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Abstract

Piezoelectric materials have the ability to produce a contraction or extension when an electrical
charge is applied to them. By integrating piezoelectric elements into slender structures, structural
vibration and oscillations can be reduced by measuring them and controlling the actuators in real
time. Such a composite structure is referred to as smart-structure. In this report the way in which
piezoceramic actuators couple into, and excite a beam are briefly reviewed. Two different control
strategies to control the global vibration of the beam, namely feedforward control and direct
velocity feedback control, are then discussed and compared. Advantages and disadvantages of both
the approaches are highlighted. Theoretical and off-line simulations using experimental data are

presented and compared with experimental results.
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Nomenclatuore

V. Applied voltage to piezoelectric actuator

E : Applied Electric field to piezoelectric actuator
ds; : Piezoelectric strain constant, i.e. strain along direction 1, for unitary electric field applied in

direction 3.

x : Longitudinal, axial, direction along the beam

z . Transverse, out-of-plane, direction with respect to the beam
£(z) . Strain distribution along the beam section

‘& @ Strain along direction 1
' g/ : Unconstrained strain along direction 1

M; : Induced moment by piezoelectric actuator

F; . Induced force by piezoelectric actuator

t, : Piezoelectric actuator thickness

Y, : Young’s modulus of the piezoelectric actuator
I, : Moment of inertia of the piezoelectric actuator
d : Length of the piezoelectric actuator

1 : Beam thickness

Y, . Young’s modulus of the beam

I, : Moment of inertia of the beam

A : Beam section area

Py - Beam mass density

My : Beam mass

¥ : Young’s modulus ratio

T': Thickness ratio

R : Strain ratio
" gn:n™ Modal amplitude

&, : 1" Mode shape
M, : n™ Modal mass

@, 1" Natural frequency

7 - Structural damping

w(x,t) . Out-of-plane beam displacement (time domain)
w(x) : abbrev. for w(x,t)

W(x,w) - Out-of-plane beam displacement (freq. domain)



W(x) : abbrev. for W(x, @)

W, . abbr. for W(x,)

Vix, m) : Out-of-planc beam velocity (freq. domain)

V(x) . abbrev. for V(x, w)

V, - abbr. for V(x,)

Afx, @) : Out-of-plane beam acceleration (freq. domain)

Afx) : abbrev. for A(x, @)

A, : abbr. for Afx,)

Mp : Primary moment

Ms : Secondary moment

x, : Position of the primary piezoelectric actuator along the beam

xs : Position of the secondary piezoelectric actuator along the beam

R(x,, xp) : Receptance at position x,, due to moment pair excitation at position xp
R,p : abbrev. for R(x,, xp)

Y(x., xp) : Mobility at position x,, due to moment pair excitation at position xp
Y..p: abbrev. for Y(x,, xp)

T(x., xp) : Accelerance at position x,, due to moment pair cxcitation at position xp
T.p : abbrev, for T{x,, xp)

VKE : Vibrational kinetic energy

m, : Mass of the e element

G(w) : Feedforward controller transfer function

J: Cost-function to be optimized, i.e. Kinetic energy reduction factor

g : Feedback gain |

g, : Signal conditioning gain

H, : Accelerometer transfer funcion

H; : Integrator transfer funcion

¢, - Piezoelectric actuator transfer function



1 — Introduction

The control of mechanical and structural vibrations is important in many fields. In manufacturing,
where mechanical vibration degrades both the production rate and the quality of the end products;
in civil engineering, where structural vibrations affect human comfort; in automotive and aerospace

fields, where vibrations reduce component life and generate annoying noise.

Different approaches have been applied to suppress or reduce unwanted vibrations in the
engineering ficld. Traditionally, passive dampers and isolators are used to attenuate mechanical
vibrations [1, 2, 3], leading to so-called passive vibration control. Recent advances in digital signal
processing and sensors and actuators technology have prompted interest in active vibration control

[4, 5].

A typical active vibration control system is an integration of mechanical and electronic components
with computer control. The main components of an active vibration control system are the
mechanical structure influenced by the disturbance (creating unwanted vibrations), the sensors (to
perceive the vibration), the controller (to intelligently make use of the signal from the sensor and to
generate the appropriate control signal), and the actuator (to counteract the effect of the disturbance
on the structure). Destructive interference, from the influence of the actuator, suppress or attenuate
the unwanted disturbance on the structure. Various methods of active vibration control have been
developed and they may be classified under two general categories: feedback and feedforward
active vibration control. Among these two main categories, variations exist, each with advantages,

disadvantages and limitations.

In this report, a feedforward control system and a feedback control system, with a velocity
sensor/moment pair actuator, are studied and applied to a beam. The performances of the control
systems are presented in terms of the global vibrational kinetic energy of the beam. For the
feedforward approach, the optimal controller is derived. For the feedback approach, the optimum

feedback gain is derived in a given bandwidth.

This report intends to emphasize the main differences between the two control strategies.
Theoretical simulations, simulations based on experimental measurements (off-line experiments)

and experimental results are then presented and discussed.



2 — Piezoelectric Elements and Coupling Models

Piezoelectric materials have the ability to produce an electrical charge when extended or contracted.
They also produce an extension orr contraction when an electrical charge is applied to them.
Piezoelectric elements are relatively inexpensive, lightweight, easily shaped and bonded to or
embedded into a variety of rhaterials. They are produced as thin structures making it relatively easy
to tailor them for more convenient use. Furthermore, depending on their shape, distributed
piezoelectric elements may be used to detect motion at particular points in a structure (sensors) and
exert forces and moments (actuators). The design and placement of these piezoelectric elements is
obviously of great importance to achieve optimal performances. In this section, the main concepts

and results from [6] are summarised here for completeness.

