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Abstract

This report presents the theory and computer simulations for the active control of the
kinetic energy of a thin beam with free ends driven by a single harmonic primary
point force by using a single secondary point force. A beam with free ends has two
rigid body modes corresponding to translation and rotation of the beam without
bending. Models were developed using two methodologies to calculate the total time
averaged kinetic energy of the beam. The first considers the beam as a continuous
elastic structure. The second considers the beam as a series of lumped masses and
sums the kinetic energy of each small mass element. The results from both methods
agree if the number of small mass elements per wavelength in the discrete model is
greater than 5. By formulating the models using the standard Hermitian quadratic
form, one can use existing methods for minimising the total time averaged kinetic
energy of the beam. Numerical examples are given for the optimum magnitude and
phase of a single secondary force for a single primary force. The results show that a
large proportion of the total kinetic energy of the beam can be attributed to energy in
the rigid body modes for frequencies well below the first flexural mode. This suggests
that a simple control strategy would be to minimise the kinetic energy in the rigid
body modes. A simple model was thus developed to minimise the kinetic energy in
the two rigid body modes. Using this latter model is was possible to determine how
effective a secondary force would be in reducing the overall kinetic energy by
considering the relative positions of the two forces. The optimum position for the
secondary force is always co-located with the primary force. In which case, total
cancellation can be achieved if the secondary force is of the same magnitude and 180
degrees out of phase, as expected.
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1 Introduction

There are many reasons why it may be desirable to reduce vibration levels within a
structure. For example, excessive vibration may accelerate fatigue failure of the
structure itself. Reducing the vibration levels may make the structure more inhabitable
for persons or equipment and may reduce the sound radiated by the structure.
Machinery areas on mobile platforms such as ships often consist of several machines
mounted on the same elastic raft. In order to reduce the vibration due to unbalance in
rotating or reciprocating machinery the raft is then isolated from the hull structure by
compliant mounts as shown in figure 1.1.

T

Machinerv raft

L

Compliant mounts

Steel deck

Figure 1.1 Rotating machinery on an elastic machinery raft with vibration isolating mounts between
the machines and the raft and berween the raft and the steel deck.

These mounts are essentially damped springs and may not be effective at all
frequencies at which vibrations are occurring. Passive control, by the addition of
mass, damping materials or vibration neutralisers may be employed to reduce
vibration. Active control is achievable by electromagnetic levitation of the machinery
— active rafting, active damping of residual vibration or active vibration control.
Several approaches to active vibration control are possible (Brennan ef af, 1995),
including a wave control approach (Halkyard and Mace, 2002) and energy control.
Energy may be minimised by means of either piezoelectric actuators applying
secondary moments to the structure (Gaudenzi et al, 2000; Di Turo, 2003) or force
actuators applying controlling forces to the structure.

The broad aim of this research is to study the interactions between these multiple
vibrating systems when mounted on a common elastic structure, and to study how the
structure vibrates:

1. When the systems are driven by a common power supply.

2. When the systems operate under different loading conditions.

3. With various masses attached to the elastic structure.

4. With Active Control Techniques applied to the structure.



This report addresses the first and last point. The positioning of the machines 1s likely
to be determined by engineering factors other than vibration control. Since the
machines are driven by a common power supply, this report investigates the
possibility of minimising the kinetic energy transmitted to the machinery raft by
controlling the phase of the power supplied to each machine. This process known as
synchrophasing is well documented for controlling aircraft propeller and duct fan
noise (Risi et al, 1996). In order to simplify the problem, the machinery raft will be
modelled as a thin beam with free ends. Machinery on the raft will be represented by
point forces. In this report only two point forces are considered, however the general
theory is developed for more than one secondary point force.

The aim of this report is to present the theory and computer simulations for the active
control of the kinetic energy of a thin beam driven by a single harmonic primary point
force by using a single secondary point force. This method is easily adaptable to a
higher level of active control by using more secondary forces (Nelson and Elliott,
1992). This report will form the basis for an experimental investigation which will
follow.



2 Development of a model

2.1 Simplifications

In order to simplify the problem, the dynamic system is represented by either one or
two point forces acting on a thin elastic beam. Figure 2.1 shows the right handed
coordinate system used to represent the lateral vibration wix,z) of a beam of length /
and the positions x; and x; of any applied forces f; and ;.

0 X1 T i "

Figure 2.1 Coordinate system and variables used in modelling the lateral vibration of a thin beam.

When the wavelength of the flexural wave is large compared to the thickness of the
elastic beam, the effects of shear deformation and rotary inertia can be ignored,
leading to the simple Euler-Bernoulli beam theory (Warburton, 1976). The ends of
the beam are assumed to have free boundary conditions. The reasons for considering a
beam with free ends are that

1. It is possible to validate the theory for a beam with free end conditions at high
frequencies by empirical measurements on a finite length beam with ends
supported by rubber mounts.

