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1. INTRODUCTION

Several numerical methods have been used to investigate the structural behaviour of a
coupled structure consisting of beams and a plate. A wave technigue was introduced for a
structure consisting of one or two parallel beams attached to the edges of a rectangular plate
[1, 2]). A Fourier approach was applied for the two-beam structure, including the case where
two dissimilar beams are attached to a rectangular plate [3].

A fully framed structure consisting of four beams surrounding a rectangular plate is an
important concern in the present research, as it is a principal configuration considered in
many engineering structures, e.g. automotive vehicles, ship hulls, etc. Although the numerical
approaches mentioned above produced good results for the vibrational motion in the cases
considered, they have rarely been used for the analysis of framed structures consisting of four
beams.

Previous reports [1, 2] show that the wave approach can be used to obtain an
approximate response of a beam-plate coupled structure as long as the system consists of a
subsystem (spine) possessing long wavelength waves and the receiver subsystem possessing
short wavelength waves. Thus, in principle, this technique can be applied to give an
approximate dynamic response for a fully framed structure. It is necessary to have an accurate
result for comparison with this approximate wave-based solution. Thus, in the present report a
modal method is developed using a Lagrangian formulation. Initially, mode shape functions
of a beam and a plate are obtained considering appropriate boundary conditions. Then,
analytical equations are developed to find the vibrational response of a coupled structure
consisting of four beams and a rectangular plate. This is also an approximate technique, given
that in practice the infinite modal summation is not practical and a finite sum of modes is used.
Nevertheless one can perform numerical checks to inspect convergence and limit any errors to
be insignificant.

There are some published studies on a framed structure consisting of four beams and a
plate. Takabatake and Nagareda studied the framed structure, where the behaviour of the plate
was the primary focus [4]. The plate supported with edge beams was replaced by a plate with
edges elastically restrained against translation and rotation. Using relationships between these
different boundary conditions, the shape functions in the plate use the beam shape functions
corresponding to supports with equivalent translational and torsional stiffness. The closed

form approximate solutions for static and dynamic problems of a rectangular plate with edge



beams were developed using the Galerkin method, in which the mass effect of the beam is
neglected.

The static and dynamic characteristics of a rectangular plate with edge beams were
evaluated using a Ritz vector approach by Yang and Gupta [5]. The effect of elastic edge
restraints is accounted for by including appropriate integrals for the beams in the expressions
for the total kinetic and potential energies, although the procedure to develop the modal mass
and modal stiffness is not clearly explained. The various types of boundary conditions at the
beams are considered by the corresponding Ritz vectors. The contribution of beam mass to
the total kinetic energy is also considered.

Both studies [4, 5] concentrated on predicting the plate behaviour, rather than that of
the beam. Also, both papers assumed that the motion of the ends of each beam is zero. From
the point of view that the stiff beams possessing the bending waves radiate short-wavelength
bending waves into the plate, the behaviour of the beams is very important [6]. Therefore, the
present study, which considers the beam as well as the plate and allows for excitation at the
beam ends, differs from the studies described above.

The wave approach for the investigation of the structure consisting of a so-called spine
and receiver was initially introduced by Grice and Pinnington [7]. The coupled system
considered was a box structure and the finite element method was used to predict a long-wave
response and analytical impedances were considered to calculate short flexural waves. This
concept is considered in the present report. However, here the coupled wavenumber
representing the long wavelength wave including the effect of the plate impedance is obtained
to describe the motion instead of using the finite element model.

The present report is divided into two main parts. Firstly the description of a modal
approach is given. The mode shape functions of a beam and a plate are introduced in sections
2 and 3, and the Lagrangian formulation is applied to obtain the equation of motion of the
system. Then, a coupling procedure is followed in section 4. How many modes should be
included in the calculation is an important issue in the mode-based analysis. Numerical results
are shown and compared with those based on the Fourier technique previously investigated
[3], although the structure consisting of only two beams is used as there is no result
previously obtained for the four-beam structure. Then, the dynamic response of the four-beam
structure using the modal method is compared with that of the finite element method (FEM).

In the second part, the procedure for obtaining an approximate response using the
wave technique is explained in section 5. The principal eguations, such as the equation of

motion of a beam and the expression for the plate impedance, are briefly given and numerical



results are shown for comparison of the various techniques. The corresponding equations of
motion, based on the wave method for the framed structure, are represented in Appendix B.

Depending upon the problem and application, the detailed response at individual
frequencies is important at low frequencies. However, with increasing frequency the band-
averaged response and the variability about a mean value are much more important than
narrow band results. An aim of the present study is related to the dynamic characteristic in the
mid and high frequency regions. Thus, results based on the wave method are mostly
represented from this point of view. For example, a resulit such as an octave band average or a
confidence interval of a response are just as applicable and useful. Hence these results are also
presented in the report.

The methods in sections 4 and 5 are applied to a perspex plate 1.0x0.75 m with a
thickness of 2 mm, surrounded by beams 22x 6 mm. The frequency range selected 1s 5.6 to
1412 Hz (1/3 octave bands 6.3 to 1250 Hz). In this range each beam has between 7 and 9
modes so that the beams can be considered to be in their “low frequency” range. The plate has
a modal density of about 0.4 modes per Hz, so that its 10" mode occurs by about 23 Hz and
about 500 modes can be expected below 1412 Hz. This, therefore, has “high frequency”

behaviour from the middle of the frequency range considered.



2. A MODAL DESCRIPTION FOR BEAM VIBRATION
2.1 Mode shape function and natural frequencies

It is well known [8] that the dynamic response of an elastic structure, such as a beam,

at position x and time ¢ can be expressed as
w(x,2) =D 4,(x)q,(?) (2.1)

where w(x,?) is the displacement, g, (¢) is the generalised coordinate for mode m and ¢, (x)

the corresponding mode shape function of the structure for given specified boundary
conditions. The modal expansion given in equation (2.1) is valid for arbitrary motion as weil
as harmonic steady state motion in particular. Strictly the summation is over the infinite
number of modes of the structure.

The general expression for the normal mode or characteristic function of a uniform

beam is given by [8]

#(x)=C, cosk x+C,sink x+C;coshk,x+C,sinhk x. (2.2)

where &, is the flexural wavenumber related to the natural frequencies by

w, =k %—- 2.3)
(7

where D, is the bending stiffness, @, is the m th natural frequency and m, is the mass per

unit length of the beam assuming a uniform cross-sectional area. Using the general solution,

such as equation (2.2), the mode shape functions for arbitrary boundary conditions can be

found [8]. Solving the resulting characteristic equation provides the values of &, for the

particular modes.

In the present report, both ends of the beam, taken as x =0 and x=L_, are considered

to be in sliding conditions and the corresponding boundary conditions are

d¢

== =0,

x|, (2.4a)
d’e
—= =0, 2.4b
= (2.4b)




dg <0
Ex:f. - (2.4¢c)
ﬂ =0 (2.44d)
dx’ A
where L, is the length of the beam.
From equation (2.4 a)
d
ﬁ- - C2kx + C4kx = 05 C4 = —CZ * (2'5)
x=0
From equation (2.4 b)
3
‘fo =-Ck}+Ck. =0, C,=C,. (2.6)
x=0
From equations (2.5) and (2.6), therefore
C,=C,=0. (2.7)

Substituting this into equation (2.2) and making use of boundary condition equations (2.4c)
and (2.44) results in

@ =-Ck sink L +Ck smhk L =0
dx x=1
—C;sink, L +C,sinhk L =0. (2.8)
and

d3¢ 3 : 3.1

S =Ck,sink L +Ck, sinhk L, =0
dx

x=L,

Csink L +Csinhk L =0. (2.9

Adding equations (2.8) and (2.9) gives

C,sinhk L =0 (2.10)

yielding

c,=0 (2.11)

as sinhk L #0 except for k. =0, The characteristic equation is thercfore



sink L, =0. (2.12)

The corresponding solutions for & L, are

kL =0,m 27,31, .

and thus, the wavenumbers can be found as {9, 10]

X

mr
k =— form=0,1,2,3, -
7 (2.13)

X

where m =0 is considered as a rigid mode of a sliding beam.

The resulting mode shape from equation (2.2) 1s

p(x)=cosk x. (2.14)

2.2 Equation of motion using the Lagrangian formulation i

The response of the structure, given knowledge of the mode shape functions, requires

the generalised coordinate ¢, (r) to be determined as a solution of Lagrange’s equations of

motion. The equations are derived by expressing the Lagrangian L in terms of the kinetic and
potential energy of the structure [11].