2,3
V : Applied Voltage

E : Apptlied Field
/l | p : Poling Direction
+
Vv

¥.2

Figure I — Convention for directions in a piezoelectric element

In the one-dimensional case, a free piezoelectric element (assumed to be polarized along the z
direction), as illustrated in Figure 1, is assumed to develop compressive or tensional strain in the x
direction when activated by applying a voltage () in the z direction. The induced strain is
determined by the sign and amplitude of the applied voltage and the piezoelectric strain constants

(d51) of the material, and is given by

;_dyV ' (1)

where t, is the thickness of the piezoelectric element. When a voltage is applied across a
piezoelectric element which is bonded to a structure, it will attempt to expand/contract but will be

constrained somewhat due to the stiffness of the beam.



When piezoactuators are activated, surface traction/compression is generated at the
piezoactuator/beam interface. If the applied voltage varies sinusoidally with time, the substructure
experiences harmonic excitation. Given a combined structure that is thin compared to the radius of
curvature, a linear strain distribution can be assumed across the thickness direction [7] and therefore

the strains at each of the interfaces will be continuous. The strain is given by
elz)=k-z+¢, (2)

where k is the strain slope and & is the intercept with the z axis as sketched in Figure 2.

Piezoelectric actuator

[h
.

—‘/’,/
{7/5(2) o (2) 7/ 2
i /ﬁ ‘\z i

Beam

¥

<
0

Figure 2 — Strain and stress distribution due to excitation of one piezoelectric actuator bonded fo a beam

Note that if the piezoelectric element is forced to expand, a compressive state is induced in it due to

the stiffening effect of the beam, while if it is forced to contract a tensile state is induced instead.

The deformation induced by the actuator to the beam underneath is equivalent to the superposition
of a deformation induced by a pair of moments M; and a deformation induced by a pair of forces 7,

as illustrated in Figure 3, which are given by

s

YV ] k=C..V -] .5k &
M:‘_Yb Ib k—Cl Yb Ib [b/z K?_ & (3)
F=4,-Y,-6,=Cy-Y, -4, -¢ =K;-&’ 4)

respectively, where C, and Cs are constants given by:
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_ 3.Y-T-{1+7)

14+44.T-Y+6- T2 Y+4.T .Y +T*.7? (5)
_ Y.T-(1+7°-¥)

T4 T Y46 T2 Y +4- T Y +T° .77 ®)

C

G

and the 7 is the thickness ratio and Y is the ratio of the Young’s modulus of the piezoelectric

element to the Young’s modulus of the beam and are given by

.l yolo (7.3, 7.b)
! 7,

Az
,
Yo o
R S DR A
L rmpen o e g e i gt o s, s Piezoeleo PEEOT
A i Piezoclectric actuator ;
s AR A
S ™
g:‘m }:: F‘ "d:-m.\_\
{j, . . it . LT "
i X
S # M; M >
; / {
'
&
Beam
x=1{ w1,

Figure 3 — Equivalent force and moment distributions

One of the main conclusions drawn in reference [6] is that there is an actuator/beam thickness ratio
that maximizes the effective load. This depends on the actuator/becam Young’s modulus ratio. To
determine this, the strain ratio R is defined, which is the strain at the interface between the actuator

and the beam divided by the free piezoactuator strain:

g Y-T-(4+3-T+7°-Y)

R: =
g 1+4.T-Y+6-T*.Y+4.7°.Y+7T*.Y?

(&)

This equation is plotted in Figure 4 for steel and aluminium beams as a function of the thickness
ratio. As shown in Figure 4, there is an optimal thickness ratio for 7 less than one and it depends on
the substructure material. It is also shown that the strain ratio tends to unity as the thickness ratio

becomes very large. This is consistent with the fact that if the thickness of the piezoactuator is very

11



large compared to the beam thickness, the strain of the piezoelectric element will not be affected by

the relatively light stiffening effect of the beam.

One-Side Wafer Configuration
Gv? ¥ 7 1 i 13 k) 3 T L
- Stesl
— Aluminum
0.6
L5
2 0
04
“ .
(1
£
Eos
@ |

©
X

01

GG 1 2 3 4 g5 o 7 8 g 10
Thickness Ratio

Figure 4 — Strain Ratio as a function of Thickness Ratio for one piezoelectric actugtor
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3 — System and Model Validation

The system studied is the simply supported aluminum beam illustrated in Figure 5, whose

properties are given in Table 1.

Length (mm) | Width (mm) | Thickness (mm) | Young’s Modulus (N/m”} | Mass Density (kg/m’)

395 25 5 7.1x 10" 2700

Table I — Beam properties

Figure 5 — Picture of the beam that was studied

In order to simulate the system and analyse its performances, a mathematical model of the system is
needed. It was designed and built to behave as a simply-supported beam, whose mathematical
model can be derived in simple analytical form. Particular care has thus been given to the
construction of the physical supports for the beam, which can be seen in detail in Figure 6a. A
simple support has the conditions of zero displacement and zero bending moment as shown in

Figure 6b.