2. It is possible to model the effects of linear springs and dampers connected to the
ends of the beam by changing the equations for the shear force and to model the
effects of end connected torsional springs and dampers by modifying the
equations for the bending moment.



2.2  Free lateral vibration of a thin beam with free ends

Euler-Bernoulli thin beam theory gives the equation of motion for the free lateral
vibration of a uniform thin beam as (Rao,2004)

3*w(x, 1) O w(x,1)
El >~ + pA =0 2.1
ot P or’ @b

where E is the Young’s modulus, 7 is the moment of inertia of the beam cross section
about the neutral axis (the y axis in figure 1.1), pis the density and A is the cross
sectional area of the beam. Assuming a time harmonic solution of the form
wix,t)=d(x) ¢ and using the method of separation of variables the general solution is
given by (Rao, 2004).

wix, )=(C cosfet+ Casinfie+ Cacoshfix+ Cysinhfx) & (2.2)
where C|, C;, Cs; and Cj are constants determined by the boundary conditions and

p= 2 is the flexural wavenumber, with the flexural wavespeed ¢ = f—}%
c ~

The free end boundary conditions are:

&’ w(x,1)

ax?

bending moment M = EJ =0 at x=0 and x=/ (2.3)

wix,t)

ax’

shear force § = EJ =0 atx=0 and x=/ (2.4)

Equations 2.3 and 2.4 evaluated at x=0 results in C3= Cyand Cy= C,.
The boundary conditions at x=/ lead to the equation:

[cosh Bl —cos Bl sinh Bl ~sin gl }[ Cl} 3 [0} 2.5)
sin fl+sinh B cosh fl—cospl || C, | |0 :

For non-trivial solutions

cosh gl —cos Al sinh B/ —sin i
sin A+ sinh A cosh Sl —cos f




which leads to the characteristic equation:

cos Hlcosh il =1 (2.6)

The roots of equation 2.6 correspond to the natural frequencies of vibration of the
beam with free ends. Equation 2.6 cannot be solved analytically, but values for 5/ can
be found by using a mathematical package such as MATLAB. The n"™ natural
frequency is given by (Rao, 2004)

0, = (B’ pi‘; @7)
where
Bol Bl Bl Bil Bl
0
For two rigid 4.730041 7.853205 10.995608 ~ (n+%)7r
body modes

o*w(x,1)
o

Using equation 2.2 to obtain evaluated at the boundary x=/ gives

_C (sin B,/ —sinh §.1)
- {cosh 5,/ —cos 5,1}

G

Hence the n™ modeshape is given by

¢ (x)=sin B x+sinh B, x+«, (cos B, x +cosh §,x)

(sin S,/ —sinh S 7)
(cosh 8,1 —cos 3.1

where o, =



Figure 2.2 shows the first few modeshapes of a thin Euler-Bernoulli beam with free
ends. Two rigid body modes exist for a thin beam with free ends, these correspond to
pure translation and rotation of the beam without bending.

2 wem 15t rigid body mode
== 2nd rigid body mode
Bz mode 1
251 ¢ mode?2
3 ' , —e— mode 3 1 1

0 0.1 02 03 04 05 06 07 08 0.9 1
Position along beam / length

Figure 2.2 Rigid body modes and first 3 flexible modeshapes of a thin beam with free ends

It is also shown (Rao 2004; Warburton 1976) that the modeshapes of the uniform
beam are orthogonal, which means that

].¢m (x)p,(x)dx=0form=n (2.8)

The orthogonality condition means that the energy in each mode does not leak into
any of the other modes. This leads to the equation for the general vibration of a free
beam as the sum of the modal basis functions given by

W)=Y ¢ (g, 2.9)

Where ¢, is the modeshape of the 7™ mode at x and qn is the modal ampiitude, i.c.
how much of each mode is present in the general vibration. This is discussed further

in the next section.



2.3 Forced lateral vibration of a thin beam with free ends

The cquation of motion for the forced lateral vibration of a uniform thin beam is given
by

o*w(x,1) azw(x 1)

ax*

EI + pd = f(x,0) (2.10)

where f{x,2) is an external force per unit length. Using equation (2.9) the lateral
vibration of the forced beam can be described by a modal superposition. Equation
(2.9) can be differentiated to give

¢ wd¢,,() 2 A
aw(xr) Z x%(r) nd aw(xt) Z¢() q(r)

These can be substituted into equation (2.10) to give

3 00y 0+ paY, L2805 )= fix0) @.11)

Assuming a time harmonic point force at x = x; of the form f{x,1)=f 8(x-x1) & the
steady state response is given by

W) = 30,090, 0)= S B OB DD @12)

where proportional damping has been included via a constant modal structural loss
factor 1 and m, is the modal mass. The transfer receptance due to a harmonic force
applied at x; is given by

which can be written as

W) _§_ 46.05)
fx) Em @0+ jm)-o’)

W("){ L2 (1-55]( 2x1]+i N } (2.13)
2 l b

fx) \-mo* —mo’ o m (0} (+ jm) - o)

where m is the mass of the beam. The first two terms are due to the rigid body motion
of the beam with two free ends, corresponding to modeshapes ¢{x)=1 and

d(x) =3 (1--} (Gardonio and Brerman, 2004).



