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FIGURES

The radial velocities of the force tyre, vr, suspended off the road, are
related to the applied forces, fy, via the mobility matrix Y (left hand
figare). When the tyre is resting on the road (right hand figure}, a
Winkler bedding model of the contact patch is used, excited by the
displacements of the road, d, and generating vertical displacements of

the tyre in the contact PALCH, W. o

Block diagram for the active control formulation. o

Effect of the road contact on the tyre point mobility calculated in the
middle of the contact patch (a) and opposite to the contact patch (b):

— hanged tyre; - - - tyre On ground. s

Expected value of the kinetic energy, shown in the form of power
spectrum density (a) and one-third octave bands (b), evaluated at

different car speeds: - - - 50 km/h; — 35 km/h; - - - 20 km/h.

Expected value of the kinetic energy, shown in the form of power
spectrum density (a) and one-third octave bands (b) for a speed of 35
km/h: — controller off, - - - uniform control on and - - - multi dof
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ABSTRACT

A linear model is presented for the elemental response of a tyre excited by forces in the
contact patch. Although the mechanism of the contact dynamics is, in general, nonlinear, it
is assumed here that the tyre is soft enough for the whole of the contact patch to remain in
touch with the road, in which case a linear model can be used to calculate the contact forces
from the road roughness and the resulting radial velocity of the tyre. The velocities are
described by their spectral density matrix, which is then used to calculate the expectation of
the tyre's kinetic energy and sound power radiation. The sum of squared pressures inside the
vehicle can be calculated in a similar way. A formulation is also presented for calculating
the optimal performance when controllable secondary force distributions also act on the tyre
to implement active control. Simple two-dimensional simulations are presented to iltustrate

the practical use of the formulation.







Infroduction

A simple linear mode] is presented for the random excitation of a tyre's vibration and
its subsequent sound radiation. The excitation of the tyre as it runs over a rough road
is modelled as a random displacement distribution with a specified spatial correlation.
This is used to calculate the forces at a grid of discrete points in the contact patch.
The spectral density matrix for the vector of radial velocities at each point on this grid
is then calculated from the structural mobility matrix for the dynamics of the tyre

supported on the contact patch.

The spectral density matrix for the road roughness and the tyre’s mobility matrix
could, in principle, be determined experimentally. It is more likely that theoretical
models will be used to estimate these quantities, however. A complete contact model
would need to be nonlinear to account for the fact that only part of the tyre in the
contact patch connects with the road surface. The simplified linear model used here
can be obtained by assuming that the tyre is smooth and soft enough that the whole of
the tyre's surface in the contact patch connects with the road. In this case the spectral
density matrix for the contact forces can be calculated from a statistical model of the

road roughness using a linear analysis.

The kinetic energy associated with the radial motion of the tyre and the sound power
radiated by the tyre are then calculated. The structure-borne sound inside the vehicle
is also caiculated from the tyre's mechanical impedance matrix, from tyre velocities to
hub forces, and the vehicle's acoustic impedance matrix, from hub forces to internai

pressures.

The effect of a controllable, secondary, force distribution is then considered. In order
to determine the physical limits of control with vartous secondary actuators, a
feedforward control strategy is assumed, with perfect knowledge of the forces in the
contact patch. A formulation is presented for calculating the control forces required
to minimise a quadratic cost function such as the radiated or internal sound field.
These can then be substituted back into the model to estimate the physical effects of
different active control strategies. Preliminary simulation results are presented for a

2D model to illustrate the use of the formulation presented.
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Description of the Road Excitation

The vibration of a tyre generated by its rolling over a rough road is an important
cource of internal and external vehicle noise at low frequencies. The interaction
between the tyre tread and the rough road generates a time-varying force distribution
over the contact patch. If the contact patch is divided into a fine grid, the force
distribution can be approximated by a vector of forces acting at the elements defined
by the grid. Each force will have a random time history, which we will assume to be
stationary, with its own autocorrelation function and a set of cross-correlation
functions with the other forces acting in the contact patch. This spatial correfation
partly arises because the road surface roughness will have a distribution of
lengthscales and the larger peaks will be in contact with the tyre over a significant

distance.

The road roughness itself is a random variable whose properties vary with the type of
road surface, as described by Dodds and Robson (1973) and Robson (1979) for
example. The statistical properties of the road swface displacement can be described
by its spatial correlation function or its wavenumber spectrum, which Dodds and
Robson suggest falls off in approximate inverse proportional to the square of the
wavenumber. These authors also discuss experimental evidence for the roughness
being approximately homogeneous and isotropic and they develop a two-dimension

Gaussian model.

