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Robust Performance Analysis on Active Noise Control Systems

1. Introduction

It has been shown previously [1] that the multiple-error LMS algorithm is very effective and
robust when used for the active control of low-frequency sound and vibration. This algorithm
requires an estimation of the response from the secondary sources to the error sensors, which
provides a model of the physical system to be controlled. If the estimation does not supply a
perfect representation of the true system, the convergence and stability of the algorithm may be

affected.

To study these effects on the control system, two different problems concerning the presence of
uncertainty in the plant have been considered previously. The first occurs when there are
modeling errors in the estimate of the transfer functions, leading to sub-optimal robustness and
performance. Second, the model can be accurate but the physical system can vary from the
nominal response. It is the second case that has been studied in this work, with the purpose of

being aware of how errors can might affect the performance of the active notse control system.

The term uncertainty refers to the differences between the model and the physical system we are
dealing with. Both the plant and the primary disturbance can experience uncertainty, which can
be classified into structured and unstructured. Boucher et al. [2] have examined the effect of
independent random errors in the plant model, that can be due to measurement errors. They
introduced a more general cost function that included a term proportional to the mean square
effort to stabilise the system. Omoto and Elliott [3] have also investigated the unstructured
uncertainties, as well as more structured ones, with dependent changes in the elements of the
transfer functions. They obtained a description of the characteristic pattern of the matrices
defining the perturbation, which occurred as a result of physical changes in the system under
control, due to alteration in the positions of the control sources, error sensors and excitation

frequency.

De Fonseca et al. [4] further investigated the effect of both structured and unstructured
uncertainties focusing on the design of feedforward control systems exhibiting robust stability
and performance. From the mathematical results for robust solutions to least-squares problems
with uncertainty data derived by E! Ghaoui and Lebret [5], they formulated the stability and
performance of the LMS control algorithm as a semidefinite programming (SDP) problem when
the data matrices are subject to uncertainty. They presented a SDP formulation for the design of

multi-channel LMS algorithms with limited capacity secondary sources, and for the design of
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robust LMS algorithms. Although the results they obtained for the synthesis of robust LMS
controllers were not new, the SDP formulation of the problem allowed them an optimal choice

of the weighting effort control parameter.

In their work, they provide a theoretical method for the design of robust system, however, as
they pointed out in the conclusions of the paper, additional work is required to apply the
mathematical formulation to real applications. In practice, we need to obtain representations of
the uncertainty which provides a proper description of the system in a way that facilities

convenient manipulation.

Some previous work has been done previously in the ISVR [6] to control low frequency
harmonic noise in a rectangular enclosure when the physical plant varied from the nominal
state. In that work these effects were studied in relation with the placement of transducers in the
active noise control system. It is the purpose of this research to extend the previous analysis of
De Fonseca et al. [4] and apply some of his mathematical conclusions. Previous results can be

used as a starting point and compared with the ones obtained using the theoretical formulation.

The rest of the report is structured as follows: Section 2 summarises the relevant theoretical
results for the SDP formulation of the problem which will be used in the real system; Section 3
reviews the experimental set-up used previously to investigate the control of low tonal
frequency noise in an enclosure and the results obtained; Section 4 shows the simulation results
obtained with this particular application and Section 5 expounds a robust least squates solution

for the problem. Finally, some conclusions are discussed in the last section.

2. Mathematical formulation of the problem
2.1 Perturbed transfer plants

We cannot predict exactly what the output of a real physical system will be even if we know the
input, so we are uncertain about the system. Whatever formulation is used to express these

errors is a representation of uncertainty.

Control designs are based on the use of a model, whether from theoretical predictions or
experimental measurements. Since a fixed mode! can not respond to the variations that can
occur in the true plant, we need at least a set of maps that allow for plant dynamics that are not

explicitly represented in the model structure.
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The basic technique is to model the plant as belonging to a set that can be either structured or
unstructured. For example, we can consider our problem assuming that the uncertainty is
generated by an additive noise signal with a bounded norm. Of course, no physical system is
linear with additive noise, but some aspects of the physical behaviour are approximated

satisfactorily using this model.

For each element of the perturbed transfer function matrices a part will be constant and a part

will be unknown, so the measured plant, G can be represented as having a nominal part

G, and an additive uncertainty AG , so that
G=G,+AG (1

In the unstructured perturbation case, we can express the additive perturbation function in terms
of a fixed weighting factor, ©, and a variable matrix A satisfying ||A|| < 1. In this work, the

maximum singular value norm is used for matrix norms, and the Euclidean norm for vectors.

