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ABSTRACT

By using Frenet formulation and Timoshenko beam theory, the partial differential equations
of motion are derived for a helical spring having a doubly symmetrical cross section. These
are solved to give the relation between wave number and frequency along with the associated
wave shapes. From these the dynamic stiffness matrix is assembled. Natural frequencies and
related wave numbers are obtained from the receptance of the system. The results of the
dynamic stiffness method are compared with those of the transfer matrix method and the
finite element method from published examples. Displacements are also found from the
dynamic stiffness matrix under a given loading condition. The nature of the wave propagation

obtained using the presented method is also investigated.
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NOTATION

cross-sectional area of wire

coefficients of displacement of wire
phase velocity of the wave

Young’s modulus, shear modulus

force vector

frequency of oscillation

mass and mass moment of inertia matrix
axial length of the spring

moments of area about diameter of cross-section

Dynamic stiffness matrix
wave number

resulting moments in the wire

number of active turns
applied forces acting on the spring

resulting forces acting on cross-section

transformation matrix of the helical system
radius of the helix

radius of a wire of circular cross-section
distance measured along the helix -

system matrix, Appendix A

transformation matrix of a helical spring

time

displacement vector

co-ordinate system measured along the helix of the spring
unit vectors of the co-ordinate system (u, v, w)

torsional wave in the wire without bending (ref. 4)
bending wave in the wire without torsion (ref. 4)
co-ordinate system measured along the axis of the spring
helix angle

magnitude of translational displacement
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superscript

displacement vector of wire
angle measured along the wire
shear coefficient for cross-section
mode shape vector

curvature of helix

magnitude of rotation

density of wire material
tortuosity of helix

Poisson’s ratio

magnitude of force

magnitude of moment

components of rotation of wire cross section

rotation vector of wire

angular frequency

global coordinate
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1. INTRODUCTION

The helical spring is a very common and important element in many machines and vehicles.
In dynamﬁc analyses such springs, as well as dampers, are often treated as simple massless
force elements. However, as the frequency range of interest increases, such an approach is not
suitable for the prediction of the dynamic behaviour of the system. In particular, above a
certain frequency, internal resonances of the spring have to be taken into account.

Already a hundred years ago, Love [1] gave the equations of motion for a coil spring.
However, these twelfth order differential equations could not be solved analytically. In the
1930s Timoshenko [2] derived the rigidity of the compression, lateral and shear deflections
for a coil spring in order to explain the bounds of stability of a compressed helical spring due
to lateral buckling.

Axial vibrations of helical springs are described by Wahl [3]. For a circular wire, he

showed that the fundamental natural frequency of a spring, clamped at both ends, is given by:

1/2
r 2G
5= 8n7R? [?} 1)

where r is the radius of the wire, R is the radius of the helix, » is the number of turns, G is the

shear modulus and p is the density. Other natural frequencies were integer multiples of f;.
Wittrick’s paper [4] of 1966 is a classic treatise on the behaviour of helical springs. Prior
to this, as given by Wahl, in analyses of the propagation of extensional waves along the axis
of a helical spring it was assumed that the coupling between extension of the spring and
rotation about its axis could be ighored. By including this coupling Wittrick showed that
there are two basic wave velocities. One, V, is of a wave involving torsion in the wire with no
bending, while the other, V', is of a wave involving bending but no torsion. Both wave
velocities were shown to be independent of the helix angle as well as the frequency. They

were given as:

16" 1 Er)"
V== L i V== u (2,3)
Rl pA R pA



where A is the cross-sectional arca of the wire and EI, and Gl are the rigidities for flexure
and torsion of the wire about the binormal and axial directions respectively. These velocities
are given relative to the distance along the wire. The velocity V corresponds exactly to
Wahl’é natural frequencies if the wire is circular in cross-section.

These two types of wave were shown by Wittrick to exist independently, but since both
involve extension of the spring and rotation about its axis, in general they occur
simultaneously.

Wittrick treated the helical spring as a Timoshenko beam including shear deformation and
rotational inertia and obtained a set of twelve linear coupled partial differential equations.
These were the most complete equations at the time, and apart from minor corrections, have
been used by a number of authors since. He obtained approximate solutions in several ways
but did not obtain an exact solution.

Jiang er al. [5, 6] obtained non-linear equations of motion and from them linearised
equations for the vibration of a spring. They studied the coupling between axial and torsional
motion in more detail than Wittrick, deriving the complex form of the oscillations of the
spring in the time domain due to the interaction and superposition of the component waves.

Sinha and Costello [7] used a finite difference technique and the method of non-linear
characteristics to solve numerically the non-linear partial differential equations in the time
domain. This study too is limited to axial and torsional motion of the spring.

It is not a simple matter to extend the above analyses to include out of plane motion of the
spring. The axial and torsional motions can be likened to those of a simple rod, but coupling
between the different equations of motion makes such an analogy less useful for the out-of-
plane motion. However, with the aid of digital computers it is possible to solve the
differential equations as given by Love or Wittrick,

In a different approach Lee et al. [8] used 432 Euler beam finite elements to represent a
coil spring having six turns in order to investigate the resonance effect on the vehicle
suspension system and body. These were reduced to six super-elements to ease analysis
within a vehicle model.