13




Displacement = 0

/\

Figure 6 — Picture of the constraints on the beam, a) and Sketch of the boundary conditions, b)

Moment = O

a b

. An Euler-Bernoulli beam model was chosen to represent the physical system. The equation of

motion is given by:

32w(x,t)
or?
(A list of symbols is given at the beginning of the report). The boundary conditions are given by

84
Y-f—;—"—x(—ff—’—f—)tow =pxt) ©)

w(0,1)= w(L, )= 0 (10
&' w(0,1) _ &*wl(L,1) _ 0 (10.b)
o’ o2

The out-of-plane displacement of any section along the beam can be estimated by the modal

expansion approach, where the displacement is given by
wlx,t)=34,()-4,(x) (11
n=l

and g, are the modal amplitudes and ¢, are the mode shapes. For harmonic motion, this transforms

in the frequency domain to

W (x,0)=> q,(0) 4, () (12)

14



q

LL|:pd (x,0)-8,(x)+m, (x,0)-4, (x)]dx

(@)=

Mn-[wj-(“jn)—a)z]

(13)

where pa(x, @} and my(x, ) are the force and moment distribution acting on the beam respectively.

The mode shapes, natural frequencies and generalized mass for the simply-supported beam are

respectively given by

#.{(x)=

being M, the mass of the beam.

V2 sin(n—f» : x]

(14)

(15)

(16)

Once a theoretical model has been developed, it is prudent to validate it by experimental tests on a

real structure. For this purpose, mode shapes and frequency response functions (FRF) are chosen

for comparison.

A piezoelectric actuator, whose properties are given in Table 2, was bonded on the beam surface at

100.5 mm from the right edge of the beam, as illustrated in Figures 7 and 8. It acted as primary

excitation, exerting a pair of moments located at its edges [7] and thus setting the beam into out-of-

plane vibration. In-plane vibrations, caused by the longitudinal forces coupled to the moments, are

neglected in this first derivation.

Length (mm)

Width (mm)

Thickness (mm)

Young’s Modulus (N/m®)

Dielectric Constant {m V'l)

25

25

1

6x 10"

212 x 107"

Table 2 — Piezoelectric actuator (PZT) properties
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Figure 7 — Picture of the beam and the primary piezoactuator

Primary Piezoactuator
(.,Z_é_mﬂL)
| W\ ; l-\)’)‘ |
NN
A Mp i MP A
B 100.5 mm 5§
. 395 mm 5

Figure 8 — Sketch of the beam and the primary piezoactuator

For this particular type of excitation the modal amplitude from Eq. 13 is given by:

, d , d
M, i¢, xP_E @ xP+5 an
qn(a)): Mnlﬂ)j(l'i'_]ﬂ _a)2J

The out-of-plane displacement at any section along the beam for unitary excitation moment pair, 1.e.

the receptance, is derived from Eq. 14 and is given by:

16



o)) )
R T o s

: d
—%[xp +5ﬂ (18)

The out-of-plane velocity at any section along the beam for excitation by a single moment pair, i.c.

the mobility, is given by
Y(x,.x,)= jo-Rlx,,x,) (19)

The beam is discretized into 13 elements, each clement being identified by its centre. The
magnitude and phase of the mobility at each point on the beam is calculated using equations (18)
and (19) and compared to the measured mobilities, which were measured using a laser vibrometer

as illustrated in Figure 9.

##2 8 #O#5 B T # B H0 #H M2 OB
A A T R

S i__L\
I Piezoelectric Actuator

Amplifier Analyzer
Searrce CHa CHB
o o o 9.9 /

ISR O |

Laser Vibrometer

Figure 9 — Experiment Setup

Experimental mobilities are measured in m/Volts. In order to compare these with the theoretical
quantities (m/Nm), the theoretical mobilities are multiplied by a constant factor C,, which takes into
account the electromechanical characteristics of the piezoelectric actuator. This factor, which

represents the piezoelectric actuator transfer function, is calculated by rearranging Eq.3 to give

c =c,.v, 2o (20)
/2 1,

17



Figures 10, 11 and 12 show the comparison of the simulated and experimental mobility at three

different points along the beam (refer to Figure 9 for points identification).

Magnitude

Phase

Mobility Y2p

200

100

-100

-200

- Theoretical

=== Exparimental

Freq. {Hz)

Freq. (H2)

Figure 10— Mobility at point #2
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Magnitude

Phase

-100

200

Mobility Y6p

—— Theoretical
-=~ Experimental

200

100

Freq. (M2)

Figure 11 — Mobility at point #6

Magnitude

Phase

Mobility YSp

—— Theoretical

=== Experimental

Freq. {Hz)

200

100

)

10

Freq. {H2)

Figure 12 — Mobility at point #9
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From the measured mobilities it is also possible to estimate the damping in the beam, which is
mainly effected by the joints at its extremes since the aluminium beam itself has very low structural
damping estimated to be about 0.005.

The first four natural frequencies were identified experimentally and the corresponding mode
shapes were estimated by measuring the out-of-plane displacement at all the 13 points along the
beam due to a constant excitation of arbitrary amplitude. The mode shapes were then normalized so
that the maximum value was equal to 1. Figures 13 to 16 show a comparison between the first four

theoretical and experimentally determined mode shapes.

Mode 1
1 1 ¥ ¥ T L) 1
s Theoretical
mww Experimental

09

1
1

08

o7t | 4

0.5

L
i

Modeshape

0.4

03

¥
i

02

a1

T
1

G I3 ) 1 1 I 1 1
g 005 4.1 .18 0.2 0.26 0.3 0.35 04

Beam Extent

Figyre 13 — First Mode Shape
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Modeshape
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06

0.4

0.2

1 ¥

= Theorstical
-—- Experimental

i

0.05 01 0.15 0.2 0.25
Beam Extent

33 035 0.4

Figure 14 — Second Mode Shape

Modeshape

i3]
0B
04

0.2

0.2
0.4
08
0.8

-1

- Theoretical
== Experimental

0.05 0.1 0.15 02z 0%
Beam Extent

0.3 0.35 04

Figure 15 — Third Mode Shape
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Modeshape

= Theoretical
=== Experimenial

Y Q.05 0.1 015 02 0.25
Beam Extent

Figure 16 — Fourth Mode Shape

As shown by the comparison of the theoretical and measured mobilities, and mode shapes, the

theoretical model seems to be a reasonable representation of the beam. Thus this model is used as a

mathematical model of the structure in this report.
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4 - Global Vibration of a Beam

The global vibrational kinetic energy of the beam is given by
1¢e.,
VKE(I)z-Q-Lw (x,6)-m(x)-dx 1)

Where m(x} is beam mass distribution per unit length.

