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Notation

c Viscous damping constant
Ce Critical damping
J J-1
k Elastic stiffness
k* Compiex stiffness
m Mass
t Time
u(t) Base displacement
Mass displacement
F Force
Impulse
T Natural period
U Potential energy
o Stiffness ratio in the Zener model
o Dirac delta function
¢ Phase angle
Loss factor
v Arbitrary transient response
T Rise time/pulse period
w Circular frequency
£ Arbitrary transient excitation
& Viscous damping ratio
& Relative displacement
Vin Maximax response
v Residual response
@n Natural frequency
@ Transition frequency
& Maximum step/pulse amplitude
Qn Frequency ratio ./o/w,
Q Frequency ratio /o, /o,
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1. -INTRODUCTION.

Transient vibration is defined as a temporarily sustained vibration of a
mechanical system. It may consist of forced or free vibrations, or both [1].
Transient loading, also known as impact, or mechanical shock, is a
nonperiodic excitation, which is often characterized by a sudden and severe
application. In real life, mechanical shock is very common. Examples of shock
could be a forging hammer, an automobile passing across a road bump, the
free drop of an item from a height, etc.

For most of the cases, to analyse systems involving mechanical shock it is
necessary to idealize the forcing function (displacement, velocity, acceleration
or force) as a step or pulse excitation. This impulsive forcing function can be
approximated to a certain shape depending on the situation and the structural
characteristics of the system (natural frequency and damping ratio).

When modelling mechanical systems it is quite common to build a
mathematical model of one degree of freedom representing the physical
properties of the system. Normally the stiffness is represented by a linear
elastic element, and damping is considered viscous, being represented by a
dashpot. These elements are arranged in parallel. This approach (mass spring
damper system - MKC) is relatively simple and gives very reasonable results.
However, many materials have viscoelastic behaviour. A viscoelastic material
is characterized by possessing both viscous and elastic behaviour. Damping is
no longer due to dashpots, but it is generated by internal friction (hysteresis).
Many polymeric materials such as rubber behave in this manner.

The aim of this report is to give an insight into the behaviour of the linear
single degree of freedom system under shock excitation and obtaining the
time and frequency response functions resulting for different impulsive
forcing inputs. The effect of different pulse shapes and their duration on the
response of the system is investigated. In first instance, the single mass spring
system is considered, then, the effect of viscous damping will be introduced
for the complete analysis of the MKC system. Then, a further analysis is
performed using a more complex form of the classical system which
represents the basic form of a viscoelastic material and it comprises a spring
and damper in series connected in parallel to another elastic spring and is
called the Zener model [5]. This model gives a good insight into the behaviour
of viscoelastic materials. The analysis of this model is not only restrained to
transient behaviour, since there is little published information about this
system. As a resulf, it is interesting to look briefly at the free response of this
system as well as the harmonically excited vibration. A similar analysis as that
done in the MKC system is considered for pulse excitation. A comparison
between the classical MKC model and the Zener model is made describing
the advantages and disadvantages of each one.



2. - DEFINITIONS

To avoid confusion, it is necessary to introduce and define some useful
terminology which will be used through this report.

A spectrum is a plot of the response, chosen to represent one aspect of the
effect of the forcing function on the system, against the ratio of the
characteristic period or frequency of the forcing function to the natural period
or frequency of the system [2]. Regarding shock phenomena, it is more
convenient to use the period (duration) of the impulse, and the natural period
of the system involved, rather than frequencies. This approach is convenient
because for transient loading the excitation is relatively short in duration, or
has the nature of a single pulse. This leads to the use of a period spectrum [2].

The maximum absolute displacement, velocity, or acceleration of the system
occurring at any time as a result of the forcing function, is called the maximax
response , denoted by v [2].

The maximum displacement of the system during the residual vibration
phase after the loading has been removed is called the residual amplitude,
and measured with respect to the final position of equilibrium, denoted by
[2]. In some cases, vy=wx, but this is not the general case which is v <,



3. - SINGLE DEGREE OF FREEDOM, UNDAMPED SYSTEMS

3.1. - Equation of motion.

Consider a linear single degree of freedom system, with no damping as
shown in figure 3.1. It comprises a mass supported on an elastic stiffness, the
latter representing an undamped isolator. The input is a function of time, and
may be a force acting on the mass, or a displacement of the base or
foundation. Sometimes it is more convenient to express it as ground
acceleration. (Fig. 3.1.c)

Fy

X x x

) A A

u(t) kK

@) () (©
Figure. 3.1. - Single spring-mass system, subjected to impulsive excitations. (a) Force F(#), (b)
Ground displacement u(r) , (c) Ground acceleration (7).

The differential equations governing the motion of the systems shown in
figure 3.1 are:

Figure 1(a) i
mi=desF(r)  or  mr. _Fl) 31
k k
Figure 1(b) )
mi:z—k[x—u(t):l or %-{»x:u(r) (3.2)
Figure 1(c)
m|:(§x+.;c(t)}=—k5x or ms, 15 = —mz}(t) (3.3)
k ¥ k

Where x is the absolute displacement of the mass relative to a fixed reference,
and & is the displacement relative to a moving ground. The relationship
between these displacements and the ground displacementis x=u + &.

In this report, the motion of a system is described using a more general form
of the equations (3.1 - 3.3). The equation is:

T tv=£(1) (3.4)



Where @» is the natural frequency of the system and it is equal to \k/m , vis

the response of the system, and ¢ the excitation, both functions of time.
However, sometimes it is necessary to express the excitation and response
using a more specific notation. Alternative forms of excitation and response
are given in table 11].

Excitation &(f) Response v(t)
Force Ft) Absolute displacement X
Ground displacement uft) Absolute displacement x
Ground acceleration ii(t) Relative displacement Ox
Ground acceleration u(t) | Absolute acceleration x
Ground velocity y 0) Absolute velocity x
nth derivative of the d"u (¢) | nth derivative of d"x
ground displacement ' absolute displacement dt’

Table 3.1. - Alternative forms of the excitation and response of equation (3.4).
3.2, - Step-like and pulse-like excitation.

Impulsive excitation produces vibrational responses in elastic systems, and
the maximum values of these responses may be less than, equal to, or greater
than the corresponding static response [3]. In general, the response depends
upon the system properties and the nature of the load. For single degree of
freedom systems a characteristic that determines the response is the natural
period (or natural frequency). In addition, the shape and duration of the
impulse plays an important role in the response. Shock phenomena can be
modelled using ideal step and pulse functions, which represent very well the
features of real transient inputs and which also produce similar system
behaviour. However, when the duration of the shock is very short in
comparison with the natural period, it can be simply represented by a scaled
version of the unit impulse. The following analysis is based on the
assumption that the system is initially at rest.

