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FIGURES

Figure 1. The suction coefficient C,x10* versus zr for a single suction panel at
0.4 <a<0.72

Figure 2. Transition position for two suction panels as-a function of the C;x10%. The
contours are for constant zp up to zp = 1.5 in increments of 0.1. Also shown is the
contour for the optimum value of the cost function when z, = 1.5. The optimum is
oiven by the point closest to the origin where the lines are tangential.

Figure 3. Transition pesition z7 and suction flow rates (qu104) against iteration
nnnher % for two panel flat plate case. Solid line, panel one, dashed line, panel two.

Figure 4. Cost function {108 3 C’g) against iteration number k for two panel flat plate
case. Solid line, vg = 1.0, dashed line vy = 0.5, dotted line v = 0.25.

Figure 5. Suction distributions (C,x10*) for the six panel flat plate case. The tran-
sition positions are zp = 1.7, 2.0, 2.3, 2.6 and 2.9 for the solid line to the dot-dash

line respectively.

Figure 6. The cost (10° 3 C?) against transition position for the suction distributions
shown in figure 5.

Figure 7. The transition position, cost (108 ¥ C?), and suction flow rate (Cyx10%) for
panel four for the six panel flat plate case, for z, = 2.0 (solid line), 2.3 (long dashes),
and 2.6 (short dashes).

Figure 8. The pressure distribution for inviscid flow past the hump.

Figure 9. Transition position zr against iteration number k for six panels with a
pressure gradient.

Figure 10. Transition position for two suction panels as a function of the C,x10%.
The contours are for constant zp from 1.3 to 2.4 in increments of 0.1 omitting 1.6.
Also shown are a number of contours of constant cost.

Figure 11. Transition position zy against the suction flow rate on panel 1 (Cyx10%)
with C, = 2x10~% on panel 2.

Figure 12. Amplification factor N(z) for a flat plate with nosuction (solid line), a
hump with no suction (short dashes), and a hump with two panels and Cp = 4x107°
and Cp = 2x10~* (dots), and C,; = 5x107° and Cp = 2x107* (dot-dash). These
lines have predicted transition position of zp = 0.92, 1.20, 1.40 and 1.89 in turn. The
dashed line shows the critical value of n = 4.3.
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ABSTRACT

In recent years there has been increasing interest in the control of bhoundary-layer
fransition through the use of surface suction. Here the use is considered of multiple
suction panels to delay transition for cases with or without a pressure gradient im-
posed by the external inviscid How. The aim is to maintain transition at a desired
location with minimum cost, defined as the sum of squares of the individual suc-
tion flow rates, through an automatic adaptive feedback control loop which regulates
tlie suction flow rates by solving a constrained optimisation problem. Numerically,
two-dimensional boundary layer flow was calculated using an interactive formulation,
and linear stability theory was used to calculate the spatial growth rates of Tollmien-
Schlichting waves, with the location of transition predicted via the e’V-method. The
ophimisation strategy was then used to update the suction flow rates. It was found
tliat when the probiem is well specified, i.e. an appropriate transition position is used,
tle method quickly converges. However, for at least one case it was found that there
was no single optimum solution within the numerical tolerance of the method. Fur-
ther, for a different problem, there are regions between the maximum and minimum
transition position which are not accessible, and other positions for which a solution
exists but to which the solution algorithm canunot converge as they occur at a dis-
continuity in the relationship between the transition position and the suction fiow
vates. Such difficulties could also occur in other suction optimisation formulations,
and when using different solution algorithms.
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1. Introduction

The possibility of controlling boundary layers to delay transition is a subject that has
received much attention within the aerodynamics research community (see the review
v Gad-el-Hak [1]) because of the lower skin friction drag in laminar flow. It has long
heen known that small amounts of surface suction can, in theory, greatly enhance
the stability characteristics of an attached boundary-layer, and thereby reduce drag
and hence operating costs by delaying transition. A number of attempts have been
made in the past to employ such technology, which have been thoroughly reviewed
by Joslin [2]. Recently there has been a resurgence of interest in suction as a control
mechanism, prompted largely by the development of such technology as low cost,
laser drilled, titanium sheets which, when utilised as suction panels, avoid many of
the mechanical problems which bedeviled earlier attempts to use suction in practice.

Suction stabilises the boundary layer by inhibiting its growth, and changing the cur-
vature of the velocity profile so that the stability characteristics of the flow are im-
proved. For efficient application of this technique in practice, multiple suction panels
with independent suction flow rates are required. These suction flow rates should be
monitored constantly due to the possible changes of flow parameters during operation.
This clearly indicates the need for an automatic, adaptive, computer based control
svstem, which will allow a continuous modification of the boundary layer low by ad-
jnsting the individual suction flow rates to maintain transition at a desired location
with minimum effort.

At Southampton over the past eight years there has been a programme of research
into the experimental application of distributed suction for the automatic control of
boundary layer transition. In the initial work a plate with two independent suction
panels was used, either with or without a free stream pressure gradient. In the
initial experiments [3] it was shown that transition can be detected by means of
surface pressure fluctuations, and that using these pressure measurements, transition
can be maintained at a fixed location using a single input/single output feedback
- control system. In subsequent experiments with two suction panels [4], the individual
suction flow rates were controlled maintaining transition at a desired location while
minimising a cost function based on the sum of squares of the suction flow rates. This
cost function was chosen as it gives a rough approximation to the power consumption
of the pumps of used in the suction system. The combination of the minimisation
of the cost function with a fixed transition position gives a non-linearly constrained
optimisation problem. To solve this problem, an algorithm was developed [5] using
the ideas behind the modified least mean-squares algorithm of Frost {6] which is based
ou the gradient projection method. More recently the plate rig has been extended to
handle four independent suction panels [7], while development work is proceeding on
4 two metre chord aerofoil with four suction panels which will be installed in a large,
low turbulence wind tunnel.

