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SUMMARY

The power balance between the input power and the dissipated power for beams
and plates has been investigated by using the dynamic stiffness method. In this report
the dynamic stiffness matrices are provided for the simple structures, i.e. a single
beam, a single plate, coupled beams and coupled plates joined at an arbitrary angle.
Computer simulations, using MATLAB, have been performed to ilustrate the

method.

For a given excitation and boundary condition, the natural frequencies, the
forced response, the strain energy and the power can be obtained; a numerical
integration is required to obtain the strain energy. The dissipated power obtained from
the strain energy agrees well with the input power for all the frequency range
considered. I the kinetic energy is used to estimate the dissipated power, this is

underestimated below resonant peaks and overestimated above these peaks.

The accuracy of the strain energy calculation depends on the step size along the
length used in the integration, compared to the smallest wavelength considered. A
step size of 20 mm for the beams and 9 mm for the plates has been used, that is about
1/7 and 1/6 of the smallest wavelength for the beam and plate, respectively. This gave
good agreement within the range of acceptable error. If a concentrated force is applied
to the plate structure, the number of Fourier components required for convergence of
the sohution can be derived from the cut-on frequency of each mode. By including
Fourier components above half of the respective cut-on frequency good agreement is

found.



1. INTRODUCTION

Engineering structures consisting of beams, plates and shells are used in the
design of automotive structures. Recent trends are towards making vehicles more
comfortable and also lighter, due to environmental and economic considerations. In
the process of minimising the weight of a car, the fuel economy can be improved and
the production cost can be reduced. Simultaneously, a good design should produce a
quiet and comfortable environment as well as the various performance requirements
for the car. Unfortunately, these two objectives, economy and low noise and vibration,
are conflicting. Reducing the noise and vibration levels on existing constructions is
often very difficult, if not impossible, and will often involve high expenditure and an
increase in weight. Therefore during the design process the prediction of the dynamic
response of a structure is a necessary consideration so that potential problems, such as
excessive vibration levels, resonance problems, failure due to acoustic fatigue and
noise problems, can be avoided.

There are a number of methods available for determining the dynamic response of
a structure. These range from analytical methods to numerical methods and from the
low frequency to the high frequency regions. Three characteristics of the dynamic
response that are important for selecting a proper method are (i) whether global
modes or localised modes are important, (ii) sensitivity to structural details and (iii)
modal overlap. However, each method has its specific advantages, disadvantages and
limitations. ESDU [1] provides good guidelines on how to choose an appropriate
method for prediction of the dynamic response of a structure subjected to some kind
of excitation.

The dynamic stiffness method is a method that can be used to approach the high
frequency analysis to which the conventional finite element method cannot be
applied. For certain continuous elements it is possible to derive the dynamic
properties of a structural component exactly using the dynamic stiffness matrix.The
dynamic stiffness matrix is a function of frequency and contains mass information.
The equations of motion can be solved to yield the dynamic response of the structure
in any selected frequency range. Langley [2-4] developed the free and forced
vibrations of a row of rectangular panels, the power flow of beams and frameworks

and the vibration analysis of stiffened shell structures. This method can be viewed as



providing an exact solution for the response of an idealised structure, whereas the
main restriction for this method is that for plate structures each system must be simply
supported on two opposite edges which must be parallel.

This report presents the theory of the dynamic stiffness method for beams and
plates, with particular emphasis on the power balance (input power and dissipated
power). Computer simulations, using MATLAB, are included to illustrate the method.

A list of symbols is given in Appendix A.



2. SINGLE BEAM INVESTIGATIONS

In practice, beams are very simple and useful components of structures. In this
study, a beam is considered as an Euler-Bernoulli beam for simplicity. Some
assumptions for a uniform beam are:

e The effects of rotary inertia and transverse shear deformation are neglected

(valid for slender beams).
 The material of the beam is elastic, homogeneous and isotropic.
¢ The cross-section of the beam does not vary along its length.

¢ Forces due to gravity will be neglected.

2.1 Equations of motion
2.1.1 Flexure
For a beam of uniform cross-section, the differential equation governing the

flexural vibrations may be written as [5]

a4w+ Aa2w
ox* p ot

where E is Young’s modulus, / is the relevant second moment of area of the cross-

EI

=p(x, 1). 2.1

section, p is the density of the material of the beam, A is its cross-sectional area, w
is a vertical displacement and p(x, ¢) is a force distribution at any section x at time

t. For free vibrations, w(x, f) can be written as a harmonic function of time, i.e.
w(x, £)=W (x)e™ (2.2)
where w is the circular frequency.

Substituting equation (2.2) into equation (2.1) and letting p(x, t)=0, then

. g4 2
AW _pab . | 2.3)
dx Er
The general solution of equation (2.3) can be written as
W(x) = Bsin(k £ X)+ Bzcos(kfx) + B;sinh(k X+ B,cosh(k £ X) (2.4)

where & is the flexural wavenumber, &, = ( pAw’[EI )]/4.

The four constants B, are determined from the boundary conditions. The standard

boundary conditions for a uniform beam are as follows:



» simply supported or pinned, for which the displacement is zero and the bending

moment is zZero;
W =0 and EI (d°W/dx")=0. (2.5)
» fixed or clamped, for which the displacement and slope are zero;
W =0and dW/dx=0. ) (2.6)
e free, for which the bending moment and shear force are zero;

EI(d’W/dx*)=0 and EI (d’W/dx*)=0. @.7)

e combinations of these boundary conditions.
For some particular boundary conditions, the natural frequencies and mode

shapes for the first few modes have been presented in references {3, 6].

2.1.2 Extension

For extensional vibrations it is assumed that cross-sections, which are initially
plane and perpendicular to the axis of the beam, remain plane and perpendicular to
that axis and that normal stress in the axial direction is the only componeﬁt of
stress. From the stress-strain relationship and the dynamic equilibrium of an
element of the beam, the equation of motion of the extensional free vibrations of

beams is given by [5]

a* 0’
EAax—?upAgr-’;i=0. 2.8)
. du o
ie. cfgg—gt—“;‘:o. 2.9)

where E is Young’s modulus, p is the density of the material of the beam, A is its

cross-sectional area, u is an extensional displacement and c, is the velocity of
. - 1/2
propagation of extensional waves, c, = (E/ ).

