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Boundary element model for two-dimensional elastodynamics

SUMMARY

A Boundary Element model for vibration propagation in two-dimensions has been produced.
This has special provision for open boundaries so that the infinite surface of the ground can be
modelled as an open boundary of finite length. The effects near to the termination of the boundary
are investigated. This report provides an outline theoretical description of the model and instructions
for preparing input data and running the program. It also presents a number of example analyses
which include a half-space, a thin seil layer and vibration from a tunnel. The model uses three-
noded quadratic elements so that the frequency range up to 250 Hz, associated with structure-bome
noise from railways, can be covered using a reasonable number of elements. In the case of tunnel
vibration, the model indicates that the vibration of the ground surface above th tunnel may be
strongly influenced by the tunnel structure. It is important in therefore that in furture work the tunnel -
structure should be accounted for in the model.
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1. INTRODUCTION

Trains running on lines on the ground surface produce vibration with predominant
frequencies between about 4 Hz and 50 Hz. The Boundary Element Method (BEM) has been used
previously to model the transmission of vibration in this frequency range [1, 2]. The BEM is
advantageous compared with other techniques because it is able to cope with geometrical features
such as ditches, embankments and cuttings while also modelling an infinite domain so that a regime
of wave propagation is modelled.

The present work is concerned with higher frequency vibration from trains that gives rise to
structure borne or ‘groundbormne’ noise. This phenomenon is especially associated with trains
running in cut-and-cover or bored tunnels although it has also been associated with trains running
on surface tracks [3, 4]. Groundborne noise has dominant frequency components from about 30 Hz
to as much as 250 Hz. The need for theoretical models for vibration from tunnels and their role
alongside empirical prediction methods is discussed in reference [4]. The objectives in the present
development of theoretical models therefore includes the modelling of tunnels and cuttings and the
capability, with resonable computing resources, to model waves at 250 Hz.

This report describes a computer program implementing a two-dimensional boundary
clement (BE) model for elastodynamics. The program is written in Fortran and called GBED4
(Generalised Boundary Element Domain). Although the program has been developed specifically
for application to the analysis of vibration propagation from railways it is more generally applicable.
The program models a single material domain which may be either finite, with a closed boundary,
or infinite, i.e. representing propagation of vibration away from the structure.

In the BEM, the surface of the ground, or structure, is discretized using a set of elements
similar to the those of the finite element (FE) method. The program has been developed using the
boundary element approach set out in Reference [5]. Since only the boundary is discretized, line
elements are used for the two-dimensional case. In the software only a single element type is
implemented having three-nodes and quadratic interpolation of the state variables along its length.
This represents a higher order element than has been used in the previous work [1, 2] with the aim
that it should be suitable for obtaining solutions to the higher frequency required.

A number of example analyses are presented in Section 4 of this report in order to
demonstrate the use of the model to cover the frequency range up to 250 Hz and to show the issues
that the user must address in constructing a suitable boundary mesh. The cases examined are a
homogeneous half-space, a thin ground layer constrained at its lower surface, and vibration from a
track foundation in a tunnel set in a homogeneous half-space. For the half-space and layer cases the
results of the model are compared with a semi-analytical model [6].

2. THEORETICAL ASPECTS
2.1 Outline of theory

Consider a body €2 with a surface I" (Figure 1.) The displacement at a point i on the body, in
a direction along the direction defined by the basis vector x,, is denoted by ;.

If time-harmonic solutions are assumed, i.e. seeking a formulation for the frequency domain,
the integral equation for elastodynamics can be stated as

u+[ Y puu dU=| ¥ wp, dr )
k k
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where 1 is the displacement at a point on the surface I in the direction of the basis vector k and p;
is a load at a point on the surface I" in the & direction. The tensor p, represents the solution for the

load in the / direction at the interior point { arising from a unit applied displacement at a surface
point in the direction k. Likewise, u, represents the solution for the displacement in the [ direction
at i due to a unit load at the point on the boundary in the k direction. These are known as the Green’s
function solutions. In performing the integration, the surface point is “moved” around T. For the
two-dimensional case, the unit solutions p, and u, are 2 by 2 tensors (indicated by the subsrcipts
each taking two basis vector directions). The elements of these tensors are functions of the distance

between the surface point and the point i. The integral equation, as stated here in terms only of
integrals over the surface, assumes that all loads are applied on the boundary and none are applied

within the volume of Q.

Figure 1. The domain Q with surface I

The integral equation for the elastodynamic wave field, equation (1), is similar in form to the
Kirchhoff-Helmholz integral equation that represents an acoustic wave field and that can be derived
from the scalar wave equation. Similarly the integral equation for elastodynamics can be derived
from the Navier’s differential equations [5]. The Navier’s equations for elastodynamics are

N, vy p
(“”)axﬂ‘v”“p&z

dA 2, _ 8_21)
(“*“)E“L“V”‘patz (2)

dA 2 3w
(A+uy=+uv w—;o—&t2

where u, v, w are the x, y, z components of displacement i, A = du + &d +@ and
ox dy ok
1= aE(1 + insgn(®)) _ Ed+insgn(w)) .
T (1+o)X1-20) ° 20+0)
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Boundary element model for two—dimenéibnal elastodynamics

@ is the circular frequency, E is the Young’s modulus, o is the Poisson’s ratio and 1 is the loss
factor representing the material damping of the body.

The Green’s function tensors u, and p, for the two-dimensional case are

. 1 or or
e s, - 3
and
‘L L[i!i_l Ja o o |2 [, 9 o dror
Pe= 2\ar 7 )% an dx, e “or, "ok, o, on
dy or or or :

(4)
where c¢; is the velocity of dilatational waves (P-waves) and ¢ is the shear (S-wave) velocity in the
solid. These are calculated from the density p, and the Lamé constants A and |t as

clzz—-———l-}‘z# czzz—l’i
p p

)

Oy is the Kroneker delta function, i is the unit external normal vector at the surface (with
components n; and r;) and r is the distance between the source and observation points. The terms y
and y are given by

1 c
v =K, (kr)+ |:K1 (kyr) - _2K1 (klr)jl
k,r c

and

(6)

c
x= Kz(kzr)_'c_sz(klr) (7)

1
in which k; and k; are the dilatational wave number and shear wave number, respectively, Ky, K;, K>
are modified Bessel functions of the second kind and of zero, first and second order.