Equation (1) can then be expressed as

G=G,+pA @
4] <1

This inequality describes a disk in the complex plane: at each frequency, the measure plant, G,

ties in the sphere with radius o and centre G. There is a bound on the independent

perturbation block, A, determined by his maximum singular value norm. The parameter p is

the perturbation size. In order to use this uncertainty model it is necessary to characterised a

nominal plant of the system, &, and the weighting parameter p .

2.2 SDP formulation of robust LMS controllers

De Fonseca ¢t al. [4] analyse the robust performance and robust stability problems as convex

semidefinite programming (SDP) problems, formulated as the minimisation of a real linear

objective function of a vector of variables xe®R"™, subject to linear real-valued matrix

inequality (LMI) constraints
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min e’ x M
st.F(x)=0,

where
p (2)
F(x)=F, + ZXJ.F,
i=|

The problem is defined by the vector c¢€®R”™ and the m+l symmetric matrices

F,,....F, € R . The inequality sign in equation (1) means that F(x) is positive semidefinite.

Let’s consider now the formulation of the robust performance of the LMS controller in an active
noise control system as an SDP problem. Assuming that L sensors positions and M secondary
sources have been determined previously, the sound field at the microphones positions can be
written as the contribution due to the primary source plus the contributions due to the secondary

sources

e=d+Gu 3

where e is a Lx1 complex vector of error signals, d is a Lx1 complex vector of error signals
due to the primary sources, G is a LxM complex transfer matrix from the secondary sources to
the error sensors an u is a Mx1 complex vector of secondary source strengths. A suitable cost

function can be defined as the sum of the modules squared error pressures

H G
which can also be written as
o=|a+Gul (5)
The corresponding minimum value of this quadratic cost function is given by [7]
o, =d"[I-G(G"G)"'G"] d ©)

The attenuation value for a fixed configuration used through this report is defined as
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)

which gives a measure of the noise reduction in the microphones positions after the introduction

of the active noise control system.

Considering the in-phase and quadrature components of the complex error, e=e, + je,,

equation (3) can be written in the entirely real form

¢ | _ d, GR -G, ||u,
e_[ei} _I:d1:|+[G1 G, }{u;} (8)

e’e €)

50

Q
I

Assume now that the secondary path transfer function matrix, G, and the primary vector, d,

are subject to perturbations. The perturbed system can be expressed as

[Gd]=[G,d,]+ pA withA=|AGAd] and |A|<1 (10)

El Ghaoui and Lebret [5] have defined the worst-case residual for a fixed control signal vector

as

o(Go.dy. p. 1) = (G, +AG)u+(d, +Ad)| (11
<p

They consider that the control signal is a robust least square solution if it minimises the worst-

case residual o(G,,d,, p, u), as

0 (Gy.dy, p) = min {ggg“ (G, +AG)u+(d, +Ad)| (12)

This solution trades accuracy for robustness at the expense of introducing bias. Using Schur

complements, this problem is converted into an SDP formulation as
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minc
o-7) Gu+d
g [ @91 Guurd]
(Gu+d,) (c-1)
c (13)
A u
P 14(=0
plw 1] 7
At the optimum, the variable 7 takes the following value
2 (14)
T = o [l +1
The solution to this problem is given by
re Vard » (o -7)
~(WI+GIG,)'Gid, if p=p* =50,
u= T (15)

-Gyd, else (1 =0)

The parameter g is the solution of the DSP problem, with respect to the perturbation size of the
particular problem. The formulation of the problem in this way allows an optimal choice, from a
robustness point of view, for this leak parameter, which can also be shown to be the parameter
controlling the effort weighting in a modified cost function [11]. This is the theoretical result

that will be applied to a real case in the next section.

3. Physical application considered

3.1 The experimental set-up

The first step to study the robust performance problem is the determination of an appropriate
data set of the uncertainty that can appear in the physical problem to be considered. The system
under study in this work consisted of a wooden laboratory mock-up of an aircraft interior with
internal dimensions L,=2.1m, L,=6.0m and L,=2.1m. This enclosure was initially constructed to
analyse the main features of the field inside an aircraft. The enclosure characteristics have been

widely described [7] and will no be examined here again.

A multichannel active control system was installed in the enclosure with 32 error signals from

electret microphones and 16 secondary control outputs to 200-mm loudspeakers. The error
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sensors were uniformly distributed in an 8x4 grid inside the enclosure at head height. The
primary acoustic field is a pure tone a 88 Hz, generated by a 300 mm diameter loudspeaker
driven from a oscillator which also provides the reference signal for the control system. The

approximated positions of the transducers in the enclosure are indicated in Figure 1.