For free vibrations it is assumed that the extensional displacement is a

harmonic function of time, i.e.

u(x, 1)=U(x)e™. (2.10)
Substituting equation (2.10) into equation (2.9), then
2
cja[f—cozU=0. (2.11)
ox



The solution has the form

U (x)= B;sin(k,x)+ B, cos(k x) (2.12)

. . 1)
where k, is the extensional wavenumber, k, =—. The two constants, Bs and Bs,
c

e
are determined from the boundary conditions and the solutions for some particular

boundary conditions have been presented in reference [5].

2.1.3 Torsion

The equation of motion for the torsional vibrations of beams is derived using
the same concept as the extensional vibrations. From the torque-twist relationship
and the dynamic equilibrium of an element of the beam, the equation of motion of

the torsional free vibrations of beams is given by [5]

3’0 0’6
Gl —~ =0 2.13
ox’ P ot* @13
: 36 9%
ie. 6‘255{5” ~==0 (2.14)

where G is the shear modulus, p is the density of the material of the beam, J is the

polar second moment of area, 8 is a torsional displacement and c, is the velocity
. - 172 . .
of propagation of torsional waves,¢, =(G/p) . For non-circular cross-sections,

a shape factor i needs to be considered and ¢; is redefined as ¢, ={kG/p )“2 .

For free vibrations it is assumed that the torsional displacement is a harmonic

function of time,

ie. 6 (x, 1)=0(x)e™. (2.15)
Substituting equation (2.15) into equation (2.14), then
¢’ az? ~0’@=0. (2.16)
ox
The solution has the form
@ (x)=B, sin(k,x)+ B, cos (k,x) (2.17)

. . a
where k; is the torsional wavenumber, k, =—. The two constants, B; and Bs, are
4

determined from the boundary conditions.



2.2 Dynamic stiffness matrix

Consider a beam of length /, located between x = 0 and x = ! (See Figure 2.1).

F4 Wy Ws Fp
MA QA A A MB
ﬁ) éB\\
Ny >3 — B
UA @,4 UB QB
A B
—x
- ! o

Figure 2.1. Single beam

2.2.1 Flexure
The four constants B; of equation (2.4) can be determined from the

displacements and slopes at each end;

atx=0; W,=B,+B,, (2.18)
dW

@AZ(EJI:():kf (BI+BB)’ (219)

and
atx=1, W, =B sin(k )+ B, cos(k [}+ B;sinh(k )+ B, cosh(kfl) , (2.20)

(dWY . ; .
@=|—| =k {B,cos(k,1)- B, sin(k,1)+ B, cosh(k 1)+ B, sinh(k, D)} . (2.21)
x=[

Rearranging equations (2.18), (2.19), (2.20) and (2.21) in matrix form, then the

displacement vector for the flexural vibration,

u, =D, (2.22)
where
u =W, ¢, W, ¢, e
b’ =[B, B, B, B,], (2.24)
and



0 1 0 1
ool K 0 k, 0 )25
‘7| sinkd  coskJ  sinhkd  coshk | (223

k coskd -k sink. k. coshk. k,sinhkl
The shear forces and bending moments at each end are given in terms of

displacements by

d’W
F,= EI[ = ] = Elk,’ (-B, + B;) (2.26)
=0
d’w
M, z—EI( i J =—Elk,’(~B,+B,) (2.27)
x=0

i . :
F}g=—EI£E] =—ERk,’ (B, cosk,1+B,sink I +B coshk I +B,sinhk 1) (2.28)
b=l

d'wW : .
MB:EI[ — ) = Elk,’ (B sink,l B, cosk,l + B,sinhk I+ B, cosh k). (2.29)
fe={

Equations (2.26), (2.27), (2.28) and (2.29) can be written in matrix form

F, = Dzbf (2.30)

where the force vector
Fl=[F, M, F, M,;] (2.31)

and
—kf 0 kf 0
e 1 0 - 2.32
2T k,cosk.d -k sink, —k coshk, -k, sinhk.l - (232)
——sinkfl —coskfl sinhkfl coshkfl

Premultiplying equation (2.22) by D;* gives, b, =D;'u, and substituting
this into equation (2.30),
F, =D,Di'u, =K u, (2.33)
where K is the dynamic stiffness matrix for the flexural vibrati'ons of a beam,
K, =D,D}". 2.349)

Note that the beam has two principal axes of flexure. The same equations

apply for both directions with different values of 7 and k.



2.2.2 Extension
The two constants B; of equation (2.12) can be determined from the axial

displacements at each end;

atx=0 U,=B, (2.35)
and
atx=1; U, = B;sin(k,l)+ B, cos (k1) (2.36)

. . w
where k, is the extensional wavenumber, &k, =—.
¢

4

Rearranging equations (2.35) and (2.36) in matrix form, then the displacement

vector for the extensional vibration,

u, =D.b, (2.37)
where
w =U, U,].b" =B, B] (2.38), (2.39)
and
Dﬁ{ , 0 ! } (2.40)
sin(k,l) cos(ki)
From the force-displacement relations at the ends,
N,=-FEA [%] L =—FAB/k, (2.41)
and
N, = m[fg—] = EAk, {B; cos (k,l}— Bysin (k,1)}. (2.42)
o=t
The above equations can be written as
F,=D,b, (2.43)
where the applying force vector
F/ =[N, N,] (2.44)
and
D, = EAL, { -l 0 } : (2.45)
cos(kl) -sin(k[)



Premultiplying equation (2.37) by D} gives, b, = D;'u, and substituting this
into equation (2.43),

F,=D,D;'u, =K u, (2.46)
| where K, is the dynamic stiffness matrix for the extensional vibrations of a beam,

cot(kl)  —cosec(k,l ):| 7

—cosec(kl)  cot(k,l) (247)

K, =D,D;' = EAk, {

2.2.3 Torsion
The dynamic stiffness matrix for the torsional vibrations may be derived by
the same procedure as the extensional vibrations. Applying the boundary
conditions at each end,
F, =K, u, (2.48)

where K, is the dynamic stiffness matrix,

cot(kl)  ~cosec(k[l)
K, =G/, (2.49)
—cosec(kl)  cot(k]l)
and u, is the displacement vector for the torsional vibrations of a beam,
uf = [QA @3]- (2.50)

2.2.4 Dynamic stiffness matrix for a beam

Each end point of a2 beam has six degrees of freedom, three translational
degrees of freedom (u, v, w) and three rotational degrees of freedom (6, ¢, ¥) in
the Cartesian coordinate system (x, y, z), respectively. The dynamic stiffness

matrix for flexure, extension and torsion may be combined in a 12x12 matrix

K., 0 0 0
K, = 0 Ky 00 (2.51)
0 0 K, 0
0 0 0 K

t
where K, and K, are the dynamic stiffness matrices for flexure in the vertical and
lateral direction, K, is the dynamic stiffness matrix for extension and K, is the

dynamic stiffness matrix for torsion, respectively.



