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Abstract

The aim of this work is to estimate wave reflection and transmission co-
efficients for a delaminated composite beam. Those estimates can later be
used in a wave-based method to detect the presence of the delamination.
To calculate the values of the coefficients, the beam modelled using a Finite
Element model of the delaminated region, connected with Spectral Element
models of two semi-infinite beams one on either side of the delaminated sec-
tion. Longitudinal and flexural waves are considered. The Spectral Element
models have been developed for isotropic materials and for orthotropic lami-
nate materials. Numerical results are presented, considering delaminations of
various length and position between different layers, in order to investigate
the relation between these parameters and the reflection and transmission
coefficients.






Introduction

Composite materials are assuming growing importance in many industrial
fields and in particular for aeronautical structures. Defects may be present in
composite materials due to lack of accuracy during manufacturing or impacts
and loads during service. These defects are usually inclusions of different ma-
terials, breakage of fibres and, for laminate composite structures, lack of con-
nection between layers, called delamination. The presence of defects changes
the mechanical properties of materials, in particular the local stiffness. As
a consequence, during recent years many damage detection techniques have
heen developed, in order to investigate the presence of defects and to ensure
the structural integrity of the material. Many damage detection techiques
are based on changes in the dynamic behaviour of the structure, such as
changes in natural frequencies, mode shapes, modal curvature,etc.

Recently, a damage detection technique based on wave propagation has
been developed as a method to detect defects in beams ([1], [2], [3]). It is
well known, in fact, that the presence of defects causes partial reflection of
an incident wave; by measuring the reflection and transmission coeflicients
it is possible to detect the presence of irregularities in the structure.

This work contains the application of the cited method to delaminated,
multilayered composite beams. First, reflection and transmission coefficients
for isotropic and orthotropic laminate rods and beams are presented. Then
the Spectral Element models are developed. In order to estimate the reflec-
tion and transmission coefficients of the delaminated beams a Finite Element
model of the delaminated area is connected to two Spectral Element mod-
els of semi infinite beams, developed according to elementary rod theory,
Love, Euler-Bernoulli and Timoshenko theories. Numerical results are then
presented. We have considered delamination of various length and position
between layers. The presence of the delamination is clearly visible compar-
ing the reflection and transmission coefficients of the undamaged beam and



of the damaged beam. The numerical results are affected by the the non-
perfect junction between Spectral Element models and the Finite Element
model], but this effect is negligible if compared with the effect of the presence
of the delamination.



Chapter 1

Wave propagation in rods and
beams

1.1 General aspects

The propagation of waves is the consequence of an excitation on a structure:
when a local disturbance occurs, it is transmitted to other positions of the
medium in the form of waves which carry energy. These waves are called

mechanical waves.
The aim of this chapter is to study wave propagation in elastic media
with one-dimensional geometry (rods and beams), considering the following

two types of waves:

o Longitudinal waves: the displacement of particles is parallel to the
direction of wave propagation;

o Transversal waves: the displacement of particles is perpendicular to
the direction of wave propagation.

First of all we consider isotropic material; secondly we study wave prop-
agation in orthotropic laminated beam and rods.



1.2 Wave propagation in rods

1.2.1 Governing equation

The longitudinal wave motion in structures can be studied considering the
rod shown in Fig.(1.1), subjected to a body force per unit volume ¢(z,t).
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Figure 1.1: Differential element of the beam

It is possible, as in Reference [4], to write the equilibrium of a small
element as
32

do U
§;+Q(ﬂ7at) =r35 (1.1}

where o = o (z) is a stress-field acting on the rod, p is the density of the ma-
terial and u is the displacement in the z direction. According to Hooke’s
Law for isotropic materials ¢ = Fe and taking into account the strain-
displacement relation ¢ = du/dz, equation (1.1) becomes

32_u _ 1 8%
ar2 ¢ ot?