The electronic controller implements the Multiple Channel LMS Algorithm. This algorithm
minimises a cost function taking into account the sum of the mean-square signals form the error
sensors and the sum of the mean-square signals fed to the secondary sources. In order to
perform the simulations, it is necessary to use the control system to measure the transfer
functions from each secondary source to each error sensor and to measure the primary field at
the error sensor positions. These data have been used in the simulations performed through this

work.
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Figure 1. Loudspeaker and microphone positions in the laboratory enclosure
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To investigate the robustness of the control system when changes occur in the plant, six
different perturbed plants, corresponding to six different situations that could happen in practice,

were measured in the laboratory enclosure. These matrices were:
: Occupants standing under the error microphones.

: The same that C; but two persons walking along a central corridor

b

: Occupants walking over the whole enclosure

: Occupants walking along a central corridor

.

: Occupants sitting down under the error microphones

Q o a a a @

¢ - The same that C; but two persons walking along a central corridor

In a previous work [6] the research was focused in the selection of the transducer positions that
minimised the average of this set of cost functions to obtain locations whose performance were
robust to operating changing conditions. The same set of data will be used in this work to
represent the models that allow for plant dynamics which are not explicitly represented in the
nominal structure, necessary to apply the theoretical results in a practical situation. It is expected
that the performance objectives would be satisfied for every plant represented by this perturbed

data set.
3.2 Identification of the nominal model

The theoretical framework for the formulation of the robust performance analysis assumes that
the data matrices G, and d, are the nominal values of the model, which are subject to
perturbations bounded in norm by p. Now, if we think of these data as measured data, the
assumption that the measured plants G, correspond to the nominal model may not be judicious,

and it would be necessary to build a nominal representation of the observed set.

A computational algorithm was used to find the size of the perturbation p that minimises the
difference in the norms between the nominal plant and the perturbed ones. To obtain a first
approximation we choose each one of the perturbed plants, G ,, as the nominal plant, G, and

calculate the differences in the norm between all the others, as

HAGJH*“G; -Gl 4,7=12,..,6 (16)
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The results obtained with the six experimental perturbed plant in the laboratory enclosure, using

16 secondary sources and 32 microphones, are summarised in Table 1.

Table 1. Differences in the norm between the perturbed measured transfer functions in a laboratory
enclosure and maximum values obtained for each set

Once all the norms of the differences have been calculated, the first approximation for the value
of p and the corresponding value of G are selected taking into account the maximum

difference encountered so far, that corresponds, as can be seen in Table 1, to the difference in
the norm between the forth and the fifth measured transfer functions. Selecting the medium

point of these two matrices as the nominal matrix, the first iteration values are given by

_Jac |
p(!) - 7 (17)
G,+G
G0(1): 42 :

The next step in the algorithm corresponds to checking if the rest of the perturbed plants are
included in the circle with ratio p,, and centre G . If so, the values for the size of the

perturbation and the nominal function transfer matrix expressed in equation (4) are the exact

solutions of the problem. Again, the differences in the norm are calculated using the nominal

plant G and the six perturbed plants G,. These result and the values for the perturbation
block, A, for the corresponding p,, radius are summarised in the first two columns in Table
2. From the analysis of the values obtained for the perturbed block, A,, using the first

approximation of the nominal plant, G, (y» and the parameter o, , it can be seen that there are

matrices just outside this circle, as these values are not bounded by unity norm. To include all

the perturbed plants inside, it is necessary to select a new approximation to £ as the maximum
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value for all the AG, encountered. This value has been outlined in the last row, and has been

chosen as the second iteration for the radius of the circle. The new perturbed block values

obtained with p,,, are shown in the third column in Table 2.

Table 2. Differences in the norm between the perturbed measured transfer functions and the nominal

plant G and the values obtained for the perturbed biock for different selections of p

o’

In this way, we have established one upper and lower limit for the optimal value of the

perturbation size as

Py, =0.0930 < p< p,) =0.0953 (18

The following steps in the algorithm to find the optimum perturbation size are:
1. Choose a poinf situated between the perturbed plants as the nominal plant, G, (for

example the average), calculate the difference in the norms between the nominal plant and

the perturbed plants and select the largest one.
2. Move the nominal plant G, towards the furthest perturbed matrix, G ;.. , calculating the

difference in the norms for each iteration, until you find another point at the same distance
(in the maximum singular value norm sense) from the nominal plant.