The complete dynamic stiffness matrix for a single beam is presented in Appendix

B.1 and B.2. The dynamic stiffness matrix K, can be reduced by applying the

boundary conditions at the end points, x =0 and x = [.

The wavespeed and wavenumber for flexural, extensional and torsional wave

are surmmarised in Table 2.1.

Table 2.1 The wavespeed and wavenumber for flexural, extensional and torsional

wave of a beam.

Flexural wave

Extensional wave

Torsional wave

-4

Wavespeed | c, = (EI/pA)" & ¢, =(E/p)"” ¢, =(G/p)"”
@ a
Wavenumber | k; =(pAw2/EI)]/4 k, =-C—=Ct)(,0/E)”2 k, =~C—:a)(p/(})”2

4

2.3 Inclusion of damping

For an elastic beam the stress &, and the strain £, in the longitudinal direction are

related by Hooke’s law, i.e.

o

= Fe

x*

(2.52)

For hysteretic damping, the stress-strain relationship of a viscoelastic material

excited harmonically is given by [5]

o, = E[Sx +£ai]

@ ot

(2.53)

in which n is the hysteretic damping constant or the loss factor and @ is the excitation

frequency. With the steady-state response to harmonic excitation, all physical

quantities can be represented iri complex notation with a time dependence exp(jar).

Thus

dg [t = jwe, and 0, =E(1+ jn)e,.

(2.54), (2.55)

Similar expressions can be used for other types of motion. In Table 2.1 the

material properties and wave to be replaced for the damped systemn are given.

10




Table 2.2. The properties related to the hysteretic damping.

Property Undamped Damped Small Damping
Young’s modulus E E(1+jm) E(1+m)
Shear modulus G G(1+jm) G(1+jm)
The flexural wavenumber ke Flam™ |- ke (1-jn/4)
The extensional wavenumber ke k(142 k1-j1/2)
The torsional wavenumber k, k;(1+j17)'”2 k(1-jn/2)

2.4 Natural frequencies and forced response
In general, the equation of motion for a beam system can be given as
F=Ku (2.56)
where F is a force vector containing forces and moments acting at the ends of the
beam, K is the dynamic stiffness matrix considered the hysteretic damping and u is
the displacement vector of the beamn system containing displacements and rotations at
the ends of the beam. In dynamics problems, the dynamic stiffness matrix depends
upon frequency and the stiffness and mass of the system.
For free vibration the external excitation force is zero and the natural frequencies
are determined from
det(K)=0 (2.57)
where K is the dynamic stiffness matrix for the beam reduced as appropriate
according to the boundary conditions at the end points, x=0and x = .
The response to known harmonic excitation F can also be evaluated in closed
form using the inverse of the dynamic stiffness matrix or receptance matrix K™':
u=K"'F. (2.58)
Having determined the responses u at the end points of the beam at each frequency,
the responses along the beam axis can be determined. These depend upon the types of
vibration.
s Flexure;

W (x) = B, sin(kx) + B, cos(kx) + B, sinh(k}x) + B, cosh(k;x)  (2.59)
where k} = {pAa)2 / EI(+ jn)}m, 77 is the hysteretic damping constant and B, -

B, are given by equation (2.22).

11



» Extension;
U (x) = B; sin(k,x)+ B cos(k.x) (2.60)
where k. =@{E(+ jn)/ ,o}_lf2 and B,- B, are given by equation (2.37).
» Torsion;
0(x) = B, sin(k’x) + B, cos(k’x) ’ 2.61)
where k/=0{G (I+jn)/ p}_v2 .

As the dynamic stiffness matrix of a single beam or a coupled beam system is a
set of complicated functions of frequency, the dynamic response may be obtained for

an arbitrary frequency range by a separate calculation for each frequency.

2.5 Strain energies and power

2.5.1 Strain energy for flexure

The total strain energy of a beam in flexure is given by [7]

CEN(dw Y
Uf—LZEI ——EJ[ J > [dx‘fj (2.62)

where M is the bending moment, E is the Young’s modulus, 7 is the second

moment of area of the cross-section, w is a vertical displacement and » is the total

number of integration points from%’-c— to ([ -% ).

2.5.2 Strain energy for extension

The total strain energy of a beam in extension is given by [7]

2
U, =L Ea[[ % e~ EALS (4 (2.63)
2| @ 2n =\ ax

where A is the cross-sectional area and u is an extensional displacement.

2.5.3 Strain energy for torsion

The total strain energy of a beam in torsion is given by [7}]

2 n 2
UtziG]J.I ia_ dxz@ 46, (2.64)
2 0| dx 2n I\ dx

12



where G is the shear modulus, J is the polar second moment of area and @is a
torsional displacement.

In practice, the integration of equations (2.62), (2.63) and (2.64) may be
performed numerically by summing over the step length Ax along the length of
the beam as indicated. The discrete summation is an approximation to the

continuous integral.

2.5.4 Power

The time averaged power input P, produced by a harmonic force F is given by
P, =Re{V}F*=Re{Z}i* = %Re (F*v) [Watt (W) or Nm/sec] (2.65)

where Y is input mobility, Z is input impedance, F is r.m.s. force amplitude, v is
r.m.s. velocity amplitude at the excitation point and F" is the complex conjugate of
the applied force amplitude F.

The Statistical Energy Analysis (S.E.A.) power balance equation for an
isolated subsystem is given by [8], |

‘Pin = Pd:'.v.\' = 275an

strain (2.66)
where, P;, is the input power, P, is the dissipated power, 77 is the loss factor and
Egirain 1s the strain energy amplitude of the dynamic response in the subsystem at
frequency f (Hz). If the kinetic energy is used in this calculation, the “dissipated
power” does not agree well with the input power. This point will be discussed
further in the simulation results section. Thus the dissipated power P, can be

calculated by using the total strain energy of the system obtained from equations

(2.62), (2.63) and (2.64).

13



2.6 Simulations for a single beam

In this study MATLAB [9, 10], which is very powerful too] for matrix
manipulation, has been used to perform computer simulations for simple structures.
Figure 2.2 presents the flow chart for the dynamic analysis of structures using the
Dynamic Stiffness Method. In this section the simulation results for a single beam

systemn are presented.