In addition to the experimental work, which is detailed in (3, 4, 5], a complementary



programme of theoretical modelling has been performed. This work was aimed at both
wodelling the experiments and extending the scope of the research by considering
more suction panels and more realistic geometries such as NACA aerofoils. It is
of comrse a much simpler task to change the specification of the problem through
computational modelling than changing an experimental rig, provided it has been
demonstrated that the modelling can satistactorily reproduce the behaviour of the
experiments. The modelling consists of an interactive boundarv layer formulation for
rlie flow. a stability analysis using linear stability theory, transition prediction using
the ¢ method, followed by an update of the suction flow rates using the same basic
strategy as used in the experiments. This paper presents the major results from the
tlLeovetical modelling. In addition to the results presented below, which are largely
new. details of our early work in this area which can be found in [8]. A brief overview
of hoth the initial experimental and theoretical work can be found in [9].

2. Problem Formulation

For the basic flow standard dimensionless boundary layer coordinates and velocities
are adopted as follows

v
U==, V= = R, Tr =

y=2VR 1
0. 0. =T (1)

il B3

where u and v are the streamwise and the transverse velocities in the z and y directions
respectively, “~7 denotes dimensional values, U,, the free-stream velocity, L is the
characteristic length in the direction of the flow, and R is the Reynolds number based
on U, and L. The boundary layer equations then become

O N UB'U, du, N &% )

U + Ve = Ue—— + =

Oz Ay dr ~ Oy?

du  Ov
e =0 3
ox + dy (3)
with boundary and initial conditions
y=0: u=0, v=uy (4)
y—o0:  u(z,y) =+ telx) (5)
| e el

Up(T} = Ugy(T) + d 4]
(@) = eli) + e [ e ©)
T =1x0: DBlasius profile (7)

where w, is the external velocity at the outer edge of the boundary layer, &% is the
dimensionless displacement thickness, and v, is the imposed surface suction velocity
distribution, which, assuming discrete suction panels, is piecewise constant. The first
part of the edge velocity, i,,, comes from the standard potential solution for inviscid
flow past the surface, and the second part is a correction due to the displacement of
the streamlines which allows an interaction between the inviscid and viscous parts



ol the How field over the range [zg, ], following Carter and Wornom [10]. The
clect of the interaction of the boundary layer with the outer inviscid flow is most
monounced at the ends of the suction panels where the boundary condition at the
wall is discontinuous, and the solution with interaction is much smoother than that
without interaction.

[ this work it is assumed that the transition from laminar to turbulent flow is initiated
by the amplification of small two-dimensional travelling Tollmien-Schlichting waves
rather than through a bypass mechanism. Hence spatial linear stability theory is
nsed. with the disturbance to the flow given by a normal mode of the form

oz, 1, 1) = Dy)ell+ (8)

where o is the dimensionless disturbance streamfunction, « is the complex wave num-
her. . is the real frequency of the disturbance and @ its amplitude. Substitution into
the Navier-Stokes equations and linearisation now produces the governing equation
for @.

(u - H) (8" — 0?®) —u'd - = ['U (0"~ 0*@') - E}E (@ — 207" + cu4(1>)] =0,

(9)

Here « and v are the velocity components of the mean flow obtained from (2-7), Re

is the Revnolds number based on the local boundary layer thickness, and the prime

denotes differentiation with respect to . Note that there is an implicit rescaling here
hetween the variables used for the flow calculation and the stability calculation.

Equation (9) presents an eigenvalue problem with homogeneous boundary conditions
since the disturbance velocities must vanish at the wall and in the free stream. If
resembles the usual Orr-Sommerfeld equation with an additional term involving the
vertical mean-flow velocity which arises from the effect of wall suction. This extra
term is included as it will be at least the order of magnitude of the viscous terms:
the well known asymptotic suction profile with constant suction on a flat plate has
v = O{Re™"), and since the critical suction rate for unconditional (linear) stability
of this asymptotic profile is known to be too small in practice, we expect that our
suctions rates will be at least of O(Re™"). For a given Reynolds number and real
frequency the solution yields an eigenfunction in form of the complex disturbance
amplitude and the complex wave number as the eigenvalue. The imaginary part of
the wave number is the spatial growth rate which is positive for damped waves and
negative for amplified waves.

Once the eigenvalues have been obtained, the empirical e method developed by
Smith {11] and Van Ingen [12] is used to predict the position of transition. The e

method relates the point of transition to the amplification of the disturbance modes.
For a fixed frequency w, the amplification factor is integrated to obtain the N value

for that frequency,
A i
N,(z) =1n (_) = —/ ce; el (10)
AN &

T

3



A is the amplitude of the wave and the subscript NV refers to the neutral point where
v; = 0. The standard " i based on the envelope of the amplification curves, where
N is given by the maximum amplification factor at each point,

N(x) = mazy [Nay) - (11)

The transition point. zp, is then predicted to be the first point at which N exceeds
(he critical value Ny at which transition will occur. In any particular situation the
appropriate value of Ny depends on the background turbulence. For low free-stream
curbulence levels, tyvpically values of eight to 10 will be used for Ny. However, Mack
(13] has shown that Ny is strongly dependent on the turbulence level, and suggest
the following relation

Ny =843 —2.41In, Tu (12}
where the turbnlence level is calculated as
u? + 02+ uw?
Ty = \/————3—'—‘— (13)

with (0, v',w’) the dimensionless disturbance velocities in the usual form. For the ini-
tial experiments with the plate rig value of Ny is determined by comparisons with the
experiments of Nelson et.al. [14]. Calculating the envelope curve for the boundary-
layer flow without suction yields Ny = 4.3 since the free-stream turbulence level in
the wind tunnel used for these experiments is approximately 1%.

