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Abstract

In pipe vibration the n=2 (ovalling mode) wave causes a large increase of strain in the
pipe wall at the cut-on frequency when the wave starts to propagate. Hence from a
fatigue perspective this wave is of major concern. In this report the design of a shaped

PVDF modal sensor to target this wave is investigated.

Based on Flugge’s shell theory, the relationship between the charge generated from a
PVDF sensor and the combination of the axial and circumferential bending strains is
established for the case of in-extensional deformation. It is found that a practiecal
modal sensor is sensitive to higher order modes as well as the n=2 mode. This cross-
sensitivity is dependent upon the width of the modal sensor. It is found that, if the
width is small enough to keep the axial strain constant over its surface, the modal
sensor will only be sensitive to the circumferential bending strain of the pipe and
hence to the n = 2 mode. For the axial strain of n = 2 mode to be constant over the
frequency range of interest, the width of the modal sensor has to be less than one
third of the wavelength of the flexural wave at the ring frequency and hence it only
senses the response of the n = 2 mode. Since the orientation of the n=2 mode shape at
some arbitrary point on the pipe is unknown, two elements to the sensor are required

that independently measure the cosine and sine components of the wave.

Theoretical predictions of the modal sensor were successfully validated by some
experimental work. The effectiveness of the sensor was also experimentally compared

with an array of accelerometers.
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Nomenclature

u is the axial component of the displacement

v is the tangential component of the displacement
w is the radial component of the displacement

U is the axial amplitude

V is the tangential amplitude

W is the radial amplitude

W is the radial displacement in the frequency domain

U is the axial amplitude in the wavenumber domain

V is the tangential amplitude in the wavenumber domain

W is the radial amplitude in the wavenumber domain

a is the radius of the pipe

h is the thickness of the pipe

hpv is the thickness of the PVDF,

Zo = (h + hpw)/2 is the distance from the mid-plane of the pipe to that of the PVDF,

s = x/a is the non-dimensional length

sc is the non-dimensional axial location of centre of the sensor to the radius of the
pipe,

b is the ratio of a half of width of the sensor to the radius of the pipe,

is the wall thickness ratio of the pipe

h
B"'aﬂ

cL = is the longitudinal wave velocity in the pipe

p-v?)

E is the Young’s modulus of the pipe

Epv is Young’s modulus of PVDF

p is the density of the pipe

v is the Poisson’s ratio of the pipe

vpv is Poisson’s ratio of PVDF

1M is the loss factor of the pipe

® = 2rnf ig the circular frequency

€ = aw/cr is the normalised frequency to the ring frequency, ci/a

n is the mode number



ko is the non-dimensional branch axial wavenumber (the axial wavenumber is
multiplied by the radius of the pipe)

¢ 1s the azimuthal orientation angle of the pipe with respect to the excitation force
0 is the azimuthal angle of the pipe

F(s,8,t) is the force per unit area

F, is the amplitude of the point force

ds1 and ds2 are the piezoelectric strain constants.

es1 and esz are the piezoelectric stress constants.

Sx and Sg are the axial and circumferential strains, respectively,

Y= is the mobility of the pipe of the n** mode

H: is the accelerance of the pipe of the ntt mode

qt is the total generated charge of the modal sensor

gs is the total generated charge of the modal sensor shaped in the sine function

e is the total generated charge of the modal sensor shaped in the cosine function



1. INTRODUCTION

In many processing and chemical industries, and in ships and aircraft, pipework is
important for fransporting fluids, i.e. gas, cooling water and hydraulic fluid. A piping
system can be excited by many sources connected to the structure or internal fluid such
as compressors, pumps, or valves. The vibrational energy propagating along a piping
system can excite other devices attached to the structure and it frequently causes
excessive noise radiation and may result in failure of the system due to fatigue. To
control the vibration of the pipe, a thorough understanding of the dynamic behaviour of
fluid-filled shells is needed since it is critical in an investigation of active vibration

control applied to such systems.

The theories of thin eylindrical shells have been developed mostly on the basis of the
strain action and with the aid of certain simplifying assumptions. There are small
differences between the various theories depending on their assumptions and the main

theories are described by Leissa [1].

Unlike a one-dimensional structure such as a beam and bar or two-dimensional
structure such as a plate, the dynamic behaviour of a three-dimensional structure such
as a pipe is more complex, particular when it contains fluid. There is some work to
explain this phenomenon in terms of dispersion curves, such as the work done by Lin
and Morgan [2], who used the concept of a rigid tube and an infinitely flexible tube to
construct a curve of phase velocity. With this curve, the behaviour of the pipe can be
explained in terms of that of a bar, a beam and a plate. They concluded that all the
modes except the first two modes have a minimum cut-on frequency and the first two
modes exist at all frequencies. However, this work was limited to consider only real
wave types. Similarly, Fuller and Fahy [3] presented a complete set of dispersion curves
based on Donnell-Mushtari shell theory. All of the wave types were considered and
discussed in their paper. Moreover, the energy distribution between the structure and
contained fluid was derived and discussed. It may be considered as the basic formula of
the energy interchange between the structure and the fluid. Based on such reseafch,
later work by Fuller [4] considered the energy distribution in the case of the shell
excited by a radial line force and by a point force. Using the theory of residues, he also
presented the transfer mobility of an infinite fluid-filled shell excited by a radial line

force. A simple form of the point mobility based on Cremer’s expression for the shell was



proposed by Heckl [5]. The physical interpretation of the dynamic behaviour of a pipe in
vacuo and with contained fluid was clearly described by Brennan et al [6]. Using phase
velocity and dispersion curves based on Kennard shell theory, the behaviour of
individual waves propagating along the shell can be described in terms of the flexural
beam-like, plate-like bending, longitudinal, torsional waves and acoustic waves in a

duct.

Once the behaviour of the pipe is known, it is possible to control the vibration occurring
on the pipe. One of the elements, which plays an important role in an active vibration
control system, is a sensor, which may be classified as discrete point sensors such as
accelerometers or strain gauges and distributed sensors such as piezoelectric materials.
The piezoelectric materials used as sensors employ the direct piezoelectric effect, which
converts structural motion into electricity. They are commercially available as PZT
(lead zirconate titanate) and PVDF (Polyvinylidene fluoride). Both of them can be
manufactured in many shapes so that they can readily be integrated into structures by
embedding or bonding them, and this gives them advantages over discrete point

3ensors.

In addition, since the discrete point sensor/actuator detects/excites all modes including
the residual modes (undesired modes), they cause spillover in controlling vibration
(Balas [7]). This problem may be overcome by using modal sensors/actuators, which

only sense/excite the desired modes.

The modal sensor was firstly infroduced by Lee and Moon [8], who applied it on a beam,
and included an analysis of the modal sensor for a plate as well. It was extended in
theory and practice for a plate by Gu et al [9]. The analysis of a PVDF sensor bonded to
a shell was developed by Tzou [10]. The effect of many factors to the output of the
gsegmented PVDF, i.e. thickness of the PVDF and shell, the curvature of the shell, was
investigated by Tzou and Bao [11]. However, the sensors in both pieces of work were not
discussed in the context of a modal sensor. Since the circumferential mode shapes of a
pipe are in the form of sine and cosine functions, then from the work by Lee and Moon
[8] the shapes of the modal sensors should take the form of sine and cosine functions as
well. The modal sensor for an infinitely long pipe following such shapes were used in
the work of Fuller and Brevart [12]. Since, the shapes of the modal sensors need to be

accurate; otherwise they cannot be used in an active control system to completely cancel



undesired modes, Callahan and Baruh [13] preferred to use segmented PVDFs
{rectangular shape) with the sensor output cancellation technique. By using a number
of sensors and decreasing the magnitude of the real part of the observer gain, then the
sensor output converges to the desired mode. However, this method risks the ill-
conditioning of the modal coordinate matrix and it takes some time to converge to the
desired mode. Therefore, the modal sensor for the pipe in the work reported here still
uses the PVDFE in the form of sine and cosine functions. The main aim of this work is to
investigate the use of a distributed sensor to discriminate against the n = 2

circumferential propagating mode in a pipe.