The time-averaged global vibrational kinetic energy of the beam is given by [8]:
1 ¢ 2 1
VKE(@:ZL v (x,0)| -m(x)-dx:ZaJZZM” 7 (@) 22)

which depends only on the modal amplitudes of the system.

From an experimental point of view, the time-averaged global vibrational kinetic energy of the
beam is estimated by dividing the beam into p elements of finite length and measuring the
transverse velocity at their middle point, assuming that is the velocity of the element. The kinetic
energy is thus estimated as the sum of the kinetic energy of each element, according to the

following expression:

VKE(@)E%ime -V(xe,a))-V*(xe,a))=—3r-MP2ime -Y(xe,a))»Y*(xe,a)) (23)

g=1 e=1

Figure 17 shows a comparison of the experimental and theoretical results.
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7 Global Vibrational Kinetic Energy
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Figure 17 — Theoretical and experimental vibrational kinetic energy of a simply supported beam excited by a single

piezoelectric actuator
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5 — The System used to Study the Active Control Algorithms

In this section the performance of the control system is investigated in terms of vibrational kinetic
energy reduction. In order to attenuate the vibrations induced in the beam by the primary
piezoelectric actuator, a secondary piezoelectric actuator in employed and thus bonded on the beam
at 94.5mm from its left end, as illustrated in Figure 18 and sketched in Figure 19. The vibration
induced by this latter source will interfere with the primary vibration actively damping the overall

systeni.

Figure 18 — Picture of the beam and the primary and secondary piezoactuators

Primary Piezoactuator
AT 1] 3 ) 23 1001 N
Secondary Piezoactyator
i i
(0 F=——

i \‘\\D ; Vi 1\ ! )/

M, | M, M; + M
« 1005 mm i o 945 mm,
< i 395 mm ' 5

Figure 19 - Sketch of the beam and the primary and secondary piezoactuators

The following sections describe the study and analysis of the Feedforward and Velocity Feedback

control strategies separately.
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6 — FeedForward Strategy

A feedforward control strategy is effective when the structure to be controlled is excited by a
primary excitation at a single frequeﬁcy. Figure 20 shows such a control system as a block diagram.

Figure 21 is a sketch of the actual system.

Excitation __ Response

P Mechanical system

— Cortroller

Figure 20 - Block Diagram of a Feedforward Control System

Feed-forward Control

Secondary Excitation

Figure 21 — Sketch of the FeedForward Control System

The aim is to design a controller G{@) such that the global vibrational kinetic energy of the beam is

minimized for each given frequency of the primary excitation.

6.1 — Theoretical Simulation

The modal expansion of the transverse displacement at some point on the beam (Eq. 13) is first

expressed as a vector inner product
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W(x0)=q" (@) ¢(x) (24)

where:

0" (0)={g.()4,()...q, (@)} (25.2)
0" ()= {4, ()6, (x)....4, (x)} (25b)

The global vibrational kinetic energy of the beam given by Eq. 22, can then be written as
2
VKE(0)=-"q" (0)-g(o) 26)

Since the beam is excited by two moment pairs, Mp and Mg, where:
@7
M, =Glw)-M -
The vector of structural mode amplitudes g(a) is the superposition of components qp(@) due to the

primary source Mp and those gs(@) due to the secondary source M, weighted by the controller

G(w), so that in general:
a(@)=q,(@)+4q,(0)-G(») (28)

Where:

a,” ()= 14, (©).4,,(@)q,, @)} (29)

d d
M, |:¢5;:(xp __J_¢p:[xf’ +H
2 2 (30)

e 0 PE Py W]
q,” (0)={g.(0).9,,(@)...q9, (@)} (31)
d d
M,- ¢;:[xs __J_Qj;[xs +J:|
7 (0)= 2 2 (32)
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The global vibrational kinetic energy can thus be written in the standard Hermitian quadratic form

as:

Mo’
4

VKE(w)= (6" g, oq,-G+G" -, 0q,+q," oq,-G+q," oq,] (33)

VKE(w) is thus a quadratic function in G(w), which is guaranteed to have a minimum value for a

value of G{a) given by [8]
1
Gopl@)=—la," oq,]"oq." oq, (34)

with a corresponding minimum value of VKE(w) given by:

M0’ |
(0)==2" qu°[I—qs°[qs”qsr°qf]°qp .

Figure 22 shows the uncontrolled and optimally controlled kinetic energy. Figure 23 shows the

Frequency response function (FRF) of the optimal controller.

; Theoretical Kinetic Energy
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Figure 22 — Uncontrolled and optimally controlled global VKE (Theoretical Simulation)
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Figure 23 — FRF of the Optimal Controller (Theoretical Simulation)

As can be seen from Figure 23 the theoretical controller is a real number, either in-phase or out-of-
phase with the primary excitation. By comparing Figure 22 and Figure 23, one can also notice that
it is particularly effective in the frequency bands where only one mode is dominant. In the
frequency regions where two modes are dominant, the controller is less and less effective: at some
frequencies the controlled and uncontrolled kinetic energy become similar and the best the

controller can do is actually doing nothing.