3. Check if there are still more point situated at the same distance from the nominal plant G, .
If so, we have found the exact solution, because the optimal circle has to pass al least
though three points. If not, find again the next largest distance from G, . The point situated

at the same distance from these three selected perturbed matrices gives the optimal solution
to the problem.
The final solution provided by the algorithm for the differences in the norm, and the perturbed

blocks for the six measured transfer functions are summarised in Table 3. The perturbation size

is determined as being o =0.0941.

10
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Table 3. Differences in the norm between the perturbed measured transfer functions and the nominal
plant in a laboratory enclosure, and the values obtained for the perturbed block for ihe final values
provided by the algorithm

Using this algorithm, the size of the additive uncertainty, @, has been calculated as a function
of the number of secondary sources used in the control system. The particular configurations
used for the simulation results have been selected by the simulated annealing method [8] in a
previous work [6] as those that provide the greatest attenuation for the average combination of

the six perturbed transfer functions. The results obtained are shown in Figure 2.

0.1 T T ; : T ; T

.03 .

0.08+ /”/ -
0o7f Ve 1

005t - §
nost / -

0.04 b P i

2 4 6 8 10 12 14 16
Mumber of lcudspeakers used

0.03
0

Figure 2. Size of the perturbation uncertainiy as a function of the number of secondary sources used in
the experimental enclosure

As it can be expected, the size of the perturbation uncertainty increases as the number of

secondary sources included in the active noise control system in the enclosure growths. It
should be noted that the norm of G also increases as the number of loudspeakers gets larger,

and so the normalised perturbation remains about the same. Once we have obtained the nominal

plant and the perturbation size for the best combinations of secondary sources in the

11
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experimental set-up, we can analyse the robust performance for the active control system. These

results are presented in the following sections.

4. Simulation results
4.1 Estimation of the optimum leak parameter through the resolution of

the SDP problem

The resolution of the SDP problem formulated in Section 2.2 can be carried out in an efficient
way using the developed interior point methods [9]. In the simulations presented in this work,
the software package SDPT3 has been used. This software is an implementation of infeasible
path-following algorithms and homogeneous and self-dual methods for solving standard
semidefinite programs (SDP) developed by Toh et al. [9]. The implementation exploits the
block-diagonal structure of the given data, and offers four types of search direction, which is
best suited the particular application considered. The algorithm is very efficient and robust, but
its performance is quite sensitive to the choice of the initial iterate, and it is desirable to choose

an initial iterate that has at least the same order of magnitude as an optimal solution of the SDP.

To select the optimal values for the effort control coefficient, in equation (12), we need to

express the problem in the form of equations (1) and (2). The vector of unknowns x, will
contains &, 7, and the components of u . The vector ¢ only contains one 1 to select o from the

vector of unknowns x, so that
T
X = (0,7,0,Uy,... lg)
c=(1,0,...,0)
Combining the constraint matrices in blocks into the F, matrices, the problem can be expressed

as

minc’x

st. By +oF, +7F, +u F, +u, F,_+..+u,F, =0, (19)

Solving now the SDP problem for a range of values of p, we can obtain the optimum leak

parameter £, from a robustness point of view, as a function of the perturbation size. The results

for the enclosure in Figure 1, with 16 secondary loudspeakers and 32 error microphones, are

shown in Figure 3. For the measured perturbation size of 0.094 this graph predicts that a leak

parameter of about 10 must be used to ensure that the adaptive algorithm is robustly stable,

12
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10 A ' ) el P oL 1 ' PRI
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Figure 3. Optimal effort coefficient u vs. perturbation size p

As it could be expected, the optimal leak parameter, 17, increases as the size of the perturbation
is higher. To validate the results obtained in terms of performance, it would be necessary to
calculate the optimum effort coefficient for different numbers of loudspeakers selected by
means of the simulated annealing algorithm. Using the values of the perturbation size
represented in Figure 2, the SDP algorithm has been used again to find the optimal values of .
The results are presented in Figure 4, for the different numbers of secondary sources used in the

control system.

n.sr

1 1 L

Z2 4 & 8 10 12 14 16
MNumber of Ioudspeakers used

04
a

Figure 4. Optimal values of the effort weighting coefficient u vs. number of secondary sources
used

13



Robust Performance Analysis on Active Noise Control Systems

As it can be seen, the values of the optimal effort weighting coefficient are much higher when a
small number of loudspeakers is used in the control system, and remain almost constant from 10
loudspeakers to the total number. This variation shows the opposite trend to the attenuation
values obtained in the previous work [6], that increase with a high rate at the beginning, until for
about 10 loudspeakers they provide an attenuation which is almost as good as the value obtained

with the 16 loudspeakers.