In the current work, two main expressions are presented. The first is the dispersion
equation based on the simplified version of the Flugge shell theory, which is derived
with the assumption that the wall thickness is thin, the frequency range of interest is
below the ring frequency and the very long axial wavelength is neglected. Based on this
work, the frequency equation and the radial transfer mobility of the pipe in vacuo are
established. In addition, the modal decomposition for an array of accelerometers based
on discrete orthogonality is also presented and a general expression of a circumferential
mode sensor is derived. Subsequent work concentrates on a modal sensor for the n = 2

mode and this is validated experimentally.



2. IN VACUO SHELL THEORY

2.1 Introduction

It is well-known that the motion of a pipe is complicated since its structure is three
dimensional. For a thin walled pipe, structural waves propagate in the axial direction
along a pipe and in a circumferential direction to form a helical pattern as shown in fig
2.1 (Fahy [14]). The wavenumber of the helical wave, ke, is the vector combination of
the waveguide components in both directions, the axial wavenumber, ks, and

circumferential wavenumber, k., which gives

kcsz = knb2 + k82

Figure 2.1: Diagram showing a semi-infinite ¢ylinder and axial, circumferential and

helical wavenumbers

The axial wavenumber is thus given by

f 2 2
knb =vkes _kc

It can be seen that kb is only real and hence propagating when ke? = ko Otherwise, the

wave 1s evanescent.

Due to the closure of the pipe in the circumferential direction, the wave propagation
must be continuous in this direction and hence, the circumferential characteristic takes
the form of sine or cosine functions of ka8, where k. = n/a, n is the mode number, a is
the radius of a pipe and 6 is the angle between the wavevectors. With the form of such a

funetion in the circumferential direction, at n= 0 (also known as the breathing mode)



there is only stretching or contracting of the pipe wall, while at n = 1 or bending mode,

the pipe cross section is undeformed.

There are many shell theories based on the strain at a point to explain the motion of a
pipe wall but none of these theories is universally accepted due to small differences
between them, This arises from the different assumptions. Usually, most theories are
based on the assumption of zero normal shear strain. Nowadays, the versions of shell
theories generally used by researchers are Donnell-Mushtari, Love, Timoshenko,

Kennard and Flugge (Leissa [1}).

In this work, a simplified theory based on Flugge shell theory with some additional
assumptions is developed and the point-forced mobility and accelerance of a thin-walled

pipe are derived.

2.2 Simplified Version of Flugge Shell Theory in vacuo

Due to the complicated form of shell theories, it is difficult to apply them to the
vibration problems of an infinitely long pipe, i.e. the dispersion equation and the
point/transfer mobility of a pipe. So, in this section it is intended to derive a simple form
of the dispersion equation based on Flugge shell theory. Once the simplified equation is

established, the simple formula of the mobility of a pipe can easily be determined.

Figure 2.2: Cylindrical coordinate system for a pipe.



In the derivation, it is assumed that the wall thickness is thin compared to the radius of
the pipe, the frequency range of interest is below the ring frequency and the very long

axial wavelength is neglected.

A schematic of the cylindrical coordinate system for the pipe is shown in figure 2.2

A A A

where .9 and x are the unit vectors. Since the circumferential reference position on a
pipe is unknown, the orientation angle, ¢, is defined. The equation of motion of free

vibration of the pipe is given by (Leissa [1])

41
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The solution of the equation of motion of an infinite pipe may be written as
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where ¢ is the azimuthal orientation angle and

6 is the azimuthal angle.

Substitution of the displacements of equation (2.2) into the equation (2.1) yields

Lip Lz Lis || Uy
L21 L22 L23 Vl’l = 0 (23)
L3 Lip L33 || W,

where
Lii= kyp +@(1+B2)n2 —0?

L = “;‘”) nk g

_ 2,3 (=-v),2 2
Lis = vkyp +B7K;, ———-2—[5 n“kKpp
Loi=Lae

Los = @(Hﬂ}z)kﬁb +n’-0?

3_
Loz = n+( 2\)) ankﬁb

Lai =13
Laz = Las

Loz = 1+p% +p% (k2 +n %)% —2p%n? -2

The non-dimensional wavenumber, kb, of the thin walled pipe in vacuo can be

determined from
Det|L| =0 (2.4)

The determinant of matrix L is arranged with terms involving § grouped together and
since for a thin pipe B2 << 1, then the higher order terms of B (i.e. B* and %) can-be

neglected. Thus, the result of the determinant of the matrix 1. becomes



égl[{4(1—v)(kﬁb +n)2(k% +n? -1 +80-n2 (4 —n2 (02 —1k2 +120 -2+ vk, |
—2 G-V +n2)KE +n2 =12 +40—v)(KkE +nD)(KE +n2 +D+81-v)EkE +DK2,
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Apart from the assumption of B? << 1, another assumption is that 1/kuw? >> B2 This is
reasonable for a thin walled pipe since B2 = 2.1x10+ for h/a = (.05 while ku» increases
from zero to about 6 in the non-dimensional frequency range of zero to one (provided by
the dispersion curve in the next section). Since kab = 2na/Anb, where Anb is a branch axial
wavelength, and B = b/+12 a, the assumption can be expressed as, Ans >> Th/4/3 = 2h.
Physically, it implies that waves, whose non-dimensional axial wavenumber is smaller
than two times of the wall thickness, are neglected. Since higher frequencies mean
smaller axial wavelengths, the above assumption also means that the very high
frequency range is neglected. After applying these two assumptions equation (2.5)

becomes

%Bz[(i—v)(kﬁb +n2)2kE +n? =D = G-v)(kZ +n?)(kE +n? —1)292]

—%Qz[{l—v)(kﬁb +n )%+t +)+2(1-vHk2 ]+%(1—v)2(1+v)kﬁb +%(3—v)(k§b +nHo?
+0*-0f =0
...(2.6)

At high frequencies, where Q > 1, equation (2.6) can be used to determined the non-

dimensional wavenumber, but, in the frequency range of interest limited below the ring

frequency, where Q < 1, the high order terms of Q (i.e. Q* and Qf) including the term
containing the product of B2 and Q2 are very small value and thus they can be ignored.

Therefore, at the frequencies below the ring frequency (Q < 1), equation (2.6) becomes

1 1

EBZ(l—v)(kib+n2)2(k§b+n2—1)2_592[(1—v)(kib+n2)(kib+n2+1)+2(1—v2)k§b]
1 2 4 _

+E(1—v) (1+v)knb =0

(2.7



Moreover, the assumption of kn? >> Q2 physically means that some motions with very

long axial wavelengths are not important to the total motion of the pipe. In reality, this

assumption is not true around cuf-on frequencies since knb is zero, when Q has a value
. . o dk .
between zero and one. The assumption requires the condition of %@&1 just after the

wave is cut-on. Thus, it effects the longitudinal and torsional waves (kus is propotional

to Q for n = 0). This assumption was pointed out by Cremer (Heckl [5]), who showed

that it does not result in large errors. So, compared with the term of %(1—v)2(1+v)kﬁb ,

the term of (1—\,r2)§2‘7'1<§h can be neglected. Hence, equation (2.7) can be rewritten as

1 1 1

Eﬁz(lwv)(kib +nH2 k% +n?-1? —592(1—\;)(1{1%1) +n2)(k2, +n? +1)+E(1—v)2(1+v)kﬁb =0
...(2.8)

This can be rearranged to give the relationship between the non-dimensional frequency

and the axial wavenumber.

2,2 2.2,.2 22 2y 4
2 Bl +0 ) depp +0” D7 +A-vOkK,, ..(2.9)

&2, +n?)k2 +n?+1)

The first term on the right hand side of equation (2.9) is related to membrane strain
energy and the second term is related to strain energy of the pipe-walled flexure (Fahy

[14]).

The cut-on frequencies of the circumferential mode of an infinitely long pipe are
determined from the equation (2.9) by setting ku» = 0, which corresponds to an infinitely

long axial wavelength. Therefore,

QZ _ B2n2(n2 _ 1)2
co — 2
n*+1

...(2.10)



2.3 Numerical analysis to evaluate the simplified version

To verify the simplified version of the shell theory in vacuo, it is compared in terms of
cut-on frequencies from equation (2.10) and the dispersion curve from equation (2.8)
with those obtained from the version developed by Heckl [5], Kennard’s shell theory
used by Brevart and Fuller [15], and from Flugge shell theory (Leissa [1]). The
properties of the pipe used in the comparison, which is also used in the experiment

work discussed later in this report, are given from Table 2.1.