As the time derivative of the motion can be written as

%"c}:q'mcﬁm (2.15)

m

the kinetic energy of the beam is given by
tm  (owY
ngf my [““a"t—) dx
1 ¢ . .. 1 N
:—-Z-L mbzz¢m¢nqm‘:?rtdx=a-zzqmqﬂ_[, mb¢m¢"dx (2'16)

which is expressed in terms of the m th and 7 th mode shape function. As the normal modes

#_(x) such as given in equation (2.14) are orthogonal,

* The procedure to derive the equation of motion based on the Lagrangian is explained in [8]. This is also known
as the assumed-modes method.



0 fornzm

M? forn=m (2.17)

[ my (g, 8, = {

where M’ is the generalised or modal mass in the m th mode of the structure. For the mode
shape of equation (2.14) M =m;, L,/2 for m>1 and m,L_ for m=0.

Therefore, the kinetic energy of an elastic structure can be expressed as
T:%ZM;q; form=0,1,2,3, - (2.18)
=0
Similarly, the potential energy is written as

1, (w), D L d’g, d°g,
U=—| Db(—z] dx=7b§§qmqnj] dﬁ — s (2.19)

2 Ox

Due to orthogonality of the modes the potential energy can simply be written as
1< s 2
U =-2-ZK,,,q,,, (2.20)
m=1
where K? is the generalised stiffhess of the m th mode of the structure and is defined by
&\
Kiszfx(ﬁde for m=1, 2, 3,-- (2.21)

Note that the rigid body mode possesses kinetic energy only.
The Lagrangian for the system is given by

L=T-U (2.22)
Lagrange’s equations of motion may be written as [8]

d(oL)| oL
AL 2 _poprionze. 2.23
dt{acjr,.] o " or i (2.23)

where F, is the generalised force related to 7th mode shape function and the generalised
coordinate g,, which is a non-conservative force resulting from external forces or moments.

As orthogonality between the mode shape functions exists, as presented in equations (2.16),
(2.17), (2.19) and (2.21), substituting equations (2.18), (2.20) and (2.22) into (2.23) gives a

simple form for the modal equation of motion.



M:lqm +K:!qm = Fm for m= Os 1: 25 3: v (224)
where the generalised force F, is also a function of time and defined by [12]

F,@0= [ fop@us. (2.25)

Assuming harmonic motion of frequency @ and introducing the external point force

F,6 (x - X, ) , the force function shown in equation (2.25) becomes (using complex notation)
Fx,0)=F8(x—x)e”. (2.26)

where x, is the coordinate where the force is applied. This gives F ()= F¢(x)e™ . Then
from equation (2.24) the steady state solution for the generalised coordinate g, is [11]

where F‘m is the harmonic force corresponding to the generalised coordinate g, and the

natural frequency @,, is related to the modal mass and stiffness by

. _K,
W) =25 (2.28)

Alternatively, as the relevant wavenumbers are given in equation (2.13) the natural

frequencies @, can be obtained from equation (2.3)

wl =k} Do gor m= 0,1,2,-- (2.29)

x !
b

where m =0 represents the rigid body mode for the sliding boundary condition considered.

2.3 Introduction of hysteretic damping

If structural damping is introduced to the beam, the bending stiffness is given by

D, =D,(1+in,) (2.30)



where 7, is structural loss factor. Then, equations (2.27), (2.28) and (2.29) are changed to

include the damping in the structure as follows.

~

i E,
M @ (1 im,)-a ] @31
and
5=k (2.32)
m,

i.e. a complex generalised stiffness is introduced for simplicity.



3. AMODAL DESCRIPTION FOR PLATE VIBRATION

3.1 Equation of motion based on a modal expansion
Similar to equation (2.1), the flexural displacement of a structure such as a plate

having an arbitrary shape can also be represented using an infinite series as
w, (%, .0) = 2w, (% )4, (1) (3.1)

where w,(x, y) is a mode shape function of the plate, ¢, (¢) is the corresponding generalised
coordinate.

Limiting the plate to a rectangular shape, its mode shape can be represented by
combination of mode shapes of the two directions. Thus, the mode shape of the rectangular

plate w, (x,y) can be expressed as the product of two separable functions so that each

depends on a single spatial variable x or y ie.
v (xy)=¢, (x)¢, (¥)=9¢,9, (3.2)

where ¢, (x) and @, (») are selected as two linearly independent scts satisfying all the

appropriate boundary conditions. Thus, this separation of variables may only be applicable to
this kind of rectangular plate analysis. In the present report, mode shape functions of vibrating
beams are chosen, which was introduced by Vlasov (see Szilard [9]). In general, the separable
solution is an approximate approach as it is only in the special cases where a pair of opposite
parallel edges are either simply supported or sliding that the governing equation of motion for
the plate can be solved exactly by this type of separable expansion.

If all edges of the rectangular plate are sliding then the corresponding exact mode

shape functions are

, =coskx, § =cosk,y (3.3)

where

kx =m,.75/Lx for m, =0,1,2,---
(3.4)
k, = nryz'/Ly for n, =0,1,2,---.

Orthogonality of the shape functions holds in this case, i.e.

10



fx LL" ww.dxdy =0 for r £ (3.5)

where a mode number s is introduced to distinguish from a mode number #.
Making use of orthogomality of the mode shape, the kinetic energy 7 of the
rectangular plate is given by

1 .
== Mg (3.6)
24 ‘
where the modal mass of the plate is defined by
M? = L “m"y dxdy (3.7

As the mode shape function i, is given by two separable functions, equation (3.7) is simply

M = LL (6,8, ) dxdy = mf¢de¢dy (3.8)

Note that the integrals are L/2 for m,, n, =1 and L for m,, n, =0. The strain energy U of

the rectangular plate is

D, u w|(&w)Y (8w, . &w, & &w, Y
U:T"F { K a;PJ +( a;ﬂ +2v a;" a;j’ +2(1—v)[6x:; ddy .

(3.9)

Similar to the modal mass, substituting equation (3.1) and (3.2) into equation (3.9) results in

1
U =52ngf. (3.10)

where the modal stiffness of the rectangular plate X7 is

, il (08, ) (T4 5’4, &4, 4, 04,
k7 =0,[" [ [¢( = ] 8 [-57} + 20, 4, — 2 21~ )( dedy

ED
Inserting the mode shape functions shown in equation (3.3) gives a simple form of equation

(3.11) as

(3.11)

11



2

2 2
LL
K’=D == (m’ﬂ-] +[H’KJ form =0orn =0

L L

x ¥

(3.12)

2 2P
LL
Kf =D, I4y [nzyrj +(’EEJ for otherwise.

X ¥

Therefore, the equation of motion using Lagrange’s equation (2.23) is simply found as
M?§,+K’q, =F, (3.13)
where the generalised force for the rectangular plate is defined by
Lo Ly L, oL,
E=[" [ ryov@yddy= " [" f(9.08, 8, dudy. (3.14)

In particular, if a point force with complex amplitude F; is applied at an arbitrary position

(x,¥)={x,,»,) then the generalised force amplitude will be

E=[" [ Bot-x)8(y- )8, 8, dsdy = £y, (3)8, () - (3.15)

Similar to the beam in the previous section, assuming harmonic motion at frequency @ and

introducing structural damping to the plate results in

F

r

) M? [a)f(1+iqp)—a)2]

g, (3.16)

where 77, is the structural loss factor of the plate and ol =K"[M?.

12



4. A MODAL FORMULATION FOR THE COUPLED MOTION OF A SYSTEM OF
TWO OR FOUR BEAMS ATTACHED TO A PLATE

4.1 Framed structore

The motion of a framed structure consisting of four beams and a rectangular plate, as
shown in Figure 1, is investigated here. The motion of the uncoupled beam and the plate can
be represented using the mode shape functions described previously. Similarly, for the framed
structure, its behaviour can be described in terms of mode shapes and Lagrange’s equations of
motion can be derived based on energy relationships. It does not seem necessary to obtain a
mode of the framed structure itself, as the relevant modal matrices of the uncoupled structures
are already presented in sections 2 and 3. Thus, in the present report the motion of the built-up
structure is obtained by the coupling technique and how the matrices of the uncoupled

structures are coupled will be explained.

Figure 1. The coupled structure consisting of four beams and a rectangular plate.