3.2.1. - The unit impulse.
Many situations involving shock excitation can be considered as the result of

applying a unitary impulse to the system, as long as the period of the shock
tends to zero (a sharp pulse). This sort of transient excitation can be treated
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mathematically using the Dirac delta function &(1). The Dirac delta function
can be defined as:

5(t)=0 1#0 (3.5)

and

?5(t)dt =] (3.6)

Figure 3.2 shows the graphical representation of the Dirac delta function. Its
representation is a single impulse of area equal to unity at r=a.

When a sudden impulse [ is applied to an undamped single degree of
freedom system at rest, it can be shown that the subsequent response is given

by [6]:

I
mao,

x(1})= sin{w,f) (3.7)

Where x(0)=0 and %(0)=I/m.

This is represented graphically in figure 3.3. It is noticeable that the maximax
response occurs after the impulse has been applied. If I is of unit magnitude
then the response is the impulse response function given by eq. 3.7.

Fit ort-a)

a t
Figure 3.2, - Representation of the Dirac delta funchon

Resporae

Tare

Figure 3.3. - Response of an undamped single degree of freedom system to a unit impulse
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3.2.2. - Step type excitation functions.

The most fundamental transient excitation is the form of the step function. To
be fully realistic these functions must describe the translation of the system
through a finite distance, in a finite time, with finite acceleration and
deceleration [4]. Many functions rise to their maximum constant value & in a
finite time 7, called the rise time. Consider the following base excitation
functions and the expressions for the maximax response given in [1]:

a) Constant slope front.

£(1)= gi; [0<t<7] 69
g, [T < t]
‘;—m —1+ %sin(f;]. (3.9)
b) Versed sine front.
i[l-cos(ﬁ—tD [o<t<r]
E{r)=4 2 T (3.10)
£, [r=</]
v, 1 T
g (4:2/1"2)—1‘:05( T )‘ A
¢) Cycloidal front.
&)= %(% *Sin(%ﬁ [o=t<7] (3.12)
. ['r = t]
v, (7T
E_H n’r(l Tz/TZ)Sm( Tj (3.13)

Where T is the natural period of the single degree of freedom system
involved. The plots for the excitation function and the time response curves
are superimposed in fig. 3.4. They were calculated using Laplace
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transformations of equation 3.4 for the different inputs and algebraic
manipulation using MAPLE to obtain the symbolic expressions for the time
response. The process of obtaining the 1esponse wusing Laplace
transformations is given in appendix 1 for several of the cases considered

here.
Constant slope

¥ r T v

(a}
Vi &

LE-1 ’ J
osl ]
04l . ]

0.2r. i

a 1 : I 1

5Te 7 68 9 1w
vt

Versed sine

c ': i 1 L L 1
1] 1 2 3 4 5
s

Cycloidal step

6 7 & 9 10

e p — A ] (©
c.8; i

C.6¢ E

G.2r i

t'r

Figure 3.4 .- Displacement response curves and excitation functions for (a) constant slope step, (b)
versed sine step, (c) cycloidal step. f———— System response] [~ ——- Excitation]
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3.2.3 Symmetrical pulses.

A pulse-like excitation is a more complex function. It can be considered as
being equivalent to the superposition of two or more successive input
functions. For example, a half sine pulse can be obtained by the addition of
two sine inputs with one delayed by half the sinusoid period. Consider three
single symmetrical pulses: rectangular, half sine and versed sine. The
excitation functions &(t) and time response v equations are given by the
following equations [1]. Residual response factors are also given and
correspond to the solutions for [z <t].

a) Rectangular

{n)=¢.
{ =¢, (l_ms(wﬂ,))} [0<ts< f] (3.14)

é:(t)zo' 7 ) |si ’ [r<t] (3.15)
s [on( ()

b) Half cycle sine

(t) fsm( T’J e o
5 T1- T2/4r ( - *---sma;;J

[£(1)=0
ﬁkv =& {(T(/;Z;:i&)’fi/li")]sin o, [: "%) [z <] (5.17)

¢) Versed sine

'f(t) s (1 cos(zmﬁ
Lv = 1_%{?# (1_;_22"';_2: OS(%}—cos(cgnt)J
(£(r)=0
J y=£ [sm(ﬂ)} sinw, (t_gj [r < t] (3.19)

1-7%/T?

[ost<z]  (3.18)
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The response curves and excitation as functions of time are shown in fig. 3.5,
for different values of the ratio 7/T which is the duration of the input
compared to the period of the SDOF system. The solutions of the equations of
motion were obtained using Laplace transformations for the various cases.
When the impulse is very short (7/T < 0.25) the pulse tends to approach the
Dirac delta function, and the response can be approximated using the simple
unit impulse theory. As a result, the shape of the pulse is of negligible
importance. On the other hand, when the period of the impulse is very long
compared to the natural period (7/T > 2), the response follows the shape of
the impulse closely during the time when the input is applied. In all of the
input types considered here, for certain values of 7/T there is no residual
response. This fact can be proved considering that the total work done by the
excitation force is equal to zero. For a complete proof see appendix 2.

3.3. - Shock ‘spectrum.

Any general mechanical system is capable of transient vibrations, and also
there is the potential for resonances at a number of frequencies [5]. The
primary effect of shock is to excite mounted mechanical or electrical
equipment and to cause it to respond in its modes of vibration. As a result,
damage or malfunction may take place. Typically, the subsequent vibration
decays depending on the amount of damping present in the system. The peak
acceleration and peak relative displacement of the system are particularly
important as these often indicate whether damage or failure may occur.

A spectrum is defined as a plot of a response quantity (displacement, velocity
or acceleration), against the ratio of the period or frequency of the forcing
function, to the natural period or frequency of the system. In this report the
term shock response spectra is used, but it can also be regarded simply as
response spectra. A shock spectrum is simply the peak acceleration or
displacement produced by the shock on the isolated mass as a function of the
natural frequency of the mass on its elastic support [4]. Shock spectra can be
measured experimentally, computed from waveforms, or determined
theoretically. Such diagrams are of interest in design, because they provide
the possibility of predicting the maximum dynamic stress [3] and potential
damage in the system.

In fact, the shock spectrum gives a full and realistic measure of the damaging
potential of a shock disturbance. To select a damage criterion (acceleration or
displacement), the duration of the pulse and the natural period of the system
are of great importance (considering a SDOF undamped system). i, T <<t
the motion of the mass closely follows the motion of the support during the
shock input (see figure 3.5 for values of /7T greater than 2). The acceleration
then becomes the primary quantity of concern. Otherwise, whenT >> 7, the
mass remains substantially at rest until motion of the support has ceased (as

15



shown in figure 3.5 for values of 7/T less than 0.5), and it is the value of the
maximum displacement that determines potential damage. Moreover, if the
transient disturbance is neither short nor long duration to fit into one of the
previous cases, no simple damage criterion can be found [4]. As a result both
acceleration and displacement must be considered.

