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Abstract

This report investigates the physical aspects and control mechanisms associated with
an active vibration isolation system in which electromagnetic control actuators are
installed in parallel with each of four mounts between a piece of equipment and a
vibrating base structure. The control strategy used is decentralised velocity feedback
control, where each of the four actuators is operated independently by feeding back
the equipment absolute velocity response at the same location. The special feature of
the model is that, although one ends of the actuators are collocated with the sensor
locations, the control system is not collocation control because of the supporting force
of each actuator acting on the flexible base structure whose dynamics are strongly
coupled with the mounted equipment. In particular, isolation of low frequency
vibration is considered where the equipment can be modelled as a being rigid and the
mounts as lumped parameter springs and dampers. The impedance method is
employed for the mechanical analysis of both passive and active vibration isolation
systems. It is shown analytically that the system is unconditionally stable, and so
perfect vibration isolation is theoretically achievable. The results from an
experimental four-mount active isolation system are also discussed. The measured
system response and closed loop attenuation is very similar to the predicted results,
and up to 14 dB reduction in the kinetic energy of the equipment can be achieved in
practice. If very high gains are used in the experiments, however, instability is
encountered at about 1 Hz due to some undesirable phase shifts in the electrical
equipment used.
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1. Introduction

Vibration mounts (also called isolators) are generally required to protect a piece of delicate
equipment in a severe vibration environment. Passive mounts, which may be modelled as
both resilient and energy dissipating elements, are widely used to support the equipment
and isolate it from base vibration. However, passive mounts have an inherent trade-off
between low and high frequency isolation performances depending on the dissipating
elements used [1]. Low mount damping brings poor performance at low frequencies, while
high mount damping brings poor performance at high frequencies. Thus, for a further
improvement of the isolation performance it is often required to introduce extra power
sources that can actively reduce vibration transmission through the mounts at all
frequencies. Active vibration isolation has been of great interest in various engineering

fields, and many efforts have been made as reviewed in [2,3].

Although such an active isolator can be constructed by feeding back the full state
variables, as commonly seen in work on active suspension [4,5], a more practical way may
be direct output feedback control. The absolute velocity responses of a plant structure
measured by sensors are often used as the feedback quantity. In particular, when the
actuators are collocated with the sensors, then the multichannel control system is proven to
be asymptotically stable[6,7]. In this case, the electric control gain used can be
analogously transformed to a virtual mechanical skyhook damper [8]. Using the idea.of
the skyhook damper, Serrand[9] has presented an experimental study on a two-mount
active isolation system to reduce vibration transmission inio a two-dimensional symmetric
rigid equipment structure which 1s installed statically balanced by two passive mounts on
an excited flexible base structure. He has shown experimentally that the decentralised
control configuration using the same gain in each control loop is capable to reduce

equipment vibration at all frequencies of interest.

The work presented here is an extension to a more general four-mount active vibration
isolation system for a three-dimensional equipment structure. There is, however, particular
emphasis on the physical aspects and mechanisms of control including stability issues.

Electromagnetic actuators are used as the control actuators of the active vibration isolation



system for convenience, and are installed between a piece of equipment and a flexible base
structure in parallel with each of four mounts. The control strategy used is decentralised
velocity feedback control[10,11], where each of the four actuators is operated
independently by feeding back the equipment absolute velocity response at the same
location. In particular, isolation of low frequency vibration is considered where the
equipment can be considered to be being rigid and the mounts to be springs and dampers.
The particular feature of this control configuration is that, although one ends of the
actuators are collocated with the sensors, the control system is not collocation control.
This is because the actuators are installed between the equipment and base structure for
the convenience of practical implementation, and thus the actuators excite the base
structure as well as the equipment. Because of this, when the flexible base structure is
strongly coupled with the mounted equipment, the established theory for collocation
control [6,7] is not directly applicable. The objective of this research was to clarify the
performance and stability issues associated with this four-mount vibration isolation system
using decentralised velocity feedback control. The basic concepts and mechanisms of
velocity feedback control associated with this actuator installation are analysed in Section
2 first with a single-mount vibration isolation system. The impedance method, which is
known a powerful tool in the analysis of coupled systems[12,13], is employed for the
mechanical analysis of both passive and active vibration isolation systems. A proof of
unconditional stability is given in Section 3 using the Nyquist criterion. The maximum
allowable gain is also analytically addressed for a control system having a time delay in
the control loop. The impedance method is extended to analyse a multiple-mount system
including the four-mount system in Section 4, where both performance and stability issues
are discussed. Some experiment results are presented and compared with simulation
results in Section 3. Potential causes of instability in practical implementation are also
addressed. Finally some conclusions are given in Section 6. There are also two appendices
that give the relevant equations for the model problem used in the simulations and the

experimental work.



2. Active vibration isolation of a sihgle mount
system

2.1 Analysis of the mounted equipment

Before dealing with a complex multiple-mount system, it is instructive to start with active
vibration isolation in a single mount system where an equipment structure is supported
upon a single mount. A simplified model is shown in Figure 1 where a rigid equipment of
mass m, 1s supported by a passive mount consisting of spring k, and damper c¢,. An
electromagnetic control actuator generating the control force f. is also installed between
the equipment and base structure in parallel with the passive mount to achieve a further
reduction of vibration transmission from the base velocity v, to the equipment velocity ﬁe.
The control system employs direct feedback control that uses the measured signal from the
equipment v, to operate the control force f. via the controller which has gain —H . It is
assumed that the mount is massless, and there is no time delay in the electric controller.
The structure comprising the rigid equipment and the mount is referred as the mounted

equipment.

Let the total force acting through the mount be f;, then the mounted equipment can be
described as
Zy,.=fn 1)
fu= L+ Z 0, - V) @)
where Z, = jom, and Z_ =c, +k,/jo, and frequency dependency of all the variables
are assumed since impedance is generally defined in the frequency domain.

Transmissibility through the passive mount in the absence of the control force f is given

by

T=Yeo _Zn (3)
v, Z,+Z,
When direct feedback control is applied, the transmission ratio can be rewritten as
7Yoo Zm (4)

v, Z.+Z +Z,
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Figure 1. A simplified model of velocity feedback control

where Z, is H, / jo, H, ,or joH, for displacement, velocity, or acceleration feedback,

respectively. As far as the dynamic behaviour of the mounted equipment is concerned, the
impedance Z. due to control action can be exactly replaced by a passive mechanical
element, provided the base input v, is bounded regardless of the control action. Using
equation (4), the control force f. for each case can be written as

fc = —che = —ZCchb (5)
When the gain for each control case is infinitely large, then |Z,|>>|Z, +Z,| in equation

(4) so that the transmission ratio is greatly improved i.e. T, = 0. For such a feedback gain,

the control force f. becomes

Jor =—Z,% (6)
The result shows that the control force when the feedback gain is infinite is the same as the
perfect control force for a feedforward controller using the base response as the reference
signal. More importantly, it suggests that perfect control can be approximately achieved
when the direct output feedback control technique is applied with an infinite gain,
regardless of whether displacement, velocity, or acceleration feedback is used. Feedback
control is generally preferable for practical implementation, since it is easier to implement
and is more robust to plant uncertainty than feedforward control[14]. From substituting
equations (2) and (6) into (1), when the base velocity vy is bounded, it can be seen that the
equipment is stable to base excitation as well as any possible external force excitation on

the equipment. However, when f,=Z (v, v, ), the equipment would be motjonless but

unstable to disturbances because no spring and damper elements exist.



To compare control performances for each response control case, Figure 2 shows

transmissibility for a single d.o.f mounted equipment of mass m, =1kg , natural frequency
f, =20 Hz and damping ratio ¢ =0.05. Feedback gains used are H, = Hk,,, H, = Hc,,
and H, =Hm, where H = 10. It clearly demonstrates that there is an advantageous

frequency region for each feedback control: displacement, velocity and acceleration
feedback control techniques are effective for stiffness, damping and mass governed

frequency regions, respectively. As discussed above, the effective control regions are

where |[Z|>>|Z, +Z,|. Velocity feedback control acts as an added damper (so-called

skyhook damper[8]) and reduces the response at resonance. Added effective stiffness and
inertia to the equipment through feedback control change the natural frequencies of the
displacement and acceleration feedback control systems, respectively. The control forces
for each case were also calculated using equation (5), and are compared in Figure 3 with
the perfect control force calculated from equation (6). In the effective region of each
controller, the control forces are close to the perfect control force. As the gain H for each
controller increases, a better control performance and a closer resemblance of the perfect
force is achieved. Unlike the cases for displacement and acceleration feedback control,
control force for velocity feedback control approaches the perfect control force without
having a peak at low or high frequencies. Moreover, velocity feedback control is known to
be a more robust control strategy than the others, as far as unmodelled phase shifts are
concerned [3,7}. Thus, hereafter in this report velocity feedback is the only control

technique considered.
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2.2 Analysis of the complete coupled system

In this section the analysis of the single mount system is continued but with consideration
of the dynamics of the flexible base structure that is strongly coupled with the mounted
equipment. The complete coupled system connected by a single mount can be represented
in terms of impedances as shown in Figure 4(a), where Z,, Z,, and Z, denote the
impedances of the equipment, mount, and base, respectively. The base structure is excited
by a primary force f,, and a pair of control forces f, located in parallel with the mount act
on both the equipment and the base structure. The control forces can model an
electromagnetic actuator installed between the equipment and base structure. As a simple
illustration of the single mount system, Figure 4(b) shows a two d.o.f system where a rigid
piece of equipment with impedance Z, = jarn, is installed on a single degree-of-freedom
vibrating base structure with impedance Z, = jom, +c¢, +k,/jo through a mount
consisting of a spring and damper Z, =c, +k,/jo. It is convenient to interpret the
whole system as a coupled one between the mounted equipment and the base structure,
where the mounted equipment is the combination of the equipment and the mount. It is
again assumed that the mount is massless. The complexity of this system stems from the
fact that the force acts on both the equipment and the base structure. This is thus not
collocation control in a usual sense{6,7)], and subsequent mechanical and stability analyses

need to be investigated.