Table 2.1: Pipe data

E (N/m?) p (kg/m?) v a (mm) h {mm) n

3.56%10° 1430 0.4 33 1.9 0.025

Comparison of cut-on frequencies of the circumferential modes
The various frequency equations of the circumferential modes for infinitely long pipes

are given as follows.

The frequency equation developed by Heckl [5] is

2 2 4|, If 1 4—v 24v
Qo =pn"|1-= - ,
Co B |i 2(1—\’1 n2 n4

by Kennard (Leissa [1]) 18

ng=l 1+ 24V B2+n2—4;vﬁzn2+[32n4
2 2{-v) 2(1-v)

2-3
-T-\/1+?+Vﬁ2+2(1-3[32)12+n4+§-£i———\’—)132n4—2i32n6}
-V -V

B

by Flugge’s theory given by Leissa [1] is

: 2
02, :% 1+n%+ Bz(nz —1)2 T \/[l+ n?+ Bz(nz ~ 1)2} —4p%nZ(n-1)2

10



and in this report is given in the equation (2.10) as:

o _ anz(nz _ 1)2
o= 5 .
n“+1

Taking the data of the pipe from table 2.1, the ring frequency of the pipe is

t E
fr=— >
2ma Y p(1-v)

=8261.1 Haz.

and the maximum mode number below the ring frequency can approximately be

‘determined by (Fahy [14])

nr = f-12
=7
The cut-on frequencies of the modes below the ring frequency, which are calculated

from above frequency equations, are shown in table 2.2.

Table 2.2: Cut-on frequency of the circumferential modes according to various versions

of the frequency equations.

Mode Number Heckl Kennard Flugge Equation {10)
2 337.5 369.8 369.8 369.8
3 1031.2 1046.1 1046.0 1045.9
4 1997.0 2006.2 2006.1 2005.3
5 3237.7 3245.5 3245.3 3243.1
6 4753.7 4762.9 4762.6 4757.5
7 6545.3 6558.5 6558.0 6548.1

Note; the cut-on frequencies for n = 0 and 1 modes are zero and the frequency equation

of Heckl’s version is valid forn = 2.

It is shown in table 2.2 that the simplified version (equation 2.10) is in good agreement
with the main theories, that of Kennard and Flugge for the pipe used in this report.
Below the ring frequency, the maximum difference of the cut-on frequency between this

simplified version and the main theories is only 0.16%.
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Comparison of dispersion curves

In this section, a set of dispersion curves using equation (2.8) and some versions of shell
theory, Kennard and Flugge, are compared. To verify equation (2.8), the comparisons
are carried out for each mode number. The results from the simulation are shown in

figure 2.3.
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Figure 2.3. Dispersion curve of the mode number n =0 to n = 5; ..., equation (2.8);, —,

Kennard theory; ---, Flugge theory.

12



At low frequencies, all versions of shell theory are consistent. There is a small error in
kny for the n= 0 mode, which has already been discussed. The assumption of km? >> Q2
has an effect on the longitudinal wave causing an error in the n= 0 mode but for Q < 0.8
it does not yield a large error. For n > 1 modes, the error occurs in the evanescent wave
and increases with increasing frequency. Apart from this, below the ring frequency, all
of waves types obtained from equation (2.8) are reasonably consistent with Kennard’s

and Flugge’s shell theory.

2.4 Point force mobility of semi-infinitely long pipe

The response of a semi-infinite pipe to a point force applied at the free end is of interest
in this section and is important to other analyses such as the modal decomposition and
the transfer function of a modal sensor, which are presented later. A useful method to
derive the response of the pipe is to analyse the point force mobility in the wavenumber
domain using the spatial Fourier transform. Using residue theory and the simplified

shell theory, the point force mobility of the pipe can be established in a simple form.

Figure 2.4. The cylindrical co-ordinate system for a semi-infinite pipe.

The cylindrical coordinate system of a pipe with an exciting point force, F(0,,t), is

schematically shown in figure 2.4 where ¢, and x are the unit vectors. As discussed in

the previous section, an orientation angle, ¢, is used to define the circumferential

reference position on a pipe. The point force F(0,¢,t)in Newtons can be expressed as a

distributed force F(s,0,t)in Newtons per square metre by (Soedel [24])

i3



F(s, 6, t)=i21305(s)8(e—¢)e“j“" ..(2.11)
a

where Fo is the amplitude of the point force (Newton) and
s = x/a.

The equation of motion of the pipe when excited by a point force in the radial direction
may be written as the same form as equation (2.1) with an external force loading as

(Leissa [1]):

u 0
Ilv |= 0 L2122
242
AE T P Gt a0 =P
Eh

where a is the radius of the pipe,
E is Young’s modulus of the pipe and

F(s,0,t) is the force per unit area.

The Fourier transform is used to analyse the vibration response of a pipe due to a point
force and the pipe displacements may be written as (detail of the derivation of the pipe

displacement in terms of the Fourier series is provided in appendix A)

u(s, 0, t) = ZL | i g, U, (k) cos(n) g ik a0 g

T oo =

v(s,8,t)= 2—175 | i £, V, (k) sin(ng)el®ms gy (2,13
—oa =0

w(s, 8, 1) =— f i g, W, (k,y, ycos(n@) i gy
n —oo =0

where ¢=1forn =0 and

ge=2forn=>1.

Because axial wavenumbers are continuous and the mode number is discrete, the delta

functions of 8(s) and 8(0 - ) may be expressed as
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1 7 «
8(s)=— [e*mtdk
(S) . 7{[’6 nh

80~y =— Tl
2n

n=-co

So, the point force in equation {(2.11) in the wavenumber domain can be written as

1 > T S &, F, cos(n(®— ) *n0ax L (2.14)

F(s,6,t) = >
4n°a” Zwn=0

By substitution of the displacements and point force into equation (2.12), the spectral

response of the pipe to the applied foree is given by

L-“ L]2 L]3 Uﬂ(kl'lb) O
Ly L Lp|Vilky) [= 0 ..(2.15)
Ly Lo La W, (kg Q% cos(n(o-9))

__ 2nm’pha’  cos(nd)

By inversion of the 3x3 matrix, the amplitudes of the displacements can be written as

U (k) Iy Iy I 0
VII (knb) = IZ] 122 123 0 -..(2.16)
W (k) Iy ln Iy Q’F, cos{n(0—¢))

__ onw’pha®  cos(n®)

The spectral radial displacement is given by

QZFD cos(n((-)—(b))l

Wik )=—
° 2nw’pha’  cos(nd)

33 (217

Omitting terms of ¢~/ for simplification, the radial displacement for a particular mode
in the frequency domain is obtained by substituting equation (2.17) into equation (2.13)

as

£, Q°F,[A, cos (n6)+ A, sin (n®)] ‘T L.e
- 33

4rc2u)2pha2 —s

=]

n (S, 9) =

P gk ...{2.18)

15



_ L11L22 — L12L21

where [, =
- Det | Lt
A1 = cos(nd)
Az = sin(ng)

For each frequency, the parameter Is;s has eight poles, so residue theory is applied to
solve the integration. With this method, only the upper half plane of the complex plane
is integrated by running above the negative real axis and running below the positive
real axis so that only four poles are analysed. Physically, this means that for a semi-
infinite pipe only 4 waves can potentially propagate along the pipe. Hence, the solution

of equation (2.18) is

e, Q@°F, [ cos (n)+ 1, sin (n6)] 3 Res, el (2.19)
X e

Wha(s,0)= e
2no’pha b=1

LiiLlap - LygLog
(Det L 1)

where Resy, =

d{DetIL})

DetiLl) =
(Det ) aknb

The mobility of the forced response on the nth mode is given by

P 2 : 4 .
Y =—jo Wo(s,0) _ £,Q [A; cos (n0)+ A, sin (n0)] 3 Re ekt ..(2.20)

" E, 2mep ha? b=l

The Det| L] is given by equation (2.8) and its derivative with respect to kas is given by

d (Det|L1y

ak :Z(I—V)kab[z[}z(kﬁb +n2)kz, +n* - (k2 +n? —%)+(1—v2)kﬁb ~Q* (k] +n? +%)J
nb

...(2.21)
The term (Liilez — Lizles) is given by
1 1 1 5
LiiLas —LioLog =5(I—v)(k§b +n2)? —E(B—v)(kib +n2)Q? +ZB2[(l—v)k§b(k§b +n2)—5k§bn2]
...(2.22)

Using the previous assumptions of B? << 1 and kut? >> Q2 , then the second and the last

term can be neglected and equation (2.22) becomes
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2.7 Experimental Results

In this section, several experimental results are presented and where applicable

predictions calculated using the theory described in the previous section are overlaid.