Ratio . .
/T Rectangular Half sine Versed sine
s 2 : )
zt L) rt
1/4 7 0s 44 ve 88 3 17 1¢ 03 b4 B8 0E 1 97 A4 T8 66 0k 48 1 17 w4
] 1 i 1
- 1 ' 1
> » z
] 4 )
Y vt Tt
1/2 ETEY R e e 17 14 TR G 1 12 1 LI .“ T 47 ¢
i . [
1 1 ]
» 2 *
» /\ » *
¥ 71 ER
1 *7TE R W W 12 14 eI a4 W |" LYY e dd e e
] ' 1
> Eo r
LA ' '
) \//\ ) )
3/2 ©TRF ¢4 96 4 7 1% 83 40 ik @ TR 07 84 8k 3
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Figure 3.5.- Displacement response curves for several symmetrical pulses; rectangular, half
sine, and versed sine, for different values of -7
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3.3.1 - Shock spectra for particular pulse and step shapes.

Further insight into the significance of shock spectra can be obtained by
studying the spectra corresponding to a number of simple shapes [5]. Fig. 3.6
shows the spectra for the maximax response resulting from the step functions
discussed in section 3.1.2, plotted as a function of the ratio between the rise
time and natural period of the system. The maximax response for the step
functions (equations 3.9, 3.11 and 3.13) occurs after the excitation has reached
its constant maximum, and is related to the residual amplitude by [1]:

v, =V, +¢&, (3.20)

- Where £ is the maximum constant value reached by the step function, and it
is given by F/k if the excitation is a force applied to the mass, or by u(r) if it

is a ground motion.
Maximax response for step functions

2.5

Constant Slope
—_——— Versed Sine
——————— Cycloidal

2.0 1

1.5 1

Vm/&c

1.0 A

0.5 1

0.0 T T T
0 1 2 3 4

Ratio z7T

Figure 3.6. - Shock response spectrum for three step functions; constant slope, versed sine and
cycloidal .

By examining figure 3.6 one can observe that the extreme values of the ratio of
maximum response to step height v, /£ are 1 and 2. When the ratio of step
rise time to natural period 7/T tends to 0 (a very short rise time compared to
the natural period), v, /¢, tends to its maximum of 2, and when z/T

approaches infinity, the step is no longer a dynamic excitation but it is quasi
static, in consequence the inertia forces of the system tends to zero, and
v, /&, approaches the lower value of 1 [1].
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It is clear that for certain values of7/T, the ratio v /& is equal to 1. The
lowest value of 7/T for which v, /& =1 are for a constant slope input,
/T =1.0, versed sine input, 7/7 = 1.5 and cycloidal input, 7/T =2.0 [1].

Response spectra for symmetrical pulses (rectangular, half-sine and versed
sine} are shown in fig. 3.7. A further analysis of these plots and the time
response curves (Fig. 5) reveals that for values of 7/T less than 0.25
(corresponding to short duration pulses), the shape of the pulse is of less
importance in determining the maximum value of the response. This
behaviour can be explained by considering that the response is essentially due
to an impulse, because the pulse has a very short duration. In contrast, if z/T
is larger than 0.5, the shape may be of greater significance. The response tends
to become quasi static and it follows closely the shape of the input. It is clearly
seen that isolation (v, /&, being less than 1) can be possible only in a very low

range of values of 7/T, approximately less than 0.27 for the half sine pulse

and similar values for the other forcing functions. This means low natural
frequency mounts.

The maximum value of the residual response amplitude for the input types
discussed is often a good approximation to the maximum of maximax
response, and they occur at values of z/T not greatly different from each
other [1}.

In general, the residual response amplitude generally has zero values for
certain finite values of 7/T [1]. This fact can be proved considering that the
total work done by the forcing function is equal to zero. A complete proof is
given in appendix 2.

Another parameter of great importance apart from maximax absolute
response and residual response is the maximax relative response, which
represents the deformation in the elastic element, in the case of base
displacement excitation. This parameter is useful to obtain the stresses in the
elastic element due to the excitation, and is defined as: x= u + & (Refer to
figure 3.1), and it can occur during the excitation period or in the residual
vibration, in this case being equivalent to the residual response [1].

So far, the excitation &(¢) and the response W) considered can take any of the
forms considered in table 1. Nevertheless, it is worth to look at a particular
case and investigate the nature of the response and its derivatives for a certain

excitation. Take for example the case of base displacement as an excitation.
The displacement response has already been analyzed in figure 3.7 for the
several forcing functions considered. But for certain applications the quantity
of concern is the acceleration, rather than the displacement. Figure 3.8 shows
the shock response spectra for maximax acceleration due to a base
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displacement shock excitation for half sine and versed sine pulses. A
comparison with figure 3.7 reveals that for 7/7 <0.5the acceleration is not as
significant as the displacement, but for higher values of 7/7T the acceleration

becomes of great importance. Similar results are observed for both half sine
and versed sine, although the latter case shows lower overall values.

Acceleration spectra for pulse functions

16
Half sine
14 41 ——- Versed Sine
— —- Cycloidal

Figure 3.8. - Response spectra showing maximax acceleration respense for an undamped
single degree of freedom system with natural period T, and r being the period of the shock,
half sine pulse, versed sine pulse.
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4. -SINGLE DEGREE OF FREEDOM, VISCOUSLY DAMPED SYSTEMS

For steady forced vibration, even if the system has low damping, damping is
of great importance in limiting the response near resonance. However, if the
excitation is a pulse or step function, the effect of damping may be of less
importance, unless the system is highly damped [1]. Nevertheless, as a result
of the introduction of damping in the system, the maximax response as well
the residual response may decrease. Generally, less work had been reported
on the effect of damping on systems undergoing shock excitations.

For a viscously damped system, the equation of motion under general
notation, is:

%ﬁ%m =£(1) (4.1)
or
1 v=£() 42)

Where ¢ is the viscous damping constant and ¢ is the damping ratio of the
system.

Figure 4.1 shows the maximax response spectrum for a single degree of
freedom system with viscous damping, subjected to a half sine pulse
excitation as a function of the viscous damping ratio. Comparing figure 4.1
with figure 3.7 one can observe that in all cases there is a benefit of having
damping present [1]. Progressively increasing the amount of damping results
in a decrease in the maximax response for 7/7 <2. However, when 7/T takes
very large values the excitation becomes quasi static and the normalized
response always tend to 1 and damping has no further effect.

In general, increasing damping levels will reduce the residual response as
well. The behaviour of the system once the shock has finished is essentially
free vibration. As a result, damping values above the critical value will result
in longer times to get back to the equilibrium position.