Mottershead [9] developed special finite elements for solving the differential equations.
He obtained element displacement functions by integrating the differential equations. The
elements so obtained may be one or more turns of the spring in length or a fraction of a turn.
For static problems his elements provide exact solutions whilst for dynamics the natural

frequencies are unaffected by mesh density provided that sufficient master degrees of



freedom are specified. Mottershead also performed experiments on two smail clamped-
clamped springs, the results of which have been used by other researchers to test their
theories. As well as predominantly extensional and torsional modes, ‘snaking’ modes that
also involve transverse motion were found that can explain the side wear of coils under axial
loading. Such modes cannot be detected by using simple theories.

Another approach is the transfer matrix method, employed by Pearson [10]. He obtained
the partial differential equations of motion for a helical spring subject to a static axial preload.
The transfer matrix was obtained from the differential equations by a series expansion. This
series does not converge if the spring is too long, so usually the spring is sub-divided into 2"
equal segments. The natural frequencies were found as the zeroes of the determinant of a 6x6
frequency dependent matrix. An iterative method was used for this. Pearson shows the
dependence of the natural frequencies on axial load, helix angle, number of turns etc.

Yildirim [11] also used the transfer matrix approach, making use of the Cayley-Hamilton
theorem to develop an algorithm which allows the transfer matrix to be determined with
improved precision. This is especially important for long springs. In [12] Yildirim
concentrates on determining the natural frequencies for arbitrarily shaped springs. In [13] an
efficient method for determining the natural frequencies is developed.

In [14] Pearson and Wittrick used the dynamic stiffness method to find an exact solution
for the natural frequencies of a coil spring based on Bernoulli-Euler beam theory and an
adaptation of the Wittrick-Williams algorithm. Although efficient and analytically exact, this
work does not include shear effects in the wire.

In this report the governing partial differential equations of motion of a helical spﬁng are
derived based on Timoshenko beam theory and Frenet’s formulation for curved systems (as
in [9-11]). From these equations the dispersion relation, linking wave number and frequency
for each wave, is studied. By a summation of waves, a frequency-dependent dynamic
stiffness matrix, K is determined that links the six degrees of freedom at each end of the
spring to the six forces/moments at cach end. After applying suitable constraints, the
frequencies at which the determinant of K vanishes are the natural frequencies of the spring.
Moreover the dynamic stiffness matrix can be used as an “exact” element in a model of a

more complicated structure, for example a vehicle.



2. THEORETICAL BACKGROUND AND FORMULATION

2.1, Static equilibrium

Fig. 1 Statically loaded helical spring

Consider the uniform spring wound from wire, the central axis of which forms a right-handed
helix of radius R with helix angle o. The spring is subjected to arstatic axial load P, as shown

in Fig. 1. Then at any cross-section the wire is subjected to three components of force P,, P,,

F, and three moments M,, M,, M, about the normal u, binormal v and tangential

L
directions w (see Fig. 2). These forces and moments result in the linear and rotational
displacements of the wire and cause the coupling effects of motion of the spring. It will be
assumed that the cross-section of the wire has two axes of symmetry which coincide with the

directions u and v. At the position s on the spring measured along the wire,

P=scos/R 4

and X =ssin = Rgtanc (5.a)
y = Rcos¢ (5.b)

z= Rsing (5.0)



spring axis

—

Fig. 2 Coordinate system of a helical spring

The displacements (u, v, w) in local co-ordinates are related to global co-ordinates (x,y,2) by

u] [1 O 0 JO —cos¢ —sing |[u,
ve=|0 cosc -—sinc |l 0 0 u,
w| |0 sina cosa |0 —sin¢ coso ||u,
, (©)
0 —cos¢ —sin ¢ u, i,
=|coser sinasing —sinccosg [Ju, r =[Qlx,
|sina  —cos¢rsing  coscrcos¢ ||u i,

Similar equations apply for rotations, forces and moments.
Frenet formulation [15] allows all of the displacements and resultant forces to be given as
functions of s, the measured length along the helix from one end of the helical spring as

shown in Fig. 2. The curvature x and tortuosity T of the helix are defined by

2
Ccos” ¢
K= 7
R M

= SIN X COS K
R

(8)

The relations between these parameters and the three unit vectors are [15]



Suppose the components of the linear displacements 0,

moments M at position s
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Differentiating equation (10) by the length measured along the helix s,
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rotations B, concentrated forces P and

(10)

(11)

Substitute equations (9) into the second term of right hand side of equation (11) and rearrange

to give

£§i-f5vi-K5w
5 aS
c%?“ 8 + K0
d 3] _ g - v W
@[ D gpyip,
M) | uF
a—“ —TM, + kM,
L s

=>

= -

(12)

Timoshenko beam theory [2] gives the relationship between displacements and forces as