2.2 Discretization

Following general development of the BEM, the next step is to take the point i to the surface
I'. This leads to

gi{zxf} + L_ZP; wdl = J;-ZM; p.dr
y % k

8
whereg' = li 1} when the boundary at point i is smooth.
2

O Wi

Equation (8) 1s the boundary integral equation to which, as for the acoustic case, the
boundary element discretization and collocation method is applied. When the surface point is taken

C.J.C. Jones and D.J. Thompson
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at the location of the point i the Green’s function tensors contain infinite terms and this must be
dealt with in the integration process.

In the program GBED4 only a single type of boundary element has been implemented; it has
three nodes and uses quadratic shape functions. The element is illustrated in Figure 2.

node 3

material is on this
side of element

node 1

Figure 2. Three-noded, quadratic shape function element.

The process of discretization of the BE formulation uses the finite element approximation
method for the functions u and p over the surface as well as to approximate the geometry of the
surface from the nodal co-ordinates. For example for the jth element,

\Y
v

i,
u;

u= Uy ——-(I)uj=[¢l 0 ¢, 0 ¢, 0:|<ug> 9)
i, 0 ¢ 0 ¢, 0 o5]lu,
uz
u, |

r

whete 8, =2EE-D. 9, == 6, =7 EE+D and-1<E<1.

For a single point i, the discretized boundary equation is
NE
e"u"+2{j p d)dl"}u’ ——Z{ u*cpdr}pf (10)
=l PR

where NE is the number of elements and w' and p/ are vectors of nodal values of « and p for the
element. #” and p° are now 2 X 6 matrices of terms relating the component directions at the 3 nodes
of the element to those at i.

For a system of elements with a total of N nodes, equation (10) has the form

C.J.C. Jones and D.J. Thompson Page 4



Boundary element model for two-dimensional elastodynamics

) -
u, p
2 3
i, p
2
i i Fril i iN uy il i2 iNE
'u +[H i a ]< . =[G" G Gl L (11)
N
) ™)

Notice that here the element matrices, HY are assembled in the finite element sense, i.e. the terms
for the nodes common to neighbouring elements are added into the global matrix. The terms of the
G matrix however, are not added together but kept separately. This allows the column vector of
tractions {p} to maintain two separate values at a single node and thus allows the modelling of
discontinuous applied tractions at the boundary.

By allowing the point i to take the position of each node in turn, a full set of equations is
obtained in the form

H U G P (12)
(NxN) (Nx1) (Nx3NE) 3 NEx 1)

where U and P are the global vectors of nodal displacements and tractions. The definition of H now

contains the H? terms and € terms on the diagonal. For the case where the tractions are known at all
nodes the multiplication on the right-hand side of equation (12) can be carried out to form the
system

A X B (13)
(NxN) (Nx1D (Nx1)

which is solved for the unknowns X, i.e. the nodal displacements. In the case of mixed boundary
conditions, columns of equation (12) must be swapped to isolate all the unknowns of the system in
X of equation (13). Care must be taken in this process when dealing with the case of two elements
of P referring to the same node. Of, course, the solution for the unknown values of P aliows only a
continuous function of traction at the nodes.

1t

Once the solution has been obtained for the all the values of i and p at all boundary nodes
the discretized form of equation (1) can be used to obtain the solution for points inside the domain
by using a Gauss-Legendre quadrature to approximate the integrals on all elements.

2.3 Evaluation of singular integral terms

In constructing the global equation {10) the integrals are evaluated for the Green’s functions
on each element making up the total integration round the boundary. For most of the elements, by
using the finite-element type mapping of the element using the shape functions, the integral can be
calculated using a suitable Gauss-Legrendre quadrature rule. In the program GBED4 a 10 point rule
is used. The high order of this quadrature reflects the high polynomial order of the integrand.

C.J.C. Jones and D.J. Thompson Page 5
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When the collocation node, i, is on the element j the integrand becomes singular for both the

evaluation of A and G. The singular terms of the G matrix may be integrated using a special
quadrature rule that takes into account the presence of a weak singularity which is of logarithmic

order. The singularity in the A term, however, is of the order 1/r and is not integrable. The reason
that the total integration round the boundary for these terms has a finite result is that the integrand
has opposite signs either side of each node and the singularities cancel. The implication of this is
that the diagonal terms of the H matrix cannot be evaluated using any quadrature scheme on an
element by element basis.

Following reference {5], for a closed boundary, the difficulty in calculating the diagonal
terms of H can be overcome by splitting the evaluation of the H integrand at the Green’s function
level into two parts, the first part representing the static elasticity case, and the second making up
the rest of the value of the Green’s function for the dynamic case at the solution frequency. This is
achieved by expanding the functions Kp, K;, K> as a series and collecting the terms which
correspond to the Green’s function for the elastostatics problem [5]. The singular part of the H
terms is related only to the static case. The separated-off terms that complete the dynamic terms of
H can therefore be evaluated using the standard Gauss-Legendre quadrature.

For the static case, a static rigid body motion, for example represented by a vector U
containing one’s in all the u, terms, (or the equivalent in the y direction) must be associated with
zero applied loads round the boundary (see equation (10)). This implies that the sum of the row of
terms of H for either degree of freedom at each node i must be zero and the diagonal term can be
evaluated as.

Hi=g +H'=- Y A’ (14)
nodesj#i

This method evaluates the singular integral term and the value of ¢ simultaneously and is therefore
efficient in dealing with the case of node i being at a corner, rather than at a smooth part of the

boundary, when &=1/2.

In the present work a method that deals with boundaries which are left open to approximate
an infinite boundary such as the ground surface is required. It has already been stated that the
singular integral terms of the H matrix cannot be dealt with by integrating element by element. For
GBED4, therefore, a preliminary process is carried out whereby each pair of elements is taken in
turn and a small closed boundary is constructed by adding a small number of new elements to the
pair of elements (Figure 3). It has been found that 5 extra elements are sufficient, making each
closed boundary 7 elements (see below).