Further insight into the behaviour of damped systems under shock excitation
can be obtained from figure 4.2, which is a plot of the ratio of the maximum
value of the shock response spectra for a damped system to the undamped
system, for various values of damping. This plot has been done considering
the maximum value of the maximax response for every forcing function
considered (z/T =0.5 for rectangular pulse, 7/T=0.8 for half sine pulse and

/T =1 for versed sine pulse), and other values of 7/T . It is clear that the effect
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Rectangular pulse
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T
Half Sine pulse
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Figure 4.1.- Maximax response spectrum for a single degree of freedom system with viscous damping for (a)
rectangular pulse, (b) versed sine pulse, (c) half sine pulse, for various values of damping ratio.
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Figure 4.2. - Effect of damping in the reduction of maximax response for three different inputs: (a)
Rectangular, (b) Half sine, {c) Versed sine. Vertical axis represents the ratio between the maximax for a
damped system and the maximax for an undamped system. Horizontal axis is the value of damping ratio.
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of damping is similar for the three transient excitation inputs considered, and
is also similar for the different values of /7T considered. Large reductions in
the response can be achieved for larger values of damping, but care has to be
taken because of the derivatives of the response can take higher values as
damping increase, as explained below. Another result of damping values
higher than the critical value is a longer time to get back to the initial position.

On the other hand, considering the forcing function as a base displacement
and the response as an acceleration in the mass, the acceleration spectra are
shown in figure 4.3. As mentioned before, for 7/T<0.5 the displacement is
the quantity of concern rather than the acceleration. Moreover, when
damping is present, it has almost no effect in this range of values of 7/T but its
effect becomes important for higher values of 7/7. A decrease of acceleration
is observed for low values of damping ratio 0.2 <¢ <0.3 but higher values of
damping will end up with large accelerations levels, especially when 7/T is
large. Mindlin [17] has effectively predicted this behaviour for package design
using free drop tests. The shock response spectra presented here for the two
forcing functions considered clearly show the described behaviour. Moreover,
similar results are observed for both forcing functions. Nonetheless, the
versed sine case presents lower acceleration levels than the half sine pulse. As
a result, it can be said that the half sine pulse can be regarded as a worst case
scenario. In fact, the half sine pulse is widely used in shock testing [5,17,18].
The effect of damping on the acceleration can be fully appreciated in figure
4.4 for different values of 7/T, in which the ratio between the maximax
acceleration for the undamped system and the damped system is shown as a
function of damping ratio.

Half Sine Pulse Versed Sine Pulse

Acceleration Specira Acceleration Spectra

Figure 4.3- Maximax response spectrum for acceleration of a single degree of freedom system
with viscous damping (a) half sine pulse, (b} versed sine pulse, for various values of damping
ratio.
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5. - INTERNAL DAMPING.

The form of damping considered in the previous section was viscous. This
concept is physically and mathematically simple. It allows good solutions to
be obtained in a straightforward manner without mathematical complexities.
However in practice, different damping mechanisms exist and they are not as
simple as the viscous one.

Viscous damping is an external mechanism which dissipates energy. Another
external way to dissipate energy is dry friction, or Coulomb damping.
Nevertheless, there are internal mechanisms of damping. In a wider sense
~ internal damping is also called structural or material damping.

All real materials dissipate some energy during cyclic load, due to structural
damping. Polymeric materials, in special rubber, exhibit a high amount of
energy dissipated [9]. Another important characteristic of these materials is
that they not only present a high amount of damping, but also behave in an
elastic mannmer. This characteristic is called wviscoelasticity. A further
understanding of the behaviour and properties of viscolelastic materials is
necessary because they are widely used as anti vibration mounts.

5.3. - Models used to represent viscoelasticity.

Several models have been developed to represent mechanical systems using
viscous damping and elastic elements, The classical approach is the
configuration shown in figure 5.1(b). It includes a dashpot in parallel with an
elastic spring. This system is also called the Kelvin model. This model is quite
simple, but poorly represents the characteristics of a viscoelastic material. This
system has been improved adding a spring in series with the dashpot and the
result is the so-called Zener model, shown in figure 5.1(c). Further
enhancements can be done by adding more elements as shown in figure
5.1(d), increasing the complexity of the system, but also increasing the
accuracy of the results in representing the complex frequency domain
behaviour of a viscoelastic material.

! |

(a) (b) {c) (d)
Figure 5.1. - Models of viscolelastic behaviour. (a) Maxwell model, (b) Kelvin model, (¢}
Zener model, (d) A more complex idealization of a viscoelastic material.
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6. - DYNAMIC DAMPING AND STIFNESS IN THE ZENER MODEL.
6.1. - Relaxation

The Zener model [11] is also called viscous-relaxation system. In general the
Zener model is the simplest representation of a viscoelastic material. Some
particular phenomena in viscoelastic materials are [12]:

Creep: if the stress is held constant, the strain increases with time.
Relaxation: if the strain is held constant, the stress decreases with time.
The effective stiffness depends on the rate of application of the load.
When cyclic load is applied, hysteresis occurs, leading to a dissipation
of mechanical energy.

Generally the physical properties of viscoelastic materials are influenced by
many factors, like temperature, frequency, dynamic strain rate, static pre-
load, aging, etc, depending on the damping mechanism. In this system, the
phenomenon of relaxation is the principal damping mechanism. One of the
principal characteristic of the relaxation is that both the overall stiffness and
loss factor are highly frequency dependant (see appendix C). '

7.- FREE VIBRATION OF THE ZENER MODEL.

7.1 Derivation of equation of motion

In order to investigate the response of a Zener model subject to free
oscillations, it is necessary to derive the equation of motion. Consider the
system in figure 7.1. When the mass m is displaced a distance x, it moves

around its equilibrium position, while the junction point between the dashpot
¢ and the spring ok experiences a displacement x;.

4+

% ak;;.H"’

mﬁ;{bf—IW\

Figure 7.1. - Zener model for free vibrations. Distance x is the absolute displacement of the
mass m from its equilibrium position and x; represents the displacement of the connection of
the dashpot ¢ to the spring ak.

The equation of motion for the mass from Newton’s laws of motion is:

mi+ ke +ok(x—x,)=0 (7.1)
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Since the dashpot c and the spring ok are arranged in series, and applying
force equilibrium at the connection point, one can write:

cky +ak{x—x,}=0 (7.2)

To obtain a single equation in terms of the mass displacement x, equation 7.1
is differentiated once with respect to time:

mix + bk + ok — ek, = 0 (7.3)

After algebraic manipulation of equations 7.1 and 7.2, it is evident that:

iy = -(mf A k") (7.4)

c

Rearranging equations 7.3 and 7.4, one can obtain the third order differential
equation of motion of the Zener system:

2
J'c'+k(a+1)5c+a—k—x=0 (7.5)
c c

akm

mx +

Finally, dividing equation 7.5 by m, and considering the definition of
damping ratio ¢ =c¢/c, where ¢, =2ma,, and natural frequency o, =.Jk/m
one obtains:

3
%+ 2% 54 0 (@ +1) i+ 2 x =0 (7.6)
27 2¢

7.2 Analysis of the free response

7.2.1. - Root locus analysis of the Zener model.

When investigating the free response of mechanical systems a very useful tool
is the root locus diagram. This plot shows the path followed by the roots of the
characteristic equation of a system when a particular parameter is varied from
very small to very large values. The roots are plotted in the complex plane, or s-
plane. When the roots are plotted in this way, inspection of the plot reveals the
nature of the free response of the system. A summary of the interpretation of
this plot for the single degree of freedom MKC system is given in appendix D.