6.2 — Experimental Off-Line Simulation

The optimized global vibrational kinetic energy of the beam and the controller FRF may be

estimated starting from Eq. 23:

VKE(&));%ime -V(xe,a))-V*(xe,a))-:%Mpzime Yix,0) Y (x,o) (23)

e=1

where the mobility is now given as the superposition of the two components due to the primary and

secondary excitation, as:
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Y(x,.0)=7,(x.,0)+Gl@),(x,,0) (36)
Substituting Eq. 36 into Eq.23, one gets the cost function J(w), whose minimum is sought:

r 4 z Jzd
J0)=Y1,"Y, +G"G- Y VY +G XYY, G Y X, 7)
e=1 e=] e=l e=1

Differentiating Eq.37 with respect to the real and imaginary part of G(@), and setting the resulting

expressions to zero and solving for Re(G) and Im(G) gives

£ H Z H
ZYep I]es-*—zly;s Yep (38&)

Re(G,,) = —=1
231,

e=]

M 4 H
Y, - YN,
m(G,,)=—j= =l (38.b)

23'7,"7,
=]

which is the optimal controller transfer function:

G (0)=-&— (39)

dr.r,

e=1
Substituting this expression for G{@) into Eq.36 and combining this with Eq.23, gives the optimised

global vibrational kinetic energy of the beam. Figure 24 shows the uncontrolled and optimally

controlled kinetic energy by off-line simulation. Figure 25 shows the FRF of the optimal controller.

30



Kinetic Energy

Experimental Kinetic Energy

10

1 3

—
(=3
(=3
ki

—
3,
-
=)
Ty

-
I
«
e
o
t

1(3'-12 .

-13

= tincontrolied
waw Opt. Contr,

10

10° 10°

Freq. (Hz)

Figure 24 — Uncontrolled and optimally controlled global VKE (Off-Line Simulation)
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In Figure 26 the FRFs of the controllers shown in Figure 23 and Figure 25 are plotted so that the

Figure 25 — Optimal Controller FRF (Off-Line Simulation)

theoretical and the off-line simulated results can be compared. A good agreement is clearly shown.
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Figure 26 — Optimal Controller FRF (Theoretical and Off-Line Simulation)
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7 — Direct Velocity Feedback Strategy

Feedback control strategy is effective when the structure to be controlled is excited by a primary
random excitation. Figure 27 shows a block diagram of such a control system. Figure 28 is a sketch
of the actual system, where, in particular, Direct Velocity Feedback (DVFB) with a velocity

sensor/moment pair is applied.

Disturbance

Response

—P» Mechanical system —P-

Controlier L

Figure 27 — Block Diagram of a Feedback Control System

Primary Excitation Secondary Excitation

s /s

ﬁ.’]

Velocity Feedback =

Integrator |o— !

Piezoattuator

Figure 28 — Sketch of the Direct Velocity Feedback Control System
The vibration of the beam excited by a primary moment pair, Mp, is sensed by an accelerometer,

whose signal is integrated and amplified with a negative feedback gain, -g, before supplied to a

secondary moment pair, Ms.
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The aim of the DVFB control approach is to find the optimum feedback gain g, in order to
minimize the global vibrational kinetic energy of the beam in a given bandwidth. Stability is also an
issue when a non-collocated velocity sensor/moment pair is used [9]. It is found that there is a

limitation on the feedback gain due to stability requirements.

7.1 — Theoretical Simulation

The cost-function to be minimized in this case, is the integral of the global vibrational kinetic

energy over the given bandwidth, which is chosen to be 0-3200 Hz.

J= [VKE(o)d (40)

@y

Figure 29 illustrates the graphical meaning of J.

Global Vibrational Kinetic Energy
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Figure 29 — lllustration of the cost-function J over a frequency band of 0-3.2 kHz

The global vibrational kinetic energy is again calculated using Eq.26. The beam is excited by two

moment pairs, Mp and Mg, where now

M, =-g-Vixg,o)=-gV; (41)

By superposition
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V(xS’a)):MP Yo + Mg Yoo =M, Yo —g- Y 'V(x5=w) (42)

and thus solving for Vs and substituting into Eq.41 gives

M, =Mpﬂ (43)
1+g-Y

The vector of structural mode amplitudes q(@) is again the superposition of components qp(@) due

to the primary source Mp and those qs(@) due to the secondary source M, and is given by

—o.¥
al)=a,@)+a,l0) 5 (44)
8§

where qp(@) and qs(w) are given by Eq.29 and Eq.31. The cost-function J has a minimum for a
particular value of the feedback gain. In fact, if g is equal to zero the system (Figure 30) has a
vibrational kinetic energy equal to the uncontrolled case. If the gain g goes to infinity, the secondary
actuator behaves like a new “active” boundary condition turning the system into a new one (Figure

31) with different natural frequencies and vibrational kinetic energy (Figure 32).

Primary Excitation

g Accelerometer Piezoactuator

Figure 30 — Equivalent system for g equal fo zero
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Figure 31 — Equivalent system for g tending to infinity
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Figure 32 — VKE for g equal to zero and going to infinity (Theory)

The cost-function ./ is normalized with respect to the uncontrolled case to give

[o'a" () ql0)-do

J = | 45
[0’a," (@)° a5 (0)-do *)

which is plotted as a function of the feedback gain g in Figure 33.
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Figure 33 — Kinetic energy reduction factor as a function of the feedback gain (Theoretical Simulation)

7.2 — Theoretical Stability

From Eq.44 it is clear that when the denominator goes to zero, the system response becomes
infinite. This is the condition for instability in the feedback control system. The stability equation is

l+g Y =0 (46)

Instability occurs when the feedback gain is increased beyond a certain value, which is referred to
as the critical gain. If this is less than the optimum gain for the kinetic energy reduction, then this is

a limit for the actual reduction that can be achieved.