The prediction of the accelerance of the pipe for a particular mode provided in equation
(2.25) was verified by the modal amplitude extracted from the experimental results by
the modal decomposition method, which is described in appendix C. It was also
compared with the experiment results when the mass effect of an accelerometer, which
is described in appendix I, is taken account. In addition, the orientation angle, ¢, with
respect to the point force position is also described in this appendix. Once the
orientation is determined, the total accelerance of the pipe can be calculated by

summing equation (2.25) for all modes as

. 2 : 4 .
jen %A, cos (ne):kz sin (n6)] 3 Res, ekt ...(2.26)
0 2mpha b=l

13

H=

n

Because the mass of the accelerometer has an effect on the response of the pipe at high
frequencies, the mass of the accelerometer has o be taken account and the procedure to

do this is described in appendix D.

The experimental results presented are as follows.

Mode Decomposition from Measured Results at Distance 300 mm from the Excitation

Point

Figure 2.7: Mode decomposition of n = 0 mode

Figure 2.8: Mode decomposition of n = 1 mode

Figure 2.9: Mode decomposition of n = 2 mode

Figure 2.10: Mode decomposition of n = 3 mode

Figure 2.11: Orientation angle obtained atn =1 mode
Figure 2.12: Orientation angle obtained atn =2 mode

Figure 2.13: Orientation angle obtained atn =3 mode

Frequency Response at a Distance 300 mm from the Excitation Point

20



1
L11L22—L12L21:E(l—VXkﬁb+n2)2 (223)

So, the residue term is

(kib +n%)?

Resy, = ; " ...(2.24)
4kab[2[32(kﬁb +n? )k, +n” -Dikg, +n’ —-5)+(l—v2)kﬁb -Q%(k2, +n” +5)}
The accelerance of the nt mode is given as
H, = —joY,
B je Q%A cos (nB) + A, sin (n8)] ...(2.25)

24', Re sy e Frb®
27p ha? b=l

2.5 Numerical analysis of point force mobility

In the previous section it was shown that Flugge and Kennard shell theories provided
consistent predictions of the cut-on frequencies and of the wavenumber and compared
well with simplified equations derived. In this section, a numerical comparison between

them is carried out using the point force mobility. Due to the limitation of the computer,

the frequency response of the total mobility, Y = ZYn is truncated at n = 7. Using the
n=0

pipe data from Table 2.1, the plot of Y(s=0,6=0) against frequency is shown in figure
2.5.

S o
i) (=] o«

Phase of Mobility (Radian)

Amplitude of Mobility (m/Ns)

A5

10° 10

107
wzFrequency (Hz) 0 Frequency (Hz}

Figure 2.5. Amplitude and phase of point mobility with ¢ = 0; -, Flugge’s version; —,

Kennard’s version; ---, equation (2.20).
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The above results show the consistency of the point mobility calculated using three
expressions, and also the consistency of the cut-on frequency obtained using these
expressions. The disagreements that occur at high frequencies are due to the different

assumptions.

2.6 Experimental Setup and Procedure

Since several approximations are involved in the derivation of the equations in this
work, it is useful to validate them by experiments. In this section, the experiments that
were carried out to verify the simplified version of shell theory are described. Before the
experiment on the pipe was conducted, the sensitivity of the piezoelectric element
attached to the tip of small shaker in order to measure an input foree had to be
determined. The sensitivity of the piezoelectric element in terms of charge per Newton

was calibrated using a known mass of 4.384 kg.

Since the pipe discussed in the previous section was assumed to be semi-infinite, which
has no reflected waves from one end of the pipe, an anechoic termination was used for
this purpose. However, this does not perfectly absorb vibration so that some reflection
from the anechoic termination still remains which interferes with the incident waves. It
is useful to evaluate the effectiveness of the termination in terms of the ratio of incident
to reflected waves from the experimental results. To separate both incident and
reflected waves, the method of wave decomposition described in appendix B was

applied.

The experimental setup for the wave decomposition and for verification of the simplified
version of the shell theory is shown in figure 2.6. A 2.7 m plastic pipe was suspended by
cords and was free at one end and had an anechoic termination at the other end. The
pipe was excited at the free end by the small shaker. A random signal was supplied to
the shaker from an HP 3566A Signal Analyzer and three sets of frequency response
functions of the pipe were measured using Bruel & Kjaer accelerometers type 4375,
located at a distance of 300, 1500 and 1550 mm from the shaker. The thirty-two
measurements around the circumference of the pipe were conducted at each axial
position and the frequency response functions of the pipe in terms of accelerance were

analysed using the Signal Analyzer. The two sets of measurements at axial positions

i8



1500 and 1550 mm, which are in the far field from the source, were used to decompose
the incident and reflected waves. Another set of measurements was taken at the
location of 300 mm, which is in the near field of the source. The results from this
measurement position are used to verify the simplified version of the shell theory
developed in the previous section. The reason for selecting the measurement position in
the near field was to capture the direct waves generated by the shaker (flexural, near
field and standing near field waves) so that they are not distorted by the reflected
waves. Since two accelerometers were used for wave decomposition, phase matching
and cross sensitivity between them had to be determined prior to applying such a

technique to avoid ill-conditioning.

=15 m o
¢—————— |=15m ——>  Accelerometer Plastic Pipe
«—1=03m— /

Anecheic
Y V4
( ’\) Termination

@)
E%\ Piezo-
element

Shaker Conditiloping
Amplifier Amplifier
o) o r

HP Analyzer PP

Q o Q
L

Figure 2.6: Experimental setup for the mode and for the wave decompositions

1%



Figure 2.14: Accelerance of the pipe at 6 = 0 and ¢= 13

Wave Decomposition from Measured Results at Distance 1500 mm and 1550 mm from

Excitation Point

Figure 2.15: Wave ratio of incident to reflected waves of n = 0 mode
Figure 2.16: Wave ratio of incident to reflected waves of n = 1 mode
TFigure 2.17: Wave ratio of incident to reflected waves of n = 2 mode
Figure 2.18: Wave ratio of incident to reflected waves of n = 3 mode

Figure 2.19: Wave ratio of total incident to total reflected waves
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Figure 2.7: Decomposition of n = 0 mode: —Measured result; --- equation (2.25); ...

equation (2.25) with mass effect accounted for.
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Figure 2.8: Decomposition of n = 1 mode: — Measured result; --- equation (2.25); ...

equation (2.25) with mass effect accounted for.
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Figure 2.9: Decomposition of n = 2 mode: — Measured result; --- equation (2.25); ...

equation (2.25) with mass effect accounted for.
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Figure 2.10: Decomposition of n = 3 mode—Measured result; --- equation (2.25); ...

equation (2.25) with mass effect accounted for.
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Figure 2.11: Orientation angle of the pipe with respect to the force position extracted at
n = 1 mode; --- 13°.
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Figure 2.12: Orientation angle of the pipe with respect to the force position extracted at
n = 2 mode; --- 13°.
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Figure 2.13: Orientation angle of the pipe with respect to the force position extracted at
n = 3 mode; --- 12°,
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Figure 2.14: Accelerance of the pipe with 8 = 0 and ¢= 13:— Measured result; -

equation (2.26); ... equation (2.26) with mass effect accounted for.
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Figure 2.15: Wave ratio of Incident to reflected waves of n = 0 mode
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Figure 2.16 : Wave ratio of Incident to reflected waves of n = 1 mode
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Figure 2.17: Wave ratio of Incident to reflected waves of n = 2 mode
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Figure 2.18: Wave ratio of Incident to reflected waves of n = 8 mode
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2.8 Discussion

From figures 2.7-2.10 and figure 2.14, it is clear that even if the mass of the
accelerometer is small (2.4 grams), it still has a large effect on the motion of the pipe at
high frequencies. This is because the mobility of the pipe is high at high frequencies,
while the mobility of the accelerometer is low at high frequencies (1/jm®) causing a
reduction of pipe velocity at the measurement position in the high frequency region. It
is also shown in figure 2.7, 2.9 and 2.10 that, before the waves cut on, the motion of the
pipe for particular mode is very small. It is difficult to obtain these modal amplitudes by
the modal decomposition technique because of the requirement to accurately position of
sensors in order to cancel out the response from undesired modes and due to noise in
the measured results. Because of the finite length of the pipe, it possibly behaves like a
mass at low frequencies which results in a motion that is higher than that predicted
using the theoretical model. Such a difference does not occur for the motion of then = 1
mode shown in figure 2.8 because its dynamic behaviour is already rigid body in the
radial direction. To calculate the motion of the pipe with and without the effect of the
accelerometer mass, its orientation with respect to the force position must firstly be
obtained. This is approximately 13 degrees, which is shown in figures 2.11 — 2.13. It
should be noted that the orientation angle was determined after the structural waves
had cut on because of the mass-like behaviour and poor signal to noise ratio at the low

frequencies.