In this report we assume that the road roughness is described by a vector of
displacements at each of a set of N¢ points on a grid in the contact paich. A
frequency-domain formulation will be used so that each displacement variable, d, to

dy_ corresponds to the Fourier transform of a long time history, although the explicit

dependence on frequency, @, will be suppressed for notational convenience. The

individual complex displacements are grouped together in an Nex1 vector, d, equal to
T . . . .
[d,,dz dNC] and the spectral density matrix of the road displacement is then

defined to be




S, =E[ dd" ], (2.1)

where E denotes the expectation operator and the subscript H denotes the Hermitian,
complex conjugate, transpose. The diagonal elements of Sgq correspond to the power
spectral densities of each of the displacements, which will be assumed to be equal in
this model, and the off-diagonal terms correspond to cross spectral densities between
the displacement at different points. A similar formulation has been used to specify
the random pressure distributions caused by a turbulent boundary layer, see for
example Elliott et al. (2004). It is interesting to note that the influence of one piece of
road surface as it passes from one end of the contact patch to another will generate a
similar delay in the cross spectral densities as the convection in a turbulent boundary

layer.

It would be very convenient if a stochastic description could also be developed for the
tyre contact forces, using a contact model. In general, however, the contact model 1s
rather complicated because not all of the tyre does come into contact with the road.
Iterative approaches to solving this nonlinear problem are discussed, for example, by
Larsson (2002) and Kropp et al. (2004). One simplifying assumption that could be
made is that the contact stiffness is generated only by a set of isolated, locally-acting,
springs, which is called a Winkler bedding (Johnson, 1985). The compression of the
springs will depend on the curvature of the tyre, the road roughness and the vibration
of the tyre belt. The vibration will depend on the forces acting over the whole contact
patch and this, in turn, will influence which parts of the tyre are in contact with the
road and which are not. An iterative solution to this contact problem is discussed by
Larsson (2002), whereby the contact points are initially calculated at one instant in
time assuming that the contact forces are zero. A force distribution is then calculated
from the tyre dynamics for the points assumed to be in contact. Some places will be
calculated as having a negative contact force, however, which clearly are not in
contact. At the next iteration these points are removed from the set of contact points

and the forces recalculated.

In this way a time-history of the contact force at each point in the contact patch can be

calculated for a tyre with a specific tread pattern rolling over a specific piece of rough




road, Kropp et al. (2004). Different time histories would be generated if the tyre tread
was slightly rotated with respect to the road before the calculation began. The
statistical properties of this force distribution do not seem to have been calculated.
Long simulations would be necessary to obtain time histories of sufficient length to
calculate accurate correlation functions from the force time histories. It would,
however, be very interesting to compare these calculated correlation functions with
the scaled versions of the spatial correlation function of the road surface itself and to

investigate how they changed with load, tread and tyre pressure.

in this report a very simplified contact model will be used in which it is assumed that
all of the contact patch is in touch with the road at all times. Such an approximation
would hold in the limiting case of a smooth soft tyre travelling over a road which is
not too rough, such that the road displacement is small compared with the static
compression of the tyre in the contact patch. This contact model has the important
advantage that the interaction between the road roughness and the tyre vibration is
then linear. In the following section a matrix formulation is presented to calculate the
spectral density matrix of the tyre’s vibration when driven by a road roughness
specified by the spectral density matrix of road displacements in equation (2.1), and

its consequent kinetic energy and sound power radiation.

Response of the Tyre

The tyre tread and sidewall are assumed to be divided up into Nt discrete elements, as
shown in Figure 1. This array of elements includes those in the contact patch,
described in Section 2, as a subset. The vector of complex radial velocities at the
centre of each element, vy, are assumed to be related to the vector of all the complex
forces acting on the elements, fr, via a matrix of structural mobilities for the free tyre

suspended off the ground, Yr, so that

v =Y. (3.1)




Figure 1(a) shows the array of forces and velocities for a 2D model of the tyre.
Although the hub is initially assumed to be fixed when calculating the "free” response
of the tyre in equation (3.1), an analysis exactly analogous to that outlined below
could be used to incorporate the finite mechanical impedance of the vehicle
suspension into the tyre dynamics. The number and distribution of the elements will
depend on the frequency range of interest, and their density will typically be chosen to
be six times the smallest wavelength of interest. Such a model is primarily of use at
lower frequencies, below about 400Hz, at which the external sound radiation from the
tyre and the internal sound generation are dominated by the tyre's vibration rather than
aerodynamic sources, Kropp (2004). The distribution of elements in the contact patch
of the tyre could be more dense than over the rest of the tread and sidewall, since the
spatial wavelengths of the excitation due to the tyre running over a rough road could

be smaller than those of any other excitation.

The tyre is then assumed to be in contact with the road using the linear contact model
described above, which gives rise to the vector of driving forces, fr. In principle the
distribution of forces could represent both the distribution of primary driving forces
due to road interaction in the contact patch and the distribution of secondary forces
intreduced in an attempt to control the vibration of the tyre. A discussion of such
active control techniques will be postponed until a later section, however, and we will
initially concentrate on excitation only due to the forces caused by the interaction
between the road and the tyre in the contact patch. In the simplest case, shown in
Figure 1(b), such a model consists of a Winkler bedding of N¢ independent springs

that connect each point on the road with vertical displacement of &, to dyy to each
.
point in the contact patch on the tyre, with vertical tyre displacement wy to wy ,
C

which are assumed to be equal to the radial tyre displacements since the contact patch

is only small,

The force at all Nt points on the tyre is related to the difference between the road and

tyre displacements by the linear equation

£ =Koo(d—w), (3.2)




where d and w are Nex1 vectors of the vertical displacement of the road and tyre in
the contact patch and Krc is an NtxN¢ matrix describing the linear contact stiffness.
In the case of a Winkler bedding, Krc has N elements equal to the individual contact

stiffnesses on the diagonal, and the other elements are zero.