Given the prediction of the transition point, we now wish to adjust the suction rates
following the same procedure used in the experiments, i.e. maintain transition at a
desived location while minimising the sum of squares of the suction flow rates. The
constrained optimisation problem can be stated as

u (14)

subject to e(u) =zp —xq4 =10 (15)

mintmize Plu) = w

where u is the vector of suction flow rates and z, is the desired transition position.
Note that this formulation assumes that the suction rate is constant on each panel and
implicitly that all panels have the same length since all suction flow rates are given
the same weight. A solution algorithm for (14,15} can be obtained using a steepest
descent technique [4, 5], where the update of the suction flow rates from iteration k

to k + 1 is given by
-1
sy = g — Dy — (1— )8, [616,] e (16)

where .
To 17" o7

D, =18, [6i6,] 6} (17)

Here 4 is the gain, it s assumed that the error is reduced by a constant factor each

iteration so that
Cly| = (G (18)
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and 8, = Ve is the gradient of the “error” with respect to the suction flow rates.

The algorithm requires an estimate of 8, at each iteration. One way of doing this
is to use a finite difference approach, i.e. add and subtract a small increment to
each of the current suction rates in turn, estimate the transition position for each of
these new fow rates, and use the changes in 2y to estimate ¢,. There are a number
ol disadvantages to this approach. An obvious one is that the number of function
cvaluations (flow, stability and transition calculations) increases with the number of
snction panels, leading to a large increase in the computational effort each time the
suction flow rates are updated. Further, in a noisy experimental situation such a
mocedure may not be well conditioned. Accordingly, an alternative approach, based
ou that used in the initial experiments {9], will be investigated. A local linear model of
the dependence of the change of transition position on the change in the suction flow
rates is assumed, and this model is updated as the iterations proceed. Specifically, a
small change du in the vector of suction flow rates will give a change in the transition
nosition ¢z, which is written as

Sap = 0w’ 8, +n (19)

wlere n is the error. Note that in general n will be nonzero since the relatiouship be-
tween 2 and w is nonlinear. Applying this relationship over the previous K iterations

gives
dTr(k— 1) f”—f&(i—f() Mk—K)
: = e+ ]| (20)
OTp(k-1) 01&%;_1) k1)
dxTy dut g

which can be written compactly as
0my, = OU 8 + 1y, (21)

An estimate of 8, could now be obtained using a least squares approach by minimising
nin,. However this could result in large errors since it places equal weight on the
data from each iteration, including previous steps when the gradient may have been
very different. Therefore to give less weight to older data, a “forgetting factor” vy is
introduced, and €, is determined by minimising the cost function

Jy = r—’{rkﬂk (22)

where T is the diagonal matrix given by

K-

I'y = d'rl.lg(’)/K:'Y 1: ey 72’ ¥, 1) (23)

Tle solution is

0 = [0UL T 8L~ 0U; Thby (24)
The explicit inversion of the matrix §U3 I';6U, in (24} can be avoided by the use of the
Recursive Least Squares algorithm (RLS). Full details can be found, for example, 1n
Wellstead and Zarrop [15]. At each new iteration f,_4 is evaluated from implementing

the following:

i



. Calculate
- - T oy
e+ = (5-’ET(k+1) - f57_5g€+1ﬁk; (23)

ii. Form the matrix Py, = [6U} 1 Tx8U, 1] " from the recursion

1 duy, dul, Py
R A (26)
v Y Oty Protigy
1i. Update the estimate of the gradient from
G = i + Pri1ouq mg (27)

It this form the parameter identification routine needs an initial estimate Py of the
covariance matrix Py, A standard choice, the identity matrix scaled by a large positive
constant (104), was used. The elements of 8, were set to a negative constant (-50).

The form of the forgetting factor must also he specified. This was adjusted at each
iteration so that the information content was kept constant [16] using

7 !’)2
¥ = (1 07+l ) Yo (28)

1+ 5H{+1Pk5ﬁk+1

where oy and v < 0 are positive constants. Also, in the RLS procedure a small
random perturbation was to the suction flow rates at each iteration. This is analo-
gous to the “dither” added to the signal when using the RLS algorithm for system
identification and helps prevent the phenomenon of “estimator wind-up” {15] which
can cause the gradient estimation routine to fail after a large number of iterations.

The accuracy and efficiency of this gradient estimation algorithm will depend on a
number of factors, including the size of the of the various parameters, specifically
the forgetting factor v, and the nature of the error surface. It may well be prone
to error due to the implicit assumption of validity of past data. However, it has the
considerable advantage of operating entirely on known data: each time the suction
flow rates are updated and a new transition position is calculated, this provides the
necessary changes in variables required to update 8., using (25-28). In contrast, at
each iteration a finite difference scheme will at least as many perturbations as there
are suction panels. Thus, the use of the RLS method has the potential to produce a
much more efficient algorithm in terms of the number of function evaluation required
to obtain the optimum in the numerical simulations, or equivalently, the number of
samples necessary in the experimental case.

To complete the algorithm, the remaining parameters must be specified. In the
update of the suction velocities (16). the size of « and p reflect the weighting given

to the term reducing the error and the cost, respectively. In this work o = 0, was
used throughout, while 12 = L was found to give good results in most cases, and

unless otherwise mentioned it was used to obtain the results presented below. In the



[orgetting factor, v, op = %u was used throughout, while vy = % was used for most of
the results presented here. The smaller the value of vy, which must lie in the range
0 < vy < 1, the less the influence of the older information, and as will be seen below,
making vy small enough is crucial to the efficient operation of the enfire optimisation

procedure.