C = \/g (1.3)

is the phase velocity. Equation (1.2) is the longitudinal wave equotion. Since
the phase velocity does not depend on the frequency, the wave motion is

(L.2)

where

4



called nondispersive.
If we assume an harmonic solution at frequency w of the wave equation,
w(z, t) = U{z)e™?, we find

d*U (z,t) o
where the wavenumber is w
k= — 1.5
=7 (1.5)
and the wavelength (distance between two consecutive crests of a wave)
27
A= — 1.6
= (1.6)

The total displacement, the sum of positive-going and negative-going prop-
agating waves, can be written as

u(:r, t) — C+ei(wt—k;r) + C—ei(wt+k¢x} (17)
where C* and ¢~ are the wave amplitudes. The longitudinal force is

du
F=ESZ (1.8)

1.2.2 Group velocity

The expression for the positive-going propagating wave can be written as a
sum of waves with different frequencies w;, wavenumbers and phase angles

(;b,;, l.e.
> G cos(wit — kix + ¢i) (1.9)

=1
Now consider very small differences between two consecutive values of k; and
w;. At time to and position zg, we hypothesize that the differences between
the phases of the wave components in the wave trains are very similar; the
change in phase between the positions (f,z} and (to, To), Where t = to + dt
and * = xp + dx, is

db; = (w@-(tg+dt)—kz-(zg-i—da:)—kqﬁi)-—(witgwk,-:co-l—qbi) = (widﬁ—kidl') (110)

To maintain the wave group, the phase of two different wave components i
and j has to be the same; this condition can be written as

5



dP;—dP, =0 (1.11)

which implies

(ki — kj)d.’L‘ = (w,; - Lt)j)dt (112)
Tt is possible to define the group velocity as
dr dw

The phase velocity ¢ is the speed at which a wave component of frequency
w propagates in the structure; the group velocity ¢, is the speed at which the
energy propagates. For a nondispersive system the group velocity equals the
phase velocity; for a dispersive systems it is possible to have:

e ¢ > ¢, the waves appear to originate at the rear of the group, travelling
to the front and disappearing;

® ¢ = ¢, there is no relative motion of the group;

.o c< ¢cg: the waves appear to originate at the front of the group.

1.2.3 Reflection and transmission coeflficients

A wave incident on a boundary or a discontinuity generates a reflected and
a transmitted wave; their amplitudes and phases depend on the equilibrium
and continuity conditions. We define the reflection and trasmission coefli-
cents r and t as the ratios of the amplitudes of the reflected and transmitted
waves to that of the incident wave.

The general aim of this work is to evaluate the presence of delamination
by detecting reflected waves. The amplitude of these waves, which are de-
termined by the reflection coefficients of the delamination, depend on the
extent of damage. In order to apply this technique we evaluate the reflec-
tion and transmission coefficients for some simple examples in the following
subsection.

Fixed end

If we consider a semi-infinite rod shown in Fig. (1.2}, the displacement in
z-direction u {z,t) is



u(z,t) = et L ¢ luttha) (1.14)

Figure 1.2: Rod with a fixed end

At the fixed end the displacement equals zero; if the origin of the coordi-
nate system coincides with the end of the beam, we can write the boundary
condition as

u(0,1) = Cie™* + Ce™t =0 (1.15)
and the reflection coefficent is

Cy
r = a =—1 (116)

The incident wave is reflected by the fixed boundary with opposite sign.

Free end
The force at the position x and at the time ¢ for a rod is

du '
Flz,t) = - 1.1
(2,1) = BS2- (117)
where S is the cross section of the rod and E is the Young’s modulus of
the material. At the free end (z = 0) the force equals zero; the boundary

condition can be written as

F(0,t) = ES (—ikC; + ikC) (1.18)



and the reflection coefficent is therefore
r=—=1 (1.19)
The incident wave is thus reflected by the fixed boundary, with the same

sign.

Junction between two rods

Any kind of discontinuity reflects and transmits incident waves. We consider
the junction between two semi-infinite rods 1 and 2, with different diameters
and made up of two different materials (Fig. (1.3)).