Derive/develop the Governing Equation

A 4
Build Matrix Form
Y
MATLAB Programming
ifi=1 No.of components fi>1
\/
A A 4
A Single Beam Coupled System
or Plate Beam + Beam
Plate + Plate
Beam + Plate
»| Dynamic Stiffness |
Matrix
Boundary Condition >€ Loading Condition
h 4
Results
/ / (" Other Method
Natural Frequencies Compare Classical Method
Mode Shapes Rayleigh-Ritz Method
Forced Response \Finite Element Method

Energy and Power

Figure 2.2. The Flow Chart for the Dynamic Analysis of Structures using
the Dynamic Stiffness Matrix Method.

14



2.6.1 Model
Figure 2.3 presents the simulation model for a single beam system that has
been studied. Boundary conditions considered are clamped-free(shown) and

simply supported at both ends.

Cross-sections

z
A

) y considered:
4.7
;4——————))6 | @ F
Z

l ] A

b

Figure 2.3. Uniform Cantilever beam: Length [ = 500 mm, Radius » = 5.0 mm, Width
b =12 mm, Height 2 = 2 mm, Loss factor 7 = 0.01, Material: Steel (Young’s modulus
E =2.1x10"" N/m?, Poisson’s ratio v = 0.29, Material density p = 7.86x10° kg/m°).

2.6.2 Natural frequencies

The damped natural frequencies for flexural vibration are determined from the
dynamic stiffness matrix considered the hysteretic damping which was defined in
equation (2.34). The natural frequencies occur when the constrained dynamic

stiffness matrix is singular, i.e. has zero determinant. In Figures 2.4-2.7, the

flexural “frequency functions” (that is det(K7')) for the cantilever beam and the

simply supported beamn, which has two different cross-sections, i.e. circular and
rectanguiar cross-section, are shown.

- The undamped natural frequencies may also be determined from the
characteristic equation [5] and compared the damped natural frequencies obtained
from the dynamic stiffness method.

For a cantilever beam, the characteristic equation is

cos(k 1) cosh(k, 1) +1=0 2.67)

where k, =(pAw*/EI}" and lis the length of the beam. The roots of the

equation can be solved by analytical or graphical methods.

For a simply supported beam, the characteristic equation is

15



sin(k,£) =0 (2.68)

and hence
kflzmr, n=12.3, ... (2.69)
Therefore
w(nY(EY" '
=B =2, a=123 (2.70)
201 )| pA

The frequency functions which are given by equations (2.67) and (2.68) for a
cantilever beam are plotted in Figure 2.8 and for a simply supported beam in
Figure 2.9. The minima of these functions correspond to the undamped natural
frequencies.

Table 2.3 and Table 2.4 compare the natural frequencies obtained with the
dynamic stiffness method and with the analytical method. The results show good
agreement between the two methods. In case of the cantilever beam, however, it
was very difficult for the frequencies above the third mode to be compared

because only two or three peaks are clearly identifiable in Figure 2.4 and 2.5.
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Figure 2.4. The flexural “frequency function” (i.e. det(K7')) for the cantilever beam
with circular section by the dynamic stiffness method.
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Figure 2.5. The flexural “frequency functions™ (i.e. det(K')) for the cantilever beam
with rectangular cross-section by the dynamic stiffness method.
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Figure 2.6. The flexural “frequency function” (i.e. det(K;')) for the simply supported
beam with circular cross-section by the dynamic stiffness method.
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Figure 2.7. The flexural “frequency functions” (i.e. det(K ;")) for the simply supported
beam with rectangular cross-section by the dynamic stiffness method.
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Table 2.3. The vertical bending frequencies for the cantilever beam.

Circular cross-section (r=5mm) | Rectangular cross-section (12X2mm)
Mode [ ical Dynamic Analytical Dynamic
Method Stiffness Method Method Stiffness Method
1 28.9 289 6.66 6.67
2 181 181 41.8 41.2
3 506 505 117 117
4 992 - 229 -
5 1640 - 379 -

eteos(f'coshi)

(a) Circular section

Ha{zoa( cosn(i)i

(b) Rectangular section

Figure 2.8. The flexural frequency function of the vertical direction for the cantilever
beam by the analytical method.

Table 2.4. The vertical bending frequencies for the simply supported beam.

Circular cross-section (r=5mm) | Rectangular cross-section (12x2mm)
Mode 1 alytical Dynamic Analytical Dynamic

Method Stiffness Method Method Stiffness Method

1 81.0 80.9 18.7 18.7

2 324 324 74.8 74.5

3 729 729 168 168

4 1300 1300 299 299

5 2020 2020 468 467
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Figure 2.9. The flexural frequency function of the vertical direction for the simply
supported beam by the analytical method.

2.6.3 Forced response

If a harmonic force is defined and applied at the free end of the cantilever
beam, the forced response for the single beam system can be obtained from
equation (2.58). Figure 2.10 shows the forced respense for the cantilever beam.
Having obtained the forced response at the end point, the displaced shapes can
also be determined by using equations (2.59)-(2.61). If the excitation is applied at
a natural frequency the mode shapes are obtained. As an example, the displaced
shapes for a coupled beam system at some frequency points will be shown in the

section 3.2.3.

2.6.4 Power balance

The input power at each frequency can be obtained from equation (2.65).
Obtaining the strain energy from equations (2.62)-(2.64), the dissipated power can
be calculated by equation (2.66). It should be the same as the input power
according to the power balance concept.

The dissipated power obtained from the strain energy agrees well with the
input power for all the frequency range considered, as shown in Figure 2.11,

whereas the one from the kinetic energy does not, as shown in Figure 2.12. The
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error for the former is much smaller than that for the latter. Figure 2.12 shows that
the dissipated power is underestimated below resonant peaks and overestimated
above these peaks if based on the kinetic energy, although the error becomes
smaller as frequency increases.

According to the case study to get good agreement, the accuracy of the resuits
depends on the loss factor and the step size along the length of the beam. The use
of a smaller step size produces a more accurate result, but it needs more
computing time. In this study the step size of 20mm shows good agreement within

the range of acceptable error. It is about 1/7 of the bending wavelength (137mm)

at the maximum analysis frequency of 1000 Hz. The bending wavelength A, for

a beam is obtained from

Aean, = 27 1 p A* 1 ED'* (2.71)
where p is the material density, A is the cross-sectional area, E is Young’s
modulus and 7 is the second moment of area of the cross-section. The result of the

case study is summarised in Table 2.5 and the error plot is shown in Figure 2.13.