[n svstem identification problems using the RLS method, a covariance resetting pro-
codnire is sometimes employed. The idea here is to prevent premature convergence
of the algorithm where the gradient estimate locks onto a set of incorrect values, by
resetting the matrix Py, A procedure of this kind, where the off diagonal elements of
P, were set to zero and the diagonal elements multiplied by 50, was used here, with
the resetting occurring every 50 iterations.

As already noted, the major advantage of the RLS for parameter identification over
the conceptually simple finite difference approach, is that when it works it will be
much more efficient, particularly with a large number of panels. However, both were
investigated, and they will be compared below.

The method presented above searches for the optimum suction distribution by calcu-
tating in turn the flow field, the stability characteristics, and the transition position,
following by an update in the suction flow rates, with the loop repeated as often as
necessary. This could be regarded as a quasi-steady analysis in which the system is
allowed to settle down before the transition position is estimated and the suction flow
rates are updated. In this it mimics the experimental situation [3], in which it was
found necessary to allow a sufficiently long sample time so that the system converged
to its new state before the suction How rates were updated. If the sample time was
too short, then the scheme had problems converging onto a solution.
3. Results

Flat plate with one suction panel

As a reference case, take air at standard conditions (v = 1.5x107m?s™") with U=
20ms™', Ny = 4.3 and I = 1m. With these values and no suction, transition is
predicted to occur at = 2 0.92, where z = 0 is the leading edge of the plate. Hence,
since the aim is to delay transition through the control of small amplitude disturbance,
the suction panel must have at least its leading edge upstream of this position. Figure
1 shiows the transition position for different suction flow rates for a suction panel in
the region 0.4 < z < 0.72, where the suction flow rate is given in terms of the suction

coefficient 3
C, = =, /U. (29)

Initially, as suction is applied the change in w7y 18 close to linear, with a relatively small
amount of suction moving transition a significant distance downstream. However, as
more snction is applied the slope of the curve changes until it appears to asymptote to
A constant transition position. At this poiut, the houndary layer on the suction panel
is extremely thin, and while increasing the suction flow rate will change the transverse
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Figure 1: The suction coefficient C'x10* versus 7 for a single suction panel at 0.4 <
a < 0.72

velocity in the region of the panel, it has little effect on the stability characteristics of
the flow downstream of the panel. where the curve of N, (z) shows little variation with
.. Hence, for a single panel, after a certain point. further suction effort is largely
wasted in terms of delaying the onset of transition. Further, once sufficient suction has
been applied the amplification factor N, (z) falls below zero at the downstream end of
the panel, and the shape of N,,(z) is basically the same as that found further upstream
when there is no suction. As a result, a good estimate of the maximum distance that
tyansition can be moved downstream is obtained by adding the transition position
with zero suction (0.92) to the position of the downstream end of the suction panel
(20 = 0.92 + 0.72 = 1.64), as can be seen from figure 1. Note that for all cases
tested, the transition position asymptotes to a maximum position downstream at
ligh suction rates, and that for the flat plate, a reasonable estimate of this position
is given by adding the natural transition position to the downstream end of the last
suction panel, although this estimate is not always as accurate as in this case.

Flat plate with two suction panels

This is a case we wish to investigate in some detail, both because it is the simplest
case we can use to investigate the behaviour of the optimisation routine, and because
it is one of the main cases investigated experimentally [4]. The suction panels are
placed at 0.28 < z < 0.48 and 0.58 < x < 0.78. Contours of the zy for combinations
of the suction flow rates are shown in figure 2, as is the contour of the cost funciion
for the optimum value when x, = 1.5. In this case, i is clear that there is a single
ziobal optimum for each value of x4, and that for low values of 74 the optimum has
essentially the same suction flow rate on both panels. The latter result was found
also in the experiments [4].

The full code, including the optimisation routine, was run with zero initial suction and
x, = 1.5. The transition position and suction flow rates against the iteration number
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Figure 2: Transition position for two suction panels as a function of the C,x10*. The
coutours are for constant 27 up to @y = 1.5 in increments of 0.1. Also shown is the
contowr for the optimum value of the cost function when 4 = 1.5. The optimum is
given by the point closest to the origin where the lines are tangential.

k are shown in figure 3. There is an initial overshoot of the transition position, but
this is quickly rectified, with the desired position obtained within 10 iterations and
the optimum suction values within 15 iterations. The small scale variation thereafter
arises from the dither on the suction flow rates.

In this run, the gradient estimation routine used o = 0.5 in (28). Increasing 7, to its
maximum value of one has a significant effect on the results. The desired transition
position is still obtained in 10 iferations, but the optimisation procedure initially
settles on a nonoptimum suction distribution with a cost approximately 30% greater
than that for the optimum solution, as can be seen from figure 4. The optimum set
of flow rates is finally obtained after the second time the matrix Py in the gradient
estimation routine is reset. The convergence to a set of nonoptimum values indicates
a Failure of the optimisation procedure as it is clear from figure 2 that there is only
a single set of suction values in which the constraint line (z4 = 1.5} is tangential
to constant cost contour, which is (or should be) the convergence condition for the
optimisation procedure. The problem is that with v = 1.0 the gradient estimation
routine locks too strongly onto the original values and tunes £ to the initial estimate
of the slope. This results in the optimisation routine honing in on the set of suction
valites on the constraint line with almost equal suction values with C, = 1.5x1071.
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A large number of test runs have been performed, and premature convergence to a
nonoptimum set of values is the standard result when 7o = 1.0, as is a switch to the
optimum on the second covariance reset. Clearly o must be less than one so that
less weight is placed on the older values for the algorithm to work properly, and a
mimber of values were tested. With v = 0.9 there is still premature convergence,
bt the switch to the correct solution occurs the first time the covariance is reset.
With vy = 0.25, the optimum is picked up in about the same number of iterations as
~o = 0.5 but there is considerably more variation during the initial stages before the
optimum is achieved, buf no significant difference thereafter (figure 4).