4.2 Estimation of the optimum leak parameter using the measured

perturbed plants

In order to be confident in the results obtained with the software package, and especially, in the
tuning of the characteristic parameters and the selection of the different direction methods
provided, an estimation of the optimal value of the leak coefficient was carried out directly with

the six measured transfer plants in the enclosure.

For each of the measured perturbed plants we can express the vector of error signals as
e,=d, +G,u (20)

From the mathematical solution of the SDP problem, equation (12), we have found that the
optimum control input vector signal that minimises the squared error signal in the face of

uncertainty in the system is given by

-1
u=-{u1+6!6,)' !4, ey
Substituting this expression into the signal error vector, we have

e,=d, -G,(uT1+GIG,)'G/d, (22)

I

6
Defining now a cost function as the sum of the square error vector signals, Z e’e ; » We can

i
i=1
then make an estimation of the optimum leak parameter, £, considering the six measured

perturbed plants. The variation of this cost function as a function of the leak parameter is

14
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represented in Figure 5, when 16 secondary sources and 32 error sensors are used in the control

system.

Cost function
[} ] ()]
=) s} o

h
B

5.6
0

B

x10°®

Figure 5. The sum of the square error signals for the six perturbed plants in the enclosure as a function of

the leak parameter, u

From this figure we can select the value of g that provides the minimum residual error signal.

If we repeat the same procedure for the best combinations selected by the simulated annealing

algorithm, for the different number of secondary sources that can be used in the experimental

enclosure, we can obtain a representation of the optimum effort control coefficient as a function

of the loudspeakers in the control system. This is represented in Figure 6.

] !

~J

H

4

& g 10
Mumber of loudspeakers used

12

14
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Figure 6. Optimal estimated values of the effort coefficient  vs. number of secondary sources used in

the active control system
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Before making a comparison between Figure 4, when the values of 4 are calculated solving the
SDP problem, and Figure 6, when the values of the leak parameter are estimated from the six
perturbed transfer plants, it is necessary to point out that a semilogarithm representation has
been used for z in this case. The shape of the figures is very similar, both of them show the
same trend, but the difference between them are much more dramatic in the second case, and the
values of the leak parameter are smaller when estimated from the six perturbed plant, than from
the solution of the SDP problem. This is expected because the first case only used the nominal
plant and the size of the perturbation for the solution of the problem which is assumed to be
completely unstructured, and the optimal effort coefficient obtained is absolutely general,
whereas in the second case we are estimating a value of 4 using a reduced set composed of six

measurements, whose variation will have the same structure.

4.3 Performance results

To validate the results obtained with the SDP formulation in terms of robustness for the
problem, numerical simulations have been performed to calculate the attenuation values
provided in different situations. In all the simulations, the optimum control input vector signal
that minimises the squared error signal is the one expressed in equation (18), from the
theoretical solution of the robustness problem. Several definitions of residual error signals have
been used in this study. Using first the nominal plant, obtained using the computational

algorithm described in Section 3.2, the vector of error signals is equal to
e, =d,+Gu (23)

and substituting equation (18) into equation (20), we obtain the residual vector of error signal

e =d, G, (uI+GIG, ) G4, 24)
The fitness function used as a measure of the performance, is defined as in equation (6)
d’d
Attenuation =1010 el
gw[eé;ee ] (25)

16
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The values obtained using the nominal primary field and the nominal error signal arc

represented in Figure 7 for two different situations. The results obtained for the “nominal”
situation, when the leak parameter, 4, is set to zero are shown in the circle-dot line, while those
obtained when the effort weighting coefficient u takes the optimum values obtained

mathematically, as shown in Figure 4, are represented by the point-dashed line.
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Figure 7. Attenuation values obtained as a function of the number of loudspeakers used in the active
control system for the nominal plant. Effort parameter value g equal to zero: circle-dot line; optimal

values of # in terms of performance: point-dashed line

As it could be predicted, the attenuation values obtained for the “nominal™ plant, when the leak
parameter has not been included, provide slightly better results that those when the effort
coefficient differs from zero, but with at lest eight loudspeakers the reduction in performance is
less than about 1 dB when the leak is included. It is necessary to check now what happen when
perturbation is introduced in the system. The equations corresponding to the measured perturbed
plants have been already deduced in Section 4.2. Using again the same value of the optimum

complex vector of secondary source strengths, equation (21}, the residual signal of error sensor

are given by equation (22)

e,=d, -G,(u1+G!G,)'G d, (22)

