;

¥ Parameters for Z1

mi1=0.5; % Mass of the BM
k1=6.4*1el10*exp(-368%x); % Stiffness of the BM
cl=1.8*1ebxexp(-184%*x); % Damping of the BM

% Parameters for Z2

¥2=3.8%1lel0*exp(-368+*x) ; % Stiffness of the TH

% Parameters for Z3

k3=7.5%1el10*exp(-368+x) ; % Stiffness of the coupling
% Parameters for Z4

wo=2+pi*57e3%exp(-184*x) ; % Characteristic frequency
T=0.4xpi./wo; % Time delay

g=1; % OHC force-generation gain

% Impedances

Z1=cl-i%((k1./(2*pi*f))-(2*pi*f*ml));

Z2=-1%(k2./ (2%pix*f));

Z3=-1%(k3./(2%pix*f));

74=(-1ixk1./(2+pi*f)) . * (({wo/20)-i*2xpi*f) ./
((wo/20)+1%2%pi*f)) . * (exp(~i*2%pi*f*T));

% Partition impedance/mobility
Zp=21+((Z2.%23) ./ (Z2+Z3+g*Z4)) ;
Yp=1./Zp;

% Plots of magnitude/phase

% of partition mobility in function of position ’x’

figure(1)

subplot(2,1,1)

plot{x,abs(¥p)),grid on

title([’Partition Mobility for Geisler Active Model for f=’,
a,’kHz’],’FontSize’,14);

xlabel(’Distance from Stapes [m]’,’FontSize’,14)

ylabel(’ |Y_pl| [m~3/Ns]?, ’FontSize’,14);
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subplot(2,1,2)

plot (x,unwrap(angle(Yp))/(2*pi)),grid on
xlabel(’Distance from Stapes [m]’,’FontSize’,14)
ylabel{’\angle Y_p fcycles]’,’FontSize’,14);

% Plots of real/imaginary parts

% of partition mobility in function of position ’x’

figure(2)

subplot(2,1,1)

plot(x,real(Yp}),grid on

title([’Partition Mobility for Geisler Active Model for f=’,
a,’kHz’],’FontSize’,14);

xlabel(’Distance from Stapes [m]’,’FontSize’,14)

ylabel (’Re Y_p [m~3/Ns]’,’FontSize’,14);

subplot(2,1,2)

plot(x,imag{¥p)),grid on

xlabel (’Distance from Stapes [m]’,’FontSize’,14)
ylabel(’Im Y_p [m"3/Ns]’,’FontSize’,14);

Matlab script for calculation of the CP mobility for the G generalised model
for chosen position on the BM, z.
File: ‘gyz.m’

% Cochlear partition mobility of the generalised
% Geisler model for chosen position ’'x’

% Parameters

xc=input(’Choose the BM site [m] x=’); ¥% Position on the BM
X=XcC;

£=[10:10:25000] ; % Stimulus frequency
a=pum2str{xc);

% Parameters for Z1

ml=0.5; % Mass of the BM
k1=6.4*1el10xexp(-368*x) ; % Stiffness of the BM
cl=1.8%1eb*exp(-184*x) ; % Damping of the BM

% Parameters for Z2

k2=3.8*1el0%*exp (-368%x) ; % Stiffness of the TM

% Parameters for Z3

k3=7.5*1el0*exp(-368%*x) ; % Stiffness of the coupling
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% Parameters for Z4

Wwo=2%pi*57e3%exp (-184%x); % Characteristic frequency
T=2#pi./wo; % Time delay
g=1; % OHC force-generation gain

% Impedances

Zi=ci~i*((kl./(2%pi*f))-(2*pixf*mi));

22=-i%(k2./(2*pi*f));

Z3=—i#*(k3./(2*pixf));

Z4=(~ixk1./(2+pi*xf)) . x(({wo/20)-i*2xpixf)./
((wo/20) +i*2#pi*f)) .* (exp(~i*2*pi*f*T))};