Flat plate with six suction panels

The experiments have been limited to four suction panels, but the numerical approach
employed here can be used to investigate the effect of further panels and different
configurations. A large number of runs have been performed, and a representative
sample of results can be found in [8]. Here the results for one such case are presented.

10
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Figure 4: Cost function (10° 3 Cj) against iteration number k for two panel flat plate
case. Solid line, vo = 1.0, dashed line v, = 0.5. dotted line v = 0.25.

Six evenly spaced panels are used. The panels are 0.2 long, with a gap of 0.1 between
the panels, and the leading edge of the first panel at x = 0.3 and the trailing edge
of the final panel at = 2.0. With this configuration and the standard conditions
((;'OC = 20ms™t, Ny = 4.3, L= 1m), the maximum distance the transition position
can be forced to is o = 3.0, slightly more than the distance that would be predicted
v adding the natural transition position with no suction to the downstream end of
the last suction panel, as was found in the single panel case. Also, since the natural
transition position (z = 0.92) is at the front of the third panel, its is clear that there
must be at least some suction on the first two panels, and most probably a spread of

the suction effort across a number of the panels.

Suetion distributions for six different values of 7,4 ranging from 1.7 to 2.9 are shown in
fignre 3. These values have been averaged over a large number of iterations to remove
the effects of the dither in the method. In general the first panel(0.3 < z < 0.5} makes
relatively little contribution to the total suction effort, but as expected the second
panel (0.6 < z < 0.8) plays a significant role. The last suction panel (1.8 < z < 2)
plavs no role when x4 = 1.7, as expected as the transition position is now upstream
of the leading edge of this panel. It makes some contribution for x4 > 2, but never
has the largest suction even with x4 = 2.9. As the transition position moves down the
plate the peak suction rate also moves down the plate, from panel two when z4 = 1.7
to panel four when z, = 2.9. As expected the cost increases nonlinearly with the
increase in x4, as can be seen from figure 6.

For a, = 1.7, 2.0 and 2.6, the optimum solution is obtained within 25 iterations, and
the algorithm holds this solution, except for occasional jumps away when the matrix
P, in the gradient estimation routine is reset. However, when x4 = 2.3 the algorithm
is less well behaved, taking around 60 iterations to converge initially, and at times a
similar numnber of iterations to return to the optimum once it has jumped away from
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Figure 5: Suction distributions (C,x10%) for the six panel flat plate case. The tran-
sition positions are zp = 1.7, 2.0, 2.3, 2.6 and 2.9 for the solid line to the dot-dash
line respectively.
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Figure 6: The cost (1083 C(f) against transition position for the suction distributions
shown in figure 5.

it. e.g. when P, is reset. This relatively poor behaviour arises from the fact that the
optintisation problem is not well defined for 24 = 2.3, at least within the numerical
tolerance of the algorithm. Even when the algorithm has locked on to the solution
the changes in the individual suction flow rates are at least an order of magnitude
greater than those found for x4 = 2.0 or 2.6, with variations greater than 10% in the
larger flow rates when the predicted value of z, and the cost are constant to three
significant figures. There are also Jarge variations in the components of 8;, and hence
problems in regaining an optimum set of values once the optimum has been lost.

For 4y = 2.9 it takes around 130 iterations to obtain the best solution, and the
algorithm has only Hmited snecess in holding to this solution. In a rn of 500 iter-
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Figure 7: The transition position, cost (10° 32 C2), and suction flow rate (C,x10%) for
panel four for the six panel Hat plate case, for x4 = 2.0 (solid line), 2.3 (long dashes),
and 2.6 (short dashes).

ations. the longest the optimum was maintained was around 40 iterations, and once
the optimum was lost, the algorithm had difficulty finding it again. Thus, although



an optimum was found, the algorithm could not be said to particularly successful
in holding the suction values on this solution. Again there are large variations in
tlie individnal flow rates when there is effectively no change in the cost or predicted
fransition position, which in this case is not surprising given that large changes in the
sietion fow rates are needed to move the transition position by a significant amount
when close to the maximum trausition point {see figure 1).

Fine tuning the algorithm can improve the performance in this case. For example, if
P, is not reset, then once the optimum was found, it was maintained for up to 150
iterations, although there were still jumps away from the optimum and difficulties
veturning to it. Alternatively, a standard practice in control theory is to allow the
vain g to decay as k increases so that once a solution is obtained, the algorithm will
maintain it. A number of different ways of decreasing p were tried. With p = g for
o< 10 and g = po/{k — 10} for k > 10, p9 = 0.5, the transition position converged
to and held the desired value with xp = 2.9 &= 0.01 within 30 iterations, but took
aronnd 500 iterations to obtain the minimum cost of 3 C? = 10x107%, although it
was only 5% above for & > 100. Changing ug to (.25 gave a much slower decay in
the cost, with >-C? = 10.8x10"* at 500 iterations, although still showing a slow,
irregutar decay. Generally, it appears that p must be sufficiently large initially and
decay sufficiently slowly that the algorithm can find the optimum before p becomes
too small, and the rate of approach to the optimum becomes too slow. With p = 0.5
for k < 10 and p = 2/(k — 6) for k > 10, the desired transition position was obtained
with 30 iterations, and the optimum cost with 50 iterations. For the last form of
11, the calculation was repeated with x4 = 2.3. This time the optimum solution was
obtained efficiently, and was maintained with z, = 2.3 = .01 until the run ferminated
with at k& = 500, except the first time the matrix Py was reset at k = 50, when there
was a relatively small, short lived, jump away from the optimum. However, there are
still relatively large fluctuations in the suction flow rates and components of 8. Note
liere, that in all cases the desired transition position was found relatively quickly with
« = 0, and that it appears that the form of 4 is the key element in obtaining and
maintaining the optimum.