This approach is used to investigate the free response of the Zener system.
From section 7.1, the differential equation of motion of the Zener system is

given by equation 7.6 with the resulting characteristic equation given by:

3

ao, oo,

S +—tst+o) (a+l)s+—7
20 2

=0 (7.8)
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The general solution of this equation can be written as:
x(f)= Ae*" + Be™ +Ce™ (7.9)

Where s1, 52, 53 are the roots of equation 7.8 and A, B, C are arbifrary constants
that depend on the initial conditions. It is quite complicated to obtain
analytical expressions for the roots. In this work the roots have been
calculated numerically using MATLAB. Figure 7.3 show the root locus
diagrams for o=1, 5, 8 and 15. These plots have been obtained varying the
damping ratio in the characteristic equation in order to obtain the roots. Note
that the path followed by the roots has been indicated with arrows, and the
three roots are marked with different symbols.

From the analysis of these plots several observations can be made. Since in
this case the characteristic equation has three roots, the free response depends
on the nature and magnitude of these roots and the arbitrary constants A, B
and C, Several situations can occur depending on the value of these roots. The
total response is the sum of the response of a second order system given by
the two complex conjugate roots which represents the oscillatory behaviour of
the system, and the exponential solution given by the value of the real root.

For a comprehensive analysis of the free response, time displacement curves
are presented in figure 7.4, where the displacement has been normalized by
the initial displacement xp. In general, for any value of « when the damping
ratio is very small the value of the root s: is negative and very large in
magnitude (graphically it is further to the left} while the other roots are
complex conjugates located very near to the imaginary axis. This causes the
behaviour shown in figure 9 where an oscillatory underdamped behaviour is
observed for values of damping less than 0.5. As long as the damping ratio
increases, the amplitude of oscillation decreases. Regarding the root locus
diagram, this can be explained because now the roots s; and s; are complex
conjugates and s; becomes larger. On the other hand, when ¢ =8 there is a
point where all the roots are real, (the system becomes critically damped).
This point depends on the value of & but commonly this behaviour occurs for
small values of damping ratio (less than 1). Again when the damping ratio
increases, the amplitude of oscillation decays, and the system experiences an
overdamped behaviour. It is important to note that the extreme cases
a~0and a=ware not included here, but they represent approximately the
behaviour of the single undamped mass spring system and the mass spring
damper system respectively.

In general, it can be said that the properties of the Zener are dependant of the
value of a. The importance of this characteristic resides in the fact that
damping properties could be properly tuned by adjusting basically the value
of . This indicates an advantage over the classical system.
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8. - HARMONICALLY EXCITED VIBRATION OF THE ZENER MODEL.

For the analysis of the harmonically excited Zener model, a similar procedure
to that used in section 7.1 is used. But in this case, a sinusoidal force F(t} acts
on the mass. Consider the system shown in figure 8.1.

T )

N

i_r

3

Figure 8.1. - Zener model under the action of a harmonic force.

The equation of motion for the mass can be written as:
mi + ke + ak{x—x,) = F(1) (8.1)

As before one has force equilibrium at the connection point of the damper ¢
and the spring ok:

cxy+ak(x—x,}=0 (8-2)
Combining equations 8.1 and 8.2 and differentiating the equation of motion
for harmonic excitation one can write:
2
i+ k(a4 1) 5+ 2 = F()+ 2R F () (8.3)
c c c
Using equation 6.9, and considering the case when the forcing frequency  is
equal to the transition frequency !, the maximum loss factor is given by:

_ o
s =5 (o +1) 64

From reference [4], and considering equation 8.4, the transmissibility for the
Zener model is given by:

> N4
02+ +[20,Q,9,..
T= {[ ] 7 ]} (8.5)

1+0° 2 %
{[Qf, +Q7 -0l [ Q) +Q} (a+1)] {m}[mnﬂ,nm] }

1.- The transition frequency is the characteristic frequency for which the value of loss factor is
a maximum:. For more details, see appendix C.
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Where Q, = [—QLJ,Q, = [2’—}, and @, = \/’E the natural frequency of the single
@ o m

" n

MKC system.

It is easily seen that transmissibility can be controlled by changing the
parameters o and €; (which depends on both the natural and the transition
frequencies). In order to investigate the effect of those parameters on the
transmissibility, equation 8.5 is plotted for different values of « in figure 8.2.
For each plot, several values of € are considered. Additionally
transmissibility curves for the classical MKC are included as a reference, for a
system highly damped ({=1 dotted line) and for a system with negligible
damping (short dashed line). Additional plots of this system for more values
of & can be found in reference [14].

In the low frequency region the behaviour of the system is the same for any
value of & and €, and also is the same as that observed in the classical MKC
system. In reference to the resonance region, for all the values of o, when
=] the transmissibility peak is partially suppressed. As long as a increases,
the transmissibility peak decreases (the loss factor is directly proportional to
a), but this increases the transmissibility at high frequencies It is important to
recall that the stiffness increases with frequency too, and this causes a
decrement in the isolation efficiency. In general, for small values of damping
the behaviour at resonance is similar to highly damped MKC systems.
Concerning the response at higher frequencies, the transmissibility decreases
rapidly at 40 dB/decade similar to the undamped system, which is twice the
MKC system roll off rate (20 dB/decade). However, a larger value of € will
increase the transmissibility in this region.

It is clear that the Zener system presents some advantages over the classical
system; however it is necessary to choose the correct parameters for a
particular system. The efficiency of the isolation system is a compromise
between decreasing the transmissibility at resonance, without compromising
the high frequency behaviour. In general, the best results from the graphs
presented here seems to be for ;=1 and 4 < @ <8, but this will depend on the
characteristics of a particular system. A very good study of the steady state
vibration of the Zener model is the work published by Snowdon [4, 15].
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9. - TRANSIENT RESPONSE OF THE ZENER MODEL.

This section is concerned with the analysis of the transient behaviour of the
Zener model, particularly due to shock inputs. There are much fewer studies
reported on the transient behaviour of this system; a notable exception being
the work of Snowdon [15]. In this work the effects of symmetrical pulses are
considered, acting as excitation functions. Two different functions will be
analyzed; a rectangular pulse and a half sine pulse. The principal objective of
this section is to obtain the shock response spectra for maximax response for
the different inputs, and compare the performance of this model and the
classical MKC model.

9.1. - Equation of motion.

In order to obtain the transient response, a more general form of equation 7.3
will be used, considering the notation used in section 3.1 (table 3.1}:

2

akm k(e + 2y = £+ 2R s () G-
¢ c

m+
c

In this expression, £(¢)is a general excitation function, which can be a ground

displacement, a ground acceleration, an impulsive force, etc. The term v is
the system response stated in a general form. The general analysis of this
model is done in terms of maximax response and residual response (see
section 2).