The stability of the feedback control system is investigated in this section plotting the Nyquist and
Bode plots of the open-loop transfer function Ygs, which is the mobility at the sensor position due to

the secondary excitation.

A ' zqz'ﬁn(xs)‘ 4.{@(&—%}“%@“%}} @7)
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Figure 34 and 35 show the open-loop transfer function Nyquist and Bode plot respectively.

Nyquist Plot
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Figure 34 — Open-loop transfer function, Nvguist plot (Theoretical Simulation)
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Figure 35 — Open-loop transfer function, Bode plot (Theoretical Simulation)

38



Theoretical stability has been investigated up to 10’ Hz, where the magnitude of the Bode plot
seems to reach a stable value'.

From Figure 35 the critical gain is estimated to be around:

1
g. = ~ 3333 (48)

~3.10

The Bode plot illustrates the cause of that instability. In fact, when the frequency is such that the a
wavelength is equal to the length of the piezoelectric actuator, the phase of the open-loop transfer
function do not recover any more and this is the reason why the loops in the Nyquist plot appear
with negative parts real parts causing the system to be only conditionally stable. From Figure 36 the

frequency that this occurs is estimated to be around

£, =67-10"Hz (49)

corresponding to a wavelength of

Lo 2= %,

’ N2 fo NPy A,

=0.025m (50)

which is an estimate of the piezoelectric actuator length. Figure 33, which represents the kinetic
energy reduction factor as a function of the feedback gain, is plotted again in Figure 36 together
with the critical gain marked on it. It appears that this is less than the optimum gain and thus the

kinetic energy may be only reduced by about 9 dB.

" Nevertheless, it should be noted that the Euler-Bernoulli beam model used here, could not be appropriate and might
fail sensibly up to these frequencies.
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Figure 36 — Kinetic energy reduction factor and critical gain (spot) (Theoretical Simulation)

Figure 37 is a comparison between the uncontrolled and optimal kinetic energy, taking into account

the stability requirements. Examining this, it is clear that the effect of the direct velocity feedback is

like adding damping to the structure. This is due to the fact that the secondary excitation is

proportional to the velocity like a damping force.

40



] Global Vibrational Kinetic Energy
107 ¢ — : :

18- 3 7 E

10° L

-10

Kinetic Energy
o

-11

10k
m-1;2 :
e {Uneontrolied
3] www (33in =333
1[’] i i i 1 PT SOV I | L 2 1 Y i PR | 1
100 10°

Freq. (Hz)

Figure 37 — Uncontrolled and optimized kinetic energy (Theoretical Simulation)

7.3 — Experimental Off-Line Simulation

From an experimental point of view, the global vibrational kinetic energy of the beam is estimated
from Eq. 23, where the velocity at each point along the beam is given as the superposition of the

velocity at that point due to the primary and secondary excitation, as:
(31)
V(xe,a))= Mpr(xe,a))+ MSY;(xe,a))
With reference to Figures 38 and 39, Eq.41 can be rewritten as:

(52)
Ms :_AS .ga .Ha gH1 .cp

where A is the acceleration of the beam at the sensor position, g, is the signal conditioning gain, H,
is the accelerometer transfer function, g is the feedback gain, H; is the integrator transfer function

and ¢, is the piezoelectric actuator transfer function.
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Figure 38 — Actual Feedback Loop

Piezoactuator Integrator

________________________________

Beam

Accelerometer

Figure 39 — Actual Feedback Loop Block Diagram

The acceleration at the sensor position 4, may by written using the superposition principle as

Ay =M Ty + M T (53)

Combining Eq.52 and Eq.53, Eq.51 can be written as

‘H, .g-H,-c, T
g4 a g i r P (54)

v =M - {x,.0)
(x.,0) p Yp(xe,ﬁ)) 4 mjl-l-ga'Ha'g'Hi'cp'TSS

Substituting Eq.54 into Eq.23, one gets the kinetic energy as a function of the feedback gain g and

all the real transfer functions present in the feedback loop.
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For the evaluation of the cost-function J, the following equation is used rather than Eq.45

5(Em 1.0) 700

J =

5[ Em 16501, )

i

(55)

Figure 40 shows the cost-function J, i.e., the kinetic energy reduction factor, as a function of the

feedback gain, for the theoretical and off-line simulation.
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Figure 40 — Kinetic energy reduction factor (Theoretical and Off-line Simulation)

7.4 — Experimental Stability

Eq.46, which determines the stability of the feedback system in the ideal case, is now substituted by

the denominator of Eq.54, that is:

l+g, - H,-g-H,-c, Ty =0 (56)
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Figure 41 is the Bode plot of the accelerance as measured by the accelerometer (PCB model

352(22) out from the signal conditioning (PCB model 442C04), i.e. Ty - g, - H,, compared to the

theoretical plot.
. Open-l.oop Bode {Accelerance)

HiN . . ! S
4
o
£ .0
' 10
o
o
=2 ¥ - heasured

s === Thearstical
1{]‘ ) \ TS R | L PR S ol z 1
10° 10° 10*
Freq {Hz)
300 -y ey . -
200, e :
rd. L+ g

3 \ i" 1 : I rl "
8 100f : i iy :"* , L i
o W : Ut RN

00 roial : AT ST i L SN WO T T SO

10° 30° 16°
Freq (Hz)

Figure 42 is the Bode plot of the ideal and measured integrator frequency response function.