Figure 1.3: Junction between two different rods

In the left-hand rod there are incident and reflected waves, and transmit-
ted waves propagate in the rod on the right-hand side; the axial displacements
of the first and the second rod can be written as

U = Giei(wt—kw) + Cre'i(wt+k1:n)
(1.20)
Uy = Ctei(wt—kg.'c)
where k; and ks, are the wavenambers of the rods and Cj, C; and C; are the
amplitudes of the incident, reflected and trasmitted waves. At the junction,
equilibrium of forces F} = F; and continuity of displacement vy = us give

Fi+F. =F
{1.21)

Ui + Up = U

8



Substituting the expressions for the forces and displacements in the former
equations we obtain

ELS: [k1G; — k1Cy] = BaSakaC

(1.22)
01; + CT = Ct
The reflection and the transmission coefficients are then
_ & _ EWSiky — EaSa ks
T O, T EL Skt + EoSoks
(1.23)

_ G 2ESik
TG T EiSiks + ExSaky

t

From an analogy between electric and mechanic systems we can define
the mechanical impedance as Z; = S;v/p; F;; using the definition of the im-
pedance, the coefficients may be written in the folowing forms

_n-7
- 71+ Zs
(1.24)
b= 273
- 21+ 2o

Two rods with same Young’s moduli and densities have same wavenum-
bers k; = ko = k; the coefficients depend only by the cross-sectional areas so

that

1 —«
=
l+a
(1.25)
2
= ——
1+«

Sy . . .
where v = — is the ratio of the cross-sectional areas.
1



1.3 Wave propagation in rods: Love theory

1.3.1 Governing equation

In the previous section we have considered the longitudinal rod theory, ne-
glecting the Poisson effect, which causes transverse contractions and deflec-
tions due to axial displacement of the rod. Love rod theory considers these
effects. According to Reference [5], the lateral displacements of a rod can

yNN \

Figure 1.4: Dimensions of the considered rod

be written taking into account extension or contraction of the cross-section.
Considering the isotropic rod shown in Fig (1.4) the displacements can be

written as

u=u(z)
V= —UYlU, {1.26)
W= —VZU,,

where u, v, w are the displacements along z, y and z axes, u,g is the first
derivative of u respect to x and v is the coefficient of Poisson of the material.

The resulting strains and stresses are
E.’L‘I = ulx
1.27
Oge = By ( )

where E is the Young's modulus of the material.
We can obtain the equation of motion using the principle of virtual work.
The variation of the strain energy can be written as

10



L

L
S = /5emamdv = f /(§u,m 0245) | dz = [5uF]é‘ - f&uF,x dz
v o

0 s
(1.28)

where F' = f 5 OzzdS 18 the longitudinal force and F,; is its first derivative
-with respect to z.
The variation of the internal work is

(SW._,;ng = — /p [5&1&,53 +5'U'U,gt +<5w'w,u] dV (129)
v

Substituting equation (1.26} in this last, we obtain

Wiy = — fOL [fs P (g0 Fue + V2P0 g St F12 2%y S0, ) dS] dz =

— fOL [pSudu] dz — [pr? Tt ,an 5u]é’ + fOL (v T,z O] dz
' (1.30)
where

J= / (v? +22)dS (1.31)
5
is the polar moment of the cross-sectional area S. If we equate the variation

of the internal work and variation of strain energy we obtain
—F, = —pSii+ pr* g (1.32)

which can be written as

_Esu)xx = —PSUu =+ pyzjzu:zxtt (133)
The final form of the equation of motion is
Pu  0u pr?J? dtu
a2 Fae T TS 92202
In the same way, considering the contribution due to contraction or ex-
tension of the cross-section, the longitudinal force is

E (1.34)

11



ou 8 {0%u
F=ES—+pll— (== 1.35
oz TH &(w) (1.35)
Considering equations (1.34) and (1.35), we can notice that the result ob-
tained using the Love rod theory is the same as simple rod theory (equations
1.2, 1.8) plus additional terms due to contraction, noticeable at high frequen-
cies.
Assuming an harmonic solution of the form u(z,f} = Ae'*~%2) and
substituting it into equation (1.34} we obtain the dispersion equation