The terms H are evaluated using the method implied by equation (14) for the mid-nodes of

the two orignal elements and the node in common between them and stored for use in the matrix
equation for the full boundary later on. This method is valid since the terms may be seen as
dependent only on the integration over the elements to which the node i belongs and is therefore
independent of the new ‘false’ boundary that is set up temporarily. This method is efficient since
although setting up the H matrix for NE boundaries of 7 elements is required, this is fast compared
to the setting up of the rest of the H for the complete boundary where NE is much larger than 7. The

process of determining the terms H' need only be carried out once and the results can be used to set
up the global matrices for solutions at all frequencies required thereafter.

In GBEDM4 it is possible for the construction of the small boundary to fail at a pair of
elements for certain geometries where a combination of the three following conditions apply

C.J.C. Jones and D.J. Thompson Page 6
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» contiguous elements differ greatly in length
s an angle close to 27 exists between the two elements
o ceither of the elements is strongly curved.

Since these conditions would represent very poor practice in discretizing a BE model for a wave
propagating problem the conditions where this method produces unacceptable results should not
cause a difficulty in practice. In fact the method has been tested and found to be stable and accurate
in the evaluation of the singular terms for a variety of possible element geometries. Very little
improvement occurs if more than 5 new elements are chosen to complete the closed boundary.

Small temporary /
boundary of 5 extra /
elements ,/
X /
x” i - hd //
X/
; w
Nodes at ‘
which H;
terms
evaluated Each pair of
elements taken
in furn
Fa
,7 ¥—Rest of original

boundary

Figure 3. Small boundary constructed around each pair of elements.

Nodes on the ‘loose’ ends of a boundary, where it has been left open to approximate an
1

. 0 A
infinite boundary have been aliotted the value &' = [é 1] and H. = 0. This imposes the assumed
2
condition that, at this point, the boundary is smooth and that the elements either side of this node
(implied) are straight lines. Since the ends of the boundary should be at a distance from the region

where a solution is required, this should cause no difficulty in practice.

3. DATA PREPARATION

When the program is run from a command line the only requests for input are the data and
output file names (including path). GBED4 has a single input data file, the structure of which is
described in this Section. An example data file is presented in Appendix B. In defining the
boundary, consideration should be given to the element size and the extent of the discretization
(‘mesh’) representing an infinite boundary (see Section 2.3 and example analyses). These issues are
therefore covered in the discussion of the example analyses.

C.J.C. Jones and D.J. Thompson Page 7
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3.1 General method of data specification

The data is specified in the input text file in modules under the following headers. A header
must start with the **’ chacracter but may be in upper or lower case.

*title

*material

*freguency

*nodes

*elements

*nternal

*end

ek
After the header, the relevant data must appear in the following lines without blank lines between
lines of data. The data modules may be placed in any order and each must appear once in the data

file with the exception of the *infernal and *title modules which are optional, and the ** header
which may appear many times or not at all.

The data for each module is described in the following sections 3.2 to 3.9. Numerical data is
read line by line with no regard to column position except that it must be contained in the first 132
columns of the line in all cases. A line of numerical data may contain a comment after the required
number of data items. The start of the comment is indicated by a ‘!’ character. In general the
program will check that the required number of numeric data items is found on the line and will
halt, giving an error message in the output file, if these are not found.

SI units should be adhered to for input parameters in all data modules.

The maximum number of nodes, elements, frequencies and field points, are set at the time of
compiling the program in the include file be_dim.inc. This file is listed and other information for
compiling the program may be found in Appendix C.

3.2 The *title module

After the header only one line of data is required. This is a line of up to 132 characters of
text which appears in the output file. It is suggested that this input be used to identify analyses,
giving date information, a structure name, job reference etc as the user specifies.

3.3 The *material module

A single data line is required containing the values of Young’s modulus, variable name, E,
the Poisson’s ratio, xnu, the mass density, ro, and loss factor losf. This data defines the single
domain material.

3.4 The *frequency module

This module specifies the list of frequencies at which the displacement responses are
required. The header is followed by a list of frequencies which should be typed one per line.

C.J.C. Jones and D.J. Thompson Page 8
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3.5 The *nodes module

The co-ordinates of the boundary nodes are listed in this module. A single line entry
containing the x and the y co-ordinate must be made for each and every node of the boundary
discretization (‘mesh’). These are read into program variables x(node no.), y(node rno.). No node
numbers are specified as these are generated by the program. However, it has been found useful for
cross-reference for the user to mark the node numbers after the nodal co-ordinates using the
comment facility (see example data file in Appendix 2). No redundant nodes are permitted, i.e. each
node must belong to at least one element.

3.6 The *elements module

This module contains the information both about the element topology and the loading
applied to the boundary element domain. The module contains one line of data for each element of
the mesh. The element data must name all nodes defined in the *nodes module as being part of at
least one element. As is the case for the nodal co-ordinate data, no numbering is specified to the
program as this is generated by the program itself. Again it is useful for cross-referencing with node
numbers, and hence positioning of applied loads or prescribed displacements, for the user to mark
the element numbers in order using the comment facility.

The structure of the data listed for each element is as follows. The data for a single element must
occupy only a single line in the data file and must not exceed 132 columns in total.

o the first three numbers on the line are the node numbers of the element which must be in the
order shown in Figure 2. These three numbers are therefore interpreted as integers,
betop(element no., 1..3). Note that the node numbers are allocated by the software according
to the order in which their co-ordinates are given in the *node data module.

* The next two numbers are also interpreted as integers. These are read into the variable
bcode(element no. 1..2) and indicate the nature of the boundary conditions, given in the rest
of the data line, for the x and y directions on the the element respectively. Each integer
should be either 0 indicating that the boundary conditions are to be read as prescribed
displacement, or ! indicating that the boundary conditions are to be read as prescribed
tractions. For clarity these integers are echoed either as a ‘d’ or a ‘t’ in the output file. An
unrecognised value in this data position (i.e. not 0 or 1) is indicated in the output by the
letter “u’ although it will not cause the program to fail but will by default be taken as a
prescribed traction.

The rest of the data line consists of the prescribed boundary condition values. In general the real and
imaginary parts are given for each of the nodes of the element in order, first for the x direction
values and then for the y direction values. A full statement of the boundary condition values entails
a further 12 floating point number values to be specified. These are read into the complex variables
xbval(element no., 1 .. 3) and ybval(element no., 1 .. 3). In order to reduce the work in specifying the
boundary conditions a number of alternative ways of entering this data have been implemented on
an element by element basis as follows.