The displacement of the tyre in the contact patch caused by these forces is now

written as

w=Ceqp f7 (3.3)
where Cor is the NexNt matrix of tyre compliances at the points in the contact patch.
These compliances can be calculated as a subset of the mobilities in equation (3.1),

divided by ja.

Substituting equation (3.3) into equation (3.2), and assuming that the matrix

I+Kc CCT] is not singular, allows the forces on the tyre due to the road

displacements d to be expressed as
fT Z[I+KTC CCT]_] KTCd‘ (34)

The vector of radial velocities for the tyre due to the road roughness can then be

calculated from equation (3.1) as
ve = Yell+ Ko Cor | Ky d (3.5)
which may be written in more compact form as

ve=Td (3.6)

where the overall transfer matrix, T, is equal to Yy[I+ Ky Cer " Koe.




The spectral density matrix of the tyre's velocities can be defined in an analogous

manner to equation (2.1) as

S, = E[VT vTH} : (3.7)
Using equation (3.6), this can be expressed in terms of the spectral density matrix of

road displacements, Sqq in equation (2.1), as
S, =TS, T". (3.8)

The kinetic energy associated with the radial motion of the tyre is proportional to the
inner product of the vector of velocities weighted by the mass matrix M. The

expectation of the tyre's radial kinetic energy can thus be expressed as

Elnetic = E[VTHMVT] (3.9)

and since Einene is @ scalar, the trace of equation (3.9) can be taken, which can be

rearranged to give
Eyineie = trace[M S, ] . (3.10)

Once the radial velocities at each element have been specified, the complex sound
pressure at any point on the surface of the tyre can be also calculated using a set of
acoustic radiation impedances. It is assumed that these acoustic pressures at the
surface of the tyre generate a far lower response than the force vector, fr, and so the
sound radiation can be calculated from a weakly coupled analysis. The sound
radiated by a structure divided into elements each vibrating with a velocity given by

an element of vy, is then given by

W,

sound

— v R, v, (3.11)




where R4 is half the acoustic radiation resistance matrix. This matrix can, In
principle, be measured as discussed by Koopman and Farelane (1997) or calculated
for a given geomelry of structure, radiating into a particular environment. In the case
of interest here, it could be assumed that the vibration of the tyre in the contact patch
makes no contribution to the radiated sound power. The relevant parts of the
radiation resistance matrix would then be set to zero, without altering the form of

equation (3.11).

Taking the expectation of equation (3.11) and again using the properties of the trace
function, the radiated sound power can be expressed in terms of the velocity spectral

density matrix as

W

&

ound = frace R, Sw] . (3.12)

It would be interesting to compare the radiated sound power with the power supplied
to the tyre by the motion over the road. This may be calculated from half the real part
of the sum of products of the complex forces on the tyre and the subsequent complex

velocities, and may be denoted Wpplied> $0 that

W, =

H o)
supplied _%RC[VT f]] : (313)

If the matrix of tyre mobilities given in equation (3.1) is invertible, the vector of
forces, fr, may be written as Y,P_l v;. This allows the power supplied to the tyre to

be written as

Wsupplied = %Re [VTH WYF_1 Yol = VTH RF Y. (314)

where %RG[YF—I] is defined to be Rg, which has been assumed to be symmetrical due

to reciprocity, although this assumption may have to be revisited for a rotating tyre.




Taking expectations of equation (3.14) and again using the properties of the trace
function, the power supplied to the tyre by the motion on the road can finally be
written in terms of its velocity spectral density matrix as

W, = trace[R S, ] (3.15)

upplied

Sound Field Inside the Vehicle

The internal sound field in the vehicle is assumed to be entirely structure-borne in this
low-frequency model, and to be excited by the vibration of the tyre hub. If the tyre
hub behaves as a rigid body then there are six force components that need to be
specified, corresponding to three linear forces and three moments. These complex
forces can be represented as the elements of the vector fy, and are assumed to be
generated by the vibration of the tyre, with radial velocities vy. Note that vy has been
calculated from the tyres "free”" mobility matrix, Yg in equation (3.1), which could
incorporate the effects of a compliant connection from the vehicles suspension system
at the wheel hub, but for simplicity this connection is assumed here to be rigid. The
linear transformation from the radial velocities to the hub forces, which 1s governed

by the tyre's dynamics, is represented by a mechanical impedance matrix Zgr, so that
by =Zyp vy, 4.1

The acoustic pressures at a set of points inside the vehicle are represented as the
complex elements of the vector p;. These are assumed to be generated by the hub
forces, [y, by a matrix of complex impedances, Zyy, that represent both the structural
response of the vehicle and the acoustic response of its interior. The internal

pressures are thus given by

P =2ty (4.2)




The response of the tyre in equation (4.1) can be combined with the response of the
vehicle in equation (4.2) to give the internal pressures as a function of the tyre's

velocities

P =ZrVy (4.3)

where Zyr is equal to Zyy Zyr -

A useful representation of the average acoustic pressure inside the vehicles is the sum
of the squared pressures at a set of points, These points can be concentrated near the
cars of the driver, or they can be more uniformly distributed throughout the vehicle
cabin. In the latter case, then as the number of microphones becomes large compared
with the number of acoustic modes in the cabin, the sum of squared pressures

becomes proportional to the total acoustic potential energy.