[ P, F, B, ]
5 + v —Bu —
GAy GAYy EFA i
d 18 M, M, M, |i.
“ - v (13)
ds | P El El GI, |i .
W
M 0 0 0
. £ —F, 0

Substituting equation (13) into equation (12), the governing partial differential equations for

the static equilibrium are obtained as follows

5 A +8,+18, -K6,, L -8,-18, -i—+K5u
GAY GAY EA i
9 0 = %+ 70, — k0, M, -0, &'*K@,, v (14)
(95 P u EIv GIW ~
M P, - KB, ~P, kB, (W
L PV + TMV - ’QW)V _PH - TMH ’(Mli
Rearranging by components of displacements and forces,
& 8
9 B [Su S:|® (15)
ds | P 0 S,||P
M M

where S, is the system matrix defined in Appendix A. Note that S, is diagonal, whereas

S, =S,, are not symmetric.

2.2. Dynamic equilibrium

In the D’Alembert view of dynamic equilibrium of equation (15), inertia forces are
considered to act in opposition to elastic forces. Introducing the inertia forces into equation
(15), the governing partial differential equations for the dynamic equilibrium are equation

(16) that is essentially the same as Wittrick’s governing differential equation [4].
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where T, is the inertia force matrix defined in Appendix A. Note that T, is diagonal.

Equation (16) describes the dynarnic behaviour of a helical spring.
2.3. Dispersion relationship

A wave in the spring is composed of temporal and spatial variation. The temporal variation is
characterised by the angular frequency  and the spatial variation is characterised by the
wave number k. The form of relationship between wave number k and angular frequency  is

termed the dispersion relationship as follows.

k=I— (17)

where ¢, represents the phase velocity of the wave.

The translational and the rotational motions and the stress for an element of the wire all
have the same spatial dependence so if the responses of an element of the wire are harmonic

in time, we write the displacements and forces for a particular free wave as

ek_f+jwr (18)

> 4d @ >

S
0
P
M

Substitution of equation (18) into equation (16} gives the set of twelve homogeneous linear

simultaneous equations.
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Q) S Sp 0 01O
k = - (19)
I1 0 S, T, 0jI1
A A
Rewrite equation (19),
A
S, S 1)|@
kKiI|—| . - =0 20
( [ ] |iszl Sa I1 -
A

where S,, =-w’T,,. In order that equation (20) should have a non-zero solution, it is

necessary for the determinant to vanish, thus

det =0 (21)

Sy S
kI .«
2 |:S’11 Szz:|

This is an ordinary eigenvalue problem of dimension 12. It follows that there are twelve wave
numbers, six relating to the forward direction and six to backward direction velocities of

wave propagation. If the frequency is given, the free wave numbers can be found from the
eigefl solutions of the system matrix of equation (20). The eigenvectors {A oIl A}T

represent the deformation and stresses associated with free wave propagation at wave number

k and frequency o.
2.4. Dynamic stiffness matrix
In this section, the dynamic stiffness matrices are derived for the helical spring system. The

relations between loads and displacements are obtained from the first six rows of equation

(16).

%{2} = [s“]{g} + [Sn]{;;} (22)



which can be rewritten as

Ll =l sl saT 21 e

Write the solution as a sum of 12 waves

{ } Ea {p,}e"e™ = dzag(ek"j ){ai}eﬂ”’ (24)

i=1

where [®] is the 6x12 eigenvector matrix associated with equation (21) and a, are the

complex amplitudes of the 12 waves. Differentiate equation (24) with respect to s
5 (8 k |
—{ r=|[®ldiaglk.e™ Ka, fe’ 25
px {9} (@ldiag(ike" a} (25)

Substituting equations (24) and (25) into (23) we obtain for the forces and moments

M

{P } = _[Su]—I[S”][CIJ]diag(ek’j ){aj}+ [S12 dzag(k e ){a } (26)

Now form the 12 x1 vector U of displacements at s =0 and L from equation (24):

8(0)
_1800) | _ [2] _
U= (L) [Cb]diag(ek*L) 0, = Dya @7
o(L)

and the 12x1 vector F of forces and moments at s =0 and L from equation (26):

P(0)

Fe M(0) - ('1'[512]_][311][@]'}'[Slz]—l[(i]dmg(ki)) {a,.}=DQa 28)
;((i)) (~[5: 1[5 Y @ldiagte ™)+ [5,, ] [@]diagCk e )

10



where D, and D, are 12x12 matrices. Eliminating a from these equations, the dynamic

stiffness matrix K is given by
F=KU=(D,D;")U (29)

To use this it is necessary to convert from local coordinates (u, v, w) to global coordinates (x,

y, z), apply boundary conditions and solve. Write a 12x12 matrix

QO 0 0 o 1

- 0 Q) 0 0 (0)
0 0  QQnm) 0
0 0 0 Q(2n)

where Q(¢) is the 3 X3 rotation matrix given in 2.1, Then if F is force vector at the two ends

in (x, y, z) coordinates and U is corresponding displacement vector

F =TF (31)
| U=TU (32)
Then F =TF=TD,D;'U=TD,D;'T"U (33)

i.e., in global coordinates the dynamic stiffness matrix is
K =TD,D;'T"' (34)
2.5. Solution for forced response