17
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where each d,and G, are taken from the set listed in Section 3.1. The attenuation values in

this case are defined to be

2

Attenuation =10log,, e

§
H
= dd (26)
6
Zef"ei
i=1

The results obtained using the perturbed plants are represented in Figure § in analogous manner

to Figure 7, so the comparison can be easily made.
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Figure 8. Attenuation values obtained as a function of the number of loudspeakers used in the active
control system using the perturbed plants. Effort parameter value x equal to zero: circle-dot line; optimal

values of 4 in terms of performance: point-dashed line

As it can be seen, in general the resulis are now better using the “robust” solution, when the leak
parameter has been obtained with the SDP formuiation of the problem, than those achieved with
the “nominal” solution, when 4 is set to zero. It is interesting to note the important difference
between the attenuation values in Figures 7 and 8. When uncertainty appears in the system, the
attenuation decreases so that it is less than half of the value obtained using the nominal plant. In
the previous work [6], when only the perturbed plants were considered in the average cost
function, it was found that the results were only very slightly smaller than when using the
nominal plant. In this case, it is supposed that all the perturbed plants represented by the
nominal plant and the perturbation size are included in the robustness problem, and the

cancellation values are much smaller.
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4.4 Another methodology for the solution of the problem

The criterion used in the previous sections to determine the loudspeaker positions is based on
using an average of the perturbed plants as a cost function in the simulated annealing algorithm
[9]. For each one of these combinations with different number of secondary sources, the
computational algorithm in Section 3.2 has been used to obtain the corresponding nominal plant

and perturbation size for these particular configurations.

In this section, the starting point is again the measured perturbed plants, but these are used to
determine the nominal plant only for the total number of loudspeakers that can be used in the
control system. Once the nominal data has been obtained, the simulated annealing is applied to
select the best positions when the number of secondary sources varies from one to the total
number. The cost function used by the simulated annealing algorithm in this case is the
attenuation obtained by the control system, taking into account the nominal plant, as defined in
¢quation (6). The maximum attenuation values achieved, the control effort and the selected
combination for each set of loudspeakers, from 1 to 16 are shown in Table 1. The attenuation
values are represented in Figure 9 in point-dashed line. For comparison, in the same figure are
also represented the values obtained previously for the nominal plant, but for the positions

optimise for the perturbed plants, in circle-dotted line.

Table 1. Best attenuation values for the problem of finding M loudspeakers positions, where M varies
Jrom 1 to 16, with the corresponding control effort values and the selected configurations, for the nominal

plant

Total No. of Attenuation Total control Loudspeaker

loudspeakers (dB) effort positions
1 3.5799 0.9575 0000000000000010
2 8.8310 0.8986 0016000000000010
3 12,5693 3.8888 0110000G000600001
4 16.0161 39452 1010100600000001
3 19.0668 2.0668 0101100000010100
6 21.8828 2.0331 0101101000010106
7 25.3757 1.9297 0101101010010100
8 27.0299 1.8728 0101111010010100
g 28.2303 1.7266 0101111010010101
10 28.7913 2.9830 1001111010011101
11 29,8351 2.6887 1001111010081111
12 30.1643 2.5688 1001111100181111
13 30.608%9 2.7608 [O11111110011111
14 30.6473 2.1953 1111111110011111
15 30.7050 2.26%96 IERRERRANINERAN!
16 30,7158 2.3881 I111i1nninnm
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Figure 9. Attenuation values obtained as a function of the number of loudspeakers used in the active
control system for the nominal plant. Optimal positions based on the perturbed plants: circle-dot line;
optimal positions based on the nominal plant: point-dashed line

This figure is a confirmation that the attenuation values for the nominal plant are better when
the same plant is used by the optimisation algorithm, than when the set of perturbed plant has
been used for the selection of the best transducer positions. Once the algorithm has selected the
best combinations, the same set of loudspeakers is selected for the perturbed plants, and the
perturbation size is calculated as the largest difference in norm between the nominal and the
corresponding perturbed plants. The values obtained are represented in Figure 10, as well as the

previous values obtained in Figure 2.
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Figure 10. Size of the perturbation uncertainty as a function of the number of secondary sources used in
the experimental enclosure. Optimal positions based on the perturbed plants: circle-dot line; optimal
positions based on the nominal plant: point-dashed line
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Comparing these values with those obtained in Figure 2, it is clear that both of them show the
same trend, the perturbation size p, increases with the number of loudspeakers used in the

system, but in this last case, these values are about half of the values obtained previously.
Following the same procedure, once we have determine the nominal values and the perturbation
size, the SDP software can be used to get the optimum robust effort control coefficient. This
values, and the previous ones represented in Figure 3 are shown together in Figure 11.
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Figure 11. Optimal values of the effort coefficient, 1, vs. the number of secondary sources used. Optimal

positions based on the perturbed plants: circle-dot line; optimal positions based on the nominal plant:
point-dashed line

In an analogous manner to the previous section, the attenuation values obtained with the active
control system are represented with and without including the leak parameter, first for the

nominal plant, Figure 12, and then for the average perturbed plants, Figure 13.