% Partition impedance/mobility
Zp=Z1+((Z2.%23) ./ (Z2+Z3+g*Z4)) ;
Yp=1./Zp;

% Plots of magnitude/phase

% of partition mobility in function of frequency ’f’

figure(1) :

subplot(2,1,1)

semilogx(f,abs(Yp)),grid on

title([’Partition Mobility for Geisler Active Model for x=’,
a,’'m’],’FontSize’,14);

xlabel(’Frequency [Hz]’,’FontSize’,14)

ylabel(’|Y_p| [m~3/Ns]’,’FontSize’,14);

subplot(2,1,2)

semilogx (f,unwrap (angle(Yp))/(2%pi)),grid on
xlabel(’Frequency [Hz]’,’FontSize’,14)
ylabel(’\angle Y_p [cycles]’, ’FontSize’,14);

% Plots of real/imaginary parts

% of partition mobility in function of frequency 'f’

figure(2)

subplot(2,1,1)

semilogx(f,real(¥Yp)),grid on

title([’Partition Mobility for Geisler Active Model for x=',
a,’m’],’FontSize’,14);

xlabel(’Frequency [Hz]’,’FontSize’,14)

ylabel(’Re Y_p fm~3/Ns]’, Font8ize’,14);

subplot(2,1,2)
semilogx (f,imag(Yp)),grid on
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xlabel ("Frequency [Hzl}’,’FontSize’,14)
ylabel(’Im Y_p [m"3/Ns]’,’FontSize’,14);

Matlab script for calculation of the CP mobility for the G generalised model
for chosen position on the BM, z, and delay factor, n equal to 0.4 (optimum value
estimated in G model).

File: ‘qynz.m’

% Cochlear partition mobility of the generalised
% Geisler model for chosen position ’x’
% with the delay factor n=0.4

% Parameters

xc=input (’Choose the B¥ site [m] x='); 7 Position on the BM
X=XC;

a=num2str (xc) ;

f=[10:10:25000] ; %» Stimulus frequency

% Parameters for Z1

m1=0.5; % Mass of the BM
k1=6.4*1e10%exp (-368+x) ; % Stiffness of the BM
cl=1.8%1ebxexp(-184x%x) ; % Damping of the BM

% Parameters for Z2

k2=3.8%1el0*exp(-368+*x) ; % Stiffness of the TM

% Parameters for 23

k3=7.5%1e10%exp (-368%x) ; % Stiffness of the coupling
% Parameters for Z4

wo=2*pi*57e3xexp (~184%x) ; % Characteristic frequency
T=0.4%pi./wo; % Time delay

g=1; % OHC force-generation gain

% Impedances

Z1=cl-i*((k1./(2+pi*f))-(2#pi*f+ml));

Z2=-i*(k2./(2#pix*f));

Z3=-1i%(k3./(2%pi*f));

Z4=(-ixk1./{2*pi*f)}) . *{((wo/20)~i*2*pi*f)./
((wo/20)+i*2%pix*f)) .* (exp(-ix2*pixf*T));

% Partition impedance/mobility
Zp=21+((22.*23)./(22+23+g*24))§
Yp=1./Zp;
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% Plots of magnitude/phase

% of partition mobility in function of frequency ’f’

figure(i)

subplot(2,1,1)

semilogx(f,abs(Yp)),grid on

title([’Partition Mobility for Geisler Active Model for x=’,
a,’m’], FontSize’,14);

xlabel(’Frequency [Hz]’,’FontSize’,14)

ylabel(’|Y_p| [m"3/Ns]’,’FontSize’,14);

subplot(2,1,2)

semilogx (f,unwrap(angle(Yp))/(2%pi}),grid on
xlabel(’Frequency [Hz]’,’FontSize’,14)
ylabel{’\angle Y_p [cycles]’, ’FontSize’,14);