If we define the spectral density matrix for the pressures as

s, =E pp"]. (4.4)
then the sum of squared pressures is given by

P = trace [S M,] . (4.5)

internal
Using equation (4.3) and the properties of the trace operation, the sum of square

pressures can be represented as a function of the spectral density matrix of the tyre's

velocities, S,., as

P

internal

= trace ZITH L SW] . (4.6)

_10-



Active Control

We now consider the case in which an additional set of controllable forces act on the
tyre to implement active control, Two key assumptions in this analysis are that the
system is linear and that we have chosen a set of variables for which we can apply
superposition. We have seen in Section 3 that if there are no controllabie forces on
the tyre, its velocity depends on the road roughness according to equation (3.6). We
now consider the case in which there is no road roughness but the velocity is due to
the controllable, secondary, forces. The effect on the velocity of both road roughness

and secondary forces can then be calculated by superposition.

The total force on the tyre resting on the road surface in Figure 1(b) due to a vector of
N5 secondary forces, fs, with d =0, will be due to the effect of fs directly and also due
to contact forces that arise because of the resulting motion of the tyre. The vector of

forces can thus be written as
f'r :TSfS—KTC‘V’ (51)

where Ts is an NpxNsg matrix that defines how each secondary force acts on the grid
of elements we have chosen for the tyre. Typically a secondary force may act across
several of these elements. Although a mechanical secondary excitation is assumed
here, a similar formulation could also be used to include acoustic secondary forces

inside the tyre.

The second term in equation (5.1) is due to the fact that the secondary force will cause
the tyre to vibrate and generate a displacement W in the contact patch. As in
Section 3, this displacement depends on the compliance of the tyre and may be

written as
w=Corfy . (5.2)

Substituting equation (5.2) into (5.1) and solving for fr, assuming again that the

matrix [1+K ¢ Cc*r] is not singular, we obtain

— 11—



fro =T+ Kpe Cor ' Ts fs. (5.3)

The vector of tyre velocities due to the secondary excitation can thus be expressed,
using equation (3.1), as

v = Ye[l+ Ko Cop] " Tsfs. (5.4)

If we now denote the vector of tyre velocities due to the road roughness only as vp.
which from equation (3.6) is equal to Td, and define the overall mobility from the

secondary excitation to the velocity vector, which from equation (5.4) is equal to
Yr [+ K Cor ]—} T,, as Y, then the nett velocity due to both the road roughness and

secondary excitation must be
vr=vp+Yis. (5.5)

In this initial investigation a feedforward control strategy will be assumed and, for
simplicity, the analysis is performed in the frequency domain without the constraint of
causality (Elliott, 2001). The secondary forces are assumed to be driven from a set of
Ny reference signals, contained in the vector x, which is correlated in some way to the
road displacements, d. These reference signals are passed through a matrix of N xXNp

filters with frequency response W so that
fo = Wx. (5.6)

Combining the definition of vp in equation (3.6) with equations (5.5) and (5.6), the

vector of tyre velocities can be written as
vy =Tdy, +YWx. (5.7
The block diagram for this arrangement is shown in Figure 2. The matrix of control

filters, W, will now be calculated which minimises a quadratic cost function of the

form

—12 -



7 =trace{Q8,, ). (5.8)

Note that the tyre's radial kinetic energy, equation (3.10), the sound power it radiates,
equation (3.12), or the internal pressure in the vehicle, equation (4.6), can all be

expressed in the form of equation (5.8) with a suitable choice of the Hermitian

weighting matrix Q.

Since S, is defined to be E[vT VTH] in equation (3.7), and using the properties of

the trace operator, the cost function In equation (5.8) can be written as

J = trace E{VTH QVT] . (5.9

[f the vector of velocities has the form given by equation (5.7), then the cost function

becomes
J = Efx*WHYH s 1Ha JQ(rd + YWx)| (5.10)

which can in turn be written as

J = trace [WHYHQYWSU +whytgTrs,, +SETiQYW +THQTSM] (5.11)

= E[dx“] and S 4 =E[dd“] .

xd —

where S, = E[x XH] . S

Differentiating equation (5.11) with respect to the real and imaginary parts of W,

which are denoted W and W, gives the matrix of complex gradients (Elliott, 2001

o +j—aj—:2[YHQYWSH+YHQTSM]. (5.12)
W, W,

— 13-



Finally the optimum least-square control filter matrix can be obtained by setting
equation (5.12) to zero, and provided that the matrices Y'QY and S are not
singular, we obtain