Figure 41 — Theoretical and measured accelerance
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Figure 42 — Theoretical and measured integrator FRF

The stability of the close-loop system is investigated again using the Nyquist and Bode plot of the

open-loop transfer function, which are shown in Figure 43 and 44 respectively.
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Figure 43 — Open-loop transfer function, Nyquist plot (Measurement)
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Figure 44 — Open-loop transfer function, Bode plot (Measurement)
From the Nyquist plot in Figure 44 the critical gain is now estimated to be around:

1

g

(37)

which is a little bit lower than the theoretical one. Figure 45 shows the kinetic energy reduction

factor from the off-line simulation together with the critical gain marked on it.
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Figure 45 — Kinetic energy reduction factor and critical gain (spot) (Qff-Line Simulation)

One may notice that now the instability is not due to the same reason as described in Section 7.b,
but it is due to the combination of all the actual instrument transfer functions, which causes the
phase angle in the Bode plot not to recover and in the Nyquist plot shifts the loops onto the negative

side of the real axis, encircling the Nyquist point when increasing the feedback gain.

7.5 — Experimental Results

An experiment was conducted to validate the predictions from simulations. The experimental setup

is shown in Figure 46.
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Figure 46 — Experimental setup of the feedback control system

The feedback gain is increased from zero (uncontrolled system) to the physical limit of the
amplifier. The vibrational kinetic energy of the beam is thus estimated, for each value of the
feedback gain, using £q.23. The kinetic energy reduction factor is then evaluated by Eq.55 and

shown in Figure 47 together with the one from the off-line simulation.
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Figure 47 — Kinetic energy reduction factor and critical gain (Off-line Simulation and Measurement)
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As may be noticed from Figure 47, the gain of the experimental results where the kinetic energy
reduction factor reaches a minimum, corresponds to the critical gain as evaluated from off-line
simulation. This is consistent with the fact that increasing the gain beyond the critical value, the
instability in the system will cause the vibrational kinetic energy to increase. The experimental
results also show that the kinetic energy may only be reduced by about 4dB, and thus the actual
reduction is lower than the predicted. This is due to the fact that off-line simulation does not take
into consideration the effects caused by instability in the neighbourhood of the critical gain. An

unfeasible expectation is also plotted in Figure 47.

7.6 —-Improving Theoretical Stability

From section 7.2 it is clear that the critical gain, which comes from the theoretical analysis, is a
limit that can not be exceeded. It is of interest to see if there is a way to keep this limit as high as
possible. The stability limit comes from the presence of the loops of the open-loop transfer function
on the left hand side of the Nyquist plot of Figure 34. A way to increase the value of the critical
gain could be to keep those loops as closer to the imaginary axis as possible. This could be achieved
by adding an additional roll-off in the frequency response function plotted in Figure 35. A lumped
mass concentrated at the sensor position be helpful in this respect, since the mobility of a mass

reduces with frequency. Figure 48 illustrates the addition of the lumped mass.

Secondary Excitation

Lumped Mass

1
T

Integrator  |¢——

Figure 48 — Sketch of the Direct Velocity Feedback Control System with added Lumped Mass

To write an expression of the mass-modified open-loop transfer function, the mobility method is

used.
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Figure 49 — Sketch of the Lumped Mass addition to the open-loop transfer function

Point 1 and point 2 in Figure 49 are rigidly connected and both coincide with the sensor position

and so the following equations hold

V.=V, =V (58.a)
F+F =0 (58.b)
V=F %, (58.c)
W=k T +Mg Y (58.d)

Where Y3, is the mobility of the mass M, Y;; is the point mobility at the sensor position due to a
unitary force and Y;s is the mobility at the sensor position due to a unitary moment and is given by

Eq. 47. The expressions for these mobilities are given by

1

Y,=Y, = Y, (59.2)
: 8, (xs)

Y, =Yy = Zl To7. (1 +Sm) 2J[cén(xg)] (59.b)

R R Ty L T O ) IS

Combining Eq. 58.a-d the ratio V¢/My is given by

VS YS 2

S5 -y, .52 60
M ® Yo ¥ ©0

Eq.60 represents the lumped-mass modified open-loop transfer function.
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Increasing the value of the mass M results in a roll-off which improves the stability of the system.
The greater the mass, the greater the critical feedback gain that can be achieved.

Figure 50 and 51 show the Bode and Nyquist plot respectively of the open-loop transfer function
with a lumped mass equal to 1% of the beam mass. Figure 52 and 53 show the Bode and Nyquist
plot respectively of the open-loop transfer function with a lumped mass equal to 15% of the beam

mass.
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Figure 50 — Open-loop transfer function, Bode plot, for M=1% of the Beam Mass (T heoretical Simulation)

w10 Nyquist Plot
8 L H L] E) T

T T T

w ot

Figure 51 — Open-loop transfer function, Nyquist plot, for M=1% of the Beam Mass (Theoretical Simulation)
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Figure 52 — Open-loop transfer function, Bode plot, for M=15% of the Beam Mass (Theoretical Simulation)

Nyquist Plot
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Figure 53 — Open-loop transfer function, Nyquist plot, for M=15% of the Beam Mass (Theoretical Simulation)
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Since the mechanical system is now changed by the addition of the lumped mass M, its global
vibrational kinetic energy will also be changed. The approach followed here is the one of section
7.3, where the global vibrational kinetic energy of the beam is estimated from Eq. 23 which is

repeated here for convenience

VKE(a))z—;—ZP:mC Ve, o)V (x,.0) = %MZm Y(x,,0) ¥ (x,,0) (23)

e=] e=1

The beam is now split in 23 elements so that the centre of the 18-th coincides with the location of
the lumped mass; the mass of this element is hence updated with the addition of the mass M.