Wt -’ wx) for a uniform rectangular
F(x.1) F(x)

cross section steel beam of length 2m and thickness 2¢m, with a point force applied in
the centre. A proportional damping of 10% (7=0.1) has been used. This is compared
to the driving point accelerance of an infinite beam given by (Gardonio and Brennan,
2004)

Figure 2.3 shows the point accelerance

W _ g2 11T (2.14)
f 4EIfB
and the low frequency result where only the translational rigid body mode is excited.
w
In this low frequency case — = E .
m
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Figure 2.3 Point accelerance for a 2m uniform rectangular cross section steel beam with 10%
proportional damping with a point force applied in the centre, to an infinite beam and to a rigid beam.

At low frequencies it can be seen that the beam can be considered to be a rigid mass
undergoing translational motion only. At high frequencies, as the number of
wavelengths along the beam increases, the behaviour of the beam approaches that of
an infinite beam.



2.4 Energy of a forced thin beam with free ends

It is useful to consider the energy of a vibrating structure because each contribution to
the energy is a real quantity, not complex and the time dependence of each
contribution can be averaged over a cycle. The energy of a thin beam with free ends
consists of contributions due to the elastic strain energy of the beam bending and
kinetic energy due to the velocity of the beam

E=U+T (2.15)

where the instantaneous strain energy U is given by (Warburton,1976;Ra0,2004)
1’ 2y(x,0) )

U==[E] Imx,1) W(ff’ )| g (2.16)
2 o Ox

and the instantaneous kinetic energy 7 is given by (Warburton,1976; Rao,2004)

BYIEL DN
T= Oj pA(—um-———at )dx (2.17)

Using equation (2.13)

Pwrl) o BOIB) e g g2 D)
o' Em@l(+ ey "

Since the potential energy given by equation (2.16) contains the second partial
derivative of wix,#) with respect to x, U does not contain any contributions from the
rigid body modes. Using the result that the time averaged displacement squared,

2 .
, the time averaged

assuming harmonic variation is given by <Re(w(x, t))2> = %iw(x)

potential energy is given by



!

{U(a)), j

0

°° ¢, ()¢, (%)

dx (2.18)
= m(o,(1+ jm) -0°)

vACSY,

To calculate the kinetic energy requires a partial differentiation of w(x,z) with respect
to ¢, which is

aw(x,r)zja{ L, 3 (1_§J(1-gfs.)+i ACIACY, Jf( x)e’™

ot -ma® —-mo’ ! [ S m(ol(1+ jn)-w®)

The time averaged kinetic energy is given by
(T(@)), =~ [ A jow(x)] dx (2.19)

which does contain contributions from the two rigid body modes.

2.4.1 Continuous beam model

For a continuous uniform beam, the integrals in equations 2.18 and 2.19 may be
evaluated directly to give

o -3 g
and

{1
(o), =L o +§|(co (1f1(;)) o) I 220

Generally the kinetic energy in the rigid body modes is comprised of kinetic energy
due to translation and kinetic energy due to rotation. This is given by the first two
terms in equation (2.21). The time averaged kinetic and strain energies for a 2m beam
with 10% proportional damping are shown in figure 2.4, together with the time
averaged rigid body kinetic energy. As can be seen the kinetic energy and the strain
energies are very different at low 5/ due to the kinetic energy of the translational rigid
body mode. Since the beam is excited in the middie, there is no contribution from the
rotational rigid body mode. In figure 2.4, the kinetic energy of the translational rigid
body mode is very similar to the total kinetic energy of the beam at low frequencies,

10



showing that nearly all of the energy is in the translational rigid body mode at
frequencies well below the first flexural natural frequency.

-=-= Time Aweraged Potential Energy <U>
i{ — Time Aweraged Kinetic Energy <T>
| @70 TIME Aweraged Rigid Body Kinetic Energy

E' .:.‘_
§ : B o et *
¥ T B S R .
- | i R i
— | ' B FR '
>‘ X _mlecdes ————— L_-
D 1o° | .
2 10 2z
W G AL bt 75 e " S SO S i B
7
10 booooes:
-8
107 o
0 1
10 10
Bl

Figure 2.4 Time averaged kinetic and strain energy for a 2m steel beam driven by a single point force
in the middle of the beam (x,=1m). The beam is modelled using 10% proportional damping.