Concerning shock inputs, when the excitation function is a pulse one very
important parameter is the duration and the shape of that pulse (7). The
system is excited only during that time; afterwards the system is in free
vibration. The excitation functions are given by:

Rectangular
£(r)=¢, [o<t<7]
9.2

{f(r)=o [rd] .-

Half cycle sine
. (=t
E(f)=¢, sin [-;J [o<t<7] 93)
£(r)=0 [r<t]

Where & is the maximum height of the pulse.

34



9.2 Shock response spectra.

For this system it is very difficult to obtain analytical expressions for the
response. As a result time responses have been obtained numerically using
MATLAB, and the spectra has been computed based on the numerical
solutions obtained.

9.2.1 Shock response spectra for maximax_and residual response.

Shock response spectra for the maximax response are shown in figures 9.1
and 9.2 for half sine and rectangular pulses. The horizontal axis represents the
ratio between the duration of the pulse 7 and the natural period of the system
T, while the vertical axis represents the maximax response v, normalized

with respect to the pulse height & (this value is also called magnification
factor and it is analogous to the transmissibility). The graphs have been
produced for four different values of & (1, 5, 8, and 15). Furthermore, each
graph comprises various values of damping ratio, and the curves for the
classical MKC system have been included as a reference.

Inspecting figure 9.1 for the half sine pulse, it is easily seen that for the
classical system the maximum possible value of v, /&, is approximately 1.79,

and only when 7/T is very small (less than 0.5) v, /&, can be smaller than 1. As
/T increases, the ratio v, /¢ tends to approach 1, no matter the amount of

damping present in the system. The response then is quasi static and it
follows closely the shape of the pulse. In summary, isolation is only possible
for a small range of values of z/T . Also, for the Zener model one can observe
that this model exhibits a very similar behaviour for all values of «. The value
of a does not cause significant changes in the spectra. Only for o=1
the is spectrum slightly different, and for the other values it shows almost the
same behaviour (excluding the cases for very small « and very large o which
represents the cases of a single mass spring system and a mass spring damper
in parallel system respectively.).

Figure 9.2 shows the maximax spectra for a rectangular pulse. In this case the
limiting values for the classical system are 1 and 2. For the Zener system the
behaviour is very similar to when the input is the half sine pulse. In general a
decrease of the response can be achieved as a result of larger values of
damping and larger values of a. The advantage over the classical system can
only be observed for ¢ >15, however this advantage is of no significance and
it does not justify the complexity of the model, at least for passive shock
isolation. Spectra for the residual response for both half sine and rectangular
functions are shown in figures 9.3 and 94 respectively. Spectra for the
classical highly damped MKC system and the MK system are included as
well. In reference to the MK system, it is possible to get zero residual response
for certain values of /T . Concerning the half sine pulse, for the Zener system
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this is only possible for small values of damping, however, the overall values
of residual response are similar to those observed in the classical system. As
the damping ratio increases the system residual response increases too, but it
tends to decrease to zero for larger values of 7/T, as the system becomes
quasi static. In general the curves for the Zener model follow closely the
spectra of the classical system. However a small decrease of the magnification
factor is obtained using the Zener model.

For the rectangular pulse, a similar behaviour is observed for all values of .
In this case it is not possible for the Zener model to have zero residual
response. In general the value of residual response can be decreased for high
damping levels; however for large values of 7/T the residual response tends

to be equal to the height of the pulse for any value of damping ratio.

For a better understanding of the effect of the pulse period and shape on both
maximax and residual response the reader can refer to appendix 3. This
appendix comprises a comprehensive set of fime histories for the Zener
model. The figures are given for =1 and 8. The behaviour observed is similar
for values of o higher than 4. For each value of o solution curves have been
computed for £=0.1, 0.5 and 1, and each curve represents a different value of
/T . For half sine excitation, in most of the cases for values of 7/T less than
0.5 the maximax response occurs after the excitation has finished (maximax
and residual response are the same). It is important to point out that for equal
values of damping ratio, the larger the value of ¢, the smaller is the response,
however, the reduction in the response is small. Additionally, for larger
values of « the system reaches the equilibrium position with fewer
oscillations. In reference to the rectangular pulse, the maximax response is
observed after the pulse has finished for values of /T less than 0.5 for any
value of o and damping ratio. The overall behaviour is analogous to that
observed in the half sine case.

Further understanding regarding the effect of damping on the Zener model
can be achieved by considering the results shown in figure 9.5. This figure is a
comparison of the effect of damping on limiting the maximax response for
different values of «. The comparison is given for both half sine and
rectangular pulses. The maximax for the classical MK system has been taken
as a reference. This graph clearly shows that in both cases the behaviour is
almost the same for the MKC system and for the Zener model apart from for
small values of & in the case of half sine excitation. In this situation the
performance of the system diminishes. For the rectangular pulse a small
reduction on maximax response is gained, but only for small values of « and
high values of damping (greater than 1).
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Figure 9.5 . — Effect of damping ratio on limiting maximax response in the Zener model. The maximax for
the undamped classical system has been taken as a reference. (a) Half sine pulse, (b) Rectangular pulse
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10. - CONCLUSIONS.

The most important quantities in shock measurements are the maximax
response and the residual response, both used to determine the severity of
the shock. A powerful tool in the analysis of shock motions is the shock
response spectrum, which gives information about the relationship
between the maximax response and the duration of the shock and the
natural period of the system.

From the undamped system shock response spectrum and time responses
for step functions, it is clear that the maximax response always occurs
after the excitation has reached its maximum. On the other hand, for
pulse inputs, the response depends upon the ratio of the duration of the
pulse to the natural period of the system. If the pulse is of short duration,
the shape of the pulse is not important (for 7/T less than 0.5), and the

maximax occurs after the excitation has ceased. In contrast, when the
pulse is long, the shape plays an important role and maximax response
can occur during the pulse, or after it has ceased. For some values of /T,

the residual response is zero.

The acceleration as a response quantity is another parameter considered
in this work. Accordingly with previous studies [4] the acceleration was
found to be the most important parameter when the duration of the pulse
is long compared to the natural period, but the displacement is more
important when the pulse 1s of short duration.

Inclusion of viscous damping in the system generally results in a decrease
in the maximax response and residual response. Nevertheless, the effect of
damping is not of great significance unless the system is highly damped.
Furthermore, when the acceleration response is analyzed as a result of a
base displacement, large amounts of damping will cause high levels of
acceleration during the shock input. Lower overall levels of acceleration
are observed for 0.2<¢ <0.3

Most of the work has been carried out considering only the classical MKC
system which is the simplest mathematical representation of a damped
system and includes a dashpot (viscous damper) in parallel with an elastic
spring. However, this approach does not represent very well real systems. In
practice, many materials present viscoelastic behaviour where one of the most
important characteristics of the viscoelastic phenomenon is the frequency
dependence of the stiffness and damping.