For simplicity, the beams are assumed infinitely stiff to torsion and correspondingly
all edges of the plate are assumed to be sliding (rotation is restrained through rigid coupling to
the corresponding beam). Similar to the uncoupled plate, it is assumed in the following that
the plate response is given using a separable solution. Thus, the two sets of functions in the
two directions correspond to the mode shape functions of the corresponding beams along the

edges with their ends sliding.

13



As explained in section 3.1, this method using the separation of the variables is an
approximate method for general boundary conditions as characteristic functions and/or their
derivatives are not always orthogonal [9, section 2.6]. The general form of the function is
shown in equation (2.2) the coefficients of which should be determined from the boundary
conditions. Some particular boundary conditions such as sliding edges considered here give

an exact solution (apart from truncation to a finite number of mode shape functions).

4.2 Solution in terms of generalised coordinates
The flexural displacement of the plate with four beams attached can be written as a
sum over a set of functions that span the motion and satisfy the boundary conditions. The

mode shapes of the uncoupled plate are suitable for this. Thus

w, (x,y,r)=2w, (xy)q.(¢) (4.1)

where . are the r th mode shapes of the uncoupled plate and ¢, are generalised coordinates.

The displacement of the beams shown in Figure 1 are given by

wy (x,1)=w,(x, 0,t); W, (x,0)= W, (x, Ly,t)

(4.2)
Wa (1:8) =, (0,3:2); Wz (3:2) =W, (L, 3:7)
due to continuity at the plate edges.
It is convenient to write equation (4.1) in matrix form
w, (%, y,1) = ¥q (4.3)
where
Y=y, v, - vl (4.4)
and
a=le @ @l (4.5)

Although, strictly, the summation in equation (4.1) should be over an infinite number of terms,
for practical reasons these are truncated. The maximum mode number R is chosen after

various simulations to check convergence.

14



From equation (3.2) of section 3 the mode shapes of the plate are
Wr (xs y) = ¢mr (x)¢nr (y) (46)

where

¢mr (JC) =C08 kxx, kx = mrﬂ-/l‘x
¢, (y)=cosk,y, k, =nr[L,

Thus, maximum mode number of the plate » = R is expressed in terms of the beam mode

4.7)

number m,n, = MN .
From equations (4.1) and (4.2) the kinetic energy of the plate and beams can be

evaluated in terms of the generalised coordinate, g, . For the plate

m, L ow Y
R N N P
T, == [ f[atdedy. (4.8)
Therefore
m, Lo L, ..
T, =7”ZZL L W, W.q,4,dxdy (4.9)
which can be written in the form
| R
T, =Eq M,q (4.10)
with
ML=l [ [ wy.dxdy. (@.11)

where subscripts 7 and s are the corresponding mode numbers producing M* and

y (x,3) =6, (09, (¥). (4.12)

Note that the subscripts 7 and s can also be used to indicate location of the # th row and s th

column in matrix M, for convenience whereas subscripts m, , m,, 7, and n, are used to

describe the mode number of the beam functions used in the expansion, related to modes

and s.

15



Since y, is the mode shape of the uncoupled plate, M, is equal to the modal mass matrix of

the uncoupled plate,
,_ |M! forr=s 413
" |0 for otherwise (4.13)
For beam 1 (y =0), the kinetic energy can be written
T, =m—51LL*[maWb1)2dx=m—3ILL* &, ) dx. (4.14)
72 ot 2 o ), '

Substituting from equations (4.1), (4.6) and (4.12) results in the expression of the beam
kinetic energy in terms of shape functions used in the modal expansion for the plate which

provides, through continuity, the displacement of the beams.
f Lx o
T, =233 [ . ()4, (x) x4, (0)4,, (0)d.4, @.15)

Now ¢, (0)=¢, (0)=1, and from orthogonality of the g, ,

Lo, M: for m =m,
[ g, (x)8,, (x)dx={ "™ : (4.16)
0 for m, #m,
So 7, can be written in terms of a generalised mass matrix
I.r .
T, =54 M,,q (4.17)
with
M =M)5,, (4.18)

where » and s indicate the location of M?' in matrix M,, and &, n, 18 the Kronecker delta.

Similarly for beam 4 (x =0) the generalised mass matrix is found as
MM =M :,4§n,ns _ (4.19)

while forbeams3and 2 (y=1, and x=1L,)

16



M2 =Mm25, . (-1)" (-1)" (4.20)

M, " mm,

MZ=M?5,, (-)™ (=)™ (4.21)

where use is made of cosnz =(-1)".

The total kinetic energy of the coupled system can be written as

T=T,+T,+1, +T,;+ T,

4.22
_LerMg (422)
_ 2
where M is the generalised mass matrix given by
M=M_ +M, +M,, +M,; +M,, (4.23)

with M, M, M,,, M,, and M,, given by equations (4.13) and (4.18) - (4.21). Note that
while M, is diagonal M, is not, so that the plate modes are coupled through the generalised

mass matrix.
Similarly, the generalised stiffness matrix can be found from the strain energy of the

coupled structure. The plate potential energy is given by equations (3.9) and (4.1) as

2y (2 (e 2 2 20 2 =

(4.24)
which, in matrix form, is
b s
U,=74 K,q. (4.25)
The modal stiffness in K, is the same as that of the uncoupled plate, which is
, |Kf forr=s
s = . (4.26)
0 forotherwise

where K7 is already shown in equation (3.12). It can also be found simply from the natural

frequencies of the plate and the modal mass as

17



K? =’ M7
r f: g r*
For beam 1 ( y= 0) , the strain energy is

2 2 2
_ D, . &w, _ D, | &w,
0= 2 (28] a2 [ 5

y=0

Substituting equations (4.1), (4.6) and (4.12) in equation (4.28) gives

L 0 & 2
Uy = %ZZ@, (0)¢. (0).4, | i};z(x) q;fz(x) dx.

X

Thus, orthogonality of the beam mode shape function ¢, gives

(Ph )P0, (K2 o mn
o’ o’ "0 form Em

Now ¢, (0)=4¢, (0)=1 and the strain energy can be described as

1
Uy = EqTKmq

where the terms of stiffness matrix K, are
b1 bl
Krs = Km,. 5m,.ms :

For beam 4 (x = O) the generalised matrix is found as

Kb4 — Kb45

R, nmg "

Similarly forbeams 3and 2 (y=L, and x=L1 )

Ky =K, (-1)" (-1)°

KZ =K2s,, (-1)" ()™

where {-1)" is used for cosmz .

The strain energy of the coupled system can be written as
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(4.28)

(4.29)

(4.30)

4.31)

(4.32)

(4.33)

(4.34)

(4.35)



U=U,+Uy+U, +U,; +U,,

4.36
- 1q'Kq (436)
2
where the generalised stiffness matrix K is
K=K, +K, +K, +Ky; + K, (4.37)

where the corresponding equations of the matrices are given by equations (4.26) and (4.32) -

(4.35) respectively. Similar to the mass matrix only K, is diagonal.

The corresponding generalised force vector representing the external force is given by
F=[F, F, — F] (4.38)

where each factor F, is the generalised force corresponding to the plate mode shape » and

can also be expressed in terms of a beam mode number m.n, . Thus for a point force in

particular as shown in equation (3.15) it is given as
F,=F¢, (x)¢, (") (4.39)

where F, is the amplitude of the point force applied at x=x, and y=y,.

Assuming steady state harmonic motion and introducing the hysteretic damping to the
system, the generalised coordinates can be obtained from the generalised mass, stiffhess

matrix and the force matrix as follows.

- ~ -1~
j=(K-o'M) F. (4.40)
where structural damping has been included in the matrix K according to the structural

damping of each subsystem. Finally the response of the coupled structure can be found from

equation (4.1).

4.3 Numerical results

In this section, numerical simulations are presented. The structure consisting of four
beams and a rectangular plate shown in Figure 1 was investigated. The ends of the four beams
are assumed to be in sliding conditions and the torsional stiffness of the beams is assumed

infinite. Accordingly, the edges of the plate are also assumed to be in sliding conditions.
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The numerical analysis based on the wave method will also be included later. An
impdrtant assumption of the wave method used in the present report is that the wavenumber
of the free plate should be at least twice as large as the free beam wavenumber. This
requirement leads to having the height of the beam and the thickness of the plate chosen so
that the ratio of the free wavenumber of the subsystems is at least 2. In principle this is not a
restriction on the modal approach, but has been adopted so as to be able to consider results
produced by the two methods. The material properties and dimensions of the coupled
structure are given in Table 1 and the free wavenumbers of the beam and the plate are

compared in Figure 2. The corresponding wavenumber ratio is a constant and equal to

k, /kb =3.18. This is large enough to apply the wave method.