Plate with a pressure gradient

Although the flat plate configuration provides a convenient test problem, for many
applications the pressure gradient from inviscid flow will be nonzero. Experimentally
A nonzero pressure gradient was generated by placing a constriction in the tunnel on
the wall opposite the flat plate. Numerically, this can be mimicked by calculating the
inviscid flow past a wall with a hump using potential theory, and using the velocity
at the wall as u,, (z) in (6). The hump used is

ylx) = h.f(z) (30)

with

i3z if 2] <
“){u TACES! (31)
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aticl
z = 2w — ) wg (32)

where b = 0.005, wy = 1 and 2, = 1. The inviscid pressure distribution for this hump
is shown in terms of the pressure coefficient C, = (p — peo)/5pUZ in figure 8. There
are regions of both favourable and adverse pressure gradient, which, respectively,
pither locally stabilises or destabilises the How.
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Figure 8 The pressure distribution for inviscid flow past the hump.

A number of runs were performed with this hump and the same six panel configuration
used above. For this case the natural transition position with zero suction is at
+ a2 1.12, and the maximum downstream position of transition is # = 3.05. With
g = 2.6 the solution was obtained within 30 iterations, and the algorithm had no
difficulty maintaining this solution. Not surprisingly, the cost was greater in this case
than with the flat plate, with > C’('f ~ 1.4x1077, approximately double that with no

hump.,

Although a solution was obtained for 24 = 2.6, for many other values of z4 the
algorithm completely failed to converge to or hold on to the desired transition position
and associated cost once it had found them. Calculations were performed for z; = 1.3
to 2.7 increasing in steps of 0.1, For 24 = 1.3 and 1.4 there was no difficulty in finding
a solution. Likewise for 14 = 2.7. However for all z4 between 1.5 and 2.5 the algorithm
failed to converge. The best behaved of these was with =, = 2.5, as shown in figure 9.
Here, although a solution is found with 27 = 2.5 on occaslons, 1t is not maintained.
Also, the jumps away from the solution do not coincide with the resetting Py. In all
the cases in which the algorithm did not converge the behaviour was worse than that
shown in figure 9, i.c. either it could not lock on to a valid solution at all, or was
worse at holding on to the solution.

The reasons for this behaviour are best examined using a simpler, two panel, case 1
which the solution smrface can be completely mapped. Consider the case with the
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Figure 9: Transition position zp against iteration number & for six panels with a
pressure gradient.

panels at 0.56 < 2 < 0.92 and 1.12 < 2 < 1.48, so that there is one on the upstream
and one on the downstream side of the hump. Contours of the transition position
versus the suction flow rates plus some of contours of constant cost are shown in figure
10. Tt can be secen that xr as a function of the suction flow rates is discontinuous,
with the contours of @ for a7 =~ 1.5 to zp = 2.1 terminating/originating at the
cliscontinuity on the left of figure 10. This can be seen also in figure 11, which shows
the large jump in zp at the discontinuity as the suction flow rate on panel one changes
with a fixed suction rate on panel two. Farther, for much of, although not all, of zp
in the range of 1.5 to 2.0, the minimum cost is at the discontinuity. As can be
seen from figure 10, for zr = 2.0, although the transition contour terminates at the
discontinuity, the minimum cost occurs somewhat to the right of the discontinuity,
and numerically the algorithm has no trouble finding the optimum. In fact, the
optimum solution is easily obtained for w, < 1.4 or z4 > 2.0, but for z, between
1.5 and 1.9 the minimum cost is at the discontinuity and the algorithm fails in these
cases. Note that allowing the gain g to decrease as k increases, as in the six panel
fiat plate case above, does improve the behaviour of the algorithm for 2, between 1.5
and 1.9.

The reason for the discontinuity on the left of figure 10 can be seen from figure 12
which shows the amplification factor N(x) for a number of different configurations.
As expected, when there is no suction, in regions of favourable and adverse pressure
oradient, as shown in figure &, the flow is stabilised or destabilised, respectively,
resulting in several local extrema in N(x). Applying suction enhances the stability of
the boundary layer, and this combined with the underlying stability characteristics
of the flow creates a situation where a small increase in the suction can cause the
predicted transition position to jump {rom a point near a local maximum of N(z)
(o a point much further downstream, again as shown in figure 12, In figure 12 the
juip in the transition position was gencerated by changing the flow rate on the first
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Figure 10: Transition position for two suction panels as a function of the qu104.
The contours are for constant zp from 1.3 to 2.4 in increments of 0.1 omitting 1.6.
Also shown are a number of contours of constant cost.
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Figure 11: Transition position zp against the suction flow rate on panel 1 (C,x10%)
with €, = 2x10™* on panel 2.

suction panel, but essentially the same effect would be generated by a similar small
change in the suction rate of the second panel. Also, it is clear from figure 12 that
discontinuous behaviour would occur with a smaller value of Np (3.5 or less) and a
single suction panel upstream of the hump.
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Figure 12: Amplification factor N(z) for a flat plate with nosuction (solid line), a
lnunp with no suction (short dashes), and a hump with two panels and Gy = 4x1079
and Cpp = 2x107* (dots), and (= 5x107° and Cypp = 2x107* (dot-dash). These
lines have predicted transition position of zp = 0.92, 1.20, 1.40 and 1.89 in turn. The
dashed line shows the critical value of 1 = 4.3.