Suppose the boundary conditions are that for coordinates m the force is known and the

displacement unknown and for coordinates [ the displacement is known and the force

} _ F__E_HE} (35)
Kim KH Ul

il

unknown. Then partition K



Then taking the upper part and rearranging gives U, in terms of known quantities

U, =K, {F.-K,U} (36)

Substitute this in the lower part to give
+K,T, (37)
2.6. Solution for determining resonances

In order to determine the resonances of a spring under specified boundary conditions, maxima

are sought in the function
B=det|K™| (38)

For free-free boundary conditions the full matrix K is used. For other boundary conditions
this has to be reduced. For example, for a spring which is clamped at one end and free at the

other, co-ordinates / correspond to the clamped end (U, = {0}). Since the stiffness matrix K,

and coupling stiffness matrices K,;, K,, do not affect the co-ordinates m any more, only

i ?
6x6 matrix K, remains.

For a clamped-clamped boundary condition, when the same method is applied, the rank of
the stiffness matrix becomes zero. In this case therefore the spring is divided into two
substructures at an arbitrary location. These substructures may be analysed by the continuity
conditions and the equilibrium equations at the joint. The dynamic stiffness matrix of the
whole spring system is derived by assembling the 12x12 dynamic stiffness matrix of each

substructure. The assembled dynamic stiffness matrix 1s

Krlnm K:r:! 0
K =|K, K, +K: X2 (39
0 | 764 X;

12



where the superscript represents the substructure identification. Applying boundary

conditions, the dynamic stiffness matrix of the spring is
K=K/ +K2, (40)

Although this may be derived by the continuity conditions and the equilibrium equations at

the joint, one must be careful and the process is considerably tedious.
3. EXAMPLES AND DISCUSSION
3.1. Natural frequencies and forced responses

In this section numerical results for three springs are shown and compared with published
results. Measurements and predictions for spring 1 and spring 2 have been published by
Mottershead [9] and used by Pearson and Yildirim to verify their work [10-13].

Details of each spring are given in Table 1. Since Mottershead [9] does not give material
properties of spring 1 and 2, the calculations were performed by using the data of spring 1
given by Yildirim [11] shown in Table 1. Spring 3 is a part of the front suspension of a mid-
size passenger car studied by Lee [8].

A finite element model of spring 1 and spring 2 has been assembled using NASTRAN,
composed of 350 two node simple beam elements (CBAR) each covering 8 degrees of arc.
Spring 3 lhas been modelled by 432 two-node simple beam each covering 5 degrees of arc.
Natural frequencies are obtained by the Lancoz method.

Pearson calculated the overall transfer matrix of the spring which has been divided into
six equal segments [10]. By using sequential matrix multiplication, the overall transfer matrix
was calculated. Yildirim computed the overall transfer matrix using an algorithm based on the
Cayley-Hamilton theorem [11]. The dynamic stiffness method, presented in this report,
programmed using MATLAB (see Appendix C), has run on a PC with 300 MHz CPU clock
speed. It took about 200 seconds to find the dynamic stiffness matrix and dispersion curve
from 1 Hz to 1 kHz with 0.1 Hz frequency resolution.

Natural frequencies are found from the peaks of the determinant of the inverse of the
dynamic stiffness matrix (See section 2.6). This function is shown for spring 1 with various

boundary conditions in Fig. 3. Natural frequencies for spring 1 and spring 2 with both ends

13



clamped are compared, in Table 2 and Table 3 respectively, with previously published results.
A dash indicates omission of a value. The results of the present finite element analysis are
rather different from those obtained by Mottershead [9]. The NASTRAN results are lower
than the experimental results by on average 2% whereas Mottershead’s results are larger by a
similar amount. An importaht difference between NASTRAN and Mottershead’s results are
due to not using same material properties although the type of element is also quite different.
Differences in material properties probably also have an effect on the calculated results of
spring 2 for which Mottershead’s results are quite different from the others as shown in Table
3. In this case, the results of current method and the NASTRAN finite element model are in
good agreement. Under the transfer matrix method the figure in parenthesis is as shown in
Pearson’s paper [10], whereas the other figure has been recomputed using parameter values as
in Table 1. Comparing the results between Pearson’s and Yildirim’s method there is little
difference except computing time to determine the overall transfer matrix. In general
Pearson’s method 1s quicker than Yildinm’s.

There is good agreement among the three numerical analysis methods and the
experimental results. Especially the dynamic stiffness method presented in this paper is quite
accurate for higher modes. Among the numerical analysis methods using the same material
and section properties, the dynamic stiffness method gives results which are closer to
NASTRAN than the transfer matrix methods.

The variation of the natural frequencies of each spring with changes in boundary
conditions is given Tables 4, 5 and 6. Most results show good agreement. However the
results from NASTRAN have a lot of discrepancies from the other methods for the case of
spring 1 with both ends simply supported.