The error decreases as the step size and the loss factor decrease.

bl
Froquancy 2]

il
Frequancy [Hz]

(a) vertical force (b) lateral force
Figure 2.10. The forced response for the rectangular cantilever beam due to separate

forces in the (a) vertical and (b) lateral direction applied at the free end. Upper:
translational response, lower: rotational response, at the free end.
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Figure 2.11. The input power and dissipated power for the rectangular cantilever
beam due to separate forces in the (a) vertical and (b) lateral direction applied at
the free end: —, the input power due to the applying force (Py,); ~ -, the dissipated
power obtained from strain energy (Piss)-
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Figure 2.12. The input power and dissipated power for the rectangular cantilever
beam due to separate forces in the (a) vertical and (b) lateral direction applied at
the free end: —, the input power due to the applying force (P;,); - -, the dissipated
power obtained from kinetic energy (2 jis).
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Table 2.5 Results of the case study for the accuracy of the power calculation

Error (%) [(PuissPin)/ P ]x100
Loss factor Step size fmm ;
p [mm] Vertical force At the maximum
frequency
40 (A/3.4) -21.34 -29.74
- -28.54
0.2
5 (A27.4) -0.14
2 (A/68.5) -0.02
40 -15.73
30 -14.29
0.1
0.01
0.001
2 0.00 -0.01

Note. Py = the dissipated power for the beam
P, = the input power for the beam
4 = the bending wavelength for the beam

Figure 2.13. The error plot for the beam at the maximum frequency. —, n=02; ..., 1
=0.1;—, n=0.01; -, n=0.001.
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3. COUPLED BEAM INVESTIGATIONS

3.1 Dynamic Stiffness matrix

In general, a coupled beam system may be analysed by the continuity conditions
and the equilibrium equations at the joints. The dynamic stiffness matrix of a coupled
beam system is derived by assembling the dynamic stiffness matrices of each beam.
As a finite beam has two end points, the dynamic stiffness matrix constitutes a 12x12
matrix, comprising 4 flexural degrees of freedom in each direction, 2 extensional and
2 torsional degrees of freedom. There are defined in a local coordinate system.
Although each beam has 12 coupling degrees of freedom, the overall dynamic
stiffness matrix can be reduced by applying the continuity conditions and the
equilibrium equations at the joints. If a system has » independent degrees of freedom,
the overall dynamic stiffness matrix is given by an ax»n matrix. The dynamic
stiffness matrix for two perpendicular beams can be defined using the local coordinate
system for each beam. It is presented in Appendix B.3.

Although it may be derived by the continuity conditions and the equilibrium
equations at the joints, one must be careful and the process is considerably tedious
and cannot be automated in this way. Alternatively applying the transformation matrix
T, that is defined in Appendix B.4, the dynamic stiffness matrix for a coupled beam

system joined at an arbitrary angle can be determined in the global coordinate system.
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3.2 Simulations for two perpendicular beams
3.2.1 Model

The system studied consists of two beams joined at 90° as shown in Figure

3.1. The dimensions of the beams are given in Table 3.1.

Z
A
) Y I
2 :
— |
é Beam 1 L Beam 2
Fi —-7 X R’ 4
F ¥
Figure 3.1. Two perpendicular beams.
Table 3.1 The dimensions of the beams
Beam 1 Beam 2
Cross-section Rectangular Rectangular
Length [ [mm] 500 200
Width b [mm] 12 3
Height 2 [mm] 2 6
Material Steel Steel
Loss factor 1 0.01 0.01
3.2.2 Natural frequencies

The damped natural frequencies for flexural vibration of the coupled beam

systemn, for which the left-hand end is clamped and the other end is free, are
obtained from the maxima in the “frequency functions” (that is 'det(K}l) ) for the

vertical and lateral direction as shown in Figure 3.2.
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3.2.3 Forced response

Figure 3.3 presents the forced response at the interface between the two beams
when the separate forces (F, and F») are applied at the free end of Beam 2 in the 7/
(that is called vertical) and y’ (that is called lateral) direction. In the case of the
vertical response, the translational z displacement, the rotational y displacement
and the translational x displacement are dominant. In the case of the lateral
response, the transiational y displacement, the rotational z displacement and the
rotational x displacement are dominant. Since the other responses are negligible,
those responses were excluded from the calculation.

The flexural bending deflection at some frequency points, located near the 2nd,
4" and 6% peaks (22.53, 125.89 and 530.88 Hz) in Figure 3.2(a), is obtained from
equation (2.59) and is shown in Figure 3.4. It shows the vertical response of Beam
1 and Beam 2 along the longitudinal direction. In the response zero displacement

represents the nodal point at that frequency.

3.2.4 Power balance

If a unit harmonic force is applied at a point, the input power can be
determined from equation (2.65). The system divides the total vibrational energy
in the form of kinetic energy and strain energy. The dissipated power for the
system may be obtained from equation (2.66) and it must be the same as the input
power if the system is in steady state. In this calculation, firstly the strain energy
for each beam was calculated at the points on the beam axis. The power
calculations were performed at each frequency. It is assumed that both beams
have the same loss factor of 0.2.

The result for the power calculation for four cases, which are described below
the table, is summarised in Table 3.2 and presented in Figures 3.5-3.8. The values
in the table are simply the area under the curves which is given for the purpose of
comparison without any physical meaning. For all cases for the vertical and the
lateral force, the input power shows good agreement with the dissipated power to
within calculation limits. The dimension of Case 2, which is a single beam system,

is the same as that of Case 1. The cross-section of the beam was considered as

26



square so that the power calculation for the two different forces would coincide.

These show that the program for a coupled beam system is working very well.
The input power P;, produced by the applied force divides into the dissipated

power P2 in the driven beam (Beam 2) and the power Py,;.; transmitted to the

receiver beam (Beam 1). The transmitted power 1s dissipated in the receiver beam.

:
-
¥

=

Modulus of Verical Vibration

Frequency {Hz)

(a) Vertical vibration

Phass [dey]
o
-

Modulus of Laleral Vibration

L )
1¢° 10’ 16 10°
Frequency {Hz)

(b) Lateral vibration

Figure 3.2. The flexural “frequency functions™ (i.e. det(K7")) of 2 coupled beam
system obtained using the dynamic stiffness method.
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Figure 3.3. The forced response at the interface between two beams due to separate
forces in the vertical (a) and lateral (b) direction applied at the free end.
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Table 3.2. The input power and the dissipated power for a coupled beam system and
a single beam system.