Ve } Equipment

Mount

fonle, Or.

Base

kLo r,

(a) Impedance representation (b) a two d.o.f systern
Figure 4. A single mount vibration isolation system



Using the impedance approach, the base response can be written as.
vab:fp-fm (7)
where f,, is the total force acting through the mount as given in equation (2). By combining

equation (7) with the equations for the mounted equipment given in equations (1) and (2),

the dynamic behaviour of the whole system can be described by the matrix equation

Z,+Z, -Z, ||v.|_ f. g
-Z, Z,+Z,|lv,] |f.— 1. ©)

Because the passive system is stable, the velocity responses can be obtained by inverting

the impedance matrix in equation (8). When velocity feedback control is applied with the

control force f, =—Hu, equation (8) becomes

Z,+zZ,+H ~Z,6 |lu| |0 9
—(z,+H) Z,+Z,|lu,] |f, ©)

Note that the whole system impedance matrix is now non-symmetric. It should be noted
that, although one end of the actuator is collocated with the sensor on the equipment, the
control system is not collocation control. This is because of the additional force acting on
the base, and that makes the impedance matrix non-symmetric and the corresponding
analysis non-trivial. Thus, the stability of the system can not be assessed by simply using
the definiteness property (positive or negative) of the impedance matrix as in collocation
control[6,7]. In addition, an understanding using the mecharical amalogy such as a
skyhook damper[8] is no longer correct, as far as the dynamics of the complete coupled
system is concerned. Stability is rigorously analysed in Section 3, and so it is initially

assumed to be stable in this section.

Equation (9) can be simplified when the base structure is weakly coupled with the

mounted equipment system. Since the reaction force from the mount is then negligible

compared with the primary force i.e., ] fm|<< ! fp| in equation (7), equation (9) for weak

[Ze+Zm+H —Zm}{u}:{()} 10)
0 Z, |lu, I,

It can be seen that the base behaves as if there were no mounted equipment attached, and

coupling becomes

its resulting response acts as the excitation input to the mounted equipment. A detailed

discussion on weak coupling can be found in [13].



If the perfect control force is applied ie. f,=-Z, v, in equation (6), equation (9)

becomes

v, =0, v, =Z,f, (11)

This result states that, when the gain is infinitely large, the perfect control force uncouples
the mounted equipment from the base. In this case, perfect control of equipment vibration

can be achieved, and the base behaves as if no mounted equipment were attached.

In the previous section, control performance was discussed in term of transmissibility

T =v,/v, without regard to the dynamics of the base. It is a good performance measure

for a weakly coupled mounted equipment-base system where the denominator v, of T, is
an independent input to the system so that it remains the same before and after the
installation of the mounted equipment. In a strongly coupled system as represented in
equation (8), however, v, changes after attachment as well as a change of control gain so
that transmissibility T, does not represent the absolute vibration response of the equipment
v.. Thus the absolute velocity of the equipment is more preferable -as a performance
measure in this case, and for a multiple d.o.f equipment the kinetic energy of the
equipment may be a good performance measure. To support this, some simulations were

conducted for the two d.o.f system shown in Figure 4(b). The upper single d.o.f mounted

equipment system was assumed to be of mass m, =1kg, natural frequency f, =20 Hz
and damping ratio ¢ =0.05, and the lower single d.o.f base system was assumed to be of
mass m, =1 kg , natural frequency f, =30 Hz and damping ratio ¢ =0.01. The physical

parameters used are the same as those used for Figure 2. It is known that, when the
uncoupled natural frequencies are close, they are generally strongly coupled so that the
fully coupled model given in equation (9) should be used. The dynamics of the two d.o.f
system are well known [15], and may be sufficient to investigate basic coupling
mechanisms during active control.

The results are shown in Figure 5 both before and after control cases. Due to strong
coupling, the natural frequencies of the coupled system are different from the uncoupled
natural frequencies. In addition, there is a sharp anti-resonance at the uncoupled natural
frequency of the mounted equipment in Figure 5(b) since the mounted equipment acts as a
dynamic neutraliser at the frequency [16]. Referring to Figure 5(a), the maximum velocity

reduction after control is not at the natural frequency of the uncoupled mounted



equipment, but at the natural frequencies of the whole coupled. system. Figure 5(a, b)
clearly demonstrate that the high reduction of the vibration transmission ratio at the natural
frequency of the uncoupled mounted equipment in Figure 2 is due to the increased base
velocity after control. The results clearly demonstrate that the controller uncouples the

isolator from the base as the gain increases.

—  Original
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—————— Feedback Gain H=100"Cm

Equipment Velocily

107 L
10
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(a) Equipment velocity
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-------- Original{Uncoupled)
-—- Fesdback Gain H=10"Cm
------ Feedback Gain H=100"Cm

Base Velocity

al 1

10" 10’ 10
Frequency { Hz )

(b) Base velocity
Figure 5. Dynamics of a simple 2 dof system; before control (solid line), after control
(dashed line)
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3. Stability analysis of the single mount system

3.1 Unconditional stability

This section considers stability analysis of the single mount system shown in Figure 4. The
control system can be represented for the equipment response v, by using a block diagram
for disturbance rejection problems as shown in Figure 6. By inverting the impedance
matrix in equation (8), we can express the equipment velocity as

v,=G(jo)f, +d, (12)

where the frequency response of the plant G(j@) is given by

. v 1
G(jo)=—+
f. Z,+Z +Z Y7,

(13)

and the disturbance is d,=Y%,Z f,/ (z,+Z,+Z,Y,Z,) in which the driving point
mobility of the base is ¥, =1/Z, . If feedback contro! is applied so that f, =—Hv,, then

the equipment velocity is
e T (14)
1+ G(jonH
Similarly, the base velocity after feedback can be obtained as
_Z,+Z +H d,

- . 15
T lvG(jmH Z, (1)

Using the Nyquist stability criterion, the responses in equations (14) and (15) are stable
1.e. internally stable[11], if and only if the common open loop frequency response function
L{jo) = G(jo}H does not enclose the (—1,0) point in the complex L{(j@) plane. Since H
is a positive gain, the control system is unconditionally stable if and only if the plant

G(jm) does not cross the negative real axis.

fe

d
D
G P R——

-H

Figure 6. General block diagram representation of disturbance rejection.
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Unconditional stability is examined first for the case when the mounted equipment is
weakly coupled with the base structure, and then is extended to strongly coupled cases.
The degree of coupling can be judged by comparing dynamic characteristics of the

uncoupled systems at the connection point v, and is given by {12,13]
Z,.Y,|<<1 (16)
where the input impedance to the mounted equipment is Z,, =Z,Z, / (z,+2z,). Applying

equation (16) to (13) the weakly coupled plant can be written as

G(jo)= (17

Z,+Z,
It is important to note that Re(Z)2 0, where Z =Z_+Z, and Re(s) denotes the real part.

Thus the plant has the characteristic of

Re(G(jw))=0 or 90° < ZG(jw) < 90° (18)
The plant Nyquist locus resides on the right half of the complex plane, and thus it never
crosses the negative real axis. Thus the control system for the weakly coupled plant is
unconditionally stable. Equation (18) is a necessary condition for the plant to be the
driving point mobility of a passive system. In fact, equation (17) is the driving point
mobility of the mounted equipment installed on a rigid base. When the mounted
equipment is weakly coupled with the base, therefore the plant turns into the driving point

mobility, and is unconditionally stable.