In the case of the dynamic stiffness method, the forced responses are obtained by
equation (30). The forced responses at the resonance frequency are illustrated for spring 1
subjected to an axial force at one end and clamped at another end in Fig. 4. Note that these

are not necessarily the free mode shapes.

14



Table 1. Parameters of helical springs studied

parameters spring 1 spring 2 spring 3
Coil radius (m) 5x10* 5x10™ 5%10°
Helix radius (m) 5x10° 5%107 6.5%10”
Helix angle (degree) 8.5744 9.78 7.67
No. of active turns 7.6 6 6
Mass density (kg/m’) 7.9x10° 7.9%x10° 8.76x10°
Young’s modulus (N/m®) 2.06x10" 2.06x10" 2.09x10"
Poisson’s ratio 0.3 0.3 0.28

Table 2. Comparison of the natural frequencies for spring 1 with both ends clamped. (NAST:
NASTRAN, DSM: present method)

Dynamic

Test Finite element method Transfer matrix method stiffness

method
(Hz) Ref. {9] Ref. [9] NAST Ref. [10] Ref. [11] DSM
f; 391 396 383.8 3934 (394.9) 393.5 388
£ 391 397 387.1 396.0 (397.6) 395.9 389
1 469 459 457.6 462.8 (456.4) 462.8 462
I 532 528 513.8 525.6 (518.3) 525.5 526
1 878 887 841.7 863.6 (859.7) 864.0 840
£ 878 200 854.7 876.8 (874.7) 876.9 861
£ 906 937 911.3 913.6 (902.2) 914.3 926
fi - 1067 1011.7 - (1024.0)  1037.0 1035
5 1282 1348 1276.3 - (1293.0) 13105 1265

15



Table 3. Comparison of the natural frequencies for spring 2 with both ends clamped. (NAST:
NASTRAN, DSM: present method)

Transfer Dynamic

Test Finite element method matrix stiffness

method method
{Hz) Ref. [9] Ref. [9] NAST Ref. [10] DSM
f 431 436 467 453 466
5 474 478 481 489 430
£ 490 497 484 526 482
1 - 509 506 569 541 568
fi 844 856 a02 896 900
5 932 037 863 977 951
f 960 064 985 1032 982
1 - 987 1083 1047 1081

Table 4. Natural frequencies of spring 1 with various boundary conditions (BC1: clamped-

clamped, BC2: simply supported-simply supported, BC3: clamped-free)

BCI BC2 BC3
(Hz) NAST Ref. [11] DSM NAST Ref [11] DSM NAST Ref. {11] DSM
£ 384 394 388 202 203 202 721 73.6 73.5
f 387 396 389 203 276 274 72.5 7l3.9 73.9
£ 458 463 462 381 329 328 2267 2307 2307 '
fi 513 526 526 408 448 446 2581 2633 2633
£ 843 864 864 643 665 663 3728 3807 380.7
£ 856 877 877 655 740 739 3747 3842 3842
f 913 914 914 847 - 831 671.4 - 681.0
f 1011 1037 1037 890 - 906 761.9 - 773.8

16



Table 5. Natural frequencies of spring 2 with various boundary conditions using dynamic

stiffness method (BCI1: clamped-clamped, BC2: simply supported-simply supported, BC3:

clamped-free)

(Hz) BC1 BC2 BC3
b 466.1 2203 100.6
£ 480.1 331.3 244.1
£ 482.2 400.3 275.6
f 568.1 493.3 4594
5 900.0 706.2 714.9
£ 951.0 803.7 811.1
f 982.4 914.7 965.1
b2 1081.4 991.2 1038.6
Table 6. Natural frequencies of spring 3 with various boundary conditions (BCl: clamped-
clamped, BC2: simply supported-simply supported, BC3: clamped-{ree)
BC1 BC2 BC3
(Hz) NAST  Ref[ll] DSM NAST DSM NAST DSM
f 33.06 3194 3293 14.14 15.19 7.32 7.19
5 3411 34950 33.70 24.34 23.31 1691 16.69
fi 3439 3632  34.18 27.88 28.44 19.11 18.94
£ 38.99 3736 38.74 36.67 34.19 32.97 32.69
fs 64.03 6355 63.78 45.16 48.69 33.51 33.19
£ 68.11 6948 67.78 60.25 56.44 49.94 49.56
£ 69.90 71.81 69.03 63.47 65.31 56.28 55.81
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3.2. Transfer stifftness

The dynamic stiffness is an important parameter required in order to model vibration
isolation. At a given frequency of excitation the ratio between {orce and displacement can be
expressed as a complex stiffness. Transfer stiffness can be obtained from equation (34) by
introducing a displacement vector at one end with only one component non-zero and
calculating the blocked force in this direction at the other end. Fig. 5 and 6 show the axial and
transverse transfer stiffness for spring 3 compared to the static stiffness. The axial transfer
stiffness found in this method has a sharp dip at 16 Hz whereas the transverse transfer
stiffness has a sharp dip at 11 Hz. Both transfer stiffnesses have a peak around 30 Hz. Above

about 50 Hz, the transfer stiffness magnitudes increase with frequency except at resonances.