The simplest representation of viscoelastic behaviour is the mathematical
model known as Zener model. This system comprises a dashpot elastically
connected, arranged in parallel to another elastic spring. The model is not an
exact representation of viscoelastic materials, but it provides a very good
approximation using a relatively simple system. This system shows the
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frequency dependence characteristic of viscoelastic materials, having a
transition frequency, in which the damping takes its maximum value.

In general the Zener model shows a better performance over the classical
MKC system only for one of the three conditions considered, namely
harmonically excited vibration. For harmonic excitation, the system has the
characteristics of a highly damped MKC system, plus a reduction of the
transmissibility at higher frequencies due to the frequency dependence of the
stiffness and the loss factor. In the case of shock excitation, the improved
performance of the Zener model over the classical MKC system is not so
apparent, showing only small benefits in shock isolation for certain values of
a and highly damped systems. However, this system can be used in certain
systems under both transient and harmonically excited disturbances where it
could be promising.

This work can be extended by considering the response for different input
functions in the case of shock excitation for the Zener model. Moreover, the
effect of non linear elements (spring, dashpot, or both) could be investigated.
Little information has been published for the possible non linearity in the
Zener model [13]. Future alternatives might be to consider the
implementation of adaptive or semi active vibration control since little work
has been done in this area for shock excitation. A low stiffness mount could
be promising for shock isolation since the isolation occurs only for low natural
frequencies. This would cause large deformations in the elastic element that
will provide high levels of energy stored. However, it is not possible to reduce
the stiffness below a certain point because the mount has to be stiff enough to
support the system statically. Moreover, the free space for a large deformation
can be a restraint. A future work could include the possibilities of developing
an active or adaptive suspension that will become “soft” during the impact to
minimize the response.
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Appendix A
Solution of the equations of motion using Laplace transformations.
a) Constant slope step.

The equation of motion is given by:

2 = (1) a1
Where:
t
()17 [o<t<7] i
£ [TSt]

Taking the Laplace transformation of equation al:

L (s9{s) - 59, — 9, )+ vls) = £Gs) 23

n

Considering that the system is initially at rest and rearranging equation a3:

v(s)= ;’?fgg a4

The solution of the equation of motion is given by the inverse transformation
of equation a4. From [19], the transformation &(s) for this particular case is
given by:

)= a5

T 5

As a result, and after an algebraic manipulation of equations a4 and a5, the
solution is given by:
e 2 1 e™”
vty =*w, I1 - ab
® r TS re?) s+ wl)

Using Laplace transform pairs from [1] and [19], the response is given by:

v(t) = f‘? [0, - sinlw, 1)~ (@, (t - 7) - sinw, {t - 7))} a7

"



Using sin(4 + B}—sin(4 — B)=2cos Asin Bto simplify equation a7 one can
write:

Se [a),,t —sin{w, )] 0<t<r
0,7
(1) = .
g, [l + [2 sin( w”T)cos @, [t - E—Jﬂ T<t
®,r 2 2
a8

From the response when r<r, the maximax response is given by the
following expression, since it is a constant amplitude value:

2 ( . (co,,r D:l
sin a9
®,T 2
Finally, considering that @, = %if- and rearranging equation a9:

AZ TP i sin[ﬂj alo
£, T T

Equation a10 gives the normalized maximax response as a function of the
ratio.

v, :§c[l+

b) Rectangular pulse.

This is the case of a symunetrical pulse. The forcing function is given by:

£ 0<st<rt
§(t)={0 } all

Tt

The Laplace transform of the forcing function is given by [1]:

al2?

From the previous analysis one can take directly equation a4 and combine
with equation al2 in order to obtain the solution. The solution is given by:

_ . 1 ~ e—sr
V(f)“gcwnrllisz(sz z) .5'2(52+a):):' al3
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The inverse transform of equation al3 is:
V() = ¢, [1 ~cos{w,t)—{1-cosw,(t -7 )] al4

Using cos(4 — B)—cos{4+ B)=2sin 4sin B, one can rewrite equation al4 as
follows:

& [1-cos(w,?)] 0<r<t

o= g, [2 sin[ﬂﬁ} sinw, (t - zﬂ TSt al>
2 2

The amplitude term of the residual era can be written in terms of the natural
period and one can write an expression for the residual response as:

= [2 sin(ﬂﬂ al6
S r
By differentiating this term with respect to 7/T and equaling it to zero, the

obtained value of 7/7 =1/2 is evaluated in equation alé in order to obtain
the maximax response, given by:

=2 al7

This is valid forz/7 >1/2. For lower values, the residual response is equal to
the maximax response.

¢} Half sine pulse.

The forcing function is given by:

s sin(zri] [0<t<7]

£(t)= al8

0 [ <t]

The Laplace transform of the forcing function is [1}:

b fner) 219
52 +(%)2
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From equation a4 and al9, after an algebraic manipulation one can write:

1 e”’r

v(t)=§c—§a),fri (sz+wﬁ(sz+(%)z) I (32+a)3(sz +(%)2] 220

Using Laplace transforms pairs given by [1], the solution of the equation can
be expressed as follows:

o, sin(zt} —%sin(a)nt) ®, sin £(t —r)—ﬁsin w,(t-7)
7 7

v(t) =& L o? ? : + - a2l
T a)n” 2 T w"ﬂ' 2 Fi4
(a)n +—{J ———{wn +2)
Simplification of equation a21 leads to:
’ S (7w T . )
VGf):W sin 7 "'i;Sln C')nt [Ostg T]
1oy o s | @im)c0 (/) -
T}cos{nT . T
vit)= sma, | t—-— T<t
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Appendix B
Proof of zero residual response for symmetrical pulses.

In the case of symmetrical pulses acting on the mass spring system, for certain
values of the ratio 7/T there is no residual response (see figure 3.5) that
means the system is at rest when the pulse has finished. The reason behind
this happening is the fact that the total work done by the forcing function is
equal to zero for the corresponding value of 7/7. The work done during the
shock period can be defined as:

T T dt

t)dxe =& (t)—dx bl
Je@a=fe()
a) Rectangular pulse.

The forcing function is given by:

g, 0<r<t
= b2
0 {O T<4
And the response during the impulse is:
(1)=& [1-cos(w,1) ] b3
The velocity is obtained by differentiating equation b3 as follows:
& & sin(o,1) b4

dt

Equations b2 and b4 are substituted in equation b1 to obtain the following expression:
o, & 'fsin (w,t)dt b3
1]

After evaluating the integral one can write the expression for the total work done by

the force.
&l [cos(zﬂj—l} b6
T

From figure 3.5 one can see that residual response is zero when 7/7 =1,2,3... by

evaluating these values in equation b6 it is readily seen that the total work
done is zero.
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b) Half sine pulse.