% Plots of real/imaginary parts

% of partition mobility in function of frequemcy ’f’

figure(2)

subplot(2,1,1)

semilogx(f,real(¥p)),grid on

title([’Partition Mobility for Geisler Active Model for x=’,
a,’m’], ’FontSize’,14);

xlabel (’Frequency [Hz]’,’FontSize’,14)

ylabel(’Re Y_p [m~3/Ns]’,’FontSize’,14);

subplot(2,1,2)

semilogx (f,imag(¥Yp)),grid on
xlabel(’Frequency [Hz]’,’FontSize’,14)
ylabel(*Im Y_p [m"3/Nsl’,’FontSize’,14);

15.3.2 Coupling

Matlab script for calculation of the pressure difference in the CP fluid for the
G generalised model for chosen for chosen position on the BM, z and stimulus

frequency, f.
File: “gpd.m’

% Pressure difference im the cochlear fluid
% of the generalised Geisler model for chosen:
% 1) position ’x’ (rows of the ’pd’ matrix)
% 2) frequency ’f’ (columns of the ’pd’ matrix)
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% The micromechanical model
% with the coupling via cochlear fluid

% Parameters

L=0.035; % Length of the BM
H=0.001; % Heigth of the SV
r0o=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

% Coupling matrix
C=zeros(N};
C(N+2:N+1:end-1)=-2;
C(2%N+2:N+1:end)=1;

C(end- (2xN+1) :=(N+1):2)=1;
C{1)=-delta;

C{N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

% Parameters for Z1

mi=0.5; % Mass of the BM
k1=6.4*1el10%exp(-368%x) ; % Stiffness of the BM
cl=1.8*1ebxexp(-184%x) ; % Damping of the BM

% Parameters for Z2

k2=3.8x1e10%exp(~368+*x) ; % Stiffness of the TM

% Parameters for Z3

k3=7.5x1e10%exp(-368%*x) ; % Stiffness of the coupling
% Parameters for Z4

wo=24pi*57e3*exp(-184%x); % Characteristic frequency
Td=2*pi./wo; % Time delay

g=1; % OHC force-generation gain
freq=[10:10:25000]; % Stimulus frequency

for n=1:length(freq);

f=freq(n);

% Impedances
Zi=cl-i*((k1./(2*pi*f))—-(2*pi*xf*ml1));
Z2=-i%(k2./(2*pi*f));
Z3=-i%(k3./(2%pi*f));
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ZA=(-ixk1./{2xpi*f}) .*(({wo/20}-i*24pi*f) ./
({wo/20)+i%2+pi*f)) .*x(exp(-i*2xpi*f*Td));

% Partition impedance/mobility
Zp=Z1+{((Z2.%Z3) ./ (Z2+Z3+g*Z4));
Ypi=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(¥pl);
M=zeros(N);
M(N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse(M);

% Total matrix
T=[((1./(delta. 2)}*C)—(((4+j*pixf*ro)./H) . *xM)];

% Source vector
S(1)=-4*j*pikf*ro*ust;
S{2:N)=0;

% Pressure difference
pd=(inv(T))*S*;
pref=2e-5; % Pressure reference

end

Matlab script for calculation of the pressure difference in the CP fluid for the
G generalised model for chosen position on the BM, z and stimulus frequency, £,
with the delay factor, n equal to 0.4 (optimum value estimated in G model).
File: ‘gnpd.m’

% Pressure difference in the cochlear fluid

% of the generalised Geisler model for chosen:
% 1) position ’x’ (rows of the ’pd’ matrix)

% 2) frequency ’f’ (columns of the ’pd’ matrix)
% The micromechanical model

% with the coupling via cochlear fluid

% The delay factor n=0.4

¥ Parameters
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L=0.035; % Length of the BM

H=0.001; % Heigth of the SV
ro=1000; % Fluid demsity

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x={0:delta:L]; % Position on the BM

%» Coupling matrix
C=zeros(N);
C(N+2:N+1:end-1)=-2;
C(2*N+2:N+1:end)=1;
Clend—(2+N+1) :-(N+1) :2)=1;
C{1)=-delta;