H I H -1
- vioy['yHQTs,,81. (5.13)

W

opl

In practice, there may be considerably fewer reference signals than uncorrelated
components in the primary force. In order to calculate the performance under ideal
conditions, however, we can assume that a sufficiently large number of reference
signals is used, so that the primary road disturbances can be exactly generated from

the reference signals, via the filter P, so that
SSu=P. (5.14)

To further simplify the problem we can assume that the primary road dispiacements
.- . . -1
themselves, d, could be used as reference signals, in which case S ; 8¢ would equal

an identily maltrix, so that

W, =-[y"ev] Y"QT. (5.15)
Using equations (5.6) and (5.15), the secondary force is then

i = yiQy| Y'QTd. (5.16)

The total velocity of the loaded fyre can thus be calculated from equation (5.5), and

using the fact that Td is equal to vp, as

vy :[{—Y[Y”QY] IYHQ}VP, (5.17)

14—



6.1

The tyre's kinetic energy or radiated sound power after active control can be
calculated using the results from Section 3, and the interior mean square pressure after

control can be calculated using the results of Section 4.

Simulation Example
Model of the Tyre

In this section a simple two-dimensional model of the tyre is used to generate some
illustrative results from the theory outlined below. Such a model can be used to

account for the ring modes of the tyre that dominate its response below about 400 Hz.

The tyre was been modelled as a stationary ring resting on a massless foundation
characterised by two spring constants, k, and k,. A constant pressure, P, acts around
the ring in order to take into account the inflation pressure of the tyre. The dynamics

of a stationary ring are expressed by the following two equations (Huang and Soedel,

1987, Soedel, 1993):
PO »
(u — ) — (lt +up)+2 (ua —2u, —uy )+ kyuy + Phifg=qy, (6.1)

1
a

D " K P
(u 9)+ o (u, +u9)+—(u + 2uy —id) Ytk + phii,=q,—F, (6.2)

where « is the radius of the wheel, 4 is its thickness, D =ER'/12 is the bending

stiffness, K = FEh is the membrane stiffness, p is the density, £ is the Young’s
modulus, P, is the internal pressure, k, and k, are the radial and tangential bedding
stiffnesses, ¢, and g, are the distributed radial and tangential forces and, u, and u,

are the radial and the tangential displacements. Derivatives with respect to the angle
@ are indicated by primes whereas derivatives with respect to the time are indicated

by dots.

_15-



Material losses have been introduced by the imaginary parts of the stiffness

parameters k,, k,, K and D and the imaginary part of the internal pressure £,
where the loss factors have been indicated respectively by 77,, 7, 71, 7, and 77,.

Appendix A provides further explanation of the model.

Table 1. Material parameters for the ring model of the tyre.

Description and dimensions Constant Value
Radius of the tyre {m] e 0.33
Tyre thickness {m] h 0.02
Tyre width [m] b 0.11
Young's modulus [Pa] E 4.90x10°
Tyre density (kg/m’] Yol 1000
Tangential bedding ceefficient [N/m3] k, 8.82x10°
Radial bedding coefficient [N/m’] k, 1.09x10°
Rubber Poisson ratio v 0.45
Internal Pressure [Pa] P, 2.00x10°
Loss Factor radial stiflness 8 0.05
Loss Factor tangential stiffness , 0.05
Loss Factor longitudinal waves o 02
Loss Factor bending waves i 0.3
Loss Factor pressure tension n, 0.05
Contact Rubber stiffness {Pal k. 1.00x10°
Radial segments N, 92
Number of modes N, 15
Number of contact points N. 31
Velocity [Km/h] V 35
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Substituting a trial solution for the motion into equation for the ring dynamics, it is
possible to obtain the natural frequencies and the mode shapes of the system (see
appendix A for details). The mode shapes can be mass normalised and gathered in the
mode shape matrix ¥, Values for the parameters of the tyre dynamics equations have

been inferred from Hecki {1986) and Kropp (1989) and are shown in table 1.

The Winkler Elastic Foundation

The contact between two compliant bodies can be simplified by the use of the
Winkler elastic foundation. The tyre and the road can be considered as rigid bodies
and the tyre is assumed to be covered by an elastic layer of thickness ~ and elastic
modulus K. There is no interaction between the springs of the foundation, i.e. shear
between adjacent elements is ignored. Considering the equations related to two long
cylinders the relationship between the load P and the contact half-width 4 can be

derived to be (Johnson, 1985)
3 hR
a=3 (—l—jp , (6.3)

where R is the relative radius of curvature of the two bedies and & the depth of the

bodies (tyre width).

Given the width of the contact, the bedding model must be discretised in order to

obtain a group of spring connected in parallel. The stiffness of each spring is given by

KAxh
k== (6.4)

where Ax_ 1s the width of each spring or the distance between two springs.