2.4.2 Discretised beam model

Instead of solving equation (2.19) directly, the beam can be considered to consist of P
small elements, with mass m; and width Ax as shown m figure 2.5.

my iy My N Ax mp

—
[eJelefeleTefeoTofofa]e]ofe[e]o]ofefefofeefo]e]efo[efefe]

0 I ! g

f(xl)

A

Figure 2.5 Discretised beam consisting of P small elements of width Ax and mass m;

This model has the advantage that the kinetic energy of the beam can be determined
by calculating the lateral displacement at P discrete points along the beam. The
displacement is considered in the middle of each element. This mathematical model is

11



more representative of an experimental determination of the kinetic energy, where
typically the lateral displacement can be measured at discrete points along the beam.

Assuming that the elements are small enough to represent the shape of the beam in
flexure, for the /™ small element of the beam, the kinetic energy is given by

2
T; =ipAAx 8w(x,t)) where x=i(i~-l fori=1...P
2 ot Py 2

So for the whole beam the time averaged kinetic energy is

R pAlo’ Iw(x)IZ
O i L

i=1

I

X

Substituting for w(x) from equation 2.13 gives

1eof1-2%) (1222 )
2o (%) ( z] [ z] SIRAEA AN 2.22
2 o "2 @+ jm-o*f| -

where m is the mass of the whole beam and instead of integrating the square of the
modeshape along the beam, @’(x) is evaluated at discrete points given by
!

X; =—(i—l] for i=1...P
P 2

Figure 2.6 shows how this formulation, using P=51 elements, compares with the
kinetic energy using the continuous beam model, when a point force is applied to the
middle of the beam. It can be seen that there is very good agreement between
equations (2.21) and (2.22).

12
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Figure 2.6 Kinetic energy calculated using the continuous beam model (equation 2.21} and the discrete
beam model (equation 2.22) with 51 elements. A proportional damping of 10% has been assumed.

Figure 2.7 shows the effect of varying the number of discrete elements by plotting the
percentage error in time averaged kinetic energy, relative to the continuous beam
solution given by

3 discrete solution - continuous solution

erTor x 100%

continuous solution

The number of elements per wavelength at 1 kHz (£/=29.5) is represented by V. As
can be seen from figure 2.7, to accurately reproduce the kinetic energy requires
greater than 5 elements per wavelength.

13
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Figure 2.7 The effect of increasing the number of discrete elemenis P on the kinetic energy discrete
beam model. N = the number of elements per wavelength at 1 kHz (f1=29.5).

2.5 Hermitian quadratic form for the Kinetic energy of a thin beam with free
ends driven by two point forces

In the previous section, models were developed for the time averaged kinetic energy
of a beam with free ends when a single point force is applied. In this section the
kinetic energy of the beam under the action of two point forces is considered. For the
continuous beam model and the discrete beam model, the total time averaged kinetic
energy can be written in a concise vector notation using the Hermitian quadratic form.
Section 2.6 explains why this Hermitian form is useful and how the second force can
be applied in such a way that the overall time averaged kinetic energy when two
forces are applied is lower than that when a single force is applied.

Although only two point forces are considered in this report, the vector notation may
be generalised to describe the kinetic energy of the beam when it is driven by many

14



forces.

Figure 2.8 shows the beam with two point forces applied at x=x; and x=x,.

[eTeTele e o oo o]o oo e[e]efefo]o]e]ofeee[e]e]e[e]e]e]

0 {

fiGx) Salx2)

Figure 2.8 Beam with free end conditions and two applied point forces

Using equation 2.12, the principle of superposition and assuming that the two applied
point forces excite the beam at the same frequency, then

¢ (O, (5)£,(0) + 6, () 15, (50)] o
wix,t x 1+ t 2.23
()= Z¢( e, 0+a.,0)= Z T —— (2.23)
Where f; and fz can be complex to allow for phase differences between the point
forces and ¢, is the ' " modal amplitude due to the primary force f; at x) and g2, is
the n™ modal amplitude due to the secondary force f; at x».

2.5.1 Continuous beam model

Using equation (2.21) and following a similar procedure to that described in section
2.4.1 for a single applied force, the time averaged kinetic energy of a free-free beam
with two applied forces can be written as

il[f(xl)eé )+ G800 (2.24)

T
(@), = (@ jm-o’)

where the n™ modal amplitude due to each force is given by

TAESYAES SN YCAVACH)
m(w;(1+ jn)—o®) > m(@; 1+ jn)—o®)

qi.n (a)) =

This enables the time averaged kinetic energy to be written as

(T(@)), '_Z|Q1n+'?2n

15



Defining q as a vector of modal amplitudes over » modes such that
g 1 +t4ds ]
G TG
4=|4¢;; '*"‘Iz,z.

_QI,J‘I + q2,n ]

The time averaged kinetic energy of the beam can be written as

(2.25)

(T(@)), =

Where the Hermitian form ¢ is the complex conjugate transpose of vector q. This
concise notation can be extended to incorporate any number of point forces in the
vector ¢.