C(N+1)=delta;
C(N,N)=delta. 2;
C=sparse(C);

Y Parameters for Z1

nl1=0.5; % Mass of the BM
k1=6.4x1e10%exp(-368%x) ; % Stiffness of the BM
c1=1.8x1eb*exp(-184*x); % Damping of the BM

% Parameters for Z2

k2=3.8*1e10%exp{(-368%x); % Stiffness of the TM

% Parameters for Z3

k3=7.5%1el0%exp(~368+*x) ; % Stiffness of the coupling
% Parameters for Z4

wo=2*pi*57e3*xexp(~184*x) ; % Characteristic frequency
Td=0.4*pi./wo; % Time delay

g=1; % OHC force-generation gain
freq=[10:10:25000] ; % Stimulus frequency

for n=1:length(freq);

f=freq(n);

% Impedances

Zi=cl-i*((k1./(2%pi*f))~(2*pi*xfxml));

Z2=-1%(k2./(2*pi*f));

Z3=-ix (k3. /(2*pi*f));

Z4=(—i*k1./(2xpi*f)) . *{((wo/20)-i*2+pix*f)./
((wo/20) +i*2%pi*f)) .* (exp (~1#2%pi*f*Td));

% Partition impedance/mobility
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Zp=21+((22.%Z3) ./ (Z2+Z3+gxZ4));
Ypi=1i./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(¥pl);
M=zeros(N);
M(¥+2:N+1:end-1)=1;
M=M*Yp;
M=sparse (M) ;

% Total matrix
T=[((1./(delta. "2))*C)~(((&xj*pi*xf*ro)./H} . *M)];

% Source vector
S{1)=-4*j*pixf*ro*ust;
S(2:N)=0;

% Pressure difference
pd=(inv(T))*3’;
pref=2e-5; % Pressure reference

end

Matlab script for calculation of the CP velocity for the G generalised model
for chosen position on the BM, z and stimulus frequency, f.
File: ‘guldot.m’

% Cochlear partition velocity of the generalised
% Geisler model for chosen:

% 1) position ’x’ (rows of the ’vidot’ matrix)

% 2) frequency ’f’ (columns of the ’vidot’ matrix)
% The micromechanical model

% with the coupling via cochlear fluid

% Parameters

L=0.035; % Length of the BM
H=0.001; % Heigth of the SV
ro=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element

139



x=[0:delta:L];:

% Coupling matrix
C=zeros(N);
C(N+2:N+1:end-1)=-2;
C{2xN+2:N+1:end)=1;

Clend-(2+N+1) : —(N+1) :2)=1;

C(1)=-delta;
C(N+1)=delta;
C(N,N)=delta. 2;
C=sparse(C);

% Parameters for Z1
ml=0.5;
k1=6.4*1el10*exp(-368%x) ;
cl=1.8x1eb¥exp(-184%*x) ;
% Parameters for Z2
k2=3.8%1e10%exp(-368%*x) ;
% Parameters for Z3
k3=7.5%1e10%exp(-368#x) ;
% Parameters for Z4
wo=2%pi*57e3%exp(-184*x);
Td=2%pi./wo;

g=1;

freq=[10:10:25000];
for n=1:length(freq);
f=freq(n);

% Impedances

h
pA
A

% Position on the BM

Mass of the BM

Stiffness of the BM
Damping of the BM
Stiffness of the TM
Stiffness of the coupling
Characteristic frequency
Time delay

OHC force-generation gain

Stimulus frequency

Zi=c1-i*x((k1./(2*pi*f))-{(2*pi*xf+*ml));

Z2=-1ix(k2./(2+pi*f));
Z3=-1*(k3./(2*pix*f));

Z4=(-i*k1./(2¢pi*f)) . *(((wo/20) ~i*2#pi*f) ./
((wo/20)+i%2xpi*f) ) . * (exp (-i*2xpi*£*Td));