However, when the mounted equipment and the base structure are strongly coupled, the
stability analysis is more complicated because the force acting on the base now affects the
dynamic response of the equipment. The real part of the plant given in equation (13) is

determined by the third term in the denominator Z,Z,Y, because of the non-negative
definite property Re(Z,)>0 and Re(Z_)>0. Let the equipment of a typical single d.o.f
system be installed on a flexible structure as shown in Figure 7(a). The impedances of this
system are given by Z,_ =k,/jo and Z, = jomo] / (a)f —(02) where @, is equal to
m which corresponds to the angular natural frequency of the first flexible mode of

the equipment. For simplicity, damping in the equipment and the mount is ignored.

12



(b)

Figure 7. Rigid(a) and flexible(b) equipment structures mounted on a flexible structure

Applying the condition in equation (18) to this term gives

m k(@ - )0} ) Re(¥,)2 0 (19)
Since the real part of the base mobility Y} is always non-negative, equation (19) is valid at
the low frequency range where @ < ®,. When the equipment has only an inertial element
ie. Z,= jom,, equation (19) becomes m,k, -Re(Y,)>0 so that equation (18) is satisfied
at all frequencies. The Nyquist locus for the inertial equipment is always on the right half
complex plane. If a small damping in the mount is included, the original locus is slightly
declined to the clockwise direction, but approaches to the origin as the frequency increases
without crossing the negative real axis. An important conclusion from this analysis is that
the system is unconditionally stable regardless of the degree of coupling, if and only if the

equipment is rigid and is supported only upon a massless mount.

As a general example of the equipment, consider a free-free beam installed on a flexible
base through a single mount as shown in Figure 7(b). As is shown in Appendices A and B,
the driving point mobility of the beam can be represented as a summation of N modes.

When the beam of mass m, is mounted at its mid-point L/2, the driving point mobility is

given by

Y, =t Y 62(L/24, (@) 20)
jom, m

e ¢ n=3

13



where the first term denotes the rigid body mode and the second term denotes higher
flexible modes. Since the driving point is at the mass centre, the rigid body mode
corresponding to n =2 is not excited. In addition, ¢, is the n-th mode shape, and the
vibration modal resonance term A,(®) is A (@)= ja)/ (co: -0+ j2& nconcu) in which @,
and ¢ are the natural frequency and the damping ratio of n-th mode, respectively. If again
no damping is assumed in the equipment and the mount, the real part of the plant in
equation (13) is governed by the real part of Z Y,Z, . Only the first two modes of the

beam that are excited are considered for simplicity. An unconditional stability condition
corresponding to equation (19) can be written as

2 2
Rej mk,—— 2 __y |>0 21)
@, - (1+97)

where @, =@, and ¢ =¢}(L/2) for the first excited flexible mode. Since Y}, is a driving

point mobility and ¢* =0, the condition in equation (21) is satisfied, provided that

2
w< /1-?;52 (22)

The result shows that, if there is a flexible mode in the equipment structure that is strongly

coupled with the flexible base, the system may become unstable at high frequencies. Such
a potential instability problem at high frequencies may be avoided by low-pass filtering of
the measured sensor signal in practice. Nevertheless it is clear that, at frequencies far
lower than the first exciting flexible equipment mode, the plant is unconditionally stable.
Thus, if and only if the equipment is rigid and is supported only upon a massless mount,
the active isolation system shown in Figure 4 has collocation control-like
behaviour(unconditionally stable and perfect controllability) and its plant shows driving

point mobility-like behaviour(no crossover the negative real axis of the Nyquist plot).

3.2 The effect of a time delay

The stability analysis considered in the previous section was for an idealised model
assuming perfect modelling of the mechanical and electrical systems together with no time
delay on the control loop. An infinitely large gain in this case can result in perfect
vibration isolation. However, such an idealised condition is rarely met in practice, and an

increasing gain eventually causes instability. In particular, time delays in the open loop

14



frequency response function L(je) would be one of most crucial- factors. The origins of
such a time delay are various, for example, use of lowpass filters for sensing, phase lags in
actuators and power amplifiers, etc. Time delays should be avoided as much as possible
for a better performance. This section considers the theoretical analysis of stability for an
active isolation system with a pure time delay in L(jw). In practice, physical systems are
quite complicated and modelling errors would not be exactly represented by a pure time
delay. However it should be emphasised that analytical studies considered in this report
would facilitate insight into the limitations of collocation-like control. Stability analysis
for the weakly coupled equipment-base system is first considered, and is extended to the

fully coupled case.

When the equipment-base system 1s weakly coupled and there 1s a pure time delay in the
controller, the open loop frequency response function L{j®) can be rewritten as
He /"

zZ,+z, '

L(jow)= (23)

where the weakly coupled plant G(jw) =1/ (z,+Z_), H is the proportional control gain,

and e~ is the frequency domain representation of the pure time delay 7 in the controller.
The maximum value of the control gain H depends on the time delay 7, and its relationship
can be calculated by the Nyquist stability criterion [14]. For a given gain margin (GM),

equation (23) for the single d.o.f mounted equipment in Figure 4(b) can be written as

. ja)PHmue_jm"r 1
Ljo,)= S =- (24)
k,-mw, + jo,c, GM

where H,.. is the maximum allowable gain for the gain margin denoted as GM on the
right side, @, is the phase crossover frequency at which the phase is —180°. If the time
delay is very small compared with the natural period of the mounted equipment so that

@, >>®,, where the angular natural frequency of the mounted equipment is

w, =k, /m, , an approximate solutions of equation (24) can be obtained. They are given

by[14}]

w
o =~ H =T (25,26)
P2t GM

It can be seen that as the delay 7 increases, the phase crossover frequency @, in equation

(25) decreases so that the maximum allowable gain H,,, gets smaller in equation (26).

15



When the mounted equipment is strongly coupled with the base, the plant G(jw) includes
the mobility of the base Y, as given in equation (13). However, it is not necessary to
consider the fully coupled model to obtain the crossover frequency @. and the maximum
allowable gain H,,.. This is because, when the time delay is very small compared with the

natural periods of both the mounted equipment and the base so that w, >>@,, the

dynamics of the coupled system near the phase crossover frequency @, is generally no
longer strongly coupled. Thus the results in equations (25) and (26) are still valid for fully

coupled systems.

Figure 8(a) shows the Nyquist plot for the system considered in Section 2 but with a time
delay of 0.5 ms together with the assumption of weak coupling. The maximum allowable
gain Hyue was calculated from equation (26) for the gain margin GM = 2. The Nyquist

plot passes approximately (—1/2,0) at about the phase crossover frequency 500 Hz

obtained from equation (25). When the feedback gain is increased more than twice of
H,q..x, the control system encircles the Nyquist point ( -1, 0) in the plot and thus becomes
unstable. The Nyquist plot for the fully coupled model is shown in Figure 8(b) with using
the same H,. It can be seen that near and over the crossover frequency @ there is no
discernible difference between Figure 8(a) and Figure 8(b). The open loop frequency
response functions for both weak and full coupling models are also shown together in
Figure 9 as Bode plot form for clarity. Figure 10 shows the transmissibility graphs for the
models with and without the pure time delay. The system with the time delay shows the

‘waterbed effect’ around the crossover frequency[10].

Overall, concepts and mechanisms of active isolation have been discussed for a single
mount system. It has been shown that collocation control of rigid equipment responses
with an infinite gain is the same as perfect feedforward control using the base velocity
reference input in terms of performance. The mechanism involved with the active isolation
system considered is that, as the gain increases, the controiler uncouples the mounted
equipment from the base. The kinetic energy of the equipment is suggested as the measure
of control performance. Unconditional stability has been proven for a rigid equipment
mounted on a massless mount. In addition, stability for a control system with a pure time

delay on its control loop has been examined. In the following section, the impedance
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approach for a single mount system represented in equation (9) is extended to the case of a

multiple-mount system.
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4. Active vibration isolation of a multiple-mount
system

4.1 Flexible equipment

This section considers a generalisation of the impedance representation described in
Section 2 to cover the general case where a flexible equipment structure is connected to 2
base structure through a set of multiple mounts. The multiple mount vibration isolation
system can be represented by an impedance diagram as shown in Figure 11, which 1s a
simple extension of Figure 4(a). The vector d,, is introduced because f, is not collocated
with f.. The number of mounts is M, and the total number of modes in the flexible
equipment and base structures are N and L, respectively. Again no mass effects are
considered in the mounts. Since M mounts are used, the end velocities of all mounts are
denoted as M length vectors ve to the equipment and vy to the base, respectively. The
equipment subject to multiple mount forces fr, can be written as

Z.v,=f,, @n
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Flexible equipment
r ( Nmodes )

» M mounts

<4
Flexible base
" ( L modes )

Figure 11. A multiple mount vibration isolation system

where Z, =Y.', provided the input mobility matrix Y, is invertible. The mobility matrix

is invertible if the elements of the vector v, are linearly independent. By extending
equation (2) for a single mount, the mount force vector can be written as
f,=f+Z,(v,~v.), (28)
where the impedance matrix of the mounts Zy, is a (MxM) diagonal matrix whose diagonal
terms are the impedances of each mount. Again by extending equation (7), the base

response can be written as

Z,v,=d —f,, (29)

where d, =Z,Y, f, in which Yy, are the mobility matrix of the uncoupled base due to the

primary force vector f,. The impedance of the uncoupled base due to the mount force

vector £y is Z, =Y, 1 provided Y}, is invertible. Combining equations (27-29) gives

Z.+Z, -Z. ][v. f,
= (30)
- Zm Zb + Zm vb dP —fc

This is a compact description of the mounted equipment-base coupled system in terms of
impedances at the mount locations. Note this is also a simple extension of the single
mount systermn in equation (8). Note also that the conditions used for constructing the
matrix equation are that Y. and Y}, are invertible. If the total number of equipment modes
N is not less than the number of mounts i.e. N 2 M , the matrix Y, is generally invertible.