If the number of values found on the element data line is 17 then read the full data as
Re{x value at node 1} Im{x value at node 1}
Re{x value at node 2} Im{x value at node 1}
Re{x value at node 3} Im{x value at node 1}
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Re{y value at node 1} Im{y value at node 1}
Re{y value at node 2} Im{y value at node 2}
Re{y value at node 3} Im{y value at node 3}.
If the number of values found is 5
assume all boundary values for the nodes of this element are zero.
If the number of values found is 9 assume all nodes have the same values as
Re{x value at nodes 1, 2 and 3} Im{x value at node 1, 2 and 3}
Re{x value at node 2, 2 and 3} Im{x value at node 1, 2 and 3}.
If the number of values found is 11 assume all imaginary parts are zero and read
Re{x value at node 1}
Re{x value at node 2}
Re{x value at node 3}
Re{y value at node 1}
Re{y value at node 2}
Re{y value at node 3}.

3.7 The #internal module

The co-ordinates of the internal nodes or field points are listed in this module. A single line
entry containing the x and the y co-ordinate must be made for each field point. As for the boundary
nodes, no numbering is specified. Field points should lie within the domain defined by the boundary
nodes and elements. (The displacement for a field point outside the domain boundary will be close
to zero - the actual value being obtained for such a field point may be taken as an indicator of the
accuracy of the discretization.)

3.8 The *end header

This header signifies the end of the input data and should be placed as the last line of the
input data file. There are no data lines associated with this header. :

3.9 The ** header

This is a means of including comment lines between other data modules. All text on the rest
of a line which starts with ** is ignored by the program. Comments included in this way must not
interupt the data in any of the other modules. There are no data lines associated with this header.
There may be as many occurences of this header as the user wishes.

3.10 Checking of input data

A Matlab (version 4.2) program, called beplot.m, has been written for checking the input
data and presenting it graphically. A description of this program is given in Appendix A.

3.11 Resulis file

A single output file is written by the program. This is a text file which echoes the input
parameters and then lists the output at each frequency separately, first for the boundary nodes and
then for the field points. The output is the complex amplitude of displacement at each node/field
point location. It is listed in the following columns
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¢ x co-ordinate of node or field point

* v co-ordinate of node or field point

¢ rea] part of complex amplitude of displacement in the x direction

» imaginary part of complex amplitude of displacement in the x direction
e real part of complex amplitude of displacement in the y direction

e imaginary part of complex amplitude of displacement in the y direction

Note that, although the output is listed in the order of the node numbers, and field point
numbers, used inside the program, no node numbers, or field point numbers, are referenced in the
output file.

The output file is easily edited into a form which can then be read into a spreadsheet or
“loaded” into Matlab. An ancilliary program, ex_frf, is used to extract frequency response functions
from the output file at single node or field point locations. This is described in Appendix A.

4. EXAMPLE RESULTS
4.1 Scope of examples

In order to validate the program and to investigate the accuracy of the method a number of
examples have been analysed. These demonstrate the capability of the program to model an elastic
half-space, a relatively thin soil layer, and vibration propagation from a tunnel. The examples all use
a particular set of material properties which are given in Table 1. These represent a relatively soft
soil.

Table 1. Material properties for soil.

Young’s modulus 157 x 10° Nm™
Poisson’s ratio 0.18

Density 1517 kgm™
Loss factor 0.1
Compression wave speed 336 ms™

Shear wave speed 210 ms’

In order to aid in the discussion of the results the wavelengths of S-waves and P-waves in
the medium defined in Table 1 are given in Table 2 at selected frequencies for which example
results are presented.

Table 2. P-wave lengths, A,, and S-wave lengths, As, in the soil at various frequencies.

2Hz 8 Hz 16Hz 32Hz 63Hz 125Hz 200Hz 250Hz

Ap 168 m 42 m 21 m 105m 53m 27m 1.7m 1.3m
A i05m 26m 13m 65m 33m 1.7m l0m 084m

The analysis examples that are presented in Section 4.2 to 4.4 below have been carried out
for a number of frequencies in the range 2 to 250 Hz. For the boundary mesh in each case the length
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of each three-noded element has been chosen to be 0.4 m. There are therefore approximately two
elements or 5 nodes per wavelength at the highest frequency of the analyses.

4.2 Half-space

A simple elastic half-space is modelled using a line of elements representing the surface of
the ground. The idea is that the infinite boundary is approximated by terminating the boundary at x
coordinates sufficiently beyond those at which the results are required. In the case generated for the
example, the boundary extends from x = -10 m to x = 30 m along the line y = 0 m. The model
consists of 100, 0.4 m long, elements and 201 nodes. The input data file for this example is given in
Appendix B.

The excitation of the ground under a track structure is modelled as a constant amplitude of
vertical stress over a 3.2 m width of the BE surface of the ground centred on x = 0. This represents
the vibration contact pressure applied under the ballast layer of a track. The total load is 1 N so that
the results represent frequency response functions. No account is taken here of any horizontal
component of load at the track.

Results from this BE mesh (and the soil layer example presented in Section 4.3) are directly
comparable to those from a two-dimensional semi-analytical model [6]. The semi-analytical model,
hereafter refered to as “analytical”, has been used to provide a comparison by which the
approximation error in the BE approach may be evaluated. It should be noted however that the
semi-analytical model does use an adaptive numerical integration process in its calculation that may
introduce some calculation error for high frequencies and very low response levels.

Figure 5 presents the amplitude of displacement response in the vertical and lateral
directions along the whole length of the boundary at 32 Hz in comparison with the analytical model.
The result of the BE calculation can be seen to be highly accurate over most of the boundary but
departs for the analytical result near to the end of the boundary. In this case the length inwards from -
the end of the boundary over which the error is significant is about 1/2 A;. The size of the elements
is adequately small with respect to the wavelengths at this frequency to ensure that the high rate of
change of amplitude, and the large range in variation, with distance especially in the lateral response
pear x = 0 is accurately modelled.
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Figure 5 Comparison of response along surface ar 32 Hz for the BE model and the semi-analytical
model for the half-space.