% Partition impedance/mobility
Zp=Z21+((Z2.%Z3) ./ (Z2+Z3+g*Z4) ) ;

Ypi=1./Zp;

% Mobility matrix
Yp=zeros(N};
Yp=diag(¥Ypl);
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M=zeros{N};
M(N+2:N+#1:end-1)=1;
M=M*Yp;

M=sparse (M) ;

% Total matrix
T=[((1./(delta. 2))*C)-(((&xj*pi*f*ro)./H) .*M)];

% Source vector
S(1)=-4*j*pixf*ro*ust;
S(2:N)=0;

% Pressure difference
pd=(inv{(T))*S’;

% Partition velocity
vidot (:,n)=Yp*(-2xpd);
vdotref=2e-4; % Velocity reference

Matlab script for calculation of the CP velocity for the G generalised model
for chosen position on the BM, z and stimulus frequency, f, with the delay factor,
n equal to 0.4 (optimum value estimated in G model).

File: ‘gnuldot.m’

% Cochlear partition velocity of the generalised
% Geisler model for chosen:

% 1) position ’x’ (rows of the ’vidot’ matrix)

Y 2) frequency ’f’' (columns of the ’vidot’ matrix)
% The micromechanical model

% with the coupling via cochlear fluid

% The delay factor n=0.4

¥ Parameters

L=0.035; % Length of the BM
H=0.001; % Heigth of the SV
ro=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N-1); % Length of the element
x={0:delta:L]; % Position on the BM
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% Coupling matrix
C=zeros(N);
C(N+2:N+1:end-1)=-2;
C(2#N+2:N+1:end)=1;
C(end={2*xN+1):-(N+1):2)=1;
C(1)=-delta;

C{N+1)=delta;
C{N,N)=delta."2;
C=sparse(C};

% Parameters for Z1

mi=0.5; % Mass of the BM
k1=6.4%1e10%exp(-368*x) ; % Stiffness of the BM
cl=1.8*leb*exp(-184%*x) ; % Damping of the BM

% Parameters for Z2

k2=3.8x1e10*exp(-368%*x) ; % Stiffness of the TM

% Parameters for Z3

k3=7.5%1e10*exp (-368*x) ; % Stiffness of the coupling
% Parameters for Z4

wo=2+pi*57e3*exp (-184*x) ; % Characteristic frequency
Td=0.4*pi./wo; % Time delay

g=1; % OHC force-generation gain
freq=[10:10:25000]; % Stimulus frequency

for n=1:length(freq);

f=freq(n):

% Impedances

Zi=ct-i*((k1./{(2#pixf))—(2*pi*f*ml));

Z2=-ix (k2./(2*pi*f));

Z3=-1i*(k3./(2%pixf));

Za=(-i*k1./(2*pi*f)) .x(((wo/20) ~i*2*pi*f)./
((wo/20) +1i*2%pixf)) . * (exp(-1%2*pi*f*Td)) ;

% Partition impedance/meobility
Zp=Z1+((Z2.%Z3) ./ (Z2+Z3+g*Z4)) ;
Ypi=1./Zp;

% Mobility matrix

Yp=zeros(N);

Yp=diag(Ypl);
M=zeros(N);
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M(N+2:N+1:end-1)=1;
M=MxYp;
M=sparse (M) ;

% Total matrix
T=[((1./(delta. 2} )*C)-(((4xj*pixf*ro)./H) . *M)];

% Source vector
S(1)=-4xjxpikxfxro*ust;
S(2:N)=0;

% Pressure difference
pd=(inv(T)}*S’;

% Partition velocity
vidot (:,n)=Yp*(-2*pd);
vdotref=2e-4; % Velocity reference

end

Matlab script for calculation of the CP displacement for the G generalised
model for chosen position on the BM, z and stimulus frequency, f.
File: ‘qui.m’

% Cochlear partition displacement of the generalised
% Geisler model for chosen:

% 1) position ’x’ (rows of the ’v1’ matrix)