The same applies to Yy, so that the condition is L > M where L is the total number of base
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modes considered. In this case, the responses in {VE vb}T are linearly independent and

the complete system impedance matrix of (2MX2M) size is invertible.

Applying velocity feedback control by setting f, = —Hv_, the system equation becomes

Z.+Z,+H ~-Z, fv,] [0 "
—(Zm+H) Zb+Zm Vb B dp ( )

When f, =—Z_v, in equation (28), the mounted equipment and the base are uncoupled so

that perfect vibration isolation can be achieved. If the controlled system is stable, the
velocities at both ends of the mounts can be obtained by taking the inverse of the total

system impedance matrix.

As suggested earlier, the kinetic energy of the equipment can be used as the performance
measure. However, in general the number of equipment modes is bigger than that of
mounts i.e., M <N, and it is thus not possible to obtain the kinetic energy of the
equipment from equation (31) which only gives velocity responses at the mount locations.
Thus it is necessary to consider the dynamics of the equipment in modal co-ordinates. If
one assurnes that the equipment is a flexible plate described by the co-ordinate system r,

the kinetic energy is given by

_ph 2
E =+ LL, v, (r,0)| dS (32)

where, v, (r,®) is the velocity at the position r, and p,, , and S, are the material density,

thickness and area of the plate, respectively. When the vibration response in the flexible
structure is assumed to be described by a summation of N modes, then the vibration

velocity at position r can be written as [12]

N
v,(r,0) = ¥, (e, (@=y"a (33)

n=]
where T denotes the transpose, and the N length column vectors W and a consist of the

array of vibration mode shape functions ¥, (r) and the complex amplitude of the vibration
velocity modes a (@) respectively, where modes means those for the uncoupled plate, not

for the complete coupled system. If the mode shape function denoted as Y/, (r) 1

normalised to be S, =L w2(r)dS, the kinetic energy given in equation (32) can be

rewritten as
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E, = M, oy ' (34)

where M, i1s the total mass of the flexible plate 1.e. M, = p hS, and the superscript "

denotes the Hermitian transpose. In order to calculate the kinetic energy, equation (31)
which is written in terms of the physical velocity response vector u should be represented
in terms of the modal amplitude vector a. By extending equation (33), the equipment

velocity response vector v, at the mount positions can be written as

v, =¥]la (35)
where the matrix ¥, is a transformation matrix which transforms the N length modal
amplitude vector a to the M length physical velocity amplitude vector v,. Since ¥;; is a
(MxN) size matrix where M < N (underdetermined), a can not be obtained from v, [17].

It equivalently means that the inverse of ¥, does not exist even in the least square sense.
This is the reason why one ought to use a modal domain formulation considered here.
From Appendix A, the modal amplitude vector can be written analogously to equation
(27) as follows:

Za=g, (36)
where the equipment modal mobility matrix is Z, =Y.', and gn is the M length
generalised force vector. The notation Y, is used for a mobility in modal co-ordinates to
distinguish it from that in physical co-ordinates Y,. By multiplying the transformation
matrix ¥, to both sides of equation (28), the generalised mount force vector is written as

gn =Vl + ¥, Z, (v, —v,), (37
where g =¥, f . A detailed description for the modal domain analysis is given in

Appendix A. By combining equations (29), (36) and (37), the whole system matrix

equation in modal co-ordinates is given by

Z.+Z.+H -¥,Z, a}_ﬂ 0 (38)
- (Zm + H)‘I”;,; Zb + Zm Vs dp
where the modal impedance matrices are given by
Z, =Y, Z ¥, H=v,H¥, Z.=Y" (39a,b,c)

Note that Z,, and H are obtained by transformations from physical co-ordinates into the

equipment modal co-ordinates, while Z_ is directly obtained from the inverse of Y, . Note
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the matrix Z, of rank N can not be obtained from ¥,,Z W, whose rank is M, where
N>M . Note also Z, is diagonal, while Z_ is generally non-diagonal but symmetric

although Z_ is diagonal. The non-diagonal terms act as coupling terms between
equipment modal responses. The general representation in equation (38) is valid regardless
of the difference of M and N. The modal amplitude vector a obtained from equation (38) is
substituted into equation (34) to calculate the equipment kinetic energy. It can also be

substituted to equation (35) to obtain the physical velocity vector ve.

Consider when M =N and M < L, where L is the number of base modes considered. In
this case, the transformation matrix ¥}, in equation (35) is now square (fully determined).

If it is assumed to be invertible, equation (38) can be further simplified as

Z,+Z,+H -Z, |[a] [ 0 40)
~(Z_ +H) Z,+Z,||b] |¥.4,

where the modal amplitude vectors are given by

a=(®I)'y,, b={&I)"v, (41a.b)
In this fully determined case, the matrix equation for physical co-ordinates in equation
(31) can be transformed to equation (40) for modal co-ordinates using the co-ordinate

transform relations given in equations (35) and (41). The transformed matrices are
Z,=%,72 Y., H=",H¥,, and Z, =¥, Z, ¥y . The matrix Z, can be obtained

from either Y, or ¥, Z . ¥y

This section has discussed a general formulation to the analysis of a flexible equipment
structure on a set of mounts. Due to the fully populated transformed mount impedance and
controller matrices, an analytical study on mechanical coupling and control mechanisms is
difficult. As was shown with a single mount system in the previous section, flexible
vibration on the equipment structure may cause instability when it is strongly coupled with
the base. Thus, an equipment structure of 3-dimensional but rigid will be considered in the

next section.
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4.2 Rigid equipment

This section considers a simple but practically important case where a three-dimensional
rigid equipment structure is installed on a flexible base structure through four mounts as
shown in Figure 12. In this case, the number of mounts is greater than the number of
equipment modes i.e., M > N (overdetermined in equation (35)) where N is three: one
displacement and two rotations. Rather than using the kinetic energy formulation given in
equation {34), it is more convenient to describe it in terms of the equipment inertia matrix

J. as follows:

E, =%a“.}ea (42)

where a= {w 6 ([)}T denoting the heave, pitch and roll velocities at the mass centre.

The inertia matrix of the equipment is J, =Z,/ je, and is written as
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Figure 12. A 3-dimensional isolator sitting on a flexible base structure through the 4
mount supports

23



M

(4

QO

J. = (43)

O o~ o

0
0

~

@

where M, is the total mass of the equipment, [ and I, are the moment of inertia to piich
and roll motions, respectively. The difference between equations (34) and (42) is due to
the different mode normalising faciors. In a similar way to the transform relationship in
equation (35), the new modal transformation matrix denoted Q satisfies

v, =Qa, a=Ry (44.,45)

e

where v.={,, v, V. v..J is the nodal velocity vector. Since equation (44) is over-

determined, the pseudo-inverse of Q can be obtained from its least square solution to
account for measurement errors in the velocity signals so that R= (QTQ)_IQT [17,18].