Figure 6 presents the response across the whole boundary at 63 Hz. It can be seen that the
same BE discretization works very well at this frequency and the effect of the boundary termination
is confined to an even shorter region in line with the halving of the P-wave and S-wave wavelengths
compared to the 32 Hz result of Figure 5.
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Figure 6 Comparison of response along surface at 63 Hz for the BE model and the semi-analytical
model for the half-space.

The results at 125 Hz are presented in Figure 7. At this frequency a general level of error is
perceptible as the shear wavelength in the ground is now only about 4 times the element length.
Nevertheless, the accuracy is still adequate and the discretization is still able to approximate well
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the high rate of change of response ampltiude with distance near the source. The effect of the
boundary terminations is difficult to distinguish from the discretization error.
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Figure 7 Comparison of response along surface at 125 Hz for the BE model and the semi-analytical
model for the half-space.

The results for 200 Hz and 250 Hz are shown in Figures 8 and 9. In these cases the validity
of the element size is breaking down and this leads to an increase in the general level of error. This
affects the results near the outer right-hand edge of the boundary which are more than 4 decades
smaller than the highest levels of response. The fact that this does not occur at the x = -10 m end of
the boundary confirms that this is not an effect of the edge of the boundary. Since, in a numerical
method such as the BEM, the result at all poisitions along the boundary is obtained by a solution of
a single global matrix, the error when viewed, as in these figures, in a relative sense, is high for the
very low Jevels of response further away from the source. Note that in the BEM each degree of
freedom of the system is related to every other degree of freedom. This is a result of the integral
equation in which the solution for one point on the surface is the integral round the rest of the
surface and is reflected in the fact that the matrix is full, i.e. all cross-terms between rows and
columns are non-zero. The effect is of a “noise floor” which can be seen to exist in the high
frequency results, especially at 250 Hz where the element size is such that a wavelength of shear is
approximated piecewise by only two quadratic shape function elements.

The comparison of results with the analytical model becomes unreliable as even this is
subject to some calculation error for the low response near the outer parts of the boundary in the
250 Hz case.

Attention is now given to the comparison of results for spectra at particular distances along
the boundary. Figures 10, 11 and 12 show the response calculated by the BE program compared to
the analytical model at 5 m, 10 m and 20 m respectively. The choice has been made therefore not to
accept the results near the boundary ends that have already been seen to be subject to some error.
From these figures it can be seen that, at these distances, the higher end of the spectrum is modelled
well except for the small error, due to element size, near 250 Hz that has already been noted.
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The results are not accurate at frequencies below which the extent of the modelled boundary
(from left to right) is approximately the same as the wavelengths in the ground. For the 40 m wide
boundary this occurs around 8 Hz when A, is considered, or 5 Hz if A, is considered. In practice, if
results in this low frequency range were required, a much longer boundary would be modelled for
the same computing cost by using larger elements. Thus to cover a very wide range of frequency
two separate BE discretizations may have to be used.
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Figure 8§ Comparison of response along surface at 200 Hz for the BE model and the semi-analytical

model for the half-space.
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Figure 9 Comparison of response along surface at 250 Hz for the BE model and the semi-analytical
model for the half-space.
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Figure 10 Comparison of frequency response at 5 m for the BE model and the semi-analytical
model for the half-space.
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Figure 11 Comparison of frequency response at 10 m for the BE model and the semi-analytical
model for the half-space.
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Figure 12 Comparison of frequency response at 20 m for the BE model and the semi-analytical
model for the 2 m layer.

In order to visualise wave propagation from a railway, an animated presentation has been
prepared using GBED4 with many field points. In the animated sequence, elliptical particle motion
can be seen which is typical of a Rayleigh wave, as can wavefronts propagating through the medium
away from the source location. Figure 13 shows a still frame from the animation for a frequency of
32 Hz. The shape of the wave front can be seen to develop with distance from the source but at
10 m (only I P-wavelength) it has not assumed the shape of a pure Rayleigh wave.
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Figure 13. Still picture from animated visualisation of wave propagation in the half-space at 32 Hz;
location of applied load, 0 displaced point, + undisplaced point.
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Figure 14, from the animated visualisation, shows vibration propagation at 125 Hz. Here it can be
seen that, since both A, and A, are shorter than the width of the source, the propagation has become
directional and is ‘radiated’ downwards into the ground.
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Figure 14. Still picture from animated visualisation of wave propagation in the half-space at
125 Hz; location of applied load, 0 displaced point, + undisplaced point.

4.3 Layer

The example analysis for a 2 m deep layer of soil has been carried out with the same element
size. The layer is constrained at its lower boundary as if the layer were resting on a very stiff
bedrock.

In modelling a layer using BE, care must be taken to ensure that the separation between
surfaces of the model is not small compared to the element length. This would lead to inaccurate
quadrature when the collocation node is close to an adjacent boundary for which only the standard
quadrature is carried out. However, this is not the case here for the 0.4 m elements used.

In a layered ground, propagation takes place via a number of wave modes and at higher
frequencies the variation of the mode shapes with depth is not approximated well by piecewise
polynomial approximation methods such as the finite element method. This shows an advantage of
the BEM over the FEM since only the function on the boundary is approximated and away from the
boundary the Green’s functions are used, which take proper account of the oscillation of the
solution. Figure 15 presents the dispersion curves for the modes of propagation in the 2 m layer.
These have been calculated using the method of Kausel and Roésset [7]. From this it can be seen
that to cover the range of frequency up to 250 Hz, it is necessary to model the eighth order PS-V
modes. (The decoupled SH modes have only out of plane motion and are not relevant to the two-
dimensional model.) Figure 16 shows the mode shapes. At 250 Hz, the first mode (k= 8.24 m™ in
Figure 16) approximates closely to the Rayleigh wave, that is the only “mode” that exists in a half-
space. Other modes up to the eighth mode are highly oscillatory functions of the depth in the layer.

C.J.C. Jones and D.J. Thompson Page 18



Boundary element model for two-dimensional elastodynamics

The layer therefore represents a more stringent test of the capability of the BEM to model the mode
shapes of propagating waves than does the half-space.

In Figure 15 it can be seen that below about 25 Hz there are no modes of propagation in the
layer. This leads to a very strong rate of decay of vibration amplitude with distance at these
frequencies and very small response amplitudes away from the load.