Table 1. Material properties and dimensions of the coupled structure shown in Figure 1.

Material Perspex
Young’s modulus, £ (GNm™) 4.4
Poisson’s ratio, v 0.38

Density, p (kgm's) 1152.0
Beam length, L, (m) 1.0
Beam thickness, 7, (mm) 6.0
Plate width, L, (m) 0.75
Plate thickness, ¢, (mm) 2.0
Height of the beam, # {mm) 22.0
DLF of the beam, 7, 0.05
DLF of the plate, 7, 0.05
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Wavenurmber (eal part)

—— Uncoupled beam
s — — Uncoupied plate
10 L L

10’ 10° 10°

Frequency (Hz)

Figure 2. Wavenumbers of the uncoupled subsystems.

4.3.1 Two-beam-plate coupled system: test of convergence

As explained in section 4.2, an exact answer based on the modal method requires that
all possible vibrational modes are included. However, this is impractical in a real application
and the number of modes to be included in the numerical solution is an important concern.
Thus, firstly the difference in response predictions between the modal method and other
known numerical analyses was investigated. Comparing the difference between two methods,
it is expected that the appropriate number of modes necessary for the frequency range of
interest (5.6 - 1412 Hz) can be ascertained. In this frequency range, the stiffer beam has a
small number of modes while the plate has a large number of flexural modes so that the
problem is representative of a mid-frequency problem.

Previously the Fourier technique was introduced to find the response of the
coupled structure consisting of two beams and a rectangular plate [13] and the results of this
technique can be used for initial comparison. It can be expected that the number of modes
required for the two-beam structure can also be used reliably for the equivalent four-beam
structure of similar dimensions. The four-beam structure is actually stiffer than the two-beam
case suggesting that fewer modes should be required.

The two-beam structure considered is shown in Figure 3. All material properties and
dimensions are the same as for the four-beam structure. Also the sliding boundary conditions
as described previously were assumed. The relevant matrix equations are shown in section 4.2.

For example, the total mass matrix of the coupled structure is given by equation (4.23).
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However, as there is no beams along the y direction, the corresponding mass and stiffness

beam contributions should be zero.

£

N
‘\4/”/1’4,:’/'

Figure 3. A built-up structure consisting of two finite beams attached to a rectangular plate.

In the Fourier approach the accuracy of the response 1s dependent on the wavenumber
range considered in the calculation. As previously {13], this is defined in terms of the non-

dimensional wavenumber, given by
Vox =k [k | (4.41)

where k_=nz/L_ is the real wavenumber defined in the spatial Fourier transform, #» is the
number of half-cosine waves along the beam length Z_ and k; = mjw’ /D, , where m, is the
mass per unit length, @ is frequency and D, is the bending stiffness of the beam. Clearly
extending the range for the Fourier transform produces better results. However, it also
requires much more computation time and it was shown that a range of y =15 results in less
than 0.01% error at 10, 100 and 1000 Hz for the present coupled structure [13]. Thus, in the
present report, the non-dimensional wavenumber range of y =+15 was chosen, which
corresponds to n =128 at 1412 Hz.

An external unit force is applied at x =0 of beam 1 as shown in Figure 3. To obtain
the estimate of the space-averaged kinetic energy of the plate, 20 random points are selected.
Then this averaged kinetic energy is used for comparing the difference between the two
methods, namely the Fourier technique and the modal method. The difference is given as an

error in dB, assuming the Fourier technique is an exact result for this problem.
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e(dB)=10log,, E, (4.42)

where E, is the frequency-averaged difference between the two methods normalised by the

Fourier estimate and defined by
E, = E(@)=|(T, + (@))~(T,u (@) /(T (@)) (4.43)

where (i’;F (co)) is the space-averaged kinetic energy of the plate based on the Fourier

technique and (T "y (co)) is that based on the modal method.

The difference e is evaluated when the maximum mode number in the x direction
(M) and the maximum mode number in the y direction (V) considered in the calculation
are changed. For the case when the frequency covers 5.6 - 1412 Hz, the variation in the

difference is given in Figure 4. To reduce calculation time the mode numbers were chosen to

be at intervals equal to 5.

N (max. mode number, y dir.)

M {max. mode number, x ¢ir.)

Figure 4. Error in the modal method compared to the Fourier technique as a function of the

number of modes used (Frequency of interest 5.6 - 1412 Hz).

It can be seen that the space and frequency-averaged difference reduces with increasing
number of modes considered in the calculations. It is interesting to compare the slope of the
surface in the x direction and the y direction. In the y direction the difference gradually
reduces with increasing mode number. However, in the x direction the difference suddenly
reduces at small mode number, which is about 9. This corresponds to the beam wavenumber

at 1412 Hz (k, = 26.7 rad/m). One can see that this is because there are two stiffer beams
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lying in the x direction which are the dominant influence on the motion in this direction.
However the beams lying in the x direction do not appear to influence so strongly the motion
with respect to the y direction and it appears that one needs a higher number of sliding
modes in the y direction to get a good prediction.

Although the tendency in the error can be identified, the interval of 5 used appears too
coarse and the calculation was repeated using an interval of 2. A contour plot of the resulting
error is shown in Figure 5. It can be seen that the difference reduces for a small number of
modes in the x direction rather than the y direction. This can be distinguished by the black
thicker line (dashed), which is at about -15 dB or about 3 % difference. The value of about
-25 dB indicated by the black thicker line (solid) is about 0.3 %. The averaged error of 0.3 %
occurs for example when the maximum mode numbers M =18 and N =40 are considered

(e=03%).

w
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T

8

| i i
i i

M (max. mode number in x direclion)
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Figure 5. Contours of the error as a function of the numbers of modes in the modal solution

(Frequency of interest 5.6 - 1412 Hz).

The error is clearly related to the mode numbers, and for obtaining the response at a specified
accuracy the number of modes to be included depends upon the dimensions and physical
properties of the structure. Thus, it seems useful to introduce a quantity less influenced by the
dimensions instead of the mode number and one can think that a normalised wavenumber

might be a good alternative. The normalised wavenumbers are given by

Vow =k fEy e = Mx/(kapm )s Vo =Ky [ = Nfr/ (L, e ) (4.44)
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where M and N are the maximum mode number considered in the x and y direction
respectively, L_ is the length of the beam, L, is the width of the plate and &, = mhe’ /Dp is
the plate free wavenumber and maximum value %, is obtained from the maximum

frequency considered. The averaged error e in Figure 4 is replotied in Figure 6 with respect

to the non-dimensional wavenumbers. The non-dimensional wavenumbers corresponding to

the maximum mode number M =18 and N =40 are y,, =0.66 and y,, =1.97 respectively

when the averaged difference is 0.3 %.

kx / kp

Figure 6. Difference distribution in terms of normalised mode numbers (Frequency of interest

is 5.6 - 1412 Hz).

Note that the results shown in Figures 4 - 6 are obtained for a frequency range 5.6 - 1412 Hz.
It is clear that the averaged error e varies according to the frequency range. The same
investigation represented by Figures 4 - 6 was repeated for different frequency ranges and the

results summarnised in Table 2.

Table 2. The relationship between the averaged error e, mode number, non-dimensional

wavenumber and frequency range.

MxN Vou XV py e(%)
5.6-1412Hz 18x40 0.66x1.97 0.30
5.6 - 708 Hz 14x34 0.73x2.36 0.28
5.6 -355 Hz 12x28 0.88x2.74 0.29




Although it is clear that more accurate modal results need more modes, much more
computational time is also necessary for such accuracy. Thus, an appropriate maximum mode
number should be selected. Note that for the frequency range 5.6 - 1412 Hz in Table 2 there is

no unique value to meet the condition e <0.3 % . However, as mentioned in section 4.3 the
wavenumber ratio of the uncoupled system £, / k, is 3.18 in the present case. Thus it seems

reasonable to choose the maximum mode numbers so that the corresponding irace

wavenumbers have the similar ratio as
=R~k =k-k=k(1-k[k)~k. (4.45)

The maximum mode numbers chosen in Table 2 approximately follow the relationship of
equation (4.45). Also for the four-beam coupled structure, the accuracy may increase as two
other beams are attached to the two-beam coupled structure when these beams are stiffer than
the plate and hence govern the coupled structural behaviour. Thus, it is expected that if
M > 40 and N =40 then the error will be less than 0.3 % (e < 0.3 % ). Subsequently in the
present report M =40 and N =40 have been chosen for computations as the computational
time is acceptable. These correspond to a maximum plate wavenumber of twice the free plate

wavenumber at the maximum frequency (and six times that of the beams).