100 ey —
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10 10 10 10
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3
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Fig. 5 Phase and Magnitude of axial transfer stiffness of spring 3
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3.3. Wave propagation

The dispersion curve, wave number versus frequency, gives a lot of information about the
wave propagation. For a given frequency, ®, the harmonic equations of motion were solved to
find the compleex valued wave number, k from equation (20).

Fig. 7 shows the dispersion curves of each motion of a spring. It can be seen that there are
three regimes separated by wave type. In the regime I, the lower frequency area less than
point 4, travelling waves 1 and 2 start from zero wave number. These waves are extensional
and torsional waves of the spring respectively. They have similar wave number and so couple
casily. The near field waves of the wire 3 and 4 start with a wave length equal to the
circumference of the spring divided by the cosine of helix angle. Wave 3 corresponds to the
breathing motion of the coil which includes tension in the wire. Wave 4 relates to the bending
moment about normal axis of the wire. Waves 5 and 6 correspond to shear waves of the wire.
As the wave length of wave 1 approaches twice of circumference of the spring divided by the
cosine of the helix angle, the predominant wave type changes from travelling wave to near

field wave in the regime II, between point 2 and 1. Waves 4 and 5 diverge and change from
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near field waves to travelling waves in this regime. In the regime I, above point 3, the
travelling wave 1 changes to a near field wave, and wave 4 returns to a near field wave. In the
cases of near field waves, the wave numbers have complex values which corresponds to a
decay rate from the forcing point. In this high frequency regime there are only two travelling
waves, 5 and 6.

The dispersion curves of the presented method for spring 3 are compared with Wittrick’s
approximate curves [4] in Fig. 8. Wittrick found the phase velocities and group velocities of a
coil spring assuming that the helix angle is zero. For long wave length and small helix angle,
the phase velocities are quite accurate for waves 1 and 2 (V and V’of equation 2 and 3). The
other phase velocities are not acceptable in the frequency range of interest. The error comes
from the approximate expression for the root of the cubic equation and other assumptions.
The group velocities, the partial derivative of frequency with respect to wave number, are
more important than phase velocities in describing energy propagation. These have complex
values which corresponds to a decay rate from the forcing point. Except for wave | and wave
2 all group velocities go to zero in Wittrick’s model as the square of the wave length tends to
infinity. In this case the group velocities of waves 1 and 2 are the same as the phase
velocities. This means that both waves transport their energies without dispersion but no
energies related to other waves are transported at all. The graphical solutions of the presented
method are not consistent with these group velocities for large wave numbers, indicating that
dispersion does occur and that energy transport is shared among all waves.

From this it can be inferred that the energy of the spring is mainly transported by waves 1

and 2 at lower frequencies. Wave 5 carries the energy at higher frequencies.
3.4. The effect of helical angle on waves

As mentioned in the previous section, wave characteristics change at certain transition
frequencies. Three non-material parameters, helix angle, helix radius and wire radius, affect
these points. The helix angle can have a major effect, whilst the others have less influence
[10]. In general, when the helix angle is greater than 15° the dispersion curves of a spring
approach those of a straight beam. The variations of dispersion curves of each wave for
spring 3 with helix angle from 0° to 15° are shown in Fig 9. If the transition points are
interpolated, they can be seen to change by certain functions. Points 1 to 3 change by

trigonometric functions and point 4 changes by a linear function. Fig. 10 is the plot of the
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frequency variation of the transition frequencies with helix angle and compared with the
interpolated functions. In this range point 2 is more sensitive than any other points to the
helix angle. As the helix angle increases, point 2 approaches point 1. This means wave 4 has
same dispersion characteristics as wave 5 below the frequency of the cross point. There are

actually complex conjugate of one another.
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(0:calculated point 1, @: f =—120 X cos3.10.+ 274.5, Cicalculated point 2, B: f =228 Xsindo,

0:calculated point 3, ®: f =8.5x sin6a + 154.7, A:calculated point 4, A: f=-97.5¢ +143)

4. CONCLUSIONS

Based on Timoshenko beam theory and Frenet formula, the dynamic stiffness matrix for a
helical spring has been derived. The natural frequencies were calculated by using the dynamic
stiffness method. The results computed by the presented method were compared with various
pubiished methods and experimental results and were in good agreement. The response for
the forced vibration has been determined. Also the axial and transverse transfer stiffnesses for
spring 3 have been computed and compared to the static stiffness, to show the high frequency
behaviour. Investigation of the dispersion curves led to infer the wave travel in a helical
spring and to explain the coupling effect.

The dispersion curves which are compared with ref. [4] illustrate the wave propagation.
They show the predominant wave type and energy transportation in different frequency
ranges. Also, the effect of helix angle on the wave characteristics is investigated.