Wave number (m™)
@ Y

8L

7k

1]
] 50 100 150 200 250
Frequency (Hz)

Figure 15. Dispersion curves for the modes of propagation in the 2 m layer;

—— P-SV modes, - - - - SH modes.

Figures 17 to 21 show the calculated amplitude of response along the upper surface of the
layer at 32 Hz, 63 Hz, 125 Hz, 200 Hz and 250 Hz using both the BEM and the analytical
calculation. The effect of the termination of the boundary can be seen to be much stronger in these
results than for the half-space. A physical analogy that explains this effect is that a strong change of
impedance to wave propagation along the layer is created when the two boundaries forming the
layer “open out”, compared to the that created at the end of the single boundary in the model
approximating the half-space. A stronger reflection of the propagating wave back along the x
direction therefore occurs in the model.

Apart from this effect the results are accurate for frequencies up to about 200 Hz where
again the general level of error across the whole boundary, that is due to the element size in relation
to the propagating wavelength, can once again be seen. The accuracy in this respect is similar to that
achieved for the half-space model desipite the variation of amplitude with distance being more
complex due to the more complex modal wave propagation regime.
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Figure 16. The P-SV mode shapes of the layer at 250 Hz
vertical displacement, - - - - lateral displacement.
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Figure 17. Comparison of response along surface at 32 Hz for the BE model and the semi-
analytical model for the 2 m layer.
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Figure 18. Comparison of response along surface at 63 Hz for the BE model and the semi-
analytical model for the 2 m layer.
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Figure 19. Comparison of response along surface at 125 Hz for the BE model and the semi-
analytical model for the 2 m layer.
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Figure 20. Comparison of response along surface at 200 Hz for the BE model and the semi-
analytical model for the 2 m layer.
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Figure 21. Comparison of response along surface at 250 Hz for the BE model and the semi-
analytical model for the 2 m layer.

Figures 22 to 24 show the frequency responses on the layer at x = 5, 10 and 20 m. At 5 m the
response is acurately modelled over a very wide range of frequency. At low frequency, since there is
a rapid decay of vibration along x, because there are no propagating modes, the finite extent of the
model compared to the fundamental wave lengths A, and A, does not lead to a significant error. At
10 m and 20 m the response at low frequency is very small and therefore subject to relative error.
The amplitude calculated by the BEM at these frequencies lower than that from the analytical

calculation.
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Figure 22 Comparison of frequency response at 5 m for the BE model and the semi-analytical
model for the 2 m layer.
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Figure 23 Comparison of frequency response at 10 m for the BE model and the semi-analytical
model for the 2 m layer.
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Figure 24 Comparison of frequency response at 20 m for the BE model and the semi-analytical
maodel for the 2 m layer.

4.4 Tunnel

This Section presents some still pictures from an animated visualisation that has been
prepared to show the character of vibration propagation from a 3 m radius, bored tunnel. Figure 25
shows the boundary disretization with a unit normal vector at each element pointing inwards
towards the domain. In this model the tunnel is represented merely as a circular hole in a
homogenous half-space of material. The model contains 198, 0.4 m long, elements. The vertical
track load has been applied at the base of the tunnel and has a width of 3.3 m. The ground
parameters are still those given in Tables 1 and 2.

Figures 26 to 28 show the response at 8 Hz, 32 Hz and 125 Hz. At 8 Hz the wavelength is
large compared to the dimensions of the plot. The tunnel ring is distorted vertically by the applied
load. At this frequency the greatest amplitude of response at the ground surface is over the tunnel
centre-line.

At 32 Hz (Figure 27) the response of the tunnel ring is modal - the shear wavelength is now
appromiately the diameter of the tunnel. At this frequency the highest amplitude is still above the
tunnel centre-line. Figure 28, for 125 Hz, shows many wavelengths of vibration around the tunnel
ring. In the animated visualisation these can be seen to propagate round the ring and decay towards
the crown of the tunnel. At this frequency vibration from the invert of the tunnel is radiated
downwards into the ground.

By presenting only the upper half of the field presented in Figure 28, so that the results can
be plotted to an expanded scale, Figure 29 shows the vibration propagating upwards towards the
ground surface at 125 Hz. It shows that near-circular wavefronts propagate as ‘body waves’ towards
the surface from the upper sides of the tunnel ring. However, the tunnel itself acts as a barrier to
wave propagation directly upwards and the highest amplitude of waves is at a distance from the
centre-line of the tunnel. The amplitude immediately above the tunnel is controlled by the waves
propagating round the tunnel ring. In previous work it has been shown that the vibration response at
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Boundary element model for two-dimensional elastodynamics
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Figure 27 Still picture from animated visualisation of wave propagation from a tunnel at 32 Hz,
location of applied load, o displaced point.
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Figure 28 Still picture from animated visualisation of wave propagation from a tunnel at 125 Hz,
location of applied load, 0 displaced point.
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Figure 29 Still picture from animated visualisation of wave propagation from a tunnel at 125 Hz,
O displaced point.

5. CONCLUSIONS

A prograrm that uses the Boundary Element Method to model the vibration propagation in
elastic solids in two-dimensions has been implemented. This uses three-noded quadratic boundary
elements and has been shown to be capable of modelling vibration in the range up to 250 Hz with a
reasonable number of elements. Special provision has been made for allowing open boundaries so
that infinte boundaries, such as the surface of the ground, can be modelled by taking the boundary to
a finite distance only. The program can be used to study vibration propagated from the load at the
base of a railway track.

When using the model the element size should be chosen so that there are at least about 6
nodes {or two and a half elements) per shear wavelength in the soil for accurate results
(corresponding to the 200 Hz results presented). Some error may be expected at locations where the
response is more than about 4 decades smailler than the response near the source. Results near to the
termination of boundaries are subject to error. The boundary should therefore be extended well
beyond the distances at which results are required.

The example analyses have been used to illustrate, by means of an animated presentation,
some of effects of propagation in a half-space from a surface source and also from a tunnel source.
In this case, the model indicates that the vibration of the ground surface above th tunnel may be
strongly influenced by the tunnel structure. It is important in therefore that in furture work the tunnel
structure should be accounted for in the model.
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Appendix A

APPENDIX A - ANCILLARY SOFTWARE
beplot

A Matlab (version 4.2) program, called beplot.m, has been written for checking the input
data and presenting it graphically. Beplot should be run from the Matlab command line.