4.3.2 Four-beam-plate coupled system

The four-beam structure shown in Figure 1 is analysed using the procedure
represented in section 4.2. Firstly the point mobility of the coupled structure is obtained when
a harmonic point force of unit magnitude is applied at x=0, y =0, the joint of beams 1
and 4. The response is compared with a finite element (FE) model prediction in Figure 7. The
beam in the FEM is modelled using Euler-Bernoulli beam elements (400 elements) and the
plate with shell elements (9804 elements) corresponding to at least 8 elements per plate free

wavelength (4, =0.074 m at 1412 Hz) and the sliding conditions of all plate edges and the

ends of the beams are also assumed. The result of the modal method shows an excellent
agreement with that of the FE model, the latter itself also being an approximate numerical

solution.
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Figure 7. Point mobility comparison between the modal method and the FE (excitation at

x=0).

Also an example of the transfer mobility comparison with FE is shown in Figure 8, also

giving good agreement.

10° T : -
£ — = Mode method }4
L — FEM 3

[ Mobilty | (s

10” L :
1 10° 10

10
Frequency {Hz)

Figure 8. Transfer mobility comparison between the modal method and the FE (excitation at

x =0, response at x=0.51, y=0.51).

The powef balance between subsystems should hold and the dissipated powers of
subsystems were used to investigate the power balance relationship. The dissipated power of

the subsystem can be found from the maximum strain energy of the subsystem. The dissipated

power of the plate is given by
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P, gy =n,U . =on,[ 47K, /2 (4.46)

where @ is the frequency, 77, is the structural loss factor of the plate, U, is the maximum
strain energy of the plate and K is the stiffness matrix represented in section 4.2. The

dissipated power of the beams can be found similarly.
Thus it is expected that the power balance holds and corresponding the power balance

equation is

P

total

L (4.47)

where F, ; is the total dissipated power in the four beams and £, is the total input power.

The numerical result is shown in Figure 9. This shows good agreement and the maximum

difference between two powers is less than 0.001%.

o

10

— zowermtal b
. Power, .+ Power,, . |4

10 .

Power (Nmvs}

_3
10 >

10 10 10

Fraquancy (Hz)

Figure 9. The power balance of the coupled structure consisting of four beams and a plate as

in Figure 1 using a modal solution.

Although the modal method requires significant computational time and resources, it
produces excellent responses such as mobilities. These results and the powers obtained in this
section are used in the following section to compare with further development of the wave

method.
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5. ANALYSIS OF COUPLED SYSTEM USING A WAVE APPROACH

5.1 Wave approach

In the previous work [1, 2, 6], it was shown that a wave approach can conveniently be
used for the analysis of a simple coupled structure such as a beam and a plate under certain
assumptions. The most important restriction is that the wavenumber of the plate should be at
least twice as large as that of the beam.

The wave method has also been applied to a more complicated system, where a box
structure was investigated using the concept of the wave approach, although the spine
structure was modelled using the FEM [7].

In the present report, the framed structure consisting of four beams and a rectangular
plate is investigated. The beams possessing the long wavelength wave are modelled by the
wave method instead of the FEM. In the previous section the framed structure shown in
Figure 1 was analysed using the modal method, where the beam is assumed to be infinitely
stiff so that the edges of the plate are in sliding. This same boundary condition is assumed in
using the wave method to allow direct comparison. For such boundary conditions, the
approximate wave impedance of the plate is [2]

P Epzi\?;( ] 1-5F }
P o | (1+B,7)-i(l-B7)

(5.1)

where ﬁp is the bending stiffness of the plate, ]Ep is the plate free wavenumber, By =%

is the propagating wave attenuation coefficient of the plate and 7 is the complex reflection

coefficient at the opposite edge of the plate at y =L , whichis 7 =1 for a sliding condifion.

It should be noted that the terminology width in the wave method is always used to
mean the dimension in the direction normal to the beam axis and the opposite edge means the

plate edge parallel to the attached beam. Thus, L, in equation (5.1) is the width of the finite
plate between the beam axis lying at y =0 and the opposite edge lyingat y=L,.
If the plate is infinitely wide so that L, =<0, then the approximate impedance of the plate is

simply

. DK myo

Z 2L 2(l+{)=—2
<L ="

(1+1). (5.2)

where m; is the mass per unit area of the plate.
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Then the general dispersion equation for the built-up structure is given by
D} =me’ -in Z, (5.3)

where D, is the bending stiffness, 7, is the mass per unit length of the beam and i:c; is the
travelling wavenumber of the coupled beam/plate system in the direction of the beam. Note

that as equation (5.1} includes the plate trace wavenumber ]Ey , an iterative method is required

to find the coupled beam wavenumber igx in solving equations (5.3) and (5.1). However,

some poles hardly converge with simple iteration and Muller’s method was introduced to get
a better result [2]. Once the coupled beam wavenumber is found and assuming the nearfield
wavenumber is the same as the travelling wavenumber, the motion of the finite beam

possessing the coupled wavenumber can be represented by
W, (x) = Ae™®* 4 Be % 4 G 4 P (5.4)

where Aand € are the amplitudes of travelling waves, Band D are the amplitudes of the

nearfield waves.

5.2 Coupled structure consisting of four beams: application of the wave method

If it can be assumed that the power from the excited beam is not transferred to the
other beams through the plate, the framed structure consisting of four beams and the
rectangular plate can be represented by the system consisting of the four beams having the
coupled wavenumber due to the plate impedance. Then such a system can be modelled simply
using the wave method. The structure physically satisfying the above assumption is realised in
Figure 10. In the figure, the width of the plates attached to beams 1 and 3 is L, and for the

plates attached to beams 2 and 4 the widthis L, .

As sliding edges are assumed in the framed structure in Figure 1, the same sliding
boundary conditions at the opposite edges are used for the structure shown in Figure 10. This
may result in different responses compared with those of the framed structure, as in fact the
opposite edges should be attached to other beams. However, if the assumption explained
above holds it is expected that their influence will reduce and although affecting the
individual frequency behaviour this approach might still be useful for the mean response

calculation.
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Figure 10. Configuration of the coupled structure for the use of the wave method.

The coupled structure can be modelled in terms of four beams having coupled wavenumber
due to the plate impedance. The external force is applied at the corner of beam 1 and beam 4.
Note that the coupled beam wavenumber to be used in modelling is based on the assumption
that the opposite edges of the plates shown in Figure 10 are sliding. Thus, equation (5.1) is

used in equation {5.3). Also, it is assumed that beams 1 and 3 are identical with the same
(coupled) wavenumber !;x and that beams 2 and 4 are identical with wavenumber fc'y .

The method for obtaining the wave model is similar to that given in Appendix B. This

describes a frame of four beams in which no plate is attached to the beams. Thus the beams
possess the free beam wavenumber, &, . The boundary conditions of the wave model

consisting of four beams are also explained and these are the same as those used in the modal
model. In order to model the structure shown in Figure 10, only the coupled wavenumber
obtained from equation (5.3) needs to be substituted for the uncoupled beam wavenumber in

the method of Appendix B.

5.3 Numerical results
5.3.1 Comparison with the modal method

As explained in the previous section, the wave approach is an approximate method
and it is necessary to compare its results with other known methods. In section 4, the modal
method and its numerical examples are shown for the framed structure and this gives good

results. Thus the results based on the wave method are compared here with those of the modal
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method. The highest modal order used in the modal method is 40 (M = N =40, see section
4.3.2)

The first step in the wave analysis is to determine the wavenumbers of the
corresponding subsystems of the coupled structure. Firstly the coupled beam wavenumbers

k., k, and the corresponding uncoupled wavenumbers are shown in Figure 11 (the

wavenumbers for the uncoupled structures were already shown in Figure 2). It can be seen

that, although the wavenumbers &, and %, follow the same asymptotic line, corresponding to

a beam coupled to a semi-infinite plate, their peaks and troughs are different as the plate

widths are different.

2

107

Wavenumber (real par))
B

=" kb (uncoupled beam)
— - kp (uncoupled plate)
-+ kx {(coupled beam, sami—infi. plate)
- — . kx (coupled beam, finite plate)
—— ky (coupled beam. finite plate)

T

10

L
10 10 10°
Frequency (Hz)

Figure 11. The coupled beam wavenumber £, k, and the related wavenumbers.