The advantages of the presented method are to calculate natural frequencies and
displacement vector in a range of frequencies chosen by user. Compared with the transfer
matrix method, the run time is very short and responses can be obtained easily for a forced
vibration analysis. In contrast with the finite element method, no geometrical modelling is

necessary.
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Appendix A. The submatrices S; and T, for a helical spring

PA

0

0 pA 0

Pl

T -k 0

0

-1 0 0

- 0 0O

T
-z 0 0
0

0
0 0 O
0

-k 0 0 0]

-7 0 O

0 0
0

0
0

k 0 0

- 0 0

-1 0 0
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Appendix B. Modeshapes of spring 1 by NASTRAN

Following modeshapes of spring 1 with both ends clamped are obtained by NASTRAN

mede 1: 383.3633 Hz made 2: 387.0830 Hz made 3; 457,758 He mode 4: 513.7397 Hz

mode 5: 841.7130 Hz mode 6: 854.6855 Hz mode ¥, 911.2568 Hz mode 8: 1011.719 Hz

mode §: 1276.323 Hz mode 10: 1356.124 Hz mode 11: 1570.447 Hz mode 12: 1494.059 Hz
- ——
ey
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maode 13: 1639.528 Hz mede 14: 1768.476 Hz mode 15: 1811,245 Kz mode 16: 1921426 Hz

maode 17: 1843.213 Hz mode 18: 2087.872 Hz mode 19 2099.948 Hz mode 20: 2201.797 Hz

mode 21: 2218.310 Hz mode 22: 2243.560 Hz mode 23: 2365.933 Hz mods 24: 2370624 Hz
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mode 25: 2402.309 Hz mode 26: 2534.693 Hz : mode 27: 2655.004 Hz mode 28: 2674.472 Hz

mode 29: 2758.234 Hz made 30: 2849079 Hz mode 31: 2856.856 Hz mode 32: 2028.087 Hz

mode 35: 2629.115 Hz mada 34: 3274935 Hz mods 35: 3450.310 Hz mede 36: 4095.138 Hz
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APPENDIX C. Program code for MATLAB

The MATLAB program is composed of main program “CSPRING.m” and function program
“DEXP.m”.

CSPRING.m

% Program for dynamic analysis of a coil spring
% Programmed by

% Jaehyung Lee and D.J.Thompsen

% 1. Aug 1993

% Ver 2.0

%

clear all; clc;
format long e;
5

t=cputime;

% variables

r = input{'wire radius [mi?: ');:
R = input{'helix radius [m]?: ');
alpha = input('helix angle {degree]?: ');
n = input('number of turns?: ');

E = input('Young"s modulus [N/m*2}?: '):
nu = input({'Poisson"s ratic?: 'J;

rho = input('density [kg/m"~3]12: *);

P = input{'prelcad [Kgl]?: ');:

fi = input{’'initial frequency [Hz]l?: ');

fo = input('final freguency [Hzl?: '};

fr = input('frequency resclution [Hzl?: '};

bc = input('boundary conditions? free-free=1, clamped-free=2, pivot-pivot=3: ');
%

D2R = pi/180; % conversion factor from degree to radian

alpha = alpha.*D2R;
h = 2*pi*R*n*tan(alpha): % height of the cecil spring
area = pi.*r.”2; % c/s area
G = E./{2.*(1+nu}); % shear modulus
mu = rho*area; % mass per unit length
s = {2*pi*R*n)/cos(alpha); % length measured according to wire
%
I = area.*r"2/4; % 2nd moment of area: about the wire axis
kappa = cos{alpha)"~2/R; % the curvature
tau = sin{alpha) *cos (alpha) /R; % the torosity
gamma=6* {L+nu) *2/ (7+12*nu+d*nu~2); % shear factor
% rotation matrix
p0=0;
pl=2*n*pi;
Q0=[0 -cos({pl) -sin{pd):
cos{alpha} sin(alpha}*sin(p0) -sin{alpha)*cos(p0};
sin(alpha) -cos{alpha)*sin{p0) cos(alpha)*cos(pl}];
RLl={0 -cos(pl) -sin(pl);:
cos{alpha) sin{alpha)*sin(pl} -gin{alpha)*cos(pl);
sin{alpha) -cocs(alpha)*sinipl) cos(alpha)*cos(pl)];
RT=zeros{12);
RT(1:3,1:3)=00;
RT(4:6,4:6)=Q0;
RT(7:9,7:9)=01;
RT(10:12,10:12}=0Q1;
£
b={l/{G*area*gamma), 1/(E*area), 1/(E*I), 1/{2*G*I)}]";
& stiffness matrix

k{l1,1) = 1/b(1l);
k{(1,8) = -tau/b(1);
k(1,9) = kappa/b(l);
k(31,11) = -1/b(1);
k(2,2) = 1/b(1);
k(2,7) = tau/b(l);

k(2,10} = 1/b(1l};

33



k(3,3) = 1/b(2);
k(3,7) = -kappa/b(2};
k(4,4) = 1/b(3);
k{4,11) = -tau/b(3);
k(4,12) = kappa/b(3);

k(3,3) = 1/b(3};
k(5,10} = tau/b{3);
k(é,6) = 1/b(4);
k(6,10) = -kappa/b(4};
% system matrix