Thus rewriting equation (38) in terms of a but without feedback control gives

2 F T
Z.+Z_ -Q'Z, {a}z g, 46)
-Z.Q Z,+Z_l{u, d,—f,

where the generalised control force vector is g, =Q™f,, and Z, = Q"Z,Q is the modal

mount impedance matrix which is the transformed form of the nodal mount impedance
matrix Zn, When velocity feedback control with the control gain matrix H is applied, the
control force vector is written as

f, =-Hv (47)

Since g, =Q"f, and v, =Qa, the modal gain matrix is written as
H=Q'HQ (48)

Using equations (46) and (48), the active system can be written as

Z.+Z +H -Q'Z_|la 0
¢ m m = 49
]:"_ (Zm + H)Q Zh + Zm }{uh} {dl’} ( )

Equation (49) is a compact description of the four-mount active vibration isolation system
in terms of impedance. Note this is also a simple extension form of the single mount
system in equation (9). The solution of equation (49) can be obtained by inverting the
impedance matrix, provided the system is stable. If the perfect control force vector

f_ =-Z,v, is applied, it uncouples the mounted equipment from the vibrating base

structure so that the active system becomes similar to equation (11).
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Rather than implementing a complex 4-input 4-output fully coupled control system, it is
interesting to consider the simplified system when four separate SISO (single-input-single-
output) control systems are used. In this case the control gain matrix H becomes diagonal.
This is termed as decentralised control [10,11] where each of the four actuators is
controlled independently by feeding back the corresponding equipment absolute velocity
response at the same location. For the symmetricaily installed equipment structure as

shown in Figure 12, the transform matrices are given by

1 -1, =]
Lo+l ~] I
Q= o Tl R=Yoy, vy, vy, -y, | G051
bo+4, +1
U ~l, 4, =i, =, +1fL, +1/,

If it is assumed that the installation of the equipment is statically balanced [1] so that Z_

is diagonal, then for the symmetrical system shown in Figure 12 the impedances of each
mount are the same Z,,. If it is further assumed that the gains of each controller are the
same H, the equipment dynamic equation given in the (1,1) term of equation (49) becomes

diagonal, and is given by

joM +Z +H 0 0
Z.+Z_ +H= 0 jol, +(Z +H); 0 (52)
0 0 jel, +(Z, +H)I;

The equipment dynamic equations are uncoupled even after control, and the gain H is
simply added to the mount impedance Z, in all three motions. This means that, for the
statically balanced symmetric structure as shown in Figure 12, the use of a single common
gain for decentralised control (equi-decentralised control) results in the modal controller
{(equi-modal control) equivalently reducing all modes. Each of four control forces has the
same effect as a skyhook damper, as far as the relative equipment motions are concerned
as discussed in Section 2.1. The four skyhook dampers at each mount location can
equivalently reduce every rigid body mode of the equipment structure. Consider the
general case when the equipment structure is non-symimetric but statically balanced as is

preferred in practice [1]. Equi-modal control can again be achieved by making the modal
control gain matrix H diagonal similarly as Z_.
When only some of the four actuators are working, one can easily analyse the system

using the relationship H =QTHQ but seiting to zero to the diagonal terms of H for non-

working mount forces. Since four actuators are used to control three modes, one is
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redundant and three actuators may be sufficient. If only two actuators are applied, for

example, mount number 1 and 2 in Figure 12, then the control system may not be able to

control the roll motion gb .

4.3 Stability analysis of the four-mount system
This section considers stability analysis of the active vibration isolation system for the 3-
dimensional rigid equipment as shown in Figure 12. The 4-input 4-output multichannel
feedback control system can be represented as a general block diagram for disturbance
rejection as shown in Figure 13. The multichannel plant matrix G(jw) is of size (4x4) and
is give by

v, =G(jo), (53)
Stability of the multichannel system can be determined from the open loop frequency
response function matrix L(j@)=G(jw)H using the generalised Nyquist criterion[10],
which states that the closed loop system is stable provided none of the eigenvalue loci of
L(jo) should encircle the (—1,0) point in the complex plane. If equi-decentralised control

is implemented with a common gain H, L{jw) can be written as

L{jw)=HG(jo) (34

NV

G(s) =

-H

Figure 13. Multichannel feedback control system for disturbance rejection
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None of the eigenvalue loci of G{jw) encircle the (—1,0) point for stability, and none of

the eigenvalue loci should cross the negative real axis for wunconditionally stability.
Because one of the responses in v, is linearly dependent on the others and thus one of the
eigenvalues is zero, it is thus convenient to judge the criterion for unconditional stability in
the transformed co-ordinates as [17,18]

eig(RG(jao)Q) (55)

The plant matrix can be obtained by solving equation (46) with d, =0 and using the

transform relation in equation (44). It is generally non-symmetric due to non-symmetric

installation of the mounted equipment on the base.

The stability of the decentralised control system with a common gain H can be assessed
analytically. Consider first the case when either the mounted equipment-base system 1s
weakly coupled or the control actuators are only acting on the equipment structure. Each
pair of input and output is collocation control, because each plant is the driving point
mobility. Each independent control system is unconditionally stable. When all of the
controllers are acting with a common gain H, the stability can be tested by examining
G(jw) using equation (55). The plant G(j®) is square symmeiric, and is the mobility
matrix of a mechanical system. The real part of the eigenvalues of the plant matrix is
positive for the mechanical system to be a passive(power absorbing) mechanical device.
By definition, the passive mechanical system is assumed to be passive. Thus when a
multichannel control system has the driving point input mobility matrix as its plant, it 1s

unconditionally stable to the change of the common gain H [6,7].

Now we examine the strongly coupled case particularly when the co-ordinate
transformations are fully determined i.e. Q in equation (44) is square and invertible, such
as the two mount system with a two-dimensional equipment and the three mount system

with a three-dimensional equipment. In this case, the transform matrix in equation (45) is
R=Q™", and the same co-ordinate transform relations can be also applied to the base

velocity vector as

v, =Qb, b=Rv, (56,57)
where b is the transformed base velocity vector. By setting d, =0 in equation (46) and

using these relations, the plant matrix is given by
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G(jw) = Q(Z; +Z, +Z. N2, Q" (58)
where Y, =Z;" in which the transformed base impedance is Z, = Q"Z,Q . Note this is
also a simple extension form of the single mount system in equation (13). Again a rigid
equipment and massless mounts are assumed together with the statically balanced
installation of the mounted equipment. Since Q"Q =1, applying the criterion in equation
(55) gives

eig\Z,+ 7, +Z,YZ.)") (59)
where Z,, and Z,, are diagonal, and Y, is symmetric but non-diagonal. The condition is
determined by eig(Z, +Z, +Z,Y,Z,), and since the strictly positive definite
characteristic of Re(eig(_Z_e))ZO and Re(eig(zm))zo, it is determined by the last term
eig(Z_Y,Z, ), where Releig(Y,))>0 again due to the positive definite characteristic. If
we assume there is no damping in the mounts, then the diagonal matrix Z,Z, 20, whose
diagonal terms are positive real and similar to that for the single mount systern in Section
3.1. Thus Releig(Z_Y,Z.))=0, and consequently the real eigenvalues of the plant in
equation (59) becomes positive definite so that Re{eig (RG( j0)Q))= 0. Similarly as for
the single mount system, damping in the mounts does not threaten the unconditional
stability. However, if there is a flexible mode in the equipment structure, Releig(Z.Z,))

is no longer positive definite. Thus the system is unconditionally stable at all frequencies,
provided the equipment behaves as a rigid body and the mounts as springs and dampers.

When the system is over-determined as in the four-mount system in Figure 12, there is a
redundant passive mount and a redundant active force. It is thus no longer possible to
apply the convenient transforms for the base responses in equations (56) and (57). The
analytical plant matrix expression can still be obtained from using equation (46), but is
very complex in this case. Its analytical proof is thus not given but instead some

supporting simulation and experimental results in the next section.
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5. Active vibration isolation of a four-mount
system

5.1 Description of the system

To support the theoretical results, some computer simulations as well as experiments were
conducted with the low frequency active vibration isolation model as shown in Figure 12.
The three dimensional rigid equipment was installed on a flexible base structure upon four
passive mounts as shown in Figure 14. The equipment structure was assumed to be
uniform and rigid. The heave w, pitch 6, and roll ¢ motions are denoted at the mass centre.
The locations of the four mounts are referred as Nodes 1, 2, 3, and 4 for convenience.
They were assumed to have the same mechanical properties and each mount was assumed
to be modelled as a parallel connection of spring %, and damper ¢,, without mass. The base
structure of dimensions L, X L, was assumed to be of free-free-clamped-clamped boundary
conditions. The flexible base structure was excited by white noise from a primary force f,
and its location is shown in Figure 14. Relevant physical and geometrical properties for

simulations are tabulated in Tables 1 and 2.
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Figure 14. Schematic diagram of the active isolation system on a free-free-clamped-
clamped base plate structure. The locations of the four mounts are marked as Nodes 1,2,3,
and 4.
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Table 1. Physical properties

M,, Mass 6.232 kg
1g Moment of inertia to pitch motion 0.0685 kgm®
Equipment
I, Moment of inertia to pitch motion 0.0162 kgm”®
Structure
Material of the equipment plate Aluminium
k., Spring constant of each mount 4.2x10* N /m
¢, Damping of each mount 25.6 Ns/m
Mount $w = 0.05
Damping ratio to heave (w), pitch (6), and roll
{o=0.056
(¢ motions
él(p = 0046
Material Steel
Base Plate
{, Damping ratio 0.01
Table 2. Geometric data
(LxL.xf), Dimensions of the steel base plate (mm) (700 x 500 x 2)

(L <L), Dimensions of the aluminium equipment plate (mm) (300 x 160 x 20)

Mount locations on the equipment (mm) I, =117, [, =47
Location of the primary force (mm) (320, 270)
Location of Node 1 (Z./2.L,/2)
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Figure 15. Experimental set-up

For a comparison with experiments, the simulation model shown in Figure 14 was
physically fabricated as shown in Figure 15. The large shaker underneath the rectangular
plate was the primary force actuator, and a mounted equipment structure was installed on
top of the free-free-clamped-clamped plate. Two facing sides of the plate were bolted on
stiff frames to realise the clamped-clamped boundary conditions. The equipment structure
was a combined structure between four electromagnetic actuators and a thick aluminium
plate of thickness 20 mm, and was supported by four mounts as shown in Figure 15. In
order to realise the parallel installation of actuators with the mounts as shown in Figure 12,
the four actuators were fixed on the thick equipment plate and were located on top of each
mount position. The detailed structure of each active isolation system is shown in Figure
16 where a stinger is connected between the actuator and the mount foot through the
mount. The same realisation could be achieved by fixing the actuator now on the flexible
base and connecting the stinger to the equipment plate. However, the first configuration
was chosen for convenience of base vibration analysis as well as for making the mounted
equipment and base structures strongly coupled. The mount was made of natural rubber
that was moulded to be of hollow cylinder shaped. The locations of the mounts on the
plate is shown in Figure 14, and the physical and geometric properties for the experimental

set-up are the same as those for simulations shown in Tables 1 and 2.