2.5.2 Discretised beam model

Extending the results from section 2.4.2 to two applied forces

I8, () £,06)+ 8,060 £,0e)]
m(@ 1+ j7)— %)

o -2l e’ sl

i=l n=0

Defining w as a vector of displacements over » modes including the two rigid body
modes

(40 DA + g L)
m(w’(1+ jn)- o)

500 [B0A) + $0)AE)]
m(@?(1+ j7) - o)

w=| 4 [BE)AG) + AEAE)]

m(w;(1+ jn)- )

5.9 [ + 8,65
(@} (1+ j7)— o)

The time averaged kinetic energy of the discrete beam can be written in vector form
as :

16



P 2

<T(a’)), = Z ﬂiﬂ; W, W, (2.26)

i=1

2.6 Using the Hermitian form to minimise the Kinetic Energy

The total time averaged kinetic energy of a beam with free ends, when two or more
point forces are applied to the beam, is given by equations 2.25 and 2.26 for the
continuous and discrete models respectively. The reason for expressing the kinetic
energy in the compact Hermitian quadratic fornm is that methods exist to minimise the
total kinetic energy of the beam by altering the position, magnitude and phase of any
secondary forces that may be applied for control (Nelson and Elliott, 1992,
Appendix). The optimum magnitude and phase of the secondary forces can be
determined, so that the time averaged kinetic energy of the beam driven by primary
and secondary point forces is lower than the time averaged kinetic energy of the beam
with only a primary force applied.

2.6.1 Continuous beam model

The vector of modal amplitudes from section 2.5.1 can be written in terms of the
superposition of the modal amplitudes due to the primary force alone and the modal

amplitudes due to an array of secondary forces, so that g = q, + Bf, . B is a matrix of
modal coupling coefficients. Equation 2.25 can be written in the standard Hermitian
quadratic form as

mo*

(T()), = q” (w)q(@) substituting for q = q, + Bf, and expanding gives

2
(T(@)) = %(ql‘”ql +q,"Bf, +1,"B"q, +1,"B"Bf, )

which corresponds to the standard Hermitian quadratic form described by Nelson and
Elliott as

J=c+be+be+xHAx

withc = q;7’q;, b=Bfq;, A=BYB, x=f1

This has a minimum whenx, = —A"'b, which for the general case of many secondary

forces gives a minimum time averaged kinetic energy when f, = —[B"BFBHqI.

Considering the case of a single secondary force f3 the vector of modal amplitudes can
be written as

17



q!,1 ‘Ig,l
q=q,+q,=| * |[F| :
ql,n QZ,n

8, (x,) f,(x;)
m(w: 1+ jm) - o)

Using ¢, (@) =

¢,(x,)
q],l m(a’12 (1 +_j77) -w%)
g=| : |+ : 5
QI,R ¢n (‘x2)
| m(w; 1+ jm)-0%)

The minimum kinetic energy occurs when

£, =—b"p]'b"q, (2.27)

where b is the vector of modal amplitudes generated by f2

2.6.2 Diseretised beam model

The time averaged kinetic energy for the discretised beam model was derived in
section 2.5.2 and is repeated here for convenience.

P 2

(T(@)) =Y ”ﬁ w/'w, (2.26)

i=1

For the general case of r secondary forces, the displacement can be written as

] x X r+l X X. .

()= Z{ NCITXERY A N XC 75/ ]
o | (@, A+ jn)- ) = m(w, 1+ jn)-o%)

using the notation for modal amplitudes from section 2.6.1 this can be written

w(x, )= 97q, +9"[q, + g, +--q,, ] where ¢” =[g,(x) - 4,(x)] over n modes.

Defining P as an » x » matrix of the form

9y (x;) . o (X,41)
m{e} 1+ jm)—*) m(@; L+ jm)— o)
4,(x,) 8, (%,.0)
m(@}(1+ jm) - o) m(@?(1+ jm)-°) |
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§(x)
m(@} (+ j) - o)

g, (-xl)
| m(@ 1+ jm-)

and a as a vector of the form

/2
the beam displacement can be written as w(x, ) = ¢’ af, + @' Bf, where f, =| !
r+l
Each discrete element has a time averaged kinetic energy
(T (@), = [w,ufﬂpfﬁf]”[cpfafﬂp pt, ]
hence the total time averaged kinetic energy is given by
L ma’
(@), =Y. =2 lo7af, +oIBL | oTar, + o7pt.] (2.28)

4

i=1

which can be expanded to give

P o’ . ' . .
(r@), == e o07af, + £ oo BE, + 1,7 B ol0Tof, +1," B¢ 07Bt, |
i=1

This can be compared to the notation of Nelson and Elliott

J=c+bx+x"b+x"Ax

I P I
where ¢ = Z:a""q:o"(pfm|f1 ‘b= ZBH(p*(p,Ta ', A= ZB%}"(pr x=f,
i=1 =1 i=1

This has a minimum whenx, = —A"'b, which gives a minimum kinetic energy for the

P e
general case of » secondary forces when f, = —[Z i (p;(pfﬁ} Z B 90! af,
=]