The Matlab program runs a compiled executable of the Fortran source gb4chk.for. This
program uses the same input routines (from the same include file) as the main program gbed4 to
read the data and write temporary files for the co-ordinates of the boundary nodes, xy.tmp, for the
element topology, betop.tfmp, and for the field point co-ordinates, fpxy.tmp. The program gb4chk
will not normally be run directly by the user. Information for compiling this program is presented
in Appendix C.

The temporary files are loaded into Matlab and a number of different graphical
representations of the boundary element mesh are obtainable from the menu. These include the
boundary nodes (with or without numbering), the elements and the normal to the element which
indicates the side of the element on which the material is placed. The Matlab command zoom, or
the axes command, can be used to change the scale of the plot to examine the numbering of
mdividual elements or nodes.

ex frf

The Fortran program ex_frf has been written to simplify the process of plotting data at a
single boundary node or field point as a function of frequency. It should be run interactively. It
requires the specification of an input file (i.e. an output file of the main program), an output file
and the x and y co-ordinates of a node or field point at which to extract the frequency dependant
response. The output is a text file containing a line for each frequency of the results. There are no
column headers in the file and each line contains the following items in order

e frequency

e real part of the amplitude of response in the x direction

e imaginary part of the amplitude of response in the x direction
o real part of the amplitude of response in the y direction

e imaginary part of the amplitude of response in the y direction

The file is suitable for reading into a spreadsheet program or may be read directly into
Matlab using the load command.

C.J.C. Jones and D.J. Thompson Al






Appendix B

APPENDIX B - EXAMPLE INPUT FILE

In this Appendix an example data file is provided which demonstrates the use of each of
the data modules. It corresponds to the example of the half-space for which results are presented
in Section 4.2.

*title

Half space data file for GBED4 CJCJT 20-4-99
RS R A S AR AR S S R R S R R E R R Y L R
** This file is for the example half-space **
** used to generate results presented in  **

** the Technical Memorandum **
L R R R R R R R TR R R R I R R R I R R g R T
*material
157.246,0.18,1517.0,0.1 ! E, nu, rho, loss factor
*frequency
32.0
63.0
125.0
200.0
250.0
*nodes
30.00000 0.00000 1! 1
29.80000 0.00000 ! 2
29.60000 0.00000 1 3
29.40000 0.00000 1 4
29.20000 0.00000 1 5
29.00000 0.00000 ¢ 6
28.80000 0.00000 ¢ 7
28.60000 0.00000 ! 8
28.40000 0.00000 ! 9
28.20000 0.00000 ! 10
28.00000 G.00000C t 11
27.80000 0.00000 ¢ 12
27.60000 0.0C000 ! 13
27.40000 0.00000 ! 14
27.20000 0.00000 ! 15
27.00000 D.00000 ! 16
26.80000 0.00000 ! 17
26.60000 0.00000 ! 18
26.40000 0.00000 ¢ 19
26.20000 0.00000 ' 20
26.00000 0.00000 ¢ 21
25.80000 0.00000 I 22
25.60000 0.00000 ! 23
25.40000 0.000C0 ! 24
25.20000 0.00000 ! 25
25.00000 0.00000 ! 26
24.80000 0.000C0 ! 27
24.60000 0.00000 ! 28
24.40000 0.00000 ! 29
24.20000 0.00000 ! 30
24.00000 0.00000 ! 31
23.80000 0.00000 1 32
23.60000 ¢.00000 1 33
23.40000 0.00000 ! 34
23.2000¢C 0.00000 ! 35
23.00000 0.00000 ! 386
22.80000 0.0000C ! 37
22.60000 0.00000 ! 38
22.40000 0.00000 I 39
22.20000 0.0000C I 40
22.00000 0.00000 ! 41
21.80000 0.00000 I 42
21.60000 0.00000 ! 43
21.40000 0.0000C ! 44

C.J.C. Jones and D.J. Thompson B.1
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21.2C0000
21.00000
20.80000
20.60000
20.400¢C0
20.20000
20.00000
19.80000
19.60000
19.4000¢C
12.20000
12.00000
18.80C00
18.60000
18.40000
18.20000
18.00000
17.80000
17.86000¢C
17.40000
17.20000
17.00000
16.800600
16.60000
16.4000C0
16.20000
16.00000
15.80000
15.60000
15.4000¢C
15.20000
15.00000
14.80000
14.60000
14.40000
14.20000
14.000¢C0
13.80000
13.60000
13.40000
13.20000
13.00000
12.8000¢C
12.60000
12.40000
12.20000
12.00000
11.80000
11.60000
11.40000
11.20000
11.00000
10.80000
10.60000
10.40000
10.2000C0
10.00000
.8000C0
-60000
.40000
.20000
.00000
.80000
-60000
.400C0
.20000
.0ooco
.80000
.60000

~] ~100 0000 CO 00\ IWW

.00000
.00000
.00000
.00000
-00000
.G0000
.00000
.00000
.0co0C
.00000
.00000
-00000
.00G00
. 00000
.C0000
.C00C0
.00000
.0C000
.00000C
.00000
-00000
.00000
.0G000
-00000
.G0000
. 00000
.0000C0
.00000
.00000
.0000¢C
.00090
.00000
.00000
.00C00
.C0000
.00000
. 00000
.00000
.0000C0
.00000
.00000
.00000
.00000C
.00000
-00000
.00000
-00000
.00000
.00000
. 00000
.00000
-00000
-C00090
-00000
.00000
.C0000
.C0000
.G0000
.00000
. 00000
.C0C00
.00000
.G0000
.Go000
.C0000
.00000
.00000
.00000
.00000

C.J.C. Jones and D.J. Thompson
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.40000
.20000
.0C000
.80000
.60000
.40000
.20000
.000090
.80000
.60000
.40000
.20000
.00000C
.80000
.600C00
.40000
-20000
.00000
.800¢C0
.60000
.4C000
.20000
.0000¢C
.80000
.60000
.40000
.20000
.00000
.80000
.60000
.40000
.2000¢C
.00000
.80000
.60000
.40000
.20000
.00000
-0.20000
-0.40000
-0.80000
-0.80000
-1.0800¢C
-1.20000
-1.4000¢C
-1.60000
~-1.80000
-2.00000
-2.20000
-2.40000
-2.60000
-2.80000
-3.00000
-3.20000
~3.40000
-3.60000
-3.80000
-4.00000
-4.20000
-4.40000
-4.60000
-4.80000
-5.00000
-5.20000
-5.40000
-5.60000
-5.80000
~-6.00000
-6.20000