31



@ Electromagnetic Actuator
@ Bolt

@ Support (height = 40 mm)
@ Stinger

® Equipment Structure (Al)
® Upper and Lower Adapters (Al)
@ Rubber Mount (height = 30 mm,

outer dia. = 30mm, inner dia. = 10 mm)

Figure 16. Structure of the active isolator

Vin Power
—»  Amplifier
H=1 Signal conditioner
+ Amplifier v,
+ Integrator —
+ Highpass filter (1 Hz)
+ Lowpass filter (1 kHz)

Figure 17. Plant response measurement for a single plant

5.2 System identification and stability test
Before any control technique is applied, identification of the experimental plant is useful

for stability analysis as well as validation of the theoretical model. The mounted
equipment structure was first installed on a rigid base structure to identify the uncoupled
characteristics of the structure itself. The measurement system is shown in Figure 17 for a
single channel. The input voltage Vi, to the electromagnetic actuator was measured and
used as the input signal instead of the input force. It was because, at low frequencies the

input voltage is approximately proportional to the input current that is directly
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proportional to the force inputf19]. In addition, velocity of the equipment was obtained
from first measuring acceleration by using a piezo-type accelerometer and then passing it
through an integrator. The integrator was an integrated module inside a general signal
conditioner used ( B&K type 2635 )} as shown in Figure 17, and was operated in
conjunction with a highpass filter in order to aveoid instability at O Hz. The cutoff
frequency of the highpass filter was set to be 1 Hz. The signal over than I kHz was again
filtered by using a lowpass filter so as to assure that only the rigid boély modes of the
equipment are measured. Figure 18(a) shows a plant response when the actuator at Node 1
was excited and the equipment velocity response at the same location was measured. Since
the frequency response function is the sensor response at Node 1 to the excitation at Node
1, it is corresponding to the plant G;;. The plant Gy, is the (1,1) element of the plant matrix
G(jw) in equation (53). For comparison, experimental (solid line) and simulation (dashed
line) results are shown together. The experimental result below 5 Hz had poor coherence
due to low sensitivity of the actuator and sensor used, and resulted in some discrepancy
compared with the prediction in Figure 18(a). It should be noted that in the predicted plant,
perfect operation of the power amplifier and the integrator was implicitly assumed with no
measurement noise. Except the frequency range under 5 Hz, however, the experimental
result in Figure 18(a) agrees well with the prediction. The three rigid body modes are
around 25 Hz as shown in Table 3, and whose passive damping ratios are around 5 % as

listed in Table 1.

The mounted equipment structure was then installed on the flexible structure as shown in
Figure 14, and the plant G;; was measured. The same measurement configuration as for
the rigid base case was used as shown in Figure 17. The plant response is now a coupled
response between the mounted equipment and base structures, and the experimental (solid)
and simulation (dashed) resulits are shown in Figure 18(b). The first three dominant peaks
around 20 Hz are corresponding to heave motion at 15.8 Hz, pitch motion at 21.3 Hz, and
roll motion at 22.5 Hz. The peaks at frequencies over about 30 Hz clearly show the
influence of the flexible base structure. The experimental result agrees reasonably well
with the simulation under 30 Hz, where the response is dominated by the uncoupled
mounted equipment. Some discrepancies over 30 Hz was thought to be due to imperfect
physical realisation of the clamped-clamped boundary condition of the base plate. Due to

strong coupling, the uncoupled rigid body modes around 25 Hz are pushed down to around
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20 Hz and the uncoupled first base mode about 35 Hz for experiment are pushed up to

about 40 Hz. This phenomenon can be easily understood by coupling analysis of a simple

two d.o.f system as shown in Figure 4(b)[15,16].

The frequencies are compared in Table 3 with those for the uncoupled mounted

equipment. Each motion could be clearly distinguished by measuring the other plant

responses and checking the phases at the natural frequencies. It is interesting to note that

the order of the modes is changed when the mounted equipment is strongly coupled with

the base. It is because, at those frequencies around 20 Hz the base structure acts as springs,

but the spring constants for each motion are different. For example, the natural frequency

for roll motion becomes the highest because it has the highest spring constant on the base

to this motion.
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(a) G;; on arigid base
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(b} G;; on the flexible base

Figure 18. Plant responses at Node 1 when the actuator at Node 1 is active. (dB ref.=107

m/s)

Table 3. Natural frequencies of the system

Cases \ Motions Heave, w Pitch, 6 Roll, ¢
Uncoupled mounted equipment 26 Hz 29 Hz 24 Hz
Coupled mounted equipment 15.8 Hz 21.3 Hz 22.5Hz

34



Imaginary

The other plant responses were also calculated and measured to construct the whole plant
matrix G(jw). With the complete plant matrix, stability were assessed by applying the
generalised Nyquist criterion discussed in Section 4.3. The resulting eigenvalue loci are
shown in Figure 19(a) and 19(b) for the theoretical and experimental models respectively.
Solid line denotes the locus of heave mode, and dashed and dotted lines denote the loci of
pitch and roll motions respectively. Figure 19(a) clearly shows that none of the eigenvalue
loci from the simulation crosses the negative real axis. The loci from the experimentally
measured plant are shown in Figure 19(b). The plot does not clearly show whether or not
they cross the negative real axis near the origin, especially at very low frequencies less
than 5 Hz where the plant was suffered from noise due to low coherence. The low
frequency behaviour is discussed in detail in Section 6. Nevertheless, most portions of the

loci are in the right-half plant, and are very similar to those from the predicted plants.

Stability of a control system, where only some of the actuators, are working can be
assessed by using a corresponding sub-matrix of the given whole plant matrix. The
predicied plant matrix was used and the resulting eigenvalue loci are shown in Figure 20;
for one working actuator at Node 1 in Figure 20(a), for two working actuators at Nodes 1
and 2 in Figure 20(b), and for three working actuators at Nodes 1, 2, and 3 in Figure 20(c).
The results show that none of the eigenvalue loci cross the negative real axis in none of the
cases. It demonstrates that, as long as the driving point mobility-like plant 1is

unconditionally stable, its sub-matrices are also unconditionally stable for the simulations

considered here.

Imaglnary

s L i 1 1 : L " 3 1 . L i L
0 0.01 .02 .03 0.04 005 0.06 0.07 0.08 -0.01 2 .01 0.02 0.02 0.04 Q.05
Real Raal

(a) prediction (b) experiment

Figure 19. Eigenvalue loci of the plant on the flexible base structure when all four
actuators are active; heave(solid), pitch(dashed), and roll(dotted).
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Figure 20. Eigenvalue loci of the plant on the flexible base structure; (a) Actuator at Node
1 is active. (b) Actuators at Nodes 1 and 2 are active, (c) Actuators at Nodes 1, 2, and 3 are
active; heave(solid), pitch(dashed), and roll(dotted).
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5.3 Control performance