From figures 2.15 — 2.18, it can be seen that the anechoic termination adequately
suppressed the flexural waves but was not very effective in suppressing the longitudinal
wave. To suppress the longitudinal wave, another kind of termination should be applied
such as a plate of an appropriate impedance (Brennan et al [16]). Some suppression of
the flexural wave was obtained after the waves had cut on and it degrades when other

modes, which are reflected at the discontinuity (anechoic termination), cut on.
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3. Modal Sensors

3.1 Introduection

Both the mass effect and the number of point measurements required for modal
decomposition are disadvantages of using an accelerometer to sense the motion of a pipe. It
is expected that a polyvinylidene fluoride (PVDF) sensor will overcome some of these
problems. Since PVDF is lightweight, it will not change the mechanical property of the
pipe. Because it has a distributed surface for sensing the motion of the pipe and can be cut
into the shapes of sine and cosine functions, it can measure the response of a particular

mode without any processing of the measurements.

In this chapter, the theory for a modal sensor for a circumferential mode of a pipe,
especially the n = 2 mode, is developed. Some experiments are carried out to verify this
theory. In addition, the performance of the modal sensor and of the accelerometer is
compared in the form of accelerance. The comparison is taken to see the mass effect of both

sensors in order to select a proper sensor for a pipe in an active vibration control system.

3.2 Modal sensor for pipe

PVDF

Pipe

Mid-Surface of
the pipe

Figure 3.1: Schematic of composite section of a pipe
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A schematic of a composite section of a pipe, which consists of an inner layer of pipe and an
outer layer of sensor, is shown in figure 3.1. Generally, the mid-surface of the pipe itself is
changed due to increasing thickness, however since the distributed PVDF sensor is very
thin, it is assumed that the mid-surface of the pipe is unchanged. The assumption, that the
sensor is completely bonded on the pipe, is also made so that the strain is continuously
distributed through the composite pipe. It is well known that to be a sensor the PVDF uses
the direct piezoelectric effect, which converts mechanical strain to an electrical charge (Lee
[17]). Without a skew angle, which is the angle between axes of the sensor and of the pipe,

this phenomenon may be represented (Lee [17] and Lee and Moon [8]) as

D3 = g33E3 + €315 + €325 ..(3.1)
where

Ds is the electric displacement (C/m?),

S, and S, are the axial and circumferential strains (m/m), respectively,
£33 is the permittivity at constant stress (F/m),
Es is the electric field (V/m),

ea1 and es2 are the piezoelectric stress constants (C/m?).

The piezoelectric strain constants can be determined from

{e_ﬂ}: By, /1-vp,) VrEpy [1-V5) {dﬂil ...(3.2)
e |VpEp /0-vp) En/i-vy)  [dn
where

Epv is Young’s modulus of PVDF (N/m?),

vpv is Poisson’s ratio of PVDF (no unit),

da: and ds2 are the piezoelectric strain constants (C/N).

Following Flugge's shell theory (Liessa [1], Flugge {18]), the axial (Sy) and circumfereptial

(Sy) strains at arbitrary distance z from the mid-surface of a pipe may be expressed in
terms of the pipe strain combination between stretching (extensional deformation) and

bending (in-extensional deformation) strains of the mid-surface of the pipe as
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S, =S.. +S; and

1

Sp = (S0 +Sin) .(3.3aD)

where a is the radius of the pipe,

Sex = g—u is the longitudinal or stretching strain in axial direction,
X

2
3 \: is the bending strain in axial direction,
X

Six =2

Sen :l(%+ wJ is the stretching strain in circumferential direction and
a

—e—-——J is the bending strain in circumferential direction.

n=1_0 n=1 n=2

Figure 3.2: Forms of mode deformation of a pipe.

It is well known that the extensional deformation dominates the motion of the pipe for the
n = 0 mode, while the deformation of n = 1 or higher modes is in-extensional (Flugge [18]
and Timoshenko and Woinowsky-Krieger [19]). Since the main aim of this work is to
develop the modal sensor of the n = 2 mode of the pipe, in which the stretching strains (Sex

and Ses) equal to zero, only the bending strains (S and Sig) represent the motion of the

pipe. One of the conditions for in-extensional deformation (Timoshenko and Woinowsky-

2 .
Krieger [19]) is % =-w, then S =—%{29‘: +wJ. For simplification, the term z/a may also
a

be neglected in comparison with unity so that equation (3.3) becomes
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S, =—za — and
ox
2
SB:—%[ae‘:+W} forn=1 ..(3.4a,b)
g

In the case that the width of the sensor is much smaller than the wavelength of a
propagating wave, the axial strain is approximately constant over the width of the sensor.
The assumption will be justified later in terms of the maximum width of the sensor.
Assuming the strains discussed above, the electric displacement given in equation (3.1)

becomes

z [ 9%w
D,=¢g3E.—e; — ——+w |2e4,8 ...(3.5)
3T Esbs T (862 ] 29y

In order to measure the charge generated from the PVDF sensor, a closed-circuit
arrangement (Lee [17] and Callahan and Baruh [13]), in which the surface electrodes of
both sides of the sensor are short-circuited, is employed so that the electric field Es is zero.
By such an arrangement, the generated charge is approximately the average of the electric

displacement integrated over the area of both sides of the effective surface electrodes. So

i
q(t) =5[”Ap(z=zu+h,,v12)D3adXde+HAp(z:zn~hpvi2)D3adXdeJ ...(3.6)

where A is the effective surface area of the PVDF,
hpv is the thickness of the PVDF,
zo = (h + hy)/2 is the distance from the mid-plane of the pipe to that of the PVDF,
h is the thickness of the pipe and
a is the radius of the pipe.

Substituting the electric displacement from equation (3.5) into equation (3.6), it becomes

2

2
SORSIN {_Zoez{ae_‘:

+wJ+aze3ZSx}dsd9 (3.7
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where s = x/a is the non-dimensional longitudinal distance.

The radial shell displacement for a semi-infinite pipe has already been discussed in the

previous chapter (equation 2.2} and is given here for clarity

e 4 .
w(s, 0,0 =Y 3 W, (A, cos(nd)+ %A, sin(n) <m0 ...(3.8)
n=1b=1

where A1 = cos(ng),
Az = sin(nd) and

¢ is the orientation angle.

It should be noted that the displacement of the n = 0 mode is not included in above

expression since the extensional deformation is not taken into account in this work.

Substituting the displacement of equation (3.8) into equation (3.7) gives

o« 4 .

aty =Y AW, [(A; cos(m®)+L, sin(nd) ™ *dsdd+a® [ez,S, dsdd ..(3.9)
n=1bh=1 Ap Ap

where

A, =2 8q (n2 —'1)

Since the total charge generated, qft), is the sum of the response over the surface of the

PVDF sensor, it may be expressed as (Gu et al {9])

oo 4 .
21 5, +bS,(0) . Kpns— 2 2| e +bS {0)
qH=% bZAan l jju_bﬁs:(e){xl cos(n8) + 1, sin(n®) fe ¥V dsd0+a [ Lcﬁbss:(meﬂsx dsd®
n=]b=1 ;

... (3.10)
where &. is the non-dimensional axial location of centre of the sensor to the radius of the

pipe,
bs is the ratio of a half of width of the sensor to the radius of the pipe,
S,(0) is the shape of the sensor.

Evaluating the integral, we get (omitting the terms of e~ for simplification)
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JLETER
AW, [T, cos(nB) + 1, sin(n8)}sinfk b, S, (8)]d6 +2a%b, ¢3S, j S, (8)d0

.. (3.11)
If the sensor is shaped in the form of Sy(8) = cos (p8), where p is the desired mode, then
integrating the second term of equation (3.11) over the circumference of the pipe is equal to

ZEero:
in
2a’b,es,S, [cos (p0)d8 =0
G

The schematic explanation of the cancellation of the axial strain for the n = 2 modal sensor
is shown in figure 3.3. It illustrates that the summation of generated charge due to axial
strain over the surface of the modal sensor is equal fo zero. This means the modal sensor

for the pipe is insensitive to the axial strain and only detects the circumferential strain.