The velocity at each point along the beam is now given as the superposition of the velocity at that
point due to the primary excitation Mp, the secondary excitation Mg and the force F; due to the

lumped mass M, as:

(61)
V(xe’a)): Mpr(xe’a))_'- M.'.‘Ifs(xGJw)-i- F;Yi (xeia))
Figure 54 is a sketch of the whole system modified by the addition of the lumped mass.
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Figure 54 — Sketch of the Lumped Mass addition to the whole system
The following equations now hold:
Vi=V,=V (62.a)
F+F, =0 (62.b)
V2 = FZ '}/‘22 (620)
M=F-H+Mg-Yg+Mp-1p (62.d)
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Solving Eg. 62.a-d for Vs gives

YS2

Ve=(M,Y, + M) ——
s (M, Y SSS) Y, + 1,

(63)

Combining Eq. 63 and Eq. 41, gives a new expression for the secondary moment as a function of

the primary moment and the feedback gain, as given below:

Y
Y 52
g ¥ YS2 +YS]
]Vfs = MP v (64)
1+ g Yy 7 _S'_ZY
52 51

1+g Y —2—=0 (65)

The expression of the force F; is determined by combining Eq. 62.a-c and Eq. 63 as to give:

:_(MPYSP +MSYSS)

F, (66)
1 YS2 +YSI
Considering Eq. 64 and Eq. 66, Eq. 61 is rewritten as:
Y,

Y, Y, RN
Vo=M,- (KP_Y;&‘—SP“—]"'{K;S_YL:]' " ] H— (67)

YS2+YSl YSZ+YS1 l+gY , YSZ

T Yty

Thus the global vibrational kinetic energy is estimated by Eq. 23 and the cost-function J is
evaluated by Eq.68, which is used instead of Eq. 55.
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S, Vo0 ¥ (500

J- — i e=l (68)
2 ~ ~ %
Z Zme'YP(xe:wf)'YP (xe’a)i)
i e=1
where now:
Y
% Y Y R C N |
Y(xesa)i): —= (YeP_Ye]'"*“““:Sf“"”]'F(YeS_Y;]' = J B o= (69.a)
M, Yo + 1 Yo, + X 1 'Yss'ﬁi
Yoo + ¥
i}:"(xe’a)i): 4 :HYeP_Yel' Lo H (69.5)
P lg-p Yo + X

Eq. 68 is thus plotted in Figure 55 as a function of the feedback gain g, for different values of the

mass M.

Kinetic Energy Reduction Factor
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Figure 55 — Kinetic energy reduction factor as a function the feedback gain for different values of M

As can be seen from Figure 53, increasing the mass M from 0% to roughly 20% of the beam mass

results in increasing the maximum kinetic energy reduction. Beyond that value, the maximum
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kinetic energy reduction starts decreasing again, but with a lower rate, Both the optimum and
critical feedback gain increase when increasing the mass M, though with different rates. For each
value of M, the optimum feedback gain and the corresponding kinetic energy reduction factor are
evaluated from Figure 55; the critical feedback gain and its correspondent kinetic energy reduction
factor are estimated from stability requirements using the Nyquist diagram. Figure 56 shows the

optimal and critical kinetic energy reduction factor J as a function of M.
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Figure 56 — Optimum and Crifical Kinetic energy reduction factor as a function of M

From Figure 56 it can be seen that the performance of the system can be improved by simply
adding a concentrated mass at the sensor position. The optimal value of the lumped mass to be
added will thus result from a trade-off between the kinetic energy reduction that may be achieved
and the amount of mass that has to be added to the system. For instance, if the lumped mass is equal
to 10% of the beam mass, the global vibrational kinetic energy can be reduced by about 15 dB.
Figure 57 shows a comparison between the cost-function ./ as a function of the feedback gain for M
equal to 10% of the beam mass and the same quantity without the addition of the mass M, as
already obtained in section 7.2. In the same figure are also shown the critical gains for the two
cases. Figure 58 is a comparison between the uncontrolled and optimal kinetic energy with the

addition of a 10% Iumped mass.
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Kinetic Energy Reduction Factor
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Figure 57 — Kinetic energy reduction factor as a function of the feedback gain for M=0% and M=10%
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Figure 58 — Uncontrolled and optimized kinetic energy with 10% Lumped Mass (Theoretical Simulation)



8 — Conclusions

Active vibration control of a beam using distributed piezoelectric actuators has been investigated.
Feedforward and Direct Velocity Feedback control systems have been studied. Performances of the
systems have been presented in terms of global vibrational kinetic energy reduction of the beam in a
given bandwidth. A feedforward strategy is effective when the structure to be controlled is excited
by a primary excitation at a single frequency. In fact in order to provide active damping to the beam
for a wide frequency range, the controller realization turns out to be difficult. Theoretical
predictions have been compared with experimental off-line simulation, showing very good
agreement. When active damping is needed in a wider frequency band, Direct Velocity Feedback
may be used and it provides effective damping in spite of having a very simple controller. However,
when the actuator and the sensor are non-collocated (as in the case of velocity sensor/moment pair),
there is a limitation on the feedback gain due to stability requirements. The theoretical instability
was verified to be due to the actual sensor/actuator non-collocation. From an experimental point of
view, the instability is due to the fact that all the system components have non-ideal transfer
functions, which are different from the theoretical ones. It is the combination of those transfer
functions that can make the system unstable. Experimental results also showed that the kinetic
energy reduction factor reaches a minimum at the critical gain predicted from the off-line
simulation. The effects of the instability in the neighbourhood of the critical gain may be estimated
by expenimental off-line simulation. The theoretical stability limit may be improved by adding a

lumped mass at the sensor location.
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