In this case the forcing function can be written as follows:

£)-{" Sin(ﬂ?t)

0

b7

The displacement of the mass and its corresponding velocity during the
disturbance period are given by:

x . sin(ﬂ)—isin(gﬁ
1-T?%/47? ) 2r T b8
L (fr_t) — cos szz]
dt 47’ -T* T T b9
Substituting equation b9 and b7 in the integral given by equation bl:
45“7”2 sin [E) cos (EJ —C0s (2—”{} t b10
47 -T° ] T T T

The expression for the total work is obtained after performing the previous
integral and one can obtain the next expression:

(o)) A= 3)) A=(F))
2l cos| == |+1| 7*}cos| =~ |+1| 7|cos|— [+]
4 7t T B T B T

bl1

472 -T? 7 (T +27)

7 (T -21)

b2

From figure 3.5 concerning to the half sine pulse the residual response is zero
forz/T =15,25,3.5.... Evaluating equation b1l at any of these values the total

work done by the force is equal to zero.
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Appendix C
Frequency dependence of the damping and the stiffness.
This section is concerned with the examination of the dynamic properties of the Zener
model. The principal characteristic of this model is that both damping and stiffness are
highly frequency dependant. In order to show this behaviour the approach of complex

stiffness will be used, as shown in figure 6.1. The objective is to represent the
characteristics of the Zener model as a single complex stiffness.

m
ax e —_— *
% k & &
‘T

Figure 6.1. - Zener model represented as a single complex stiffness system.

m

Considering for harmonic motion that ct = jwex, and arranging the dashpot in series
with the spring ak one can write:

Jjocak

k=——-— 1
' joc+ak D
Now, ki1 is in parallel with k, which gives:
iweak + k( joc+ ak
keﬁ’ — J - (J ) (C2)
joc+ok
Equation 6.2 can be simplified to:
k+ jk{a+ 1){ﬂj
o= ok 3)
eff we (C
. 14 il ¢
+J(ak)
This finally leads to the complex stifness:
@ 2
k+k(a+1) (—;J
ka — O! + j G)C (C3)

& ()
1+ — T+ —-
ok ak
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As explained in section 5.2, the real part of the complex stiffness represents the dynamic
stiffness k4 of the system, given by:

k, = = (c4)

And the ratio of the imaginary to the real part represents the loss factor 7, given by:

ac

k+k(a+ 1)[%)2

n= (c3)

For viscoelastic materials it has been observed [4, 7 and 9] that the real part of the
complex stiffness is constant at low frequencies, it passes through an inflexion point and
then reaches a new constant value at high frequencies. On the other hand, the loss factor
is small at low frequencies, increasing proportionally with frequency, reaching a
maximum value, and then decreases inversely with frequency. The value of frequency
for which the loss factor is maximum is called the transition frequency ex. Although the
Zener model does not represent the exact behaviour of viscoelastic materials, it offers a
very good approximation. For the Zener model, in order to obtain this transition
frequency, it is necessary to solve the equation:

dr
—=0 cb
do (<6)
This gives the following expression for the transition frequency:
ok
@, = (c7)
eva+1

Equations 6.4 and 6.5 can be rearranged using equation 3.6 to obtain:
2
®
kla+1)|1+] —
(a ){ 2] ]

w““[ﬁj

k, =

> (c9)
a+l i‘l + (_“_’_J }
w)‘
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Equations 6.8 and 6.9 are shown graphically in figure 6.2 for various values of . where
the real dynamic stiffness is normalized by the value of stiffness equal to k{a+1) Figure
6.2(a) shows the frequency dependence of the dynamic stiffness. By examination of this
figure and the analytical expression in (3.8), one can observe that in the low frequency
region the dynamic stiffness tends to approach a constant value equal to the value of the
spring k. After passing through an inflection point, at higher frequencies the normalized
stiffness reaches a constant value of 1 for all values of . In this case, the dashpot
becomes virtually a rigid link and the actual stiffness is equal to the spring k and ak in
parallel which is equal to (k+ok) [4]. On the other hand, the loss factor is small at low
and high frequencies, but at a certain point it reaches a maximum value, at the transition

frequency.

Dynamic stifftess of a Zener medel Loss factor of a Zener Model
12 18
— =l -~

151 a=t
—_——— an/ I.-/ \-\

14| ———- o= ; :
——— galt / PR

12 AN

!/ A
1.0 I/ Y
- AR
084 77N W

kokfort 2
Loss factor

T T T
o001 0.1 1 10 100

Figure 6.2.- Frequency dependence of the stiffness (a) and the loss factor (b) of the Zener model for
different values of o. Note that in the case of (a) the stiffness has been normalized with respect to

the high frequency value of the stiffness.



Appendix D
Root locus significance for a single degree of freedom system.

When investigating the free response of mechanical systems a very useful tool is
the root locus diagram. This plot shows the path followed by the roots of the
characteristic equation of a system when a particular parameter is varied from
very small to very large values. The roots are plotted in the complex plane, or s-
plane. When the roots are plotted in this way, inspection of the plot reveals the
nature of the free response of the system [13]. If the roots are located in the left
hand side of the diagram, the system is said to be stable. Making the assumption
that the system is stable, one can find a different behaviour depending on the
location of the roots. If the roots are imaginary, the system oscillates in a
sinusoidal manner with constant amplitude. If the roots are real and negative,
the system decays to zero as t approaches infinity, with no oscillations. When the
roots are complex, the system decays sinusoidally with a exponential envelope.
On the other hand, when the roots are on the right half side of the diagram, the
system is unstable. The amplitude increases without bound. For mechanical
systems this situation appears as a result of negative damping, due to phenomena
such as chatter in machine tools, or flutter. Consider the characteristic equation
of a MKC system.

s +2fw s+a} =0 (d1)

Where ¢ is the damping ratio and @, is the natural frequency. Note that this
equation is of second order, so it has two roots s; and s;. For higher order
systems, the response is built up of those functions that include the free response
of first and second order systems [13].

As stated before, the nature of the roots gives the behaviour in free response of
the system. In this particular case is interesting to look at the behaviour of the
roots when the damping ratio varies. Three of the most significant cases are
shown in figure d1. Additional information regarding this topic can be found in
[13].
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Figure d1.- Roots of the equation 7.7 and their respective free response (a) Both s; and s; are
purely imaginary, (b) s5; and s; are complex conjugates, (c) s; and s; are real, equal and negative.
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Time response curves for the Zener model under half sine transient excitation for ¥=5 and different values of #7.

Appendix F
Time response curves for the Zener model

Time response curves
Half sine pulse
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(2) 6=0.1, (b) £=0.5, (0) ¢=1
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Time response curves for the Zener model under half sine transient excitation for N=8 and different values of /7.
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Time response curves
Rectangular pulse
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Time response curves for the Zener model under rectangular transient excitation for N=1 and different values of z7T.
(a) ¢=0.1, (b) £=0.5, (c) ¢=1
57



Time response curves
Rectangular pulse
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(c)

Time response curves for the Zener model under rectangular transient excitation for N=8 and different values of #T.

(a) ¢=0.1, (b) £=0.5, () £=1
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