=1

Considering the case of the discrete beam model with a single secondary force
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(T(w))fg%;f1| a”tpitpfa*ra”tpitpfﬁ%{%j pr?tpf%(%J B”w?w?ﬁ%}

P “Lp
which has a minimum kinetic energy when % = —[Z i (p:.‘(pfﬁ} > Bejo/a
=i i=1

1

2.6.3 Rigid Body Model
The kinetic energy in the rigid body modes for two applied forces is given by

dmo

(T, (@), =%[(fl +Jg)2+3(ﬁ(1—2%]+13(1—2x1—2jn (2.29)

This can be expressed in vector form as

1
(Tp(@), =—4a"q

where q is the vector such that

q =[~/§[li2?)]f1 + ﬁ(lizi—lﬂfz
1

which is of the form q =gq, +bf, where b= {\/'3_(1 - 2.{2.)
)

Using the same method as section 2.6.1
a“qa=q/q, +q;'bf, + ;b"q, + ;b7bf,

This has a minimum kinetic energy when f, = —[b” brbH q,,i.e. when

{22 a0
23]

The minimum time averaged kinetic energy can be found by substituting equation
(2.30) into equation (2.29)

f=

20
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3 Numerical simulations of the minimisation of the total time
averaged kinetic energy in a beam

Figure 3.1 shows an example of using a secondary force near the centre of the beam

to reduce the overall time averaged kinetic energy of the beam driven by a central
primary force.

| ) L) |
[ LU !

2 2

<
A\ 4
=

Figure 3.1 Controlling the time averaged kinetic energy of a beam driven by a central primary force
with a secondary force near the centre.

The optimum value for /5 in order to minimise the time-averaged kinetic energy of the
beam at each frequency has been determined using equation 2.27. This has then been
used in equation 2.25 to calculate the total time averaged kinetic energy of the beam
driven by the two forces. This is presented in figure 3.2. '

-3

10

------ Kinetic Energy for beam with one force applied at centre
-— Kinetic Energy for beam with secondary force applied near centre

o
R

Kinetic Energy / J

Figure 3.2 Total time averaged kinetic energy for a beam driven by a single force applied at the
centre, and for a beam with an additional secondary force near the centre. The magnitude and phase
of the secondary force have been chosen to minimise the overall kinetic energy at each frequency.



Figures 3.3 and 3.4 show the results for a secondary force applied near the end of the
beam in order to reduce the overall time averaged kinetic energy of the beam with the
primary force still applied at the centre.

I

) f(x1) | .
0 01l I z
2 2

Figure 3.3 Controlling the time averaged kinetic energy of a beam driven by a central primary
foree with a secondary force near the end.

------------- Kinetic Energy for beam with one force applied at centre

[~} == Kinetic Energy for beam with secondary force applied near end

) 3 )
' 3 '

Kinetic Energy / J

.....

Bl

Figure 3.4 Total time averaged kinetic energy for a beam driven by a single force applied at the
centre, and for a beam with an additional secondary force near the end. The magnitude and phase of
the secondary force have been chosen to minimise the overall kinetic energy at each frequency.

Figure 3.2 shows that the application of the secondary force near to the primary force
has reduced the overall time averaged kinetic energy of the beam. Figure 3.4 shows
that the application of a secondary force near one end of the beam is also able to

reduce the kinetic energy of the beam, but not to the same extent as shown in figure
3.2.
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Figure 3.5 shows the cumulative kinetic energy for a beam, driven by a single point
force at one end, summed up to 5 kHz (f/=66), which includes the first 20 non-rigid
modes. The cumulative energy is shown as a percentage of the total sum up to 5 kHz.

S (ra),

cumulative % total kinetic energy(f) = &-———x100

2.(T@),

i=1

A beam driven at one end is considered so that all of the modes are excited.

100 s L A I B A :

)| S

cumulative percentage of total kinetic energy up to 5 kHz

100 ; i . 11
10 Bl 10

Figure 3.5 Cumulative kinetic energy for a free-free beam driven at one end by a point force. Shown
as a percentage of the total sum up to 5 kHz (pl=66) which includes the first 20 flexible modes.

Figure 3.5 shows that between 40% and 50% of the total energy up to 5 kHz is in the
two rigid body modes. This suggests that a simple optimisation scheme to reduce the
kinetic energy in the rigid body modes would significantly reduce the overall Kinetic
energy of the beam. Equation (2.30) can be used to produce a minimisation of the
kinetic energy in the rigid body modes. In this case the secondary force f; as given by
equation (2.30) is constant for all frequencies and reduces to f>- -f; if the secondary
force is coincident with the primary force.