The model used here had 31 elements in the contact patch (N, =31), although

doubling this number had negligible effect on the response below 400 Hz. Sixty one

additional points were used to specify the response in the remainder of the tread, so
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6.3.

that the total number of points used to specify the tyre’s response, N7, was 92 in this

casc.

The tyre model described by equation (6.1) has been solved to give the forced
vibration response of the suspended tyre with a fixed hub, and hence the matrix of
mobilities defined by equation (3.1). Using the Winkler bedding model, the forced
response of the tyre when placed on the road has also been calculated using equation
(5.4). Figure 3 shows the dynamic behaviour of the suspended tyre and the tyre in
contact with the road. The contact dynamics mainly affect the response of the first
two modes, which are due to the rigid body mass of the tyre on the sidewall stiffness

and the first flexible tyre mode respectively.

Expression of the Road Roughness

For a vehicle travelling at a constant velocity, the imposed displacement may be
considered as a realization of a multi-variate stationary random process and so may be
described by a spectral density matrix, as discussed in Section 3. Each contact point
travels over the same profile as that of the forward contact points, so that each point

experiences, after a speed-dependent delay, the same imposed displacement.

The time varying road displacement d(z) is derived from traversing, at velocity v, a
rigid road profile which has the form d(x), where x indicates position in the direction

of motion. At any instant these two quantities must be equal and so the corresponding

spectral densities matrices can be expressed as (Robson, 1979, Newland, 1984)
1
S,(£)=8;00), (65)

where 7 is the wave number. It is clear that the spectral density matrix for the wave
number transform of d(x), S,(n), provides an invariant description of a road profile,

from which the excitation spectral density matrix Su(f) can always be derived for any
particular vehicle velocity. The road spectral matrix can be described by the following

single slope spectrum of the form {Robson, 1979)
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Smy=clal™, (6.6)

with the value of ¢ given in the table 2. In the simulation the mean value given for

principal roads has been used.

The point spectral density in the frequency domain can then be expressed as

(ij— ) . (6.7)
v

The cross spectral density between two points, placed at a distance Ax, may be

Sd(f)z

< |6

expressed by
Sy =8,V (6.8)
where the road profile is moving from the first point towards the second one. It

follows that the spectral density matrix of the displacements at the contact points 1s

given by

fS f(ug— S jw—( Ay +an)
S:.’ d € k d € v
. Ay . AY,
—jao—+ Jo—
S,e’ v S, S, e
de = d s d i : (69)
LA A Ay
- jot w2
S, e ; S, e’ S,

Table 2. Constant ¢ for road profile spectral density expressed in m’/eyeles when # is in cycles/m

(Robson, 1979).

Range Mean

Motorway
Principal road

Minor road

3% 10 —50x% 107
3% 1078~ 800 %107°

50 % 10— 3000 x 107°

10x10°¢
50 % 10°°

500 % 10°°
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6.4

The Kinetic Energy

By definition, the kinetic energy is given by
E,(jw) :é [ phabii(6, jo)i . j)db. (6.10)

where # is the velocity of a point of the ring and (-)" is the complex conjugate

operator. The displacement can be related to the modal shape by means of modal
amplitude coefficient a. If the modal coefficient and the ring displacement are

collected in the vectors a and b, their relationship 1s

=Wa and a=%¥'u, (6.11)
where ()" is the pseudo-inverse operator.

Consequently equation (6.10) becomes

E(jo) —éphabz iny i [, (6. jo, (0, j0)do. (6.12)

n=0 m=0

Since the orthogonality properties of the mass-normalised mode shape is given by

H n=m

phab [ ,(0, jo),, (0, jo)d6 = 10 , (6.13)

n=m

the following equation for the kinetic energy can then be inferred

E,(jo)= Zauan— = frace{aa” }, (6.14)

n=0
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6.5

Substituting equation (6.11) and applying the expected value operator the following

equation may be obtained

E, (jo) :é_zmce{\P*Sw\P*” }. (6.15)

Figure 4 shows the kinetic energy evaluated at different car speeds, which illustrates
that as well as an overall increase in level, greater speeds also tends to emphasise the

resonant response at about 100 Hz.

The Application of the Optimal Control Filter

Using the properties of the trace operator equation (6.19) can be expressed also as
E (jo)= %rmce{ s Y. (6.16)
It follows then that defining
Q —%‘P”"I“ , (6.17)

and using the results of section 5, the optimal feed-forward control can be designed to

minimise the kinetic energy of the ring (Elliott, 2001).

Figure 5 shows the effect of the controller on the kinetic energy for a particular road
velocity and one particular position of the force actuator which extends over five grid
points, centred at 60° from horizontal on the side of the tyre following the control
patch. Two kinds of control strategies have been applied that depends on the way in
which the forces are applied at the control points. In first instance a controller as been
considered that applies the same force at all the points. In second instance an
independent force has been applied at each point to give a multi dof control system.
The former controller has been considered in order to investigate the effect of

distributed actuator, although the effects are similar to those of a single force actuator
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acting on the centre grid point. The distributed actuator acting at this location,
however only gives an overall reduction of about 4dB. It can be seen that the effect of
five independent forces is much greater than a single distributed force, giving an

overali reduction of about 25 dB in this frequency range.