It is interesting to compare the point mobilities of the two structures of Figures 10 and
B.1 so the effect of the plate can be understood. They are compared in Figure 12, in which the
result of the structure from Appendix B is the same as given in Figure B.2. It can be scen that
there are many more resonance peaks when the plate is attached, due to the coupling with
plate modes. However, one can also sec that (i) the average vibrational level significantly
decreases (ii) the height of the peaks and troughs is reduced. This is likely to be because the
plate behaves like a mass and damping attached to the beam [1].

An asymptotic representation for the point mobility shown in Figure 12 may be useful
to understand the effect of the plate. The asymptotic line of the point mobility of the framed
structure can be obtained by making two adjacent beams semi-infinite in the structures shown

in Figures 10 and B.1; the other two beams are in fact removed. Thus, for example beams 1
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and 4 remain in Figure B.1 if an external force is applied the joint of those beams. The point

mobility of such a system consisting of two semi-infinite beams at right angles can be found
similarly as explained in Appendix B éxcept that amplitudes C and D of the reﬂectéd waves
in equation (B.1) should be zero. The sliding condition of the joint is not changed. The
relevant equation of the point mobility is given by
7o ia)ﬁ#(ic =0) _ (1:i)~a)
= E, 4D,k

(5.5)

where !;b is the beam wavenumber when the system is not coupled to plate. The effect of the
plate coupled to the beam can be realised by replacing fk'b by the coupled beam wavenumber
A;x which is-obtained in equations (5.2) and (5.3).

The asymptotic lines obtained by equation (5.5) are also represented in Figure 12. It
can be seen that the coupled plate reduces the response level because of the added mass effect.
This effect however decreases with increasing frequency as the effective mass due to the plate

reduces [1].
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Figure 12. Point mobility comparison of the plate-coupled structure as in Figure 10 and the
structure consisting of only four beams as in Figure B.1 (based on the wave method,

excitation at x=0).

The point mobility of the coupled system is compared with that predicted by the
modal method in Figure 13. It can be seen that the results are in good agreement at high
frequencies, although the lower natural frequencies show differences between the two

methods. This will be discussed later.
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It is also interesting to compare these point mobilities with that obtained when semi-
infinite plates are assumed. The semi-infinite plate is realised by letting the width of the plates
shown in Figure 10 be infinite and the corresponding wavenumber can be found using
equation (5.2) instead of equation (5.1) in equation (5.3). This wavenumber is shown in
Figure 11. One can see that the point mobilities oscillate around the line obtained due to the
semi-infinite plate. It seems that most of the peaks may occur due to the oscillating finite
plate. The damping added to the beams increases when the semi-infinite plate is introduced,
resulting in a behaviour of the coupled structure similar to a heavily damped beam. It is
known that the attached plate with a short wavelength behaves like a mass and damping on a
beam possessing a long wavelength, such an arrangement being is called a fuzzy structure
[14, 15]. Thus fuzzy theory is applicable to the present framed structure consisting of four

beams and a rectangular plate as an approximate simplification.

10°

C T T T P
b — Mode meathod 1
P — - Wave methed (finite plate) i
r — Wave method (semi-infi. plate) |4

| Mobily | (mush)

10' 10° 10
Frequency {Hz)

Figure 13. Point mobilities of the coupled structure as in Figure 10 based on the wave method

and the modal method (excitation at x=10).

The power transferred is compared for the two methods, where the corresponding
equations based on the wave method are explained in [2]. Firstly, the power balance is
investigated separately for both methods with the wave method result shown in Figure 14 (the
result for the modal method was shown in Figure 9), where the power input and the total
power (= power transferred to the plate + power dissipated in the beams) are compared. They
show good agreement. The maximum error is 1.4%, which occurs due to the numerical

integration used.
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Figure 14. Power balance for the coupled structure as in Figure 10 using the wave method

(point force is applied at x =0 of beam | and finite plate is assumed).

The power transferred from the beams to the plate is next investigated, which will
verify the assumption with respect to the power transfer explained in section 5.2. The power
transferred from all the beams to the plate based on the wave method and the modal method
are compared in Figure 15, where in fact for the modal method the dissipated power in the
plate is given instead of the transferred power to reduce the calculation time. Similar to the

point mobilities they show quite good agreement particularly at high frequencies.

—— Mode method
— — Wava method (finitg plate) |4

Power {Nms)

: .
10 10° 10
Frequency {Hz)

Figure 15. Power transfer from four beams to the coupled plate (point force is applied at

x=0 of beam 1 and finite width plates are assumed attached to the beams).



Since the exact location of resonance peaks is often of less interest than a frequency
band average result, Figure 16 shows the results of Figure 15 converted into a 1/3 octave band
form. The average values of the two methods agree, especially at high frequencies. The
differences below about 60 Hz may occur because of differences in global modes between the
structure shown in Figure 10, assumed for the wave method, and the framed structure used in
the modal method (Figure 1). Thus the assumptions for the wave method do not appear to be
appropriate for calculating the low frequency response and subsequent coupling power.

The average values are also compared with the result where attached semi-infinite

plates are considered. Very good agreement can be observed at high frequencies.
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Figure 16. Power transfer from four beams to the plate in 1/3 octave bands (point force is

applied at x =0 of beam 1).

The results shown in Figure 16 imply that the average power transfer is hardly
influenced by changes in the plate width. This is verified here by simply changing the plate
width. The width of the plates attached to beams 1 and 3 is changed to 2L, and for the plates

attached to beams 2 and 4 the width is changed to 2L _ (see Figure 10). Note that the coupled

wavenumbers are also changed. The results are shown in Figure 17. As expected, they show
close agreement except at low frequencies, even though the width of all plates is changed.
Small differences may occur because the plate is equivalent to being more heavily damped, as

its width increases.
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Figure 17. Comparison of power transfer when the plate width is changed in 1/3 octave bands

(point force is applied at x =0 of beam 1).

The total power input to the system based on the modal method and the wave method
are compared in Figure 18 using the 1/3 octave band average. Comparing Figure 16 and
Figure 18, one can observe similar tendencies in the difference between two methods. At least
above about 60 Hz it seems that the hypothesis that the minimal power from the excited beam
is transferred through the plate to the other beams is a reasonable assumption.

The hypothesis that the flexible plate transfers little energy between stiffer beams was
already verified in a previous report [13] for a two-beam-plate coupled structure, in which the
power transferred from the excited beam to the plate is around a factor of 10 greater than the
power transferred from the plate to the opposite parallel beam. Thus most of the power is
dissipated in the plate. It may be said that a similar phenomenon occurs for the system
consisting of the two adjacent beams coupled to the plate. Consequently it can be said that
most of the radiated power is absorbed in the plate and little is transferred to the connected
beam through the plate.

This hypothesis can also be confirmed by comparing the power ratios between the two
methods. If the ratios of the power transferred to the power input are similar for the modal
method and the wave method, then this confirms the hypothesis. That is, the difference of the
power transferred between the two methods shown in Figure 16 occurs not because the
hypothesis is wrong but because of differences in the input power. However, if the ratios
between the two methods are different, then it can be said that the hypothesis is wrong and the

wave model is not acceptable.
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Figure 18. Comparison of input powers based on the modal method and the wave method in

1/3 octave bands (point force is applied at x =0 of beam 1).

The power transfer from the four beams to the plate normalised to the power input for two
methods are compared in Figure 19. It can be seen that the ratios based on the wave method
and the modal method are in good agreement above about 60 Hz. This means that the fully
framed structure as in Figure 1, can conveniently be analysed for power transfer estimates
using the wave method. The assumption that the power is not transferred to the other beams
through the plate is acceptable except at very low frequencies. In Figure 19 it can be seen that
the difference is large at low frequencies. This shows that the wave model is not appropriate

to represent the motion of the framed structure at these frequencies.
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Figure 19. Comparison of power ratio (of power transfer from the four beams to the plate to
the power input) based on the modal method and the wave method in 1/3 octave band average

(point force is applied at x=0 of beam 1).

5.3.2 Confidence interval for the power transfer

Although good qualitative agreement has been found between the two methods, as
seen in Figure 15, the magnitude of the fluctuations relative to the average should also be
considered. One possible way is to compare the confidence interval of the response so that the
distribution of the power in a certain frequency band can be indicated. For this, overlapping

octave bands are used at 1/3 octave band intervals.

The average value of the power is obtained for each octave band, P Then the

ctave *

power at each frequency is normalised by the octave band average. The normalised power is

calculated in dB as follows.