% 2) frequency ’f’ (columns of the ’v1’ matrix)

% The micromechanical model

% with the coupling via cochlear fluid

% Parameters

L=0.035; % Length of the BM
H=0.001; % Heigth of the SV
ro=1000; % Fluid density

ust=1; % Stapes velocity
N=1024; % Number of peints
delta=L/(N-1); % Length of the element
x=[0:delta:L]; % Position on the BM

% Coupling matrix
C=zeros(N);
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C(N+2:N+1:end-1)=-2;
C(2xN+2:N+1:end)=1;
C(end-(2%N+1) :={(N+1) :2)=1;
C(1)=-delta;

C(N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

% Parameters for Z1

ml=0.5; % Mass of the BM
k1=6.4*1e10*exp(-368+*x) ; % Stiffness of the BM
cl=1.8%1eb*exp(-184*x); % Damping of the BM

% Parameters for Z2 *

k2=3.8*1e10%exp (-368%x) ; % Stiffness of the TM

% Parameters for Z3

k3=7.5+1e10*exp(-368%x); % Stiffness of the coupling
% Parameters for Z4

wo=2+pi*57e3%exp (-184*x}; % Characteristic frequency
Td=2*pi./wo; % Time delay

g=1; % OHC force-generation gain
freq=[10:10:25000] ; % Stimulus frequency

for n=1:length(freq);

f=freq(n);

% Impedances

Zl=c1-i*((k1./(2*pi*f))-(2*pixf*mi));

22=-1i*(k2./(2%pix*f));

Z3=—i*(k3./(2*pi*f));

Z4=(-i*k1./(2+pi*f)) . *(((wo/20)-ix2+pixf)./ ...
((wo/20) +i%2%pi*f)) . * (exp (-i*2xpixf*Td));

% Partition impedance/mobility
Zp=21+((22.%Z3) ./ (Z2+Z3+g*Z4) )} ;
Yp1=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(Ypl);
M=zeros (M) ;
M{N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse (M) ;
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% Total matrix
T=[((1./(delta. 2) )*C)-(((4*j*pixf*ro) ./H} .*M)1;

% Source vector
S(1)=—4*j*pixf*ro*ust;
S(2:N)=0;

Y Pressure difference
pd=(inv(T))*3’;

% Partition displacement

vidot=Yp*(-2+*pd) ;

v1{:,n)=vidot./{i%2xpixf);

vref=1e-9; % Displacement reference

Matlab script for calculation of the CP displacement for the G generalised
model for chosen position on the BM, z and stimulus frequency, f, with the
delay factor, n equal to 0.4 {optimum value estimated in G model}.

File: gnul.m’

% Cochlear partition displacement of the generalised
% Geisler model for chosen:

% 1) position ’x’ (rows of the ’v1’ matrix)

% 2) frequency ’f’ (columns of the ’v1’ matrix)

% The micromechanical model

% with the coupling via cochlear fluid

% The delay factor n=0.4

% Parameters

L=0.035; % Length of the BM
H=0.001; % Heigth of the SV
ro=1000; % Fluid demsity

ust=1; % Stapes velocity
N=1024; % Number of points
delta=L/(N~1}; % Length of the element
x=[0:delta:L]; % Position on the BM

% Coupling matrix
C=zeros(N);
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C{N+2:N+1:end-1)=-2;
C{2xN+2:N+1:end)=1;

C{end- (2*N+1) :~(N+1) :2)=1;

C{1)=-delta;
C(N+1)=delta;
C(N,N)=delta."2;
C=sparse(C);

% Parameters for Z1
mi1=0.5;

k1=6.4*1e10%exp (~-368%x) ;
cl=1.8*1eb*exp(-184%x) ;
% Parameters for Z2
k2=3.8+1e10*exp(-368*x);
% Parameters for Z3
k3=7.5%1el0*exp(-368+*x) ;
% Parameters for Z4
wo=2*pi*57e3*exp(-184*x) ;
Td=0.4#*pi./wo;