This section examines control performance of equi-decentralised control according to the
change of control gain. Control performance in the predicted model is first considered.
The flexible base plate in Figure 14 was assumed to be excited by white noise, and a
common gain H was used to control each independent SISO control system. The nodal
equipment velocity responses at each mount position are shown in Figure 21, where
responses before control are shown with solid lines and those after control are shown with
dashed lines. In Figure 21(a), the highest response (solid line) is the response at Node 1
before control, and the others (dashed lines) are corresponding to gains 110, 320, 1000,
3350, 10000 from high to low response order. It clearly shows that, as the gain increases,
the vibration amplitude is gradually reduced almost all over the frequency range. The
trend is the same for the nodal responses at Nodes 2, 3, and 4. Some amplification near 30
Hz at Node 2 is due to the redundancy of the control configuration that uses four actuators
to control three rigid body modes. The modal performance was then calculated from
equation (45) and then relevant kinetic energies of the equipment could be obtained from
equation (42). The total kinetic energy is shown in Figure 22(a), and the Kinetic energies
of heave, pitch, and roll motions are shown in Figure 22(b), (c), and (d) respectively. In
Figure 22(a), it is interesting to note that as the gain increases, the total energy is reduced
gradually in the whole frequency range without any amplification. It means that, although
there is some amplification in the nodal responses in Figure 21 due to the redundancy of
the actuators, the actuators are operating in a way to reduce the total kinetic energy of the
equipment at all frequencies. As discussed analytically, equi-decentralised control is the
same as equi-modal control so that the kinetic energies for heave, pitch, and roll motions
are equivalently reduced for each control gain as shown in Figure 22(b), (c), and (d).
Although this is not shown, since the plant is unconditionally stable, use of an infinite gain

resulted in perfect control in an approximation sense.
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Figure 21. Simulation results of the equipment responses in physical co-ordinates; All four

actuators are active. (dB ref.=107 m/s)
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Figure 22. Simulation results in modal co-ordinates; All four actuators are active. (dB

ref.=107°1)

Control performance of the experimental plant was also examined by closing the open

loop in Figure 17 and changing the control gain H. Again the flexible base plate was

excited by white noise. The nodal velocity responses of the equipment are shown in Figure

23 as the same form of the prediction results shown in Figure 21. The gain values used
were 110, 320 and 1000. Higher gains 3350 and 10000, which were used for predictions,

could not be applied to the experimental plant. It was not because of the dynamic range of

the power amplifier used, but because of instability that occurred near 1 Hz which is the

cutoff frequency of the highpass filter used in conjunction with the integrator. Since the
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frequency is very low where the plant response is noisy due to. low sensitivity in the
actuators and sensors, it was difficult to see in the eigenvalue loci plot shown in Figure
19(b). It is also difficult to see some amplification of responses under 5 Hz in Figure 23,
but the very low frequency responses after control are higher than those before control.
The low frequency instability is caused purely by imperfect operation of the electrical
equipment used; the power amplifiers and integrators. There were some phase advances at
very low frequencies in both the power amplifiers and integrators. This stability issue on
practical implementation is discussed in detail in the following section. However, the
experimental results above 5 Hz agree well with the predictions, even some amplification
around 30 Hz especially at Node 2. As the gain increases, the velocity responses are
gradually reduced. The total and individual kinetic energies are shown in Figure 24 in the
same form of the predicted results shown in Figure 22. The trend above about 5 Hz is the

same as that for the simulations.

To support the argument that the controller uncouples the mounted equipment from the
flexible base as the gain increases, the base nodal velocity at Node 1 was calculated and
also measured during control. The simulation and experimental results are shown in Figure
25(a) and (b) respectively. As the gain increases, the original base response(solid line)
approaches the uncoupled base response(dotted line) that is the base response measured
before installing the mounted equipment. Dashed lines correspond to the base responses
for each control gain. It clearly demonstrates that the mechanism of the active isolation
system; the controller uncouples the mounted equipment from the base by using the force

actuators installed in parallel with each mount.

Control performances from both predictions and experiments are tabulated in Table 3
according to the gain values used. The absolute gain value H can be regarded as a skyhook
damping as far as the mounted equipment dynamics are concerned. Thus it is also
expressed in the table as skyhook damping and skyhook damping ratio that were
calculated based on heave motion. The passive damping of a single mount is denoted as
¢, and note that the damping ratios of the passive system are about 5 % as shown in Table
1. The overall kinetic energy of the experiment was calculated from 5 Hz to 200 Hz to
avoid accounting for the amplification region. Both simulation and experiment results

agree well, and offer a reduction of more than 14 dB for a gain 1000.
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Table 4. Comparison of the control performances. Skyhook damping and its ratio are
calculated based on the heave motion.

(Gains Energy ratio J, / J, (%) Overall reduction{dB)
Skyhook
Absolate | Skyhook
) Damping )
Value, 2 | Damping Rati Theory Experiment Theory Experiment
atio
110 4.3 X ¢y 0.215 18.82 19.59 -1.3 7.1
320 12.5 X ¢ 0.626 8.14 10.31 -10.9 9.9
1000 39.1 X e, 1.955 3.21 4.0 -15.0 -14.0
3350 130.9 X ¢, 6.548 1.52 -18.2
10000 390.6X ¢y 19.546 0.82 -20.9

* Experimental results are from 5 Hz to avoid the large amplification at low frequencies
(especially 1 Hz which is the cutoff frequency for the highpass filter)
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6. Causes of instability

This section discusses the causes of instability occurred in the experimental plant. The
instability under 5 Hz in the previous section would be due to imperfect operation of
electrical equipment used as shown in Figure 17, especially due to phase shift in the power
amplifier and the signal conditioner. Theoretically, a phase advance of a little more than
90° at low frequencies is sufficient for the eigenvalue loci to cross the negative real axis so
as to make the system unstable to a high gain [7]. The Bode plot of the power amplifier
used is shown at each measured frequency in Figure 26 together with the ideal amplifier
responses(dotted). In Figure 26(a), the large amplitude at 0 Hz would be the reason of
large plant responses in the experimental model in the previous section. More
interestingly, in Figure 26(b) the commercial amplifier shows phase advance up to about
90° at very low frequencies compared to the ideal amplifier response. The signal
conditioner used(B&K type 2635) had an integrator as a module so that the characteristics
of the integrator could be calculated by dividing a measured velocity response at a position
by a measured acceleration response at the same location. The integrator had to be used to
be combined with a highpass filter whose cutoff frequency could be set to be either 1 Hz
or 10 Hz. Both cutoff frequencies were tested and the resulting Bode plots are shown in
Figure 27, where the integrator with the highpass cutoff frequency 10 Hz(solid line), that
with the cutoff frequency 1 Hz(dashed line}, and the ideal integrator are shown together.
Due to the low sensitivity of the actuator and the sensor at the very low frequencies,
responses under 5 Hz had low coherence and are not shown. In Figure 27(b), the integrator
with the cutoff frequency 10 Hz has about 90° phase advance near 10 Hz compared to the
ideal integrator response. For the experiment in the previous section, the cutoff frequency
was set to be 1 Hz. However, Figure 27(b) clearly shows that the integrator with the cutoff
frequency 1 Hz also has some phase advance at very low frequencies. Such phase
advances in total over than 90° at very low frequencies, which were not accounted for in
the ideal predicted plant, would be the cause of instability occurred for a very high gain in
the experimental plant shown in Figure 17. It was also observed in experiments that the
use of integrator with the cutoff frequency 10 Hz became unstable with a smaller control
gain than that with the cutoff frequency 1 Hz. The reason might be a higher response of
the mechanical plant at 10 Hz than 1 Hz. Various methods can be applied to avoid this

phase advance effect at very low frequencies, for example, use of a lag compensater, use
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of a direct velocity sensor, and use of more ideally performing power amplifiers and
integrators. In this report, however, no effort has been made to improve this phase
characteristics. It should be emphasised that the purpose of the experimental work was to
support the theoretical results rather than to design a practical and perfectly operating

active isolation system.
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Figure 27. Bode plot of the integrator; with cutoff frequencies 1 Hz(dashed) and 10
Hz(solid). The ideal integrator is shown in dotted line.
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Although an instability was occurred at very low frequencies in the experimental plant, it
could also occur at high frequencies due to both electrical and mechanical causes. Use of
an electrical lowpass filter for the sensor signal gives a time delay on the control loop, and
can cause instability at high frequencies as discussed in Section 3.2. An additional time
delay can be caused by the electromagnetic actuator, because there is some time delay
between the input voltage and the generated force in the low frequency range[19]. Figure
28 shows the phase responses of a driving point accelerance(dashed line) and the input
current response to input voltage of the actuator(solid line). The driving point accelerance
can show the time delay due to the lowpass filter, and is compared with a time delay of 0.2
ms(dotted line). Also, the current response to input voltage can show the time delay in the
electromagnetic actuator, and is compared with a time delay of 0.04 ms(dotted line). For
the experimental plant considered, the time delay due to the actuator is negligible
compared to that due to the lowpass filter. The phase crossover frequency @ and the

maximum allowable gain value Hp,, due to the total time delay 7=0.24ms can be

calculated from equations (25) and (26) respectively. When the lowest heave mode of
mass 6.232 kg at 15.8 Hz is considered, they are given by
H_. =40788 at o, =7.9kHz (60,61)

for the gain margin GM =1. In addition to the time delays, the dynamics of the sensors

and actuators should be considered in very high frequencies.
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The plant can also be potentially unstable at high frequencies due to mechanical causes. It
should be emphasised that the mechanical model considered is only valid at low
frequencies where the equipment can be modelled as rigid, and the mass effect of the
mounts is negligible. At high frequencies, there exist flexible modes within the equipment
structure, and so do longitudinal modes within the mounts. The first natural frequency of

the thick Al plate for the equipment structure considered can be obtained by [20]