(2) unit vertical force at the free end

Piss1 P Piss2 Pissi+2 Piy
Case 1 3.18 3.18 0.78 3.96 3.96
Case 2 - - - 3.96 3.96
Case 3 2.71 271 1.06 3.78 3.78
Case 4 3.00 3.00 0.85 3.85 3.85

(b) unit lateral force at the free end

Pissi Prag Piss2 Pissivz Py
Case 1 3.18 3.18 0.78 3.96 3.96
Case 2 - - - 3.96 3.96
Case 3 2.96 2.96 0.65 3.61 3.61
Case 4 3.05 3.05 0.63 3.68 3.68

(Unit: Watt/N?)
Note. Py = The dissipated power for beam 1
Py2.; = The transmitted power from beam 2 to beam 1
P2 = The dissipated power for beam 2
Paiss1+2 = The total dissipated power
P;, = The input power for the system due to the applied force

The parameter values used in the case studies are as below.

Case 1: Two coplanar beams (/; = 500 mm, /» = 200 mm, 6=0°

Case 2: A single beam (/ = 700 mm)

Case 3: Two perpendicular beams (/1 = 500 mm, /; =200 mm, 6=190%
Case 4: Two angled beams (I; = 500 mm, /» = 200 mm, &= 45°)

width = 10 mm, height = 10 mm
loss factor = 0.2,

xstep = 5.0 mm,

frequency range = 1 ~ 1000 Hz,

the number of frequency points = 361
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Figure 3.6. Power for a single beam [Case 2: [ = 700 mm].
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Figure 3.8. Power for a coupled beam system joined at 45 degrees [Case 4: [; = 500
mm, I =200 mm].
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4. SINGLE PLATE INVESTIGATIONS

4.1 Equations of motion
4.1.1 Flexure

For a uniform plate lying in the x-y plane, the equations of motion are partial
differential equations in two space dimensions and time. The differential equation

governing the flexural vibrations may be written as [2, 11]

DV*w+ phvi = p(x,y,1) (4.1)
where w is the out-of-plane deflection, D is the flexural rigidity
(D= Eh3/ 12(1 -v2) , E 1s Young’s modulus, 4 is the thickness of panel andv is
Poisson’s ratio, respectively), ph is the mass per unit area [kg/mz], and p(x, y,t)
represents a distributed load. In equation (4.1), V*is the bi-harmonic operator of

fourth-order,
2* 3! a*

Vi=V?V? = W +28x28y2 + W (4.2)
where V? is the two-dimensional Laplace operator,
2 2
V2 = -a~a“'—2'-' + -aa—z . (4.3)
X Y

If the plate is simply supported along two opposite longitudinal edges (y =0
and y = b), that is their displacements and moment are zero, then the deflection

may be taken to be of the form
w(x,y,0)= 3. W, (x,1) sin(mr y/b) (4.4)

where W, is the out-of-plane displacement, m is the number of half-sine waves
along the transverse edge and & is the width of the plate in the transverse direction

(v direction in Fig.4.1).
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Figure 4.1 Single plate
From equation (4.4),
4
— —ZW' sin(mry/b), — z sin(mry/b), I w _ZW’V sin(mry/b),
_ZW (m/b)cos(my/b), ——zw (mrf b)Y sin(mry/b),
dy y’
4.5)
3}) =Zw;, ([ B)* sin(ry /B), —z—a'“;E =—ZW,:(m/b)2 sin(my/b),
?—ZW sin(rry/b), at —ZW sin(mry/b).

Substituting equations (4.5) into equation (4.1), then

2 4
Z[DW,;" —2D(%J W:+D(H—ZT—J W+ phﬁ?;}sin(my/bh p(x,y,1) (4.6)

m

Taking k= —;E multiplying by sin(nzy/b), and integrating over y

DW" —2Dk "W+ Dk,‘W. + phW, =%j: p{x,y,2)sin(nmy/b)dy @.7

since on the left-hand side the integral of sin (mzy/b)xsin(nwy/b) is zero for

m#n and b2 for m=n.
Assuming harmonic time dependence €%, equation (4.7) may be rewritten as

follows if there is no excitation.

DW," —2Dk,’W,+{Dk,* - phe*}W, =0 (4.8)
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where W, (x) represents a complex amplitude, which can be written as
W, (x) =W, e, (4.9)
The solution to equation (4.8) yields the general solution
W, (x)= iA,,,e"v* _ (4.10)
=t
where the A,, terms are four unknown constants of integration which can be found

by ensuring that the solution satisfies the boundary conditions at the ends of the

plate and the k,, terms are the four complex roots of the following equation in %,

Dk,, - 2Dk,’k,, +(Dk,’ — phw*) =0 4.11)

K2k k 4k *-phw? / D=0 (4.12)

koy vy = ENJKE+K®, kg 0 = jafk2 —k* and k* = phoo® / D. (4.13)

The first two terms of equation (4.10) represent non-propagating waves which
decay exponentially in space. These waves do not transmit energy and they may
be called “near field waves”. On the other hand, the last two terms represent true
flexural waves which have a sinusoidal distribution in space and propagate from
the left to the right or from the right to the left. These waves transmit energy and
they may be called “far-field waves” [12].

The solution of equation (4.11) includes all four different &, terms in the

following form
4
w=Y A e sin(k,y)e™. (4.14)
r=1

Damping may be considered in the plate by assigning a complex modulus and

hence one has D(7+j1m) for the flexural rigidity.

4.1.2 Extension/shear
The in-plane differential equations for free vibrations of a plate are given by
[13, 14]

o’u _du oy
B{1 B B —pii=0 4.15
% oy o’u
B(1 B B —pv=0 4.16
(+r) 2+ B2t By 2y an
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where B = E/(1+V), ¥ = (1+V)/(1-V), p is the material density [kg/mS] and u and v
are the Iongitudinal and transverse deflection, respectively.

The loss factor 17 may be introduced to represent the material damping so that
one can replace Young’s modulus £ by E (1+j17).