However the use of five independent actuators is very difficult to implement. Hence
atrention has been focused on modelling different kinds of real actuators to be used
individually. Three different kinds of actuators have been considered: a distributed
force actuator, that might be implemented with an electromagnet for example, a strain
actuator, that might be implemented with a piezo-ceramic device for example, and an
acoustic actuator, that might be implemented with a loudspeaker inside the tyre.
Figure 6 shows a schematisation of these actuators. The force actuator exerts a radial
force at the tread whereas the strain actuator generates a pair of tangential forces at the
tread. The acoustic actuator exerts a pressurc around the tyre with a sinusoidal
distribution corresponding to the first acoustic mode of the tyre interior, so that it
couples into the vertical displacements of the tyre. The attenuation in the global
kinetic energy that can be obtained for each of these actuators has been computed and
Figure 7 shows as such reduction varies with the angular position at which the
actuator is placed, being greater when the actuator is near the contact patch, that

extends from an angular position of £5.8° in this model.

Figure 7 shows that potentially a large reduction can be obtained in the kinetic energy
using either force or acoustic actuators. Such results demonstrate the validity and
efficiency of the methodology explained in this report. They are, however, very
preliminary and there is a long way to go before such methodology can be validated
and applied to the real case. The model of the tyre and that of the actuators used here
are very simplified, and permit only an intuitive and qualitative evaluation of the
method. Therefore not too much importance should be given to the numerical values,
since both the model of the tyre and that of the actuators need to be validated by

experimental tests.
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Conclusions

Tyre contact dynamics are generally nonlinear, because not alt of the tyre is in contact
with the road at any one time. The relative displacement between the tyre and the
road thus creates a contact force if it is negative but creates no contact force if it is
positive. In general the contact force has to be calculated using iterative techniques,
and because the secondary forces would influence the tyre’s motion in the contact
patch, a full nonlinear model would have to be solved at each instant in time to
accurately determine the effect of active control. If the tyre is assumed to be smooth,
however, and sufficiently soft that all of the tyre's surface is in contact with the road
surface in the contact patch, the contact model becomes linear and exact results for
the effect of active control can be obtained analytically. The contact patch i1s modelled
with an array of radial springs to approximate a Winkier bedding, but the tangential

excitation due to friction has not been accounted for.

This linear model can be used to calculate the vibration velocity of the tyre due to
both road excitation, specified by the spectral density matrix of a set of road
displacements, and to a set of controllable secondary force distributions. A
feedforward control formulation can then be used to estimate the minimum response

of the tyre on a particular road surface with a particular secondary actuator.

The formulation is illustrated with the preliminary results of a calculation for the
kinetic energy of a two-dimensional tyre model running over a rough road at different
speeds and being controlled by a secondary force. Such a two-dimensional ring model
is only realistic up to about 300 Hz, above which a full three-dimensional model
would need to be used. It does however allow the low frequency response of the tyre
to a rough road to be calculated for various road speeds, although the current model
does not account for rotation of the tyre. Initial results are also presented for the
performance of different types of actuators used to minimise the tyre’s kinetic energy
using an idealised, feed-forward controller. Useful reductions are predicted for a force
actuator acting close to the contact patch and for an acoustic actuator, although the
required authority of these actuators has not yet been calculated and many practical

problems need to be overcome before such active systems could be tested in practice.
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A brief explanation of some ring models

The tyre model used in the simulation is the stationary ring model proposed by Soedel
(1993). The dynamics of such a model is described by equations (6.1) and (6.2). In
such a model the stiffness of the sidewalls, the inflation pressure and the loss factors
of sidewalls, tread and internal pressure have been taken into account. The stiffness of
the sidewalls have been modelled by a massless foundation characterised by two
spring constants, %, and kg, that are respectively a radial and a tangential stiffness.
Such a model does not take into account the stiffness of the suspension, nor the
effects due to the rotation. The effects of the rotation are mainly the stiffening of the
tread due to the centrifugal force, the Doppler shift due to the Coriolis term and the
horizontal force on the hub due to the free vibration of the tread after leaving the
contact patch. However the effect of the centrifugal force can be taken into account
adding to the pressure a centrifugal component equal to pha§22 where Q) is the

rotating speed.

For a closed ring the solution of such equations will be of the form:
w (8,6)=A, cosn(—¢) e’ (A.1)
10,(0,6)= B, sinn(0—¢) e’ . (A.2)

Differentiating such trial solution with respect to time, posing the external load ¢, and

g to zero and substituting in equations (6.1) and (6.2), the following systems can be

obtained:
e A i
CZH )O ia)n al.’. .41 it - COS(HB) , (A.3)
258 €y —p.”l(z)ﬁj Bn 0
where




, B,
o, 224714+£7 —O(n'+l)+k,_ (A4)
a a’ a
2F
&, :24:13 +£,n+—°n (A.5)
a a a
o, = 0, (A.6)
2 K oo FByyos
0532:24-;1'+—7n'+—°(n”+1)+k9. (A.T)
a a’ a

The pressure Py has two effects on the ring dynamics. The first one is as an external
load and is described by the term in the right hand side of equation (A.3). This term
must be neglected in order to find the free mode shapes of the system. The second
effect of the pressure is the increase in the stiffness membrane and this must be

considered.