S far we have concentrated on the discontinuity on the left of figure 10. However, the
contours for ©p = 1.5 and 1.6 are virtually the same, and. e.g. when C, = 2x10~% on
the first panel, zp jumps from approximately 1.53 to 1.66 when C = 1.37x107% In
fact for this configuration there is a baud of values of xp around 1.6 which cannot be
accessed with any combination of suction flow rates. A plot of zr against the suction
flow rate on panel two with the rate on panel one fixed with ¢ > 107*, would show
a discontinuity similar to that seen in figure 11, although with a smaller jump.

For the case with a hump it is clear that the transition position cannot be specified
at all positions between the natural transition position with zero suction and the
maximum transition position for the given configuration, as a solution may not exist,
or may not be achievable with the current algorithm even if it does exist. However,
discontinuities'can also be found in the simpler fiat plate case. For example, for the
two panel configuration considered in this section there must be a discontinuity in
the surface. The natural transition position of zp == 0.92 lies at the end of the first
panel, and if there is no suction of the first panel, then the suction on the second
panel will not affect the predicted value of zp. However, if the second panel has
sufficient suction so that N drops well below the critical value of 4.3 in the region of
the second panel will a local maximum of N downstream of the first panel, then as the
suction on the first panel is increased from zero, the magnitude of the maximum will
decrease until it drops below the critical value, when there will be an accompanying
junp downstream in the transition position. A contour plot similar to figure 10 was
produced, and showed the expected discontinuity mn @y for higher values of C, on the
second panel, but not for the lower values where the suction was not strong enough
to produce the required drop in N{x}. Hence, althougl: there is a discontinuity in
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the surface, there are no regions, i.e. values of z,; between (.92 and the maximum,
which are not achievable. Also, for all values of z, the optimum value of the cost
was sufficiently far away from the discontinuity for the algorithm to converge to the
optimum without dificulties.

4, Discussion

The results presented above are for a flat plate with or without an imposed pressure
cradient from the external flow, as generic rather than specific examples of suction
optimisation problems. Some calculations have also been performed for a NACA
[£12 aerofoil, with generally similar results. There is no difficulty in performing such
a calculation using the methods outlined above, as thev require only the values for
i, () behind the stagnation point on the leading edge from potential flow past the
hody. The calculation was terminated at 50% of chord, as this is before the separation
point which occurs in laminar flow, with the inevitable problems for the boundary
taver flow calculation. Sample solutions can be found in [8].

[t lias been shown above that provided that the problem is well specified, the method
used quickly converges to a solution. By implication, this has been assumed to be
the optimum solution, although except in the two panel case in which the complete
sohttion surface can be mapped, this has not been formally proved. However, we
note that if we start from a different point with nonzere initial suction velocities, the
final solution produced is the same as that given above. The question of possible
local versus global optima should not be ignored in a study of this kind, and it
lias been found that in at least one case, the flat plate with six panels and z4 =
2.3, there is no single optimum solution within the tolerance of the basic solution
algorithm. Further, for a different problem, with two panels and an imposed pressure
cradient, there are regions between the maximum and minimum transition position
which are not accessible, and other positions for which a solution exists but to which
the algorithm will not converge. When the optimum occurs at a discontinuity in
rhe solution surface, the method is bound to fail as the gradient estimation step
involves constructing a local linear model of the relationship between the suction flow
rates and the transition position. Of course, any solution scheme that relies on local
smoothness of the underlying data will also fail in such a condition.

\We note that although the discontinuities encountered above were in cases with an
imposed inviscid pressure gradient, similar discontinuities can easily be generated in
the flat plate case. For example, consider a two panel syvstem with one panel ahead
of the natural transition position, and the second a reasonable distance downstream
of it. Transition will always be upstream of the second panel unless sufficient suction
is applied to the first panel to move the transition point close to the leading edge of
the second panel. However, if sufficient suction is placed on the second panel to drop
rhe amplification locally well below the critical value, and then the suction rate is
increased on the first panel, the transition will move smoothly along the panel until
it approaches the second panel, when there will be a sndden jump in the transition
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position, similar to that seen above.

The results presented above used the RLS method for the gradient estimation. The
alternative finite difference approach was investigated as well for the six panel flat
plate case. A centred difference scheme was used in which a small increment was added
and subtracted to each of the suction flow rates in turn, and the resulting changes
iu the transition position used to calculate the components of the gradient vector g.
Since this requires 13 function evaluations at each iteration, as opposed to one with
the RLS algorithm, it is clear that the finite difference method will be more expensive
for 2y = 1.7, 2.0 and 2.6, when less than 25 iterations where required for convergence
nsing the RLS algorithm. In fact, it took seven to nine iterations (71 to 117 function
evaluations) for convergence with the finite difference method, which was therefore
significantly more expensive. Note that using a one sided finite difference method, 1.e.
only adding or subtracting an increment to each suction flow rate, might be cheaper,
but would still be expected to be more expensive than the RLS method. For zy = 2.3
the finite difference approach was hetter behaved than the RLS method in that the
algorithim did not show large jumps away from the optimum. However, with the finite
difference scheme, the transition position zy did not achieve the desired value, but
displaved a sawtooth oscillation about zp = 2.27. Such oscillations have been noted
before, and in some circumstances can be predicted from the local form of the error
surface and constraint in the region of the optimum by treating the algorithm as an
iterated mapping [5]. For z4 = 2.9, the finite difference approach still produced large
oscillations in the calculated transition position and cost, although not as large as
those found with the RLS method. Allowing g to decrease with & again produced
an algorithm capable of finding and maintaining the optimum solution, although
significantly more effort was required than the 50 function evaluations needed with
the RLS method. Hence, provided the algorithm is matched to the problemn, the RLS
approach is consistently cheaper to implement than the finite difference approach.
However we note that it is possible that with certain configurations the RLS method
of gradient estimation will not produce convergence of the algorithm, whereas the
finite difference method will [17].