R P Ml P

irection of axial oling direction of modal
strain sensor

<t

Figure 3.3: Axial strain and Poling directions of a modal sensor for the n = 2 mode

Therefore, equation (3.11) becomes

Je JKnhse

i i AW, _[OM{KI cos(n@)+ A, sin(l'le)}f;in{knbbS cos(pG)}dB ... (3.12)

n=1b=l nb

Since sin{knpbscos(pB)} can be expressed in terms of Bessel functions as follows (Arfken [20])

sinfk b, cos (p8)}=2 3 (1)1, (kb ) cos [2m - 1)p8]

m=1
by substituting it into equation (3.12), using the property of orthogonality gives
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1

o 4 : =
Qe =3 T4k AW, 3 D™ T s Ko b WBppm, .. {3.13)

a=1b=1K 1 m=!

where mp = (2m-1)p.

&

—— 1; forn =mpand

=0; forn=m;p.

Equation {3.13) is a general expression for the total charge generated by the modal sensor
for any modes with the form of the cosine function. It is clear that the sensor picks up a
series of mode displacements. In a specific case of this work, in which p = 2, then the modal
sensor will detect the displacements of modes of n = 2, 6, 10 and so on, which correspond to

the Bessel function of order 1,3,5 and so on, regpectively. Since the interesting frequency
range is below the ring frequency, in which the maximum modeisn =7 (n: = J12 a/h; Fahy

[14]), the total charge is

4 . 4 .
qa, =411:7L1{A2 Y LW, T, (kg b, Je e —Aﬁz%wﬁh(kﬁbbs)eikﬁwc J ..(3.14)

b=1 K 2 p=1 K¢p,

Because the responses of the n = 2 and n = 6 modes depend upon bs, the ratio of a half of
width of the sensor to the radius of the pipe, therefore, it is interesting to evaluate the
cross sensitivity, which is the response of n = 6 mode to that of n = 2 mode, for various bs.
Using the pipe data given from Table 2.1, numerical assessments of the cross sensitivity in
near and far fields are shown in figure 3.4. As expected, the cross sensitivity in the near
field shown in figure 3.4 largely reduces at 370 Hz where the waves of the n = 2 mode cut
on. This does not occur in the far field because there is no motion of the n = 6 mode before
it cuts on. Figure 3.4.b clearly shows that the cross sensitivity increases with increasing bs.
Using a criteria of =20 dB cross sensitivity, it illustrates in figure 3.4.c and 3.4.d that, with
bs up to 0.4 in the near field of the vibration source and to 0.2 at the far field, the respohses
of the n = 6 modes are insignificant. So, equation (3.14) can be reduced to the first term,
which is the response of the n = 2 mode. Therefore, the expression of the generated charge

becomes
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4 .
G =40 A, S —— W, T, (kybgde % forn =2 and be < 0.2 ..(3.15)
b=l &op

The Bessel function can be expanded as (Arfken [20])
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where ! is the factorial.
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Figure 3.4:Cross sensitivities of the responses of the n = 6 mode to those of the n = 2 mode
for various bs (in (c) and (d), the frequency at 7000 Hz is chosen only to show a trend of the

response).

If the product of kepbs is less than unity, then higher orders can be ignored. Having the

maximurm wavenumber of the n = 2 mode at the ring frequency shown in figure 3.5 equal to
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approximately 6, bs should be less than 0.16 to satisfy the above requirement. Hence, the

generated charge becomes

4 .
g, =2mAb Ay Y erjkzbsc
b=l

4 .
= 21h bz ey (02 DT Wyet 2 forn=2and bs<0.16 ...(3.16)
b=l

Since the maximum bs above is less than that obtained from the numerical assessment
shown in figure 3.4, it can be used to be the criteria for determination of the ratio of a half

of width of the sensor to the radius of the pipe and is

bs < 1/kay, at the ring frequency.

Real

Nondimensional wavenumber

Imaginary

6 1 1 1 yi L 1 L} 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional frequency

Figure 3.5: Dispersion curve of n = 2 mode calculated from equation (2.8) by using the pipe

data given from Table 2.1.

Since bs = bw /2a, where bw is the width of the modal sensor, and the non-dimensional

wavenumber of the n = 2 mode at the ring frequency ks = 2na/de: , where/Asr ,is the
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wavelength of the n = 2 wave at the ring frequency, the criterion for determination of the

width of the sensor is thus given by

A
2r zi?"h

b, <
Y om 3

Since only the flexural wave can potentially propagate, it means that, if the width of the
modal sensor is less than one third of the wavelength of the flexural wave at the ring

frequency, it only senses the response of the n = 2 mode.

For the modal sensor having a shape of a sine function, the same procedure to obtain the

expression of the generated charge for the cosine function shape is applied. Since
Sin(K by sin (p8)) =2 3, Ty (i by ) sin [(2m - 1)pB)]
m=1
therefore,

4
qe = 2MA, b,z 64, (n” -1)2 Woel»*  forn=2and bs<0.16 ...(3.17)

b=l

The total generated charge, qi, for a mode with arbitrary orientation can be obtained by a
combination of both sine and cosine function shapes of the modal sensors in terms of the

square root of the sum of the squares and it is

q, =497 +q7

4
=2,z e (0% —1) Y Wye ko
b=l

forn=2and bs<0.16 ...(3.18)

The orientation angle can be determined as

1 -1 1'2 1 1| 4
¢ =—tan —2 |=—tan =5 (319)
o (e )
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3.3 Experimental Setup and Procedure

In this section, the experiments that were carried out to validate the modal sensor
equation for the semi-infinite pipe are described. Their results are also compared with
those obtained when using an accelerometer to evaluate the performance of the sensor

for active vibration control purposes.

Modal sensors were fabricated by cutting 52 um thick PVDF in the shape of a sine
function with bs = 0.009 approximately (both sine and cosine function modal sensors are
the same but there are placed at a 90° circumferential angle to each other on the pipe)
and the poling of the patches is arranged as shown in figure 3.6. Since the PVDF sheet
manufactured from Measurement Specialties, Inc, has piezoelectric strain constants, da:
= 23%10-12 m/V and dsz = 3*1022 m/V, with Ep = 2%10° N/m? and vpv = 1/3, then the
piezoelectric stress constants es1 = 54%¥10-% C/m? and es2 = 24*10-% C/m? The schematic of
the experimental setup is shown in figure 3.7. The 2.7 m plastic pipe, whose properties
are given in Table 2.1, was suspended by cords. It was free at one end and had an
anechoic termination at another end to ensure that its behaviour was as a semi-infinite
pipe. Both modal sensors shaped in sine and cosine functions were placed close
together, 300 mm and 310 mm respectively from the excitation point. The pipe was
excited at the free end by a small shaker, which was driven by a random signal supplied
by an HP 3566A Signal Analyzer. The arrangement of the modal sensors of n = 2 mode
was such that individual elements were expected to detect the in-phase response of the
n = 2 mode and out-of-phase response of other modes. So the experiment first carried
out was to investigate this behaviour. Because the modal sensors were expected to
detect only the motion of the n = 2 mode after they were electrically connected together,
an experiment was conducted to verify this and the results were used to compare with

those obtained from accelerometer measurement at the same position.

d fe,, )T_»@ - W

d (e} Patch 1 Patch 2 Pateh 3 Patch 4

31 31

Figure 3.6: Arrangement of modal sensor
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Figure 3.7: Experimental setup for evaluation of the modal sensor.
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3.4 Experimental Results

In this section, experimental results are presented and compared with predictions
calculated using the theory described in the previous section. The results obtained from
the modal sensors are also compared with those obtained from the array of

accelerometers described in the previous chapter.

The measured responses of the modal sensor were in the form of the transfer function,
Coulomb/ Newton. To compare this transfer function with the theory, the receptance
has to be incorporated into equation (3.18). The receptance of a semi-infinite pipe is

given by equation (2.19) and is repeated here for convenience.