A = zeros{l2};

A(1,2) = tau;
2(1,3) = -kappa;
A(l,5) = 1;
A(1,7) = b(1);
A(2,1) = ~tau;
A(2,4) = -1;
A{2,8) = A(1,7);
A{3,1}) = kappa;
A{3,9} = b(2);
A{4,5} = tau;
A(d,6) = -kappa;
A(4,10) = b(3);
A(5,4) = -tau;

A(5,11) = A(4,10);
Al6,4) = kappa;
A(6,12) = b(4);

A{7,8) = tau;

A(7,9) = -kappa;

2{7,11) = P*sin(alpha)/(E*I);

A(7,12} = -P*cos(alpha)/{(2*G*I);
A(8,7) = -tau;

A(8,10) = -P*cos{alpha)/(E*I);

A(9,7) = kappa;

A(9,10) = P*cecslalpha)/(E*I);

A(10,8) = 1;

A(10,11) = tau+P*R*cos(alphal/ (E*I};
A(10,12) = -kappa+P*R*sin{alpha)/(2*G*I);
A{11.,7) = -1;

A{11,10) = -tau-P*R*cos{alpha)/(E*I);
A{12,10) = kappa-P*R*sin(alpha)/(E*I);
%

fall = [fi:fr:fo]";
nf = length(fall);
lam = zeros(nf,12);
for in=l:nf;
£ = fall(in); :

A{7,1) = - (2*pi*f)"2*mu;

A(B,2) = A(7,.1);

A{9,3) = A{7,1);

A{10,4) = - (2*pi*f)~2*rho*I-P*sin{alipha);

A(11,5) = A(10,4);

A(l12,.8) = 2*%{-(2*pi*f}~2*rho*I)+P*cos{alipha):
% find wave number vs. fregency

[V,evi = eig(A);

lamthis diagf{ev}.";

{dum, iii] = sort{imag{lamthis)};
lamthis = lamthis{iii); )
for iii=1:11
ip=fiii iii+1};
if abs{imag(lamthis(iii+l})-imag(lamthis{iii)))<le-10
[dum,it] = sort{real{lamthis(ib))};
lamthis(ik) = lamthis{ib(it));
end
end
lam{in,:} = lamthis;
%
phi = v{1l:6,:);
% Dynamic stiffness matrix
[Pl, DD1l) = dexp(k, phi, ev, 0};
[D2, DD2] = dexp(k, phi, ev, s);
KDl = [D1;D2];
= [DDl; -DbD2];
kf = RT*KD2*inv (KD1) *inv(RT) ;
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% Apply boundary condition
if bc ==
ckf = kf;
elseif be ==2
ckf = kE£(7:12, 7:12});
else
ckf{1:3,1:3)
ckE(4:6,4:8)
end
% Find displacemet/force
dkf(in) = det(inv{ckf));
psi(in)=angle{dkf{in)) /D2R;
% Phase angle
if psi(in) < 1 & psi(in} > -1
psi{in)=90;
else
psi(in)=-90;
end
end
clt
% Plot 'displacement/force'
figure{l)
axes{'pesition',[0.1, 0.75, 0.8,0.15]);
grid
plot{fall, psi, 'b")
ylabel ('phase [degl'):
axes('position', [C¢.1, 0.1, 0.8,0.61);
semilogy(fall, abs{dkf}, 'b')
xlabel ('Frequency [Hzl');
ylabel{'Displacement/Force [m/N]')
grid
% plot 'Pispersion curve'
figure(2)
subplot (211)

kf{d:6,4:6);
kf(10:12,10:12) ;

ploti(fall, [abs(real{lam{:,7))), abs{real(lam(:,8))),

abs (real(lam{:,10)})), abs({real(lam{:,11))),
title{'real')
ylabel ('wave number [1/m]')
subplot (212)

plot(fall, [imag(lam(:,7})), imag(lam(:,8}), imag{lam({:,9)),

imag{lam{:,11})), imag(lam(:,12))])
title('imaginary'}
xlabel (' freqguency [Hz]')
yviabel('wave number [1/m]"')
%
run_time=cputime-t

DEXP.m

function [D1, DL]=dexp(s, phi, ev, fhi)
dis = fhi.*diagl(ev);

dx = exp{dis."');

dlx = dx*ev;

dz2x dx*ev."2;

d3x = dx*ev."3;

D1 = phi*diag{dx);

D2 = phi*diag(dix};
D3 = phi*diag(d2x);
D4 = phi*diag{d3x);
DD = [D2;D1];

[n, m)l=sizel(s);
td = zeros(n,12);
for ii = 1l:n

for 3 = 1:mm

ted(ii, ) =td(ii,:)+s{ii,33).*DD(33.:);
end
end
%
DL = {td(1l,:); td(2,:}; td{(3,:); -td{4,:); ~td(5,:};

abs (real(lam(:,9))),...
abs (real (lam({:,12})})])

td{6,:)1;

imag{lam{:,10)),...
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