In order to obtain the natural frequencies of the ring, the determinant of the

coefficients matrix of equation (A.3) has to be posed to zero, that is

Given the natural frequencies, the mode shapes can be obtained by one of the

following relationship

_E_’)lz pha)ﬂ? — oy or f}L: pha)nz — O (A.9)
A o B & |

In order to mass-normalise the mode shape the modal mass of each mode can be

obtained by the following integration:

m, = pbhaﬂf(ui 1, }dé’. (A.10)

0
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Once the mode shape matrix has been computed the mobility ¢ between two points

on the ring j and k can be written as

o:_j.k:z g (A1)

For each natural frequencies there are two mode shapes, which are shifted in space of

an angle that is m/2n.

Besides the dynamical model described by equations (6.1) and (6.2), other models
have been proposed. For instance Heckl (1986) and Kropp (1989) preferred to use the

following model:

D L ’ K s » .
?I-;;(u,. +u) _-(-;2— () 41, ) + kg + phije =0 (A12)
ny 7 s P -
g (i, +u )t a£2 (o, +11,)— ;0 (u, +u )+ ku, +phi,=q,. (A.13)

Such models present some simplifications in the main term due in part to the
inextensional approximation. Such a model has also been considered here but not
many differences in the results have been observed. Such a model has been proven to
fit well to experimental results as shown by Kropp (1989). The model is still given by
a stationary ring resting on a massless elastic foundation so that it takes into account
the sidewalls stiffness and the internal pressure. Again the model does not take into

account the effects of rotation and the suspension stiffness.

Kung et al. (1986) described a simplified elastic ring-spring model where the tyre was
modelled as a circular, elastic ring supported by distributed spring in both radial and
tangential direction. Neither internal pressure nor rotation effects were taken into
account. They improved the simple ring model by considering the hub and modelling

it as a rigid mass to which the distributed spring was attached.
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Huang and Soedel (1987) also examined the effect of rotation on the system
characteristic. Applying Hamilton’s principle to a rotating ring on an elastic

foundation, the following equation can be obtained:

D ” K. ” -2 —u,
(=) = () ity 2 (= 20y g ) kgl
a4( g g’ v (A1)

+ph{iig+ 20, —Qu,) = g,

D Lt Les K ’ P r ”
) () =, 2up )
a a’ a . (A.15)

+ph{ii, - 20, - Qu, —aQ’) =g, F,

where € is the rotating speed of the ring. Since the rotating speed takes into account
only the Coriolis effect, the centrifugal effect must be taken into account by adding a
uniform pressure £y = phan. In general, for each value of n greater than zero, there
are four distinct natural frequencies, @u, k& = 1, 2, 3, 4, wherein two are the
bifurcations resulting from the Coriolis acceleration. This is different from the non-
rotating case in which only two frequencies exist. Two of the four natural frequencies
obtained are associated with predominantly inextensional (transverse) vibration, and
the other two are related to the predominantly extensional (circumferential) vibration.
The inverted case, where the ring is stationary and a point load travels around it, was
also studied for comparison. The travelling load approach does not account for the
centrifugal tension and the Coriolis acceleration and as the rotational speed increases
it tends to excite the lowest bending mode. When the centrifugal tension and the
Coriolis component are considered, the system’s natural frequencies increase with

rotational speed and the solution yields no resonant speeds.
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W, Wy
d dy

Figure 1. The radial velocities of the tyre, vy, suspended off the road, are related to the

applied forces, 1, via the mobility matrix Yr (left hand figure). When the tyre is
resting on the road (right hand figure), a Winkler bedding model of the contact
patch is used, excited by the displacements of the road, d, and generating vertical

displacements of the tyre in the contact patch, w.

Control Mobility ve
filter matrix
4
j \d %/ Y vr
X f, +
Reference Secondary Total
signals forces velocity

vector

Figure 2. Block diagram for the active control formulation.
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Figure 3. Effect of the road contact on the tyre point mobility calculated in the middle of the
contact patch (a) and opposite to the contact patch (b): — hanged tyre; - - - tyre
on ground.
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Figure 4. Expected value of the kinetic energy, shown in the form of power spectrum
density (a) and one-third octave bands (b), evaluated at different car speeds: — -- — 100 kim/h;
- 50 kn/h; — 35 km/hy - - - 20 km/h.
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Figure 5. Expected value of the kinetic energy, shown in the form of power spectrum density
() and one-third octave bands (b) for a speed of 35 km/h: — controller off, - - -

uniform control on and - - - multi dof control on
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(a) (b) (c)

Figure 6. Modelling of the different kinds of actuators: distributed force actuator (a), strain
actuator (b) and acoustic actuator (c).
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Figure 7. Influence of the position of the actuator on reduction of the global kinetic energy
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