RiB = 1010g10 (‘P/ﬁocmve) (56)

where P = P(a)) is the power in a narrow band.

The 68% confidence interval of the normalised power P, is obtained explicitly for

both the resulis based on the modal method and the wave method. The results are shown in
Figure 20. It can be seen that the confidence interval follows the narrow band power very

well, although it is not symmetrical with respect to the mean.
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Figure 20. Octave band average and 68% confidence interval of the power transfer; (a) modal

method (b) wave method (point force is applied at x =0 of beam 1).

The confidence interval and the octave average shown in Figure 20 (a) and (b) are compared
simultaneously in Figure 21, Comparing the confidence intérvals one can see that they show
good agreement at most frequencies especially above about 80 Hz. The difference in the level
between the two methods occurs mainly because of the difference in the octave band average

value.

-10 T T I
- Mode (octave average}

— ~ Mede (68% confidence interval)
- Wave (octave average)

—=x— Wave (68% confidence interval)

Power {dB)
N
[+.]
T

—40 2 1 N
10! 10° 10°

Octave band centre frequency (Hz)

Figure 21. Octave band averages and 68 % confidence intervals of the power transfer based

on the modal method and the wave method.
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5.3.3 Discussion

The numerical results shown above indicate that the wave method is useful to obtain
the response at mid and high frequencies. For example, the power transfer averaged in 1/3
octave bands is almost the same as that obtained using the modal method above about 60 Hz.
To interpret this value of frequency, it may be noted that the stiff four-beam structure has only
5 resonant frequencies below 60 Hz (see Figure B.2) and the plate has less than 25 modes
below 60 Hz. Thus in this low frequency region, the wave method 1s no longer appropriate as
a coupling technique of the spine and the receiver structure. As the ratio between the plate and
beam wavenumbers increases this low frequency limit to the method can be expected to
reduce.

An important concern in practical applications is related to computer resources and
calculation time. Here, one example of the calculation time comparison for the framed
structure is shown in Table 3. Although the wave method can predict only approximate
responses, one can see that it is very advantageous as it requires far less computer resources
and time.

For reference, the computational time of the FEM is also given. In comparison of the
modal method and the FE, it should be noted that the number of modes obtained by the FE for
the forced response is 686, which is much less than that used in the modal method. Reducing
the number of modes in the modal method results in much less computational time. For
example, for the present case if 686 modes are considered in the modal method, the
computational time significantly decreases to 40 minutes. In addition, compiled FE code is

used in calculation whereas the modal method is solved by uncompiled Matlab code.

Table 3. Comparison of computational time (an Intel Pentium 4 computer (CPU 1500 MHz)

is used in calculation).

Computation time | Frequency range
. . Comments
(min.) of calculation (Hz)
Modal method 360 5.6-1412 M=N=40
Wave method 0.1 5.6-1412 -
FEM 12 0-2200 686 modes used
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6. CONCLUSIONS

In the present report, a fully framed structure consisting of four beams and a
rectangular plate was studied. Both ends of each beam and all the plate edges are assumed to
be sliding. Using the modal method, the vibrational response of the framed structure was
obtained. Then the wave method was applied to the same structure to obtain an approximate
response. The results of the two methods were compared and useful observations and
comments given.

The modal method and the Lagrangian formulation were used to produce an analytical
model of the framed structure. The corresponding generalised mass and stiffness matrices for
the coupled structure were found. Also, the procedure for derivation of the equations was
presented. As the number of modes in the modal approach is an important factor for obtaining
an accurate response, the dependency of the response on the number of modes included in the
calculation was investigated. Then, the maximum mode numbers chosen were used for the
modal model, which is considered to give an accurate response for the comparison with the
wave model.

Although the modal method gives an accurate result, it is time-consuming and requires
large computer resources as the frequency range increases. In addition, the detailed response
such as exact natural frequencies is not of concern in the present study which deals with the
mid and high frequencies. Thus an approximate method seems appropriate and the wave
method was considered.

The analytical model based on the wave method for the dynamic response of the
framed structure was presented. The statistical responses such as an octave average and a
confidence interval of the power were obtained as well as the narrow band response. In -
comparison with the modal method it has been shown that the analytical wave model can
conveniently be used for the estimation of the vibrational response in the mid and high
frequency regions. In addition, it is shown that the width of the plate is not very critical in
obtaining the average power transfer in a certain wide frequency band.

To apply the wave method it is necessary that the wavenumber of the free plate should
be at least twice as large as that of any of the beams.

In the wave mode! consisting of four beams it is assumed that minimal power from the
excited beam to the plate is subsequently transferred to the other beams. For the actual

coupled structure considered, it was shown that this assumption is reasonable and holds.

42



The experimental validation for the framed structure which is shown in the present
report is presently being examined. Principally, dynamic responses are being measured and
the power relationship will be investigated in the test and will be compared with the results

shown in this report.
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APPENDIX A. NOMENCLATURE

N R MmO W

t~

S

SRR -

O
N

o

=

N o ,u?ﬁ" a0 ™

wave amplitude (m)

wave amplitude (m)

wave amplitude (m)

wave amplitude (m); beam stiffness (Nm?); plate stiffness (Nmy);
Young’s modulus of elasticity (N/m®); energy
force

stiffness matrix

generalised stiffness; function stiffness
Lagrangian

length of a beam (m)

width of a plate (m)

mass matrix

generalised mass; function mass; maximum mode number
maximum mode number; number of data

power (INm/s)

kinetic energy

potential (strain) energy

line impedance of a plate

confidence interval
frequency and space-averaged error

frequency (Hz); force function

height of a beam

J-1

uncoupled beam wavenumber

uncoupled free wavenumber in a plate

coupled travelling trace wavenumber in x direction
coupled travelling trace wavenumber in y direction

mode number

mass per unit length of a beam (kg/m)
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X Vs 2

N B -

8 " € S 9 o

mass per unit area of a plate (kg/mz)
mode number; Fourier component number
matrix containing g

generalised coordinate

mode number

complex reflection coefficient
mode number

thickness (m)

displacement (m)

co-ordinates

matrix containing mode shape function i

wave attenuation coefficient
non-dimensional wavenumber (= £, /%, )
constant; Kronecker delta

structural loss factor (-)

Poisson’s ratio

density (kg/m®)

standard deviation

mode shape function

mode shape function

mean

radian frequency (rad/s)
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APPENDIX B. WAVE MODEL OF A FRAME CONSISTING OF FOUR BEAMS

B.1 Equations of motion
A rectangular frame structure consisting of four identical cross-section beams is

considered, as shown in Figure B.1. This is solved using a wave approach. Each beam carries
free waves with wavenumber & =m,/D, ®* in harmonic motion at frequency @ . An
external force is applied at the corner of beams 1 and 4. Each beam is assumed infinitely stiff

to torsion. Damping is induced through a complex bending stiffness D,.

Figure B.1. The wave model consisting of four beams.

The boundary conditions for the four-beam structure as in Figure B.1 are:
(i) Continuity equation; equal displacement at corners
(11) No rotation at the ends of the beams

(iii) Force equilibrium at the corners

The displacement of each beam can be given by an equation of the following form,

shown for example for beam 1
W (x) = Ae ™ + Be ™™ + C ™ + D™ (B.1)

where -the subscripts of the equation mean they belong to beam 1. Then, from the first

boundary condition, the same displacement at the corner of beam 1 and beam 2 gives

(B.2a)

w2 ly.—.()

|
1 x=L,
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(B.2b)
Ae ™ + Be Pt 1 € o™ + DM -4,-B,-C,-D,=0.