Wa(s=s,,0) __ g, 0 [h cosmd)+1, sin(ne)]z“:Res s (3.20)
K, 2nw’pha’ b1 °

where £€,=1forn =0 and
en=2fornz1,
8. is the non-dimensional axial location of centre of the sensor to the radius of
the pipe,
Q = w/or is the non-dimensional frequency,
or is the ring frequency,
F. is the amplitude of the excitation force and

(ki +n?)*

Resb =
4kn{zﬁz<kﬁb +n2)(k2, +n? ~D)(k3, +n? —§)+<1—v2)k;‘b —Q2 (2, +n? +%>}

Since the radial displacement is given by equation (3.8) as (omitting terms of ¢7)
ES 4 5
Wha(s=s,,8)= ZWD {A; cos(nB)+1, sin(né) e ¥ |
b=1

the modal amplitude can be determined as

4 : 2 4
aneJknbsc —_ JE’D? FOZ ZReschkanc (321)
- 2r® pha” 1o
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Substituting it into equation (3.18) and dividing the both sides of the equation by the
force amplitude, Fo, thus the transfer functions of the n = 2 modal sensors shaped in

cosine and sine functions are

T =deo_ MERM JES—

TR o’pha’ {3
Ay Q
Ty, =9s M—ZR‘% ef»*%  respectively. ...{(3.21ab)
Fy w’pha® 1

Hence, the total transfer function is

i6b Q?
T, _ 9. __J6bszges zRes alknse ... (3.22)
Fo o’pha’ 15

In order to compare the response of the modal sensors to that of the accelerometer, it
has to be converted into the form of the accelerance for the nt® mode. At a particular

position, it is given by

— 4 ,
H,(s,0) =—Flmzwn (s,8) =—Fim22W,, (A, cos(n@) + A, sin(n®) e~ ...(3.23)
a ¢ b=t

Integration over the surface area at s = s, the accelerance of the cosine function modal

sensor for the n = 2 mode is given by

4
1 iKaps,
H2c(s=sc)=—F—m2l12WneJk2“‘ ..(3.24)

¢ b=l

Substituting equation (3.24) into equation (3.16) gives

2
1 wiq,
H —¢ Y=— ...(3.25)
(8 =5c) F, 67b,zqe4,

Similar to the sine function modal sensor for the n = 2 mode, the accelerance is

2
My (s=s,)=—ao 25 ...(3.26)

Fy 6mb,zge4;
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Hence, the total accelerance is given by

2

1 w7g
H, (s=s,)=4H% +H:, =——— =t ...(8.27
(3 =5c) 2 2 Fy 67th zpeq ( )

The experimental results presented are as follows.

Figure 3.8: Frequency response of patches of modal sensor
Figure 3.9: Total amplitude of modal sensor obtaining from the root sum square of the
modals sensor shaped in sine and cosine function

Figure 3.10: Orientation angle of pipe determined from modal sensor

Figure 3.11: Comparison between total response of the modal sensor and of the
accelerometer array for n= 2 mode

Figure 3.12: Comparison between the frequency response of the cosine function of the
modal sensor and of the accelerometer array for n= 2 mode.

Figure 3.13: Comparison between the frequency response of the sine function of the

modal sensor and of the accelerometer array for n= 2 mode.
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Figure 3.8: Frequency response of the individual patches of the modal sensor ; a) real

part b) imaginary part: -.- patch 1; ... patch 2; ™ patch 3; --- patch 4.
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Figure 3.9: Amplitude of the response measured by the modal sensors obtained from the
combination of the sine and cosine function shapes; — measured result; ---

equation (3.18)
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Figure 3.10: Orientation angle of the pipe with respect to the force position; — Process

from accelerometer; --- Process from Modal sensors.

46



Amplitude of Accelerance (m/Na?)

-4 " M TP | " . P S S |

1 2 3 4
10 1 1 1
0 Frequency (Hz) 0 0

Figure 3.11: Comparison between the total response in terms of accelerance for the n= 2
mode; ... modal sensor output from equation (3.24) ; --- output of array of

accelerometers without mass effect accounted for; — equation (2.25) .
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Figure 3.12: Comparison between the frequency response of the cosine function in terms
of accelerance for the n= 2 mode; ... modal sensor output from equation
(3.25) ; --- output of array of accelerometers without mass effect accounted

for; ™ equation (2.25) .
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Figure 3.13: Comparison between the frequency response of the sine function in terms
of accelerance for the n= 2 mode; ... modal sensor output from equation

(3.26) ; - output of array of accelerometers without mass effect accounted

for;— equation (2.25) .
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3.5 Discussions

With the responses of the patches of the modal sensor shown in figure 3.8, it is clear
that they are in phase in the n = 2 mode and out of phase in the other modes. This
means it will only sense the motion of the n = 2 mode after the patches are electrically

connected together.

The total response of the n = 2 modal sensor, which was shown in figure 3.9, agrees
with the theory except at low frequencies, where the pipe is mass-like. This
disagreement may also be due to inaccuracy in the shapes of the modal sensors and the
significant response of the pipe at the cut-on frequencies of other modes, where there

are large reflected waves.

Before the waves cut on, the pipe has very small displacements, so the orientation angle
of the pipe was determined after the wave cut on (370 Hz). It was shown in figure 3.10,
that the orientation obtained from the modal sensor is consistent with that obtained

from the accelerometer,

Good performance of the modal sensor was shown in figures 3.11-3.13 in which the
response of the modal sensor and that of the accelerometer array are compared. It
illustrates that the modal sensor has a better performance than the accelerometer due
to a negligible mass effect even at high frequencies. If the effect of the mass of
accelerometers is removed from the experiment results, the responses obtained by both

sensors are similar,
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4. Conclasions

The work presented in this report is an evaluation of the modal sensor for the n = 2
mode of the pipe. Based on Flugge’s shell theory, the relationship between the charge
generated from a PVDF sensor and the combination of the axial and circumferential
bending strains has been established for the case of in-extensional deformation. By
using the Bessel function to describe the pipe strains induced on the surface of a modal
sensor, it is found that the modal sensor is sensitive to higher order modes as well as
the n=2 mode. This is because the circumferential strain is coupled with the axial strain
via the Poisson’s ratio of the pipe. If the axial strain over the surface of the modal
sensor is not constant, the higher order modes can be induced on the sensor. The cross-
sensitivity is dependent upon the ratio of one half of the modal sensor width to the
radius of the pipe (bs). However, if bs is small enough to keep the axial strain constant
over its surface, the modal sensor will only be sensitive to the circumferential bending
strain of the pipe so that it is only sensitive to the n = 2 mode. This means that the
performance of the modal sensor in detecting only the n = 2 mode increases with the
decrease of its sensitivity because of its surface area reduced. It is found that to keep
the axial strain of n = 2 mode constant over the frequency range of interest, the width of
the modal sensor has to be less than one third of the wavelength of the flexural wave at

the ring frequency and hence it only senses the response of the n = 2 mode.

The analytical model for a modal sensor has been successfully validated by experiment
results. It was also compared with an accelerometer array in terms of the accelerance of
the pipe. Clearly, the modal sensor provides a better performance than an
accelerometer array since it does not change the mechanical properties of the structure
as an accelerometer does. Even if the mass of the accelerometer is small, the motion of
the pipe can dramatically changed, especially at high frequencies. Because the modal
sensor is constructed from PVDPF, it has very little mass and it does not affect the
motion of the pipe. In addition, to measure the response of a particular mode by means
of modal decomposition, an array of accelerometers has to be used and the outputs from
these accelerometers has to be processed. Therefore in an active control system, a modal
sensor, which only has two leads, is much more suitable than an accelerometer as a

sensor for a particular mode.
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Appendix A: Fourier and Inverse Fourier Transform of Radial Displacement

of Pipes.

A.1 Fourier Transform of Radial Displacement of Pipes

In this appendix, the derivation of a radial displacement of pipes using a spatial Fourier

Transform is presented. The radial displacement of pipes as a spatial function may be

expressed in terms of a wavenumber transform, W, (k,0), as (Arfken [20])

Tom

Also, the wavenumber transform, W,(k,0), at a particular circumferential angle of a

W(s, 0) = —e _[Wo(k, 017 dk (A
?.c -

pipe may be expressed as

Wo(k,6) =% iWn (k)e e ..(A.2)
i A—

Since ¢ =cos(nd) + jsin(nB) , equation (A.2) becomes
—_ 1 b —
Wolk,8)=—— » £, Wn(k)cos(nd) (A3
0 o ;

where ¢n=1forn =0 and

en=2forn>1.