From the comparison of these figures with Figures 7 and 8, respectively, it can be seen that the
attenuation values obtained are very similar. The “nominal” values obtained in Figure 12, for
the nominal plant, are clearly superior over the “robust” values, as in Figure 7. On the other
hand, the trend observed in Figure 8 for the perturbed plants, it is not so clear in Figure 13. In
this last case, although there are a few values that show better performance for the “robust”
solution, in general, the “nominal” solution provides slightly higher levels of attenuation. So,
the general conclusion of this section is that it looks more advantageous, from the robustness
point of view, to use the measured plants in the physical system as much as possible for the

determination of the nominal models.
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Figure 12. Attenuation values obtained as a function of the number of loudspeakers used in the active
control system for the nominal plant. Effort parameter value u equal to zero: circle-dot line; optimal

values of u in terms of performance: point-dashed line
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Figure 13. Attenuation values obtained as a function of the number of loudspeakers used in the active
control system for the average perturbed plants. Effort parameter value u equal to zero: circle-dot line;

optimal values of g in terms of performance: point-dashed line

5. Robust least squared solution of the problem

5.1 Theoretical formulation

As indicated in Section 3.2, in the mathematical formulation of the SDP problem it is assumed

that the data G, and dare given, and the optimum solution for the leak parameter, &, is
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obtained as a function of the perturbation size, o . Normally, in a real application we have a
representation of the physical system that consists of a set of measured plants. In this case, the
determination of the “nominal data” is not a straightforward process, and a lot of different
criteria can be taken into account. Also, in some problems the norm bound o on the
perturbation may be difficult to estimate. It would be very convenient to derive an alternative
formulation to avoid the determination of all these parameters and to solve the problem just

using the set of measured data obtained from the real system.

Another approach to the problem can be obtained trying to express the problem as the
minimisation of a least-squares cost function. This is a very common and useful criterion that
has been used, for example, in Section 2.2, to adjust the vector of secondary source strengths to
minimise the sum of the error signal modules squared pressures. Following the formulation in
this section, for each of the perturbed plants the complex vector of error signals is expressed as

due to the primary source plus the contributions of the secondary sources as
¢.=d, +Gu, i=1..6 @7
A general formulation of the exact least-squares solution allows the complex vector of

secondary source strengths to be expressed [10] as a matrix of the plant response multiplied by

the primary field complex vector, as
u, =-Gld, (28)

where GE is the pseudo-inverse of the matrix G, that depends on the particular problem

considered. Substituting into equation (24), we obtain
ei:(I_GiGg)df (29)
If the cost function is defined as the sum of the complex vector of error signal, we have

(30)

1

6 6
J:Zef{e, =Zda(l —GEHGfH)(I_GiG;)d:‘

Using the properties of the trace of an outer product, this cost function can also be written
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J =trace(J) G

Expressing the equation in this way, we can try to use the results obtained for the differentiation
of the trace of a matrix function with respect to the elements of one of the matrices in this

function

6 [} 6
J=Yd"d, ~traced d GG/ d, —rracey dG,Gld, +
pan

i=l i=1

(32)

6
tracede’GEHGf]Giszi

i=1

Unfortunately, using the properties of the trace of a matrix we are not able to simplify the last
term of equation (27) so that it becomes easily differentiable. But it is still possible to obtain an

analytical solution to the problem if, instead of minimise the sum of the complex vector of error

5
signals, Zefe , » we minimise the sum of the complex vector of error signals, normalised by

i=]

6
the primary field, Z(ef./d,.)H (e;./d;), where the symbol “/ * denotes an element by

i=]

element division. Equation (27) and {29), then, are transformed, respectively

¢ ; . (33)
J=2 (. /d)"(e;./d)=> I-GI"G)I-G,G))

i=l i=i

6 6 6
J=>1 —rmcezl(;g”cff —zmce;(;,.(;g +

=1

(34

6
rraceZGEHG,.HG,.GE

i=]

Introducing this modification, and using the properties of the trace of a matrix, the derivative of

the cost function J with respect to the real and imaginary parts of G ; can be expressed as

(35)

aJ . [ 6
+J 6": =2G{"Y GG, -2) G,
aGgR aG(T)I i=1 i=1
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Once we have expressed the error criteria as a quadratic function of the variable of interest and
we have differentiated with respect to that variable, it is necessary to set the gradient of the

derivative to zero to find the optimum value of the variable, which results

& & ol (36)
G :(ZGJ(ZG?G,-]
f=1

i=l

Once we have obtained the solution for the pseudo-inverse matrix, we can go back to the
original equation (24), for the complex vector of error signals, and calculate the attenuation
values provided by the particular configurations. When the number of measured perturbed
transfer function is only one, the optimal robust pseudo-inverse matrix is the same as the

solution obtained in Section 2.2, as it would be expected.