If the boundary conditions are simply supported along the longitudinal edges,
the in-plane deflections, the longitudinal deflection «# and the transverse deflection

v, may be expressed as

u(x,y,t)= > U, (x1)sin(k,y) 4.17)

v(x,y,t)= YV, () cos(k,y) (4.18)

54 . . . )
where k, =— and assuming a harmonic response, U, and V), consist of solutions

of the form
U, (x,t)=U,, %" (4.19)
V. (x,) =V, e, (4.20)
Using equations (4.17) and (4.18), the differential equations (4.15) and (4.16)
can be rewritten as
B(1+y)U.-Byk YV —-BkU,-pU, =0 (4.21)
BV +BykU.—B(l+y)kV,-pV,=0. (4.22)
Substituting equations (4.19) and (4.20) into the differential equations (4.21) and
(4.22)

B (1 + 'J/) ﬂ':r?rtjn{fv - ByknlannO - Bk:UHO + psznD = 0 (4'23)
BAXV  +Byk, AU, —B(+7)kV o+ po’V,, =0 (4.24)

which can be solved for A,,. The four roots of A, for a given #n, are

Ay =t k2 -k and A, =+ [k} ~k} (4.25)

where k. = po’(1-v*)/Eand & = 2p@*(1+v)/E .

The general solutions for the in-plane displacements may be written as

Mx Ayx )
ul(x, y,t)={[ﬂ.l @][gnz‘;@}[kn kn][gﬂ3214x}}sin(kny)e"‘” (4.26)
a2 n4
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hs o .
v(x, y,t):{[kn kn][gn;%x}r[aq A]{g"im}}sin (ky)e™. (427

4.2 Dynamic stiffness matrix

4.2.1 Flexure

Equation (4.10) may be used to derive a relationship between the
displacements and forces at the ends of the plate, and thus the dynamic stiffness
matrix of the plate for flexural vibrations with transverse modeshape sin (&, y)
for each n. The solution of this equation contains four unknown constants A,, of
integration which can be found by ensuring that the solution satisfies the four
boundary conditions of the plate at the transverse edges, x=0and x = [.

Upon introducing the flexural displacement vector

w, ={W,(0) W WO WO} (4.28)

then

W, )= Aﬂ +An2 +A+A,
Wn’(o) =k, A, + knzAnz + krz3A|3 + kn4An4

4.29
W, (D)= A, + A+ A e + Al @29
W, (1) =k, A e +k A6 +h A6 +k A e
or in matrix form
1 1 1 1 Ay
0. = knl an kn3 knﬂ- An2 (4 30)
T gt bl kel || AL '
knlekmz ke kn3ek”3l ki€ | A
u,. =p,;,A, 4.31)
where AT={4, 4, 4, A,}and
1 1 i 1
kﬂ krz kﬂ kn
P, = P 11 3 2[ k 3: P 41 (4.32)
e il e n2 e a3 e 4

kol [ knal kgl
knie ane : kn3e * kn4e
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The longitudinal shear force S,(x) and bending moment M,(x) along the free

edges may be written as [2, 11]
S, =—D[W = (2-v) kW, ] (4.33)
M, ==D[W/-vk}W, | (4.34)
where D is the flexural rigidity, v is Poisson’s ratio and k= _”bﬁ

Upon introducing the restoring force vector

B, ={-5,(0) M,(0) 5,(1) -M,(1} @39)
_Sn(o):p@(kmfAn,—(z—v)kj{gkmAmH (4.36)
Mn(0)=—D[§(km)2A,,,—vk32Am} (4.37)

S, (I)=-D |:{i(km ) A, e } —(2-v)k? {i k A e H (4.38)

r=1 r=1
4 5 4
-M, (1)= D[Z(kn,) A —kaZAn,e’c"'f} (4.39)
r=l1 r=i
From equation (4.31), A, = P;,,lllnf , substituting this into equations (4.36), (4.37),
(4.38) and (4.39), then equation (4.35) can be rewritten in matrix form,

F,=p,A, = p?:np;nlunf =K, u, (4.40)

K, =P..Pr, (4.41)
and

{ku)~{2-) Kk, (ko) {2V}, (k) 29Kk, (k{2 Wk,
I R A Aol 14 Akl kS |(342)
(RS {2V S H2 A k) H2 Bt k) 2k S
(ko) & B () &4 (o) &4 & (k) & i

where K,y is the dynamic stiffness matrix for flexural vibrations.
4.2.2 Extension/shear

Equations (4.17) and (4.18) may be used to derive a relationship between the

in-plane displacements and forces at the ends of the plate, and thus the dynamic
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stiffness matrix of the plate for in-plane vibrations. The solution of these
equations contain four unknown constants C,, of integration for each # which can
be found by ensuring that the solution satisfies the four boundary conditions of the
plate at the transverse edges, x =0 and x = .

Upon introducing the in-plane displacement vector

u’, ={U.(0) V.(0) U,y V,(D}, (4.43)

then
Un (O) = ;Llcnl +A2Cn2 +kncn3 + kncn4
V; (0) = kncnl +knCn2 +2’5Cn3 + ;"’4Cn4 4 44
U (D)=2e"C +1,e"C,+k e¥C +ke¥C, (49
V(D)=ke"C, +k e C,+Ae"C +2,eMC,,
ﬂ‘l ;{2 krz kn Cnl
k k A A, C,
= " " ; ” 4.45
i et re® ke keY||C, (443)
ke ke i AeM||C.
u, =r,C, (4.46)
Whereq={qﬂ G. G; Gu}and
Al Z'Z kﬂ. kﬂ-
krz kn ;I'S }"4
fin = Aet Ae™ kne}'-‘I kne}"" ) (“447)
knel‘f kne’w Xﬁezﬂi 2.462“‘[
The in-plane longitudinal force N(x) and transverse force T(x) which
correspond to the deflections, U,(x) and V,(x), may be written as [11, 13]
du  ov
N=hB(1+y)| —+v— 4.48
( y)[ o ay} @48)
T =hB a_u+_q3 . ) (4.49)
dy ox
Upon introducing the restoring force vector
F,={-N(0) -T(0) N(I) T(I)} (4.50)
then F,=r,C, (4.51)
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where

(k) () (B E) (kA1) ~(7)kA (1)
I 7 2k, (i +23) -+%) | (452
- (1+p) (A —viZ)e (1+7)(4 —vkl ) (1+7)(1-v)kAe™ (1+y)(1-v)k A

| 2k 2k Je™ (ki +A7)e¥ (r+42)e¥ |

From equation (4.46), equation (4.51) can be rewritten in matrix form,

=K u (4.53)

ni nioar

- _ ~1
Fni =r, C - rEnrln u

In™'n

Km, =T ].‘_I ) (454)

2n7in

where K . is the dynamic stiffness matrix for in-plane vibrations.