It was shown above that in certain cases allowing yu to decrease with & could improve
the behaviour of the algorithm. However, there may also be disadvantages in this
strategy. In practice it is desirable that the algorithmn cope with a change in the
froestream velocity, but if 4 is too small the approach to the optimum will be at
least greatly delayed, although the desired transition position should still be achieved
as the error dependent term in (16) is not affected by the value of p. Two runs
with the six panel configuration and z, = 2.6 weu, performed where the freestream
velocity Uy, was increased from 13.3'ms ! to 20ms™" at & = 75 and decreased back to
13.3'ms™! at k = 225. With g = 0.5 the algorithm converged to the new state within
50 iterations when the velocity was increased, and within 25 iterations when it was
decreased. In contrast, with g = 0.5 for & < 10 and g = 2/(k — 6) for k¥ > 10, the
algorithm took approximately 250 iteration to come within 10% of the optimum cost
[ollowing the decrease in velocity at & = 225, However. the desired transition position
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was obtained more quickly in the case where p is decaying (25 iterations versus 50 at
the increase in velocity and 15 versus 30 at the decrease). Hence, although allowing
/1 to decay can have advantages, particularly in extreme cases or where the solution
is not well defined, in practice it wonld be necessary to monitor the flow conditions

and increase p where appropriafte.

The constrained optimisation problem nsed Lere, Le. minimise the cost while holding
the transition at a specified position, is basecl on the requirements for a naceile. This
formulation is far from unique, and, if the desired position for tramsition is near the
maxinum possible position of transition, this may not be a sensible formulation as the
suction required may be unrealistically large {see figure 1), or there may be difficulties
in finding and maintaining the solution. Other formulations could be considered. For
exawnple. for an aerofoil or wing, a more realistic formulation might be to minimise
the total energy consumption of the system as a whole, taking into account such
factors as the drag, the pump power for the suction system, and the thrust gained
hv ejecting the fluid sucked through the system back into the external flow. This of
course would generate a much more complex problem, for which a different solution
algorithm would be required. However, the type of problems encountered above
could still appear for other suction optimisation formulations. For example, a simple
alternative formulation to that nsed here would be to fix the cost of the suction and
move the transition point as far downstream as possible, which could be regarded as
a simple partial model for a system with minimum power consumption. For the two
panel case with a forced nonzero pressure gradient, considered in §4 of the results, it is
¢lear from figure 10 that for a range of values of the cost, the solution is the transition
position on the right of the discontinuity, and hence that a solution algorithm that
cannot cope with nonsmooth data would also fail in this case. The question of different
fornmlations and solution algorithms is currently nnder consideration.

Acknowledgements

This work was supported in part by British Aerospace and the U.K. Engineering
and Physical Sciences Research Council, and by the Computational Engineering and
Design Centre at Southampton through the provision of computing facilities used
Jduring the latter stages of the work.

References

1] Gad-el-Hak, M., Flow control. Applied Mechanics Review, 42, 261 (1989).

[2] Joslin, R.D., Aircraft Laminar Flow Control, Annual Review of Fluid Mechanics,
30, 1-29 (1998).

[3] Rioual. J.-L., Nelson, P.A. & Fisher, M.I., Experiments of the active control of
houndary laver transition. ATAA J. Adrcraft, 31, 14416-1418 (1994).

21



4

5

[10]

Nelson, P.A., Wright. M.C.M. & Rioual, I.-L., Automatic control of laminar
boundary layer transition. AJAA J., 35, 85-90 (1997).

Nelson, P.A. and Rioual, J-L. An algorithm for the automatic control of
boundary-layer flow. IVSR technical report No. 233, University of Southamp-
ton (1994).

Frost, L., An algoritlun for linearly constrained adaptive array processing. Pro-
ceedings of the IERE 60, 926 (1972).

Wright, M.C.M. & Nelson, P.A., Experiments on a four channel system for the
oprimisation of suction distribution for laminar flow control. Submitted to AJAA

J. (1998).

Hackenberg, P., Numerical Optimisation of the Suction Distribution for Laminar
Flow Control Aerofoils, Ph.D. thesis, University of Southampton (1994).

Hackenberg, P., Rioual, J.-L., Tutty, O.R. & Nelson, P.A., The antomatic control
of boundary layer transition - Experiments and computation. Applied Scientific
Research, 54, 293-311 (1995).

Carter. J.E. and Wornom, S.F.: Solutions for incompressible separated bound-
ary lavers including viscous-inviscid interaction. Aerodynamic Analysis Requiring
Advanced Computers. NASA SP-347 (1975) 125

Smith, A.M.O.: Transition, pressure gradient, and stability theory. Proceedings
of the 9th International Congress of Applied Mechanics, Brussels Vol. 4 (1956)

Van Ingen, J.L.: A suggested semi-empirical method for the calculation of the
boundary-layer transition region. Report UTH-74 Univ. of Delft (1956)

Mack, L.M.: Boundarv-layer linear stability theory. AGARD-Report 709 (1984)
3.1
Nelson, P.A., Rioual, J.-L. and Fisher, M.J.: Experiments on the active control of

houndary-layer transition. Proceedings of the DGLR-AIAA Conference on Aero-
Acoustics, Aachen, Germany (1992) 56

Wellstead, P.E. and Zarrop, M.B.: Self-Tuning Systems. John Wiley, Chichester
(1991)

Fortescite, T.R. Kershenbaum, L.S. and Ydstie, B.E., Implementation of self-

fuuing regulators with variable forgetting factors. Automatica, 17, 831 (1981).

Wright, M.C.M. & Nelson, P.A., Gradient estimation issues for on-line laminar
How control. ISVR Technical Memorandum No. 770, University of Southampton
{1995).

N2
[N



	tr284cover.doc
	E COPYRIGHT NOTICE.doc
	tr284.pdf