%
h
h

Mass of the BM
Stiffness of the BM
Damping of the BM
Stiffness of the TM

Stiffness of the coupling

Characteristic frequency
Time delay

g=1; % OHC force-generation gain
freq=[10:10:25000] ; % Stimulus frequency

for n=1:length(freq);

f=freq(nj;

% Impedances

Z1=ci-i* ((kl./(2*pi*f))-(2*pi*f*mi));

Z2=-i%(k2./(2*pi*f));

Z3=-i*(k3./(2%pi*f));

Z4={-i*k1./(2*pi*f)) . *{((wo/20)-i*2*pixf)./
((wo/20) +i*2xpixf)) . * (exp(~i*2*pi*f*Td));

% Partition impedance/mobility
Zp=Z1+((Z2.%Z3) ./ (Z2+73+g*Z4) ) ;
Ypl=1./Zp;

% Mobility matrix
Yp=zeros(N);
Yp=diag(¥pl);
M=zeros(N) ;
M(N+2:N+1:end-1)=1;
M=M*Yp;
M=sparse(lM) ;
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% Total matrix
T=[((1./(delta. 2))*C)-(((4*j*pixf*ro)./H) .*M)];

% Source vector
S(1)=-4x*j*pixf*ro*ust;
S{2:N)=0;

% Pressure difference
pd={inv(T))*S’;

% Partition displacement

vidot=Yp*{-2*pd);

vi(:,n)=vidot ./ (i*2*pi*f);

vref=le-9,; % Displacement reference

end

15.3.3 Stability

Matlab script for calculation of the Nyquist plots for a negative feedback sys-
tem (derived from the Geisler generalised model) for chosen position on the BM,
x and the cochlear amplifier’s gain, ¢.

File: ’gnegv8dot.m’

% Stability of negative feedback system
% of the generalised Geisler model

% for specific position/gain ’x’/’g’

% Velocity v3dot-output of the loop

% Parameters
xc=input(’Choose the BM site [m] x=’); % Position on the BM

X=XC;
£=0:10:1e6; % Frequency band

% Parameters for Z1

ml=0.5; % Mass of the BM
k1=6.4%1el10%exp(-368%*x); % Stiffness of the BM
c1=1.8*1eb*exp(-184%x) ; % Damping of the BM

% Parameters for Z2

k2=3.8*1e10%exp(-368%x) ; % Stiffness of the TM

% Parameters for Z3

k3=7.5%1el0%exp(-368%*x); % Stiffness of the coupling
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% Parameters for Z4
wo=2%pi*5T7e3xexp (-184*x) ; % Characteristic frequency
T=2%pi./wo; % Time delay

% OHC force-generation gain
gc=input (’Choose cochlear amplifier’’s gain g=’);

g=8gc;

% Impedances

Zi=c1-i*{((k1./(2%pi*£))~(2%pi*xf*ml));

Z2=-i%x(k2./(2%pi*f));

Z3=-1% (k3. /(2*pi*f));

Z4=(-i*k1./(2*%pi*f)) .+ (((wo/20)-i%2%pixf)./
((wo/20) +i#2+pi*f)) . * (exp (-i*2xpixf*T));

% Feedback components
G=1./(Z1+((Z1 .%23) . /Z2)+Z3); % Plant
H=g*(((Z4.%Z1)./22)-Z4); % Controller

% Nyquist plots of imaginary vs real

% of negative feedback system for

% specific position/gain ’'x’/’g’
plot(real(G.*H),imag(G.*H)}),grid on
xlabel (’Re GH{j\omega)’,’FontSize’,14)
ylabel(’Im GH(j\omega)’,’FontSize’,14);
hold on

plot(-1,0,’ro’)
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16 Appendix D

The attached CD contains the scripts presented in Appendix C, along with
the calculated data and presented figures (see list of figures). Additionally, a pdf
copy of the text is also included.
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