Figure 3.6 shows the kinetic energy in the rigid body modes for the situation
described by figure 3.1, for a single central point force and for a secondary force near
the centre optimised to reduce the kinetic energy in the rigid body modes by using
equation (2.30). Also shown in figure 3.6 is the total kinetic energy using equation
(2.21) for a beam driven by a single central force and the kinetic energy obtained
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from equation (2.24) for the beam driven by two point forces. In this case the
magnitude and phase of f; have not been optimised at each frequency, instead the
value determined to minimise the kinetic energy of the rigid body modes using
equation (2.30) has been applied at all frequencies. This is in contrast to figure 3.2
where the minimisation was determined at each frequency.

10% ¢

Kinetic Energy / J

------ Kinetic energy for beam with one force applied at centre
1070 === Kinetic energy in rigid body modes for one applied force
- Kinetic energy in rigid body modes with secondary force near centre
—— Kinetic energy for beam with secondary force applied near centre
using the value for f2 calculated from equation 2.30 for all frequencies

11

10°

0 1

10 8l 10

Figure 3.6 Total time averaged kinetic energy using a) single force equation (2.21) with 50 flexible
modes b) rigid body equation (2.29) for (i) a beam driven by a single force applied at the centre (ii) for
a beam with an additional secondary force near the centre and c) two force equation (2.24) with 50
fexible modes and the magnitude and phase of the secondary force chosen to minimise the rigid body
kinetic energy as given in equation (2.30) then applied to each frequency.

Figure 3.6 clearly shows that the secondary force when optimised can reduce the
energy in the rigid body modes for this orientation of the forces. The solid curve
shows that using the same magnitude and phase for the secondary force for all
frequencies introduces energy into the even numbered modes that were not excited by
the single central force. Using a full optimisation of f; at each frequency, as described
by equation (2.27) and shown in figure 3.2, gives lower values for time averaged
kinetic energy than an optimisation using just the rigid body modes.

Figure 3.7 shows the magnitude of fo/ f; obtained from equation (2.27), together with
the phase of f; with respect to f; for the case depicted in figure 3.1 As can be seen
from figure 3.7, the amplitude of £; is small at frequencies corresponding to the even
modes of the beam such as f/=7.8. These even modes are not excited when f5 is not
present. These low amplitudes ensure that the optimised control force f> does not
increase the overall kinetic energy at these frequencies by effectively ‘switching it
off’. This is also clear in figure 3.2 at #/=7.8.
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Figure 3.7 Amplitude and phase of f, with respect to f1 for optimisation using equation (2.27) for beam
driven by a central primary force and a secondary force near to the centre as shown in figure 3.1

—
Q

The cumulative kinetic energy - for the force positions shown in figure 3.1 - as a
percentage of the total kinetic energy of the beam driven by a single central point
force up to 5 kHz is presented in figure 3.8. The total amount of kinetic energy in
frequencies below 5 kHz - which corresponds to the first 20 flexural modes of the
beam - is much lower if the simple rigid body minimisation is performed, and even
lower if the full minimisation at each frequency is performed.

Figure 3.4 showed that, for some positions of the secondary force, the overall kinetic
energy of the beam does not get reduced to a great extent. For the situation shown in
figure 3.3 - with the secondary force close to one end - the simple rigid body
minimisation of equation (2.30) applied at all frequencies causes the beam to have
more kinetic energy than when just the single central force is applied for frequencies
below 5 kHz, as shown in figure 3.9. For this configuration of primary and secondary
force, it would be unwise to apply the rigid body minimisation value of f; at all
frequencies.
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Figure 3.8 The cumulative time averaged kinetic energy as a percentage of the kinetic energy when the
beam is driven by a single central point force (at x/1=0.5). a) for the beam driven by a single point
force, b) for the beam with a secondary force near to the centre (at x/1=0.55) and using the Sull
minimisation at each frequency, c) for the beam with a secondary force near to the centre (at x/1=0.55}
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Figure 3.9 The cumulative time averaged kinetic energy as a percentage of the kinetic energy when the beam is
driven by a single central point force (at x/1=0.3). a) for the beam driven by a single point force, b) for the
beam with a secondary force near to the end (at x/1=0.05) and using the full minimisation at each frequency, c)
for the beam with a secondary force near to the end (at x/1=0.05) and using the rigid body minimisation at all
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4 Discussion

The rigid body model can be used to predict how useful a secondary force in a
particular position will be in reducing the overall kinetic energy of the beam. Using
equation (2.30)

G )
foat]]

the overall time averaged kinetic energy of the beam wiil not be reduced when f>=0.0
i.e. when

3[1-2ﬂ][1—2ﬁ)=-1
I I

1 1+3(1—2?)
Xy
S N P (4.1)

fr= 4 (2.30)

Equation (4.1) gives the position of the secondary force where the overall kinetic
energy of the beam is not reduced. This is plotted in figure 4.1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 a.7 0.8 0.9 1
X,k

Figure 4.1 Plot of equation 4.1. The position of the secondary force where the overall kinetic
energy of the beam is not reduced .