Substituting equation (A.3) into equation (A.1) gives

w(s,ﬂ):zin '[Zan\—v“ (k) cos(n@)e* dk .(A.4)

oo D=0
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A.2 Inverse Fourier Transform of Radial Displacement of Pipes

In this section, the relationship between a wavenumber amplitude and a spatial
amplitude of a radial displacement is established by using the spatial Inverse Fourier
Transform. The Inverse Fourier Transform of the wavenumber amplitude in equation

(A.2) may be given by (Arfken [20])

n
W (k) = e I Wo (k,8)e"dg (A5)
0

and the Inverse Fourier Transform of the radial displacement of a pipe as a spatial

function into a wavenumber function, W, (k,8), in equation (A.1) may be given by
Wk, 0) = —== [ w(s, 0 s ...(A.6)

Substituting equation (A.6) into equation (A.5) gives

2R oa

Wn(k)=;_njjw(s,e)e‘j“se*j"“dsde LAD
[

The solution of radial motion in the spatial domain for an infinite pipe may be written

as

w(s, 6, 0=Y YW, cos(m(6-¢)etnsn
m=0b=1
o & .
=Y YW, [A cos(mB)+ A, sin(m@)k s
m={0 b=l

where A: = cos(mé),
Az = sin(md)
9 is the azimuthal angle and

¢ is the azimuthal orientation angle,

Substituting the solution of radial motion into equation (A.7) and rearranging it give
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_ 1211:0:1 8

Whak)y=— f 3 3Wa [7LI cos(mB)+ A, ‘tsin(rnﬁ)]f‘,_j"B do Tej(k“" s

2R o m=0 =1 —oa
ox . ..(A.8)
=Y YWy [, cos(m®)+ A, sin(m8)k ™5k , —k)de
0 m=0 b=l

where 8() is the delta function.

Since e =cos(n8) + jsin(n®) , integration of equation (A.8) by 8 over a circumference of a

pipe vields

_ 8
Wy (k) :Z_ﬂ: 2 Wiy (A —23)8(k o, —k)
b b=l L(AD)

8 .
= 2 S Wk py — K
E"n b=1
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Appendix B: Wave Decomposition

—0 o
/fmx\\\*/’l mzi L/ "N

Ab(Incident Wave) BlgReﬂected Wave)
Xg = ]

Figure B.1: Decomposition of incident and reflected waves.

Brennan et al [21] proposed a method to decompose flexural propagating waves of a
beam by using an array of two sensors. The same method can be applied to decompose
flexural waves of a pipe as well. In this method, two sets of measurements around the
pipe are taken in the far field where there are no evanescent waves. Before the method
is applied, the modal decomposition technique described in the next section is used to
separate the measurement results into each mode, which may be expressed in the form

of separated waves as

4 . 4 ;
w, =Y A et £ 3B e wd .(B.1)
b=1 b=1

where Ay 1s the amplitude of the incident wave,
By is the amplitude of the reflected wave,
s=x/a and

a is the radius of the pipe.

For a finite pipe, the reflected waves are generated at the termination. Since only a

flexural wave can propagate in the far field, the equation (B.1) becomes

W =Abe_jknhs +Bh€_jk"hs ...(B.z)
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Then the displacement at the points 1 and point 2 are

| — -3k .=
L AbeJknb(Sxx. 1/2) +Bb3 Shan (5 —1/2) ,

- . ik i
W :Abe}knh(st+l.’2) +Bb3 iKnn (Sxe+1/2) .

where x.is the centre location between the point 1 and point 2,
Sze = XJa and
1 is the distance between the point 1 and point 2,
which may be written in the form of a matrix as
~fnplf2 ka2 7 A
gt ]
E:Jkn‘n“2 e_Jknbgiz BO w n2

where Ay =A,e™* and

BO :Bbef—iknhsxc .
Therefore, the amplitudes of both waves are
A . o ul/2 otz Ty
NEer ; - 1 (B4
B, 2sink 1| —gkml/2  o~Hal/2lw o

It was pointed out by Brennan et al [21] that equation (B.4) tends to ill-conditioning at
the cut-on frequencies and at frequencies where integer numbers of half wavelengths

are equal to the distance between the two sensors.
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Appendix C: Modal decomposition

To investigate the reduction of each circumferential structural mode amplitude that is
achieved by applying active vibration control, modal decomposition of the measured
response should be carried out so that a comparison of the response before and after
control applied to each mode can easily be undertaken. Moreover, the modal
decomposition technique may be used to measure the effectiveness of a distributed
PVDF modal sensor. This technique is based on the principle of discrete orthogonality
(Arfken [20]). To illustrate this technique, equation (2.25) is considered and is written

as

: e, Q2 (A, cos (n0)+ A, sin(nB)) &
271zpha2 b=l

Jhkpps

H

" Res,e

Since the term on the right hand side of this equation consists of two separate

parameters, 6 and s , the total accelerance may be written as

H= iEnAn (A; cos (n8)+ X, sin(nB)) .(C.1)
n=0
where
i 4 .
A, = ] > ¥ Res,el*n
2npha” b=1

e&n=1 forn=0and

tn=2 forn=1.

Assuming the measurement is made using a point sensor (i.e. accelerometer} at N

pointg around a pipe with equal angle. Then,

2
p=2"
N e

where p is the position of the measurement.

To decompose pipe modes in terms of the cosine function, both sides of equation (C.1)

2mp,

N m)and all responses measured around the pipe are

are multiplied by %cos(

summed to give
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n)+ A, sin( 21

1N 1% 2mp
ﬁzﬁ os( S my = - — ¥ ¥e A (llcos( NB

p=0 p=0n=0

o n)Jcos(@&g@- m ...(C.2)

where m is the desired mode to be decomposed.

Using the property of orthogonality, the response of the desired mode for the cosine

function can be determined as

N-
—I%zHcos(z?;B m) =H,=4A, .(C.3)

To decompose pipe modes in terms of the sine function, the same procedure is applied

m}. Hence,

except that both sides are multiplied by %I_Sin( 2’;1;9 m) instead of %cos( 27

the response of the desired mode for the sine function is

%NZ sm( N ® m) =H, =h,A, ...(C.4)

The total response, Am, of the desire mode can be obtained by combining equation (C.3)

and (C.4) as follows to give
w =HI +H] .(C.5)

and the orientation angle is obtained from

LA Hs
q)—mtan [7\.,} mtan (HCJ ...{C.6)
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Appendix D: Effect of Mass Loading on Pipe

With an accelerometer attached, a motion of a pipe itself is changed. In this section, an
effect of a mass of an accelerometer is analysed in order to obtain the actual motion of a

pipe with a mass attached.

An attached mass such as an accelerometer changes the dynamic behaviour of the pipe
structure. To predict the motion of the pipe with a mass attached, the effect of mass
loading has to be considered. The mobility method is applied for analysis of this effect
and it is schematically shown in figure D.1 in which a force, F1, excites a pipe at the
location (1) and a response of the pipe is measured by an accelerometer (Mass) at the

location (2).

F—» O— Pipe —0 C— Mass

Figure D.1 : General framework of the connection between pipe and mass

Following the work done by Mead [22], the velocity at the interface between the

accelerometer and the pipe at the location (2) in figure D.1 is

Yo My .(D.D)

b 1+—Mzz

m

where
Mz is the transfer mobility of pipe,
M2z is the point mobility of pipe and
Mm is the mobility of mass.

Since
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= EHQ2 [7\.1 cos (nB) + A, sin (ne)]

4 ;
M21 =_ZG EReSbeJkan ,
n=

2mep ha’ b=l

= g, AQ% 2
M,, =_Z—“""1""""'?ZR5513 and
n=02nmpha” b=l

M=o L

jma ’
therefore,
I 2 :
-3 g,Q2[A, cos (n8) + X, sin (n)] iRe e
V_2 — n=0 anp ha b=l (D 2)
g — o 4 ..{D.
: 1+3 Jemh Q27 ¥ Resy,
0 27pha i

From equation (D.2), the velocity for a particular mode at the location (2) in figure D.1

can be determined as

_ £,0%[A; cos (n8) + 1, sin (n0)] iResbe Kot
Van — 2750)}3 ha b=l (D 3)
m — " AD.
1 +3 Jenmh, €2 Resy
n0 2mpha  pg
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