COO0OO0OHRPRREPPEPNNNNMNOWWWWWERLSBRBULUIVIUIO G O G O -] ~] ]

OODOOOOOOOOOOOOOOOOOOOOOOOOOOCDOOOOODOC)OOODOOOOOOOODOOOOOOOOOOOOOOOOOO

.0000C
.006000
.00000
.00000
-00000
.00000
.000C0o
.00000
.00000
.0000¢C
.00000
.00000
-00000
.000600
-00000
.00000
.co000
.00000
.00000C
.00000
.00000
.000400
-00000
.00009
.00000
.00000
.G0Qco
.000G¢C
.0c00¢C
.00000
.Q0000
.00000
Q0000
-00000
. 00000
.00000
.000C0
.0000¢C
.00000
.06000
.00000
.00000
00000
.00000
.00000
-00000
.00000
.00000
.0Q0C0
. 00000
. 00000
.0000C0
.00000
00000
.00000
.00000
.0G000
.00000
.00000
.0coo0
.00000
.000400
.Qoo00
.00000
.00000
.00040
.00000
.00000
.00000

114
115
116
117
118
119
120
izl
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147
i48
145
150
151
152
153
154
155
156
15%
158
159
150
lsel
162
163
164
165
166
167
168
168
170
171
172
173
174
175
176
177
178
179
180
181
182

C.J.C. Jones and D.J. Thompson
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-6.40000
-6.60000
-6.80000
-7.00000
-7.20000
-7.40000
-7.60000
-7.80000
-8.00000
-8.20000
-8.40000
-8.60000
-8.80000
-9.00000
-9.20000
-9.40000
-9.60000
-9.80000
-10.00000
*alements
1 2 3
3 4 5
5 [3) 7
7 8 9
2 10 11
11 12 13
13 14 15
15 16 17
17 18 19
1¢ 20 21
21 22 23
23 24 25
25 26 27
27 28 29
2% 30 31
31 32 33
33 34 235
35 36 37
37 38 3¢
35 40 41
41 42 43
43 44 45
45 46 47
47 48 45
4% 50 51
51 52 53
53 54 55
55 56 57
57 58 59
59 60 61
61 62 63
63 64 65
65 66 67
&7 68 69
&9 70 71
71 72 73
73 74 75
75 76 77
77 78 79
79 80 81
81 82 83
83 84 8%
85 86 87
87 88 89
89 90 291
91 %2 93
93 94 95
95 96 97
97 98 9%

RRHEHERPRR R PR R R R R R R RRRPRERERRR R R R R R R PP R R R R s k3 | e e §2

b b b R R R R S 1 2 R R B 5 R S B 0 B R 0 B g e 2 0 L 2 P e

e b taa Bis bmm v dem A S N g = mme bem e hem g dem b Gmd S b Ve Gl YEm AR PLE RAR Rk b VR VA JuE 4l Bk Sk S G Bt St gt Bk b et e b A b 4

COOO0COO0OOCOOO0OCOO0OOO00O

Do~ Ut WM

.00000
.00000
.00000
.00000
-00000
.00000
00000
.00000
.00C00
.G0000
.C0000
.00000
.00000
.00000
.00000
.00000
.00000
.0000C0
.00000

183
184
185
186
187
188
188
190
191
192
193
194
185
196
197
158
189
200
201
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93
101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
dir
145
147
149
151
153
155
157
158
161
163
165
167
169
171
173
175
177
17%
181
183
i85
187
189
191
193
i85
197
129

*internal sclution points

10

10.
i0.
ic.

100
102
104
i0&
108
110
112
114
1i6
118
120
12z
124
126
128
130
132
134
i3¢
138
140
142
144

1486
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
1946
198
200

101
103
105
107
109
111
113
115
117
118
12%
123
125
127
129
131
133
135
137
135
141
143
145

147
149
151
153
155
157
159
1561
163
165
167
169
171
173
175
177
17%
18l
183
185
187
189
181
193
185
197
199
201

5

~-1.
-1.5
-2.

*end
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Appendix C

APPENDIX C - COMPILING PROGRAMS AND SETTING DATA STRUCTURE SIZES

The main BE program is called gbed4 and is written in FORTRAN 77 with few non-

standard extensions being used. It is compiled from the following source code files. No external
subroutine packages are used.

gbed4 for - contains the main program

be_dim.inc - sets parameters for array dimensions (see below)

be_subs.inc - contains lower level routines for setting up and solving the BE matrices
io_subs.for - contains routine used in the input routines

gb_inp.inc - contains data input routines

The following files are used to compile the program gb4chk which is called by the Matlab

program beplot for checking the data. Note that it uses the same input routines file, and array
dimension parameters, include files as ghed4 so that any changes to the data reading routines or
error messaged generated by the main program will automatically be included in this program
when it is recompiled.

gb4chk for - main program

be_dim.inc - sets parameters for array dimensions (see below)
io_subs.for - contains routine used in the input routines
gb_inp.inc - contains data input routines

The following files are used to compile the utility program, ex_frf, for extracting

frequency response function data from the output file of gbed4.

ex_frf.for - main program

fileread.for - file reading subroutines.

The Fortran include file be_dim.inc is listed below. The comments in this file indicate the

meaning of the parameters that are set for dimensioning the arrays within the program. These
should be set with regard to the mesh sizes required and the memory available on the computer.

NOMNMNMOAaeCannn

fortran include file to be compiled with gbed4.for
cjcj 18-9-98

Sets array dimension parameters at top of each subroutine in gbed4

Set arzay declaration sizes

nne= Maximum number of elements

nx= Maximum number of degrees of freedom = 2* number of nodes
nx= 2*Maximum number of nodes= 4*Maximum number of elements
nxl= 3*Maximum number of nodes= 6*Maximum number of elements
npm=Maximum number of field points

nfm=Maximum number of freduencies

integer nne,nx,nxl,npm,nfm

parameter (nne=300,nx=1200,nx1=1800, npm=1600, nfm=200)
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