5.2 Numerical simulations

A set of simulations has been carried out to validate and check the accuracy of the robust least
squares solution. In order to compare the attenuation results provided by the solution of the SDP
problem, when the leak parameter is adjusted to optimise the robust performance, and the
solution provided in the previous section, the aftenuation results have been plotted against the
number of loudspeakers used in the control systems, together with the results obtained

previously.

The comparison has been made with the results obtained in Section 4.3, when the average
perturbed plants were used by the simulated annealing algorithm to optimise the positions of the
transducer in the control system, because they provide slightly better results in terms of
robustness performance, Using equation (23), the attenuation values for the average perturbed
plants obtained with the robust least squares solution and the SDP solution have been

represented in Figure 14.
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Figure 14. Attenuation values obtained as a function of the number of loudspeakers used in the active
control system {rom the average of the perturbed plants. Robust least-squares solution: circle-dot line;
SDP solution: point-dashed line

Both representations are similar and show the same trends, but the attenuation values provided
by the robust least squares solution are higher than those provide by the solution of the SDP
algorithms, as this last results is more general, and is not specific to any type of perturbed
plants. On the other hand, when the robust least squares solution is used with the nominal plant,

the situation is reversed, as shown in Figure 15.
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Figure 15. Attenuation values obtained as a function of the number of loudspeakers used in the active
confrol system for the nominal plant. Robust least-squares solution: circle-dot line; SDP solution: point-
dashed line
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From these two figures, it seems that the robust least squares solution is able to provide good
results only when used in the set of perturbed plants used to derive the robust pseudo-inverse
matrix, whereas it does not work so well when with other plants not include in the solution. The
mathematical solution obtained with the SDP problem seems to perform well in all type of
situations, although the determination of the nominal values could be a difficult and time-

consuming process.

6. Summary and conclusions

The main concern of this work has been to study the effects of the presence of uncertainty and
the performance of an active noise control system, and to find methods to alleviate this problem
through the formulation of robust performance controllers. Some work has been carried out
previously to study the optimal transducer positions in a rectangular enclosure using the
simulated annealing algorithm. In this occasion, the attention was focussed in the selection of
the positions that were more resistant to plant variations, caused, for example, by the presence
or absence of objects inside the enclosure. Some modifications were included in cost function
used by the algorithm to select the configurations that provided good attenuation levels with low
control effort values. The weighting factor used was chosen as a trade-off between these two
factors, for the particular configurations selected. The results obtained were only slightly

smaller than in the case of using the nominal plant.

The purpose of this work is to continue in this subject of research, using now a mathematical
formulation for robust solutions to least-squares problems with uncertainty data. Following the
approach of Fonseca et al. [4] for the formulation of the stability and performance of the LMS
algorithm, it is possible to select the optimal choice of the weighting effort control parameter in

terms of robustness.

Using a set of measured perturbed plants in a laboratory enclosure, a computational algorithm
has been presented to select the nominal plant and the size of the perturbation in the control
system. The optimal leak parameter as a function of the number of loudspeakers used has been
calculated using a software package for solving standard SDP problems, and performance
results have been obtained for the nominal plant and for the average perturbed plants. In the first
case, the nominal solution (leak parameter & equal to zero) provides better attenuation than
when effort control is introduced in the system, and the situation is reversed for the average
perturbed plants. It is important to note that in this case, the values of the attenuation obtained

when the average perturbed plants are used are less than half the values obtained with the
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nominal plant. It has been also shown that, from the robustness point of view, it is more

convenient to work as much as possible with the perturbed plant for the determination of the

nominal data.

Finally, a robust least square solution for the problem is presented, and an analytical solution is
deduced when the sum of the complex vector of error signals normalised by the primary field is
minimise. The performance results obtained in this case show good agreement for the average

perturbed plants, but not with the nominal plant.

The control signals are assumed to be calculated off-line in this report, but in practice would be
adapted using an on-line iterative algorithm. An additional constraint, not considered here,

would be the need for stability in this atgorithm
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