The same boundary condition for beam 2 and beam 3 gives

ﬂzl =w
2y=Ly 3

x=L, (B.3a)
A 4 B ’+C~‘ &b 4 D e
_143 ka B e CSeIkbL, __D3ekb x = O. (B.Sb)

For beam 3 and beam 4,

4|y=,-.y =W, (B.4a)
Ae ™ L Be™h 4 C ™ 4 D — 4, ~B, - C,—-D, =0, (B.4b)
For beam 1 and beam 4,
g;l x=0 = 1m“'!y:O (BSa)
A+B+C+D-4,-B,-C,-D, =0. (B.5b)

The condition of no rotation is applied to the ends of the beam, the relevant equation

of which for beam 1 is

D) _ i Ae i Be i, Cet + D =0, (B.6)

Thus, the two equations given by boundary condition (ii) for beam 1 are

GO i 4 -k B ik, G+ ED, =0 (B.7)
Cix x=0
and
awx) —ik, Ae ™5 —k Be ™ + ik, C, et +k,D, et =0, (B.8)
dx x=L,
For beam 2,
WO __if 4, -k B, +ik,C,+ 5,5, =0 (B.9)
dy =0
and
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%’l . = _ﬂgb ,:ize'iEbL3' - lzbﬁze"ib%‘ + iizbézeib]" + Ebﬁzei"%’ =0. (B.10)
For beam 3, |
d_%x(ﬁpo =ik, A, —k,B, +ik,C, +k,D;, = 0 (B.11)
and
gﬁéxgﬂx% = —ik, A — F Be ™ +ik,Cie™" +k,Dye™ = 0. (B.12)
For beam 4,
dﬁ;iy) =i R B+ C, + D, <0 (B.13)
y=
and
@%E—y) L ik, A" — kB +ik,Ce™ + kD =0. (B.14)

The shear force acting on beam 1 is given by

- d*(x)

-D, (1k~b3 Ae™ —BBe™ —ik:Ce™ + kD™ ) (B.15)

where D, is the bending stiffness of the beam.

As the force equilibrium holds at the corner where two beams join, the corresponding

boundary equation can be found. For beam 1 and beam 2 the equation is
_ﬁ;|x=L, +ﬁ'2|y=0 =0 (B.16a)
(il;,f ﬁle”"ﬁb"" —k; fi’ie";*'L‘ — ik C"]e"’;”l"‘ +E§f)ie£”’“*)
~ (i 4, 3B, - ik3C, + 3D, ) = 0. (B.16b)
For beams 2 and 3, it is

=0 (B.17a)

x=L,

R R A I AR - N M TG ¥
(zkbAge —k;Be " —ik,C,e”” +k,D,e

3

+ (zlgj ie"";”"‘ - l'c‘,f 1';;36«:2,,;, - il?j Qeﬂzﬁl‘ + E;’ ﬁse’;""“ ) =0. (B.17b)

For beams 3 and 4,
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=0 (B.182)
(fzzg,‘&4e*f'?b"f — BB _if3C M +zz;b4e%)
~ (k3 4, -k B, - ik C, + 5D, )= 0 (B.18b)

For beams 4 and 1, the external force applied at the corner should be included in the

equilibrium condition. Thus the corresponding equation is

2

B =0  (B1%)

x=

B, (i~ BB ~iEC, +ED,) - D, (i34, ~ 2B, ~ kG, + 2D, )+ £, =0
(ik; 4 — k3 B, —ik;C, + 5 D, )+ (ik} 4, ~ ) B, - ik, C, + k; D, ) = F, | D, (B.15b)
Then, equations (B.2b) - (B.5b), (B.7) - (B.14) and (B.16b) - (B.19b) can be written into a

matrix form.

Ku=F (B.20)
where K is given by
[ ehe e e A -1 -1 -1 -1 0 o 0 0 0 0 0 0
o 0 [+ 1] P gt P i —e kb gl gt _phh 0 0 0 0
0 0 0 0 o 0 0 0 -1 -1 -1 -1 AL i Al M
1 1 1 i ¢ 0 0 0 0 ¢ ¢ 0 ~1 -1 -1 -1
ik, -k, i, i, o 0 0 0 0 ¢ 0 0 0 0 0 0
—ikehh R ket Rt 0 0 0 0 0 o o 0 0 o 0 0
0 0 0 0 ik, -k, ik, k, 0 0 o 0 0 0 0 0
k| © 0 0 0 ~ihe ™ et e b 0 0 o 0 0 o 0 0
0 0 0 0 0 0 0 0 —ik, -k, i, E 0 ¢ o 0
0 0 0 0 0 0 0 0 e ket e fehh 0 ) 0 0
0 0 0 0 0 0 0 0 0 0 0 © —ik, —k, ik, k,
0 0 0 0 0 0 0 0 0 0 0 6 ke ke jhet e
e e et Pt il £ i -k} 0 a 0 o o 0 0 0
b 0 0 0 I A N L 0 i} 0 1}
9 0 ) 0 0 o 0 0 i B R e ™ R e P
ik -i; i i 0 0 0 0 0 0 0 o i) -i? -ik} 7 |

B.21)

the force vector, F is
Fz[OOOOOOOOOOOOOOOFB/f)b]T (B.22)

and the displacement vector is
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-~ -~ ~ - - ~ ~ ~ ~ ~ ~ =T

w=(4 B C D 4 B G D, 4 B, G b, 4 B ¢, b,] .
(B.23)

The displacement of any beam of the coupled structure shown in Figure B.1 can be found

from

u=K'F (B.24)

allowing w,(x) to be found from equation (B.1).

B.2 Numerical results
As an example, the point mobility of the structure shown in Figure B.1 is given here in

Figure B.2. The relevant dimensions of the structure are the same as written in Table 1 except
that no plate is attached to the beams. The beam model used in the FEM is the same as

explained in section 4.3.2. The result is compared with that of FE and they are not

distinguishable (maximum error of 0.6%).

10°
- T T
N — Wave mathod
-~ - FEM p

| Mohility | {rvsN)

: : .
10° 10 107 10°

Frequency {Hz)

Figure B.2. Point mobility comparison between the wave model and the FE (excitation at

x=0 and y=0).

In the present report, the rotational stiffness of a beam is assumed to be infinitely stiff.
The effect of the torsional stiffness of the rectangular frame structure as in Figure B.1 is
identified. In the FE model the torsional stiffness can stmply be realised by releasing the
rotational Degree Of Freedom (DOF) fixed to describe the infinite stiffness of torsion.
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Consequently, the sliding boundary condition for the ends of the beam is no longer
applied. The results are compared in Table B.1 and Figure B.3.

Table B.1 shows the Modal Assurance Criterion value (MAC, [16]), which shows the
spatial correlation between the mode shapes obtained with and without the sliding. The table
shows only the modes below 100 Hz of the system without sliding conditions, which are
compared with the sliding - constrained modes. A MAC value equal to unity means that the
two modes considered are identical. By allowing the torsional motion of the beams, the
natural frequencies of the framed structure occur at lower frequencies than when restrained.
For example, it can be seen that the sliding constraint mode at 26.9 Hz is similar to a mode for
the system without the sliding constraints occurring at 10.4 Hz. The unconstrained system has
three rigid body modes, whereas with the sliding constraints there is only one”. Constraining
the beam rotation results in the modes corresponding to 12.2 and 17.3 Hz shown in Table B.1.
These modes correspond to a half cosine motion on two opposite beams and rigid motion of
the other two beams. Thus, they are rather closer to the rigid modes than other dynamic
modes of the system without constraints. So, comparing the dynamic modes of the two
systems, although the natural frequencies are significantly changed by the different boundary

conditions, the mode shapes are not very different.

Table B.1. Modal Assurance Criterion between the mode shapes with sliding constraints and

without sliding constraints (a zero corresponds to a MAC value of less than 1.0x107).

Modes without sliding constraints (Hz)
0 | 0 ] 0 |10.4]242]37.8 531631909
0 [061]032{007| 0 ] 0 | 0 | 0] 00
122 [038[048(013] 0 | 0 | 0 ] 0 [ 0 | 0
Modes | 173 | 0 |0.19/080] 0 | 0 | 0 | 0 ] 0 | 0
with [269] 0 | 0 | 0 0] 0] 00
sliding [ 533 | 0 | 0 | © 0 | 0 |00l ©
constraints | 64.8 | 0 0 0 0 0971 0 0 0
z) [950] 0 [0 ] 00 ] 0] 0 [086] 0] 0
3|0 0| 0] 0 00| 0| 0 [095] 0
4210 o] oo o0 0 0 .9

" Here, translational rigid modes in x and y directions and a rotational rigid mode with respect to z direction are
not inchided as the FE model is made for comparison with the wave model.
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The point mobilities are compared in Figure B.3. It can also be seen that allowing the
torsional motion of the beam increases the response level as the framed structure becomes
more flexible. Especially, at high frequencies, the sliding boundary condition at the excitation
point results in a reduction by a factor of 2 in the average level of the point mobility of the
framed structure compared with the less constrained case. At very low frequency the

difference is larger due to the effect of rotation of the frame on the effective mass.

T 3
— — With  sliding ¢onstraints {]
- Without sliding constraints 1]

| Mobilly | (nvsN)
3
T
,
/

Frequency (Hz)

Figure B.3. Point mobility comparison to identify the effect of the rotational constraints on the

beam frame structure using FE (excitation at x=0 and y =0).
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