=B uom, (62)
22 \12p0-v7)

where the plate of dimensions (Lx,Ly,r) are L,=0.3 m, L,=0.16 m, t=0.02 m, the Young’s

modulus £=71GN / m® , the mass density p =2700kg / m® , the Poison’s ratio v =0.33,
and the constant for the first fiexible mode for the free-free-free-free plate is given by
A =2.268 [20]. The first natural frequency of the longitudinal mode inside a single rubber

mount with clamped-clamped boundary conditions can be obtained by [15]

L E = 500Hz, (63)

[ = 27
where the Young’s modulus E =8x10° N, / m* , the mass density p =909kg / m* , and the
height 2 =0.03m . Thus above the frequencies in equations {62) and (63), the analytical

model described in Section 4.2 is not directly applicable and decentralised velocity

feedback control may potentially lead the system unstable.
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7. Conclusions

This report has investigated the physical aspects and control mechanisms associated with
an active vibration isolation system whose actuators are installed in paralle]l with each
mount between a piece of equipment and a flexible base structure. The control strategy
used is decentralised velocity feedback control, where each of the four actuators is
operated independently by feeding back the equipment absolute velocity response at the
same location. The special feature of the model is that, although one ends of the actuators
are collocated with sensors, the control system is not collocated control because of the
supporting force of each actuator acting on the flexible base structure whose dynamics are
strongly coupled with the mounted equipment. In particular, isolation of low frequency
vibration is considered where the equipment can be modelled as a being rigid and the
mounts as lumped parameter springs and dampers. Impedance method is employed for the
mechanical analysis of both passive and active vibration isolation systems. A simple single
mount system has been useful to investigate mechanical coupling between the mounted
equipment and the flexible base as well as control mechanisms. Dynamics and control of a
multiple-mount isolation system have been studied by simply extending those for a single
mount system. The four-mount active isolation system has been investigated theoretically

and experimentally, and important results obtained are as follows.

The system shows collocation control-like behaviours under the assumptions of a rigid
equipment and massless mounts; it is unconditionally stable, and perfect vibration
isolation is theoretically achievable with an infinite gain. The mechanism involved is that,
as the gain increases, the control action uncouples the mounted equipment from the base
structure. Equi-decentralised control for a statically balanced symmetric equipment
structure is the same as equi-modal control which reduces every vibration mode
equivalently. The results from an experimental four-mount active isolation system have
been also discussed. The measured system response and closed loop attenuation is very
similar to the predicted results, and up to 14 dB reductions in the kinetic energy of the
equipment can be achieved in practice. Both simulation and experiment results have
shown good agreement with the analytical results. If very high gains were used in the
experiments, however, instability was encountered at about 1 Hz due to large phase shift

in the electrical equipment used.
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‘Appendix A: Vibration analysis of a fectangular
plate

A modal model can be conveniently employed to describe vibration responses i a finite-
dimensioned structure, such as a rectangular plate. When the vibration response in a
flexible structure is assumed to be described by a summation of N modes, then the

vibration velocity at position r can be written as {13]

N
wr,w) = D, 0, (@) =y"a (AD)

n=1
where the N length column vectors y and a consist of the array of vibration mode shape

functions w,(r) and the complex amplitude of the vibration velocity modes a, (@)

respectively. The mode shape function w,(r) may be normalised to be the area of the

flexible structure S, = JS w2 (r)dS for a convenient calculation of the kinetic energy given
f

in equation (34). When the plate of total mass M; is subject to a force distribution function

f(r,w) on its surface, the complex amplitude of the nth mode can be expressed as
i
a,(@)= EAA@)JSI v, (@) f (r,@)dS (A2)

where the structural mass is M, = p hS, where p;is the density of the plate material, % is

the thickness of the plate, Sy is the area of flexible structure. The vibration modal
resonance term A, (@) is written as:

jo
& -0’ + j20 0,0

A (@)= (A3)

where @, and ¢, are the natural frequency and the damping ratio of n-th mode,
respectively. If the force distribution function is point forces at M number of locations, the
modal amplitude vector can be written as [13]

a=Yg (A4)
where the modal mobility matrix Y is given by Y = A/M _, where A is a (NxN) diagonal
matrix whose (n,n) diagonal term consists of the vibration modal resonance term A ()

given in equation (A3). For the M number of point forces, the N length generalised force

vector g can be written as:
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g="Tf (A5)
where the M length vector f denotes the amplitude of M point forces, and the (NxM)
matrix ¥, is a transformation matrix which transforms the M length physical force vector
f to the N length generalised force vector g. The transformation matrix consists of a M
number of column vectors whose m-th column vector is the mode shape function vector Y
given in equation (Al) at m-th force location. Each element in ¥, determines the
coupling between modes and force locations, and more specifically its (n, m) element 18
the amplitude of n-th mode at the m-th force location ie. W, (r,). By substituting
equations (A4) and (A5) into (Al), the vibration response at location r due to M number of
forces can be obtained.
The procedure can be easily extended to a multiple-point case where responses at more
than one point are of interest. When vibration responses at L number of points are of

interest, by extending equation (Al) they can be expressed in vector form as follows:
v=¥’a (A6)
where the L length vector v denotes the vibration velocity responses at L locations, and a
is the modal amplitade vector, and the (LxN) matrix ¥} is a transformation matrix which
transforms the N length modal amplitude vector a to the L length physical velocity
amplitude vector v. The (m, n) element in V| is the amplitude of n-th mode at the I-th

response location i.e. ¥ (y,). Substituting equations (A4) and (A5) into equation (A6)

gives

v=Yf (A7)
where the mobility matrix in physical co-ordinates Y, is given by

Y=¥YY¥Y, (A8)

where Y is of size (LxM) and whose ([, m) element is the mobility of /-th location due to
the m-th point force input. When the response locations of interest are at the force

locations as for the base-isolator system considered in this report, the physical mobility
matrix becomes a square matrix. Thus, in this case Y=¥,Y¥,,, where ¥}, is the
transpose of ¥,,. When the number of modes considered are not less than the physical

response points considered i.e. M <N, Y is generally invertible and thus its impedance

representation Z can be obtained by the inverse of Y. Otherwise, Z does not exist.
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Appendix B. Mode shapes of a recta'ngular plate

When waveforms in an isotropic thin rectangular plate are assumed to be similar to those
of beams, an approximate method presented by Warbuton[20] can be used to describe
mode shapes and natural frequencies in the plate. The plate is of dimensions (L X Ly X 1),
where ¢ is the thickness of the plate and L, and L, are lengths in the x and y directions,
respectively. Thus, the mode shape function Y, (r) at (x, y) in equation (Al) 18 given
by[20]:

v, (x,¥)=0,.(x)9,,(¥) B
where ¢, (x)and ¢, (y)are the beam mode shape functions in the x and y directions, and
are dependent upon the boundary conditions of the plate. For example, when the plate has
a free-free boundary condition in the x direction, then the beam mode for the same

boundary condition is used for ¢,,(x) . The same applies to ¢,,(»).
For a free-free beam of length L, the mode shape functions normalised to be
L= j:‘ 02 (x)dx are given by [20,21]
¢ (x)=1 for nx=0 (B2)
6. (x)=/3(1-2x/L,) for nx =1 (B3)
¢ (x)=cosh(k, x)+cos(k, x)—o,, (sinh(knxx) + sin(kmx)) for nx =2 (B4)

where nx denotes the number of nodal points in the x direction, and the coefficient ¢, is

_ cosh(k,L,)—cos(k, L)
™ sinh(k,L,)-sin(k, L)

(B3)

When nx=0 and nx =1, the mode shape functions are for two rigid body modes of

vibration at (0 Hz.

For a clamped-clamped beam of length L,, the mode shape functions normalised to be
L= [ 92 (x)dx are given by [2021]

¢._(x) = cosh(k, x) — cos(k,.x) — &, (sinh(k, x) —sin(k,.x)} for nx22  (B6)
where 0, is given in equation (B5) and its explicit values for each boundary condition can

be found in [21]. The first beam mode for this boundary condition has two nodal points i.e.

nx =2. The vibration mode shape function in the y direction ¢, (y) can be similarly
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normalised to be L, = J.DLF ¢:Tx( y)dy , and obtained for the free-free and clamped-clamped

boundary conditions. The normalised beam modes in equations (B2-B6) can be substituted
to construct the plate modes in equation (Bl). From the beam meode shape functions,
vibration modes of the plates with free-free-free-free and free-free-clamped-clamped

boundary conditions can be described. The resulting plate mode shape function w_(r)
satisfies the normalised mode condition §, = JS Ww2(r)dS that is helpful to calculate the
I

plate kinetic energy given in equation (34). The natural frequencies of the plate for an

arbitrary boundary condition has also been discussed in detail by Warbuton][20].
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