4.2.3 Dynamic stiffness matrix for a single plate
Each edge has four degrees of freedom, three translational degrees of freedom
(#, v, w) and one rotational degree of freedom (¢@) for each value of 7. The

dynamic stiffness matrix for flexure and in-plane may be combined in a 8x8

matrix

K—K“f 0 (4.55
10 K 3)

where K,y is the dynamic stiffness matrix for flexure and K. is the dynamic
stiffness matrix for in-plane. Equations (4.40) and (4.53) represent the dynamic

properties of a single plate.

4.2.4 The removal of the matrix near singularity

If the length of the plate is large compared with the wavelength, the matrix
(P> Pay» Tip OF L,,) may be nearly singular. This is caused by the large
differences in the relative values of the elements of the matrix. It can be overcome
by multiplying by a diagonal scaling matrix H.

For flexural vibration, write

p, H=p),, P, H=p, (4.56)
K,, =p,.p;: = (p3,H™ ) (0}, H")" = (03, H" ) (Hp;;') (4.57)
K,; =D.Dn = P3P (4.58)
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where H is the diagonal scaling matrix,

e 0 0 0

0O 1 0 0
H= ey (4.59)

0O 0 ™ 0

0 0 0 1

where Re(k,) 20 and Re(k,;)20.
For in-plane vibration,

r,H=x,, r,H=r;, (4.60)
K, =55 = (5 ") (g ") = (1" )(H") 4.61)
K, =r,5 =55". (4.62)

This effectively changes the coefficients to scaled coefficients in the description

of the wave amplitudes in the plate.

4.3 Concentrated force

In the above, the equations of motion of the plate have been decomposed into a
series of half-sine orders. If the excitation is a concentrated force at position y,, this
needs to be decomposed into its effect_ on the various orders. If a force is defined by
F(y)=F,6(y—y,)and assumed odd and periodic in (-b, b), then f(y) canbe

expressed by a half-range Fourier series expansion [15], that is

F=213a,cosL s b, sin Y (4.63)
2 = b b
_ _ 2k . nny . 2F, . nmy, _
where a, =0, a, =0, b"—g.{o F{y)sin P dy = 5 sin 5 forn=1,2,3,...

Hence, the force can be represented spatially by the series

£y :ﬂzgnmsin”—”ﬁ. (4.64)
- b

If the concentrated force is applied at the centre of edge, y, =% , then

Fiy)= Zga 3 (-1 sinzgl (4.65)
r=1

n,0dd

or
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Fon=2 "Z( )™ si (2_"—1)191 : (4.66)

Figure 4.2 shows a reconstruction of a concentrated force at y,=%/2 using

Fourier components uptorn = 11.

Force/max. forca ampliludle

_0.4 ' L . i L " b 1 L
o 0.1 Q.2 03 0.4 o5 a6 0.7 [14:] 09 1
yio

Fig. 4.2 The concentrated force at the middle of the left-hand edge of a coupled plate

represented by the Fourier components, n = 1-11.

4.4 Strain energies and power
The strain energy for the plate is determined from the following relationships [5].

4.4.1 Strain energy for flexure

The strain energy for flexural vibration is given by

U, =§ j:j;ﬁ%”} +[%J +2v[%i—?+31—?}+2(1—v)[ aa:a’;) }irdy 4.67)

where D is the flexural rigidity, v is Poisson’s ratio, w is the out-of-plane

displacement and b and [ are the width and length of the plate.

4.4.2 Strain energy for in-plane

The strain energy for in-plane vibration is given by
2 2
u ) (1-v)(au o
2v — -— . (4.
HE B ES 3 o
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where E is Young’s modulus, & is the thickness of the plate, v is Poisson’s ratio, u

is the extensional displacement and v is the transverse displacement.

4.4.3 Power
The input power and the dissipated power are obtained from the same

equations, (2.65) and (2.66) respectively, as for the beam.

4.5 Simulations for a single plate
4.5.1 Model
The model was selected to compare the results with previously published data
[16]. It is shown in Figure 4.3 and comprises a square aluminium plate simply
supported along two edges, free along the other edges. For this model, only the

flexural vibration is considered.

S | Simply Supported

F | Free-free

Figure 4.3. A single plate: Width b = 254 mm, Length / = 254 mm, Thickness 4 =
3.175 mm, Material: Aluminium (Young’s modulus E = 7.24x10"° N/m?, Poisson’s
ratio v = 0.333, Material density p = 2.794x10° kg/m”).

4.5.2 Natural frequencies
For free vibration problems F, is zero and the natural frequencies for flexural

vibration are determined from the equation

det (K,,)=0 (4.69)

where K, is the dynamic stiffness matrix for flexure reduced as appropriate

according to the boundary conditions atx =0 and x = [.
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Figure 4.4 shows the flexural “frequency functions” (that is det(K)) for a
single plate according to the number of half-sine waves along the y-direction. In
the plot n implies the number of half-sine waves from y=0to y = & in the

direction across the plate.

The natural frequencies of a single plate obtained by the dynamic stiffness
method (Figure 4.4 and Table 4.2) agree well with previously published data [16]

as shown in Table 4.1.

WT I

w* 1°

L
0
Froquancy (Hz}

Fracuency (H2)

(@n=1 (byn=2

g

Phase {dog}
h

NUUL

W w
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Figure 4.4. The flexural “frequency functions” (i.e. det(K;')) for a single plate for

4 different half-sine wave orders.



Table 4.1. The natural frequencies for a single plate obtained from published data [16]

A*=ol’\[p/D (b=254mm, | =254mm, v =0.333)

m 1 2 3 4
n
1 115.9 192.4 4412 908.8
2 469.9 561.2 849.9 1337.3
3 1062.8 1156.6 1469 .4 1984.2
4 1894.6 19878 2313.7 2849.1

Table 4.2. Comparison of the natural frequencies for the first mode of each n (m=1)}

n Gorman Dynamic Stiffness Method
1 115.9 115.86 (-0.03%)
2 469.9 470.09 (0.04%)
3 1062.8 1063.18 (0.04%)
4 1894.6 1895.26 (0.03%)

4.5.3 Dispersion relationships of flexural vibration for a single plate

Figure 4.5 shows the dispersion curves, the relationship between wavenumber
and frequency, and also the wavespeed, for a single plate for the first 4 different
half-sine orders across the plate. There are four complex roots from equation
(4.12) for each n. For two complex roots, k,; and & .7, the real parts of the
wavenumbers that are the evanescent component are greater than the imaginary
parts and these waves are not propagating but decaying along the plate. For the
other two complex roots, £ ,3 and & 4, on the other hand, the imaginary parts are
greater than £he real parts and these waves are propagating in negative and
positive directions, respectively and each of these waves transmits energy along
the plate. 