As can be seen from figure 4.1, using the rigid body model, for a primary force on the
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: 21 o :
interval -g< x, <—, the application of a secondary force anywhere on the beam will

reduce the overall kinetic energy in the rigid body modes provided the amplitude is
chosen according to equation (2.30).

For the primary force x; on the intervals {0, ﬂ and [—%{,l] there is a position for the

secondary force where the kinetic energy cannot be reduced, this position corresponds
to the point about which the rigid beam is rotating when the single primary force is
applied. Figure 4.2 shows some examples.

(b)

| \ N
; 1
- fa
! T
B S
llll ©
fi
S
A ————e 0 (d)
h

(e)
fi

Figure 4.2 Some orientations of a rigid body beam showing points where the application of a
secondary control force will not reduce the overall kinetic energy (a-c), and where the application of a
secondary force anywhere on the beam will reduce the kinetic energy (d-¢).

Figures 4.2 (a-c) all have a pivot point on the beam, about which the beam is rotating
due to the application of the primary force. If the secondary control force were
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applied at these points of rotation then the moment due to f; will not be cancelled. For
figure 4.2d, the beam appears to rotate about a point off the end of the beam. A
secondary force can be positioned anywhere on the beam in order to reduce the
overall kinetic energy. For figure 4.2e the beam does not rotate, in this case the
secondary force can be applied at any point on the beam in order to reduce the kinefic
energy. In order to minimise the rigid body kinetic energy in the case of pure
translation only, the secondary force would be equal in amplitude and 180 degrees out
of phase with the primary force. In the specific case when the secondary force is
coincident with the primary and is equal in amplitude and opposite phase then clearly
the time averaged Kkinetic energy is zero. In general for practical machine
installations, for example, the coincident case will never be achievable.

Figure 4.3 shows the full optimisation using equation (2.27) when the primary force is

applied at the end and the secondary force at %;- as depicted in figure 4.2a.

Kinetic Energy / J

107 == Kinetic Energy fo'r bearﬁ withl one force applied at end
—— Kinetic Energy with secondary force applied at 2L/3

10° Bl 10"

Figure 4.3 Total time averaged kinetic energy for a beam driven at one end by a single force, and for
a beam with an additional secondary force at 2L/3. The magnitude and phase of the secondary force
has been chosen to minimise the overall kinetic energy at each frequency

Figure 4.3 confirms the prediction of figure 4.2a and figure 4.1 that a secondary force
in this position will not be effective in reducing the kinetic energy in the rigid body
modes. As can be seen from figure 4.3, the minimisation has been effective for most
of the flexural modes. Figure 4.4 depicts the cumuiative energy in this case. Because
a large proportion of the kinetic energy is in the rigid body modes, the minimisation
has not been as effective as for the case depicted in figure 3.8.
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Figure 4.4 The cumulative time averaged kinetic energy as a percentage of the kinetic energy when
the beam is driven by a single central point force (at x/1=0.5). a) for the beam driven by a single
point force at the end, b) for the beam with a secondary force at x/1=2/3 and using the full
minimisation equation (2.27) at each frequency.
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5 Conclusions

Models have been developed to study how a thin clastic beam with free end
conditions vibrates under the influence of two point forces. Two methodologies were
utilised to calculate the time averaged kinetic energy of the beam. The first considers
the beam as a continuous elastic structure and integrates the time averaged velocity
along the length of the beam using a modal description. The second considers the
beam as a series of lumped masses and sums the kinetic energy of each small mass
clement to determine the total time averaged kinetic energy. Both methods are in good
agreement if the number of discrete mass elements per wavelength is greater than 5.

Both the modal and discretized models allow the Kinetic Energy to be formulated
using the standard Hermitian quadratic form. For this form of the equation, methods
exist for calculating the magnitude and phase of the second force in order to obtain a
minimum in the time averaged kinetic energy of the beam. The Hermitian quadratic
form was developed in a general form to allow for any number of secondary forces.

Two rigid body modes exist for a beam with free end conditions. These correspond to
translation and rotation of the beam without bending. The models show that the rigid
body modes can contribute a large proportion of the total kinetic energy for
frequencies below the first flexural mode.

A simpler model was developed to minimise the kinetic energy in just the rigid body
modes. The rigid body model was used to show that if the primary force is on either

of the intervals {0, é] or [2?!,!} there is a position for the secondary force where the

time averaged kinetic energy in the rigid body modes cannot be reduced. This position
corresponds to the point about which the rigid beam is rotating when the single

primary force is applied. If the primary force is on the interval é<xl <?, then a

secondary force of the correct amplitude and phase can always reduce the kinetic
energy.

The optimum position for the secondary force is always co-located with the primary
force. In which case, total cancellation can be achieved if the secondary force is of the
same magnitude and 180 degrees out of phase.
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