~ESk} +v%pJ (K}w?) + pSuw? =10 (1.36)

. pSw?
k= \/ ES — v2pJuw? (1.37)

Defining kg = w+/p/F and k., = 1/S/J we can write the wavenumber as

The wavenumber is

1
1—v2 (ko/kr)Z

The general displacement can again be written as the sum of two wave
components (see equation (1.7)).

k= ko (1.38)

12



1.4 Wave propagation in beams: Euler Bernoulli
theory

1.4.1 Governing equation

Consider a differential element of the beam shown in Fig.(1.5)

Figure 1.5: Differential element of the beam

As developed in Reference [4], the equilibrium of a differential element
in the z direction, considering the body force per unit volume g (z,t) and
neglecting the effects of rotary inertia and shear deformation (Euler-Bernoulli
theory of the beam), can be written as

aT 5,8211)
Bz +g=—p B
If the body force g (z,t) is zero, and substituting the shear-moment relation

(1.39)

T= e the last equation becomes
i

M Sazw
Bz e
where w is the displacement in the z direction. The moment-displacement
relation for the beam is

=0 (1.40)

32
M = Efgg— (1.41)

where I is the second moment of area of the cross-section.Thus we obtain
the equation of motion

13



w1 Pw

i Ty 1.42
ozt  a? 0x? (142)
where
EI
= 1.43
=5 (1.43)
For an harmonic motion with solution w(z,t) = W (z)e™!, equation
{1.42) becomes
d*W
-~ AW =0 (1.44)
where the wavenumber is
Suw?
K, =2 1.4
eb El ( 5)

The general solution of equation (1.44) is
w (z, t) = Atetlwt—kaz) | A:e(iwt—kebz) + A eilwttkess) 4 Az e (Bwt+kesT) (1.46)
The total displacement is the sum of positive and negative propagating trav-
gating

elling waves and positive and negative non propagating waves, called nearfield
waves; these waves decay exponentially with distance and don’t carry energy.

The phase velocity is
w ET
b = —— = s 1_4
==\ A\/E (1.47)

Sinece the phase velocity of the propagating waves depends on frequency, the
wave motion is dispersive. The group velocity is

dw Bl
€= g = 24 /;E\/a = 2Cep (1.48)

1.4.2 Reflection and transmission coefficients

As for the case of rods, we now find reflection and transmission coefficients
for some examples.

14



Figure 1.6: Beam with fixed end

Fixed end

We evaluate the reflection coefficient for the beam with a fixed end shown in
Fig.(1.6); the boundary conditions, if the origin of the x-axis coincides with
the fixed end, are

w(0,8) =0
ow . (1.49)
dr

Referring to equation 1.46, solving the former system of equations, we obtain
the matriz of the reflection coefficients r to be

T [ (i :il) ey ] | (150
(5)-+{%)
Free end

At a free end the moment and the shear force are equal to zero; the boundary
conditions at the coordinate (x = 0) can be written as

15



Pw

Tz =0

- (1.52)
w

Fria

The solution of the system of equations gives the matrix of the reflection
coefficients

r= [ (iil) (¢ :il) ] (1.53)

(5)-(%)

Junction between two semi-infinite beams

where again

\_. B,
\-b A+N /\./'B+
N e

0 2
P4

Y
N4,

Figure 1.7: Juction between two semi-infinite beams

Referring to Fig.(1.7), we can write the displacements in the left and
right- hand side beams as

w1 (55', t) = Sth [A+8-ik1'r -+ A—e+ik1m =+ A;‘e"klﬂf + A;e%‘km} _
| | (1.55)
Wy (.’L‘,t) = piwt [B+e—zk2z + B:e—kgm + A;e.g.k}z]

At the interface, the origin of the coordinate system, we write the follow-
ing boundary conditions

16



e Continuity of displacement w; (0,t) = w2 (0,¢)

dun (0,) _ Bwz (0,8)
dr Oz
32’11)1 (0, t) 82’&,?2 (D, t)

¢ Continuity of moment EIl—-é?— =FEI

3
o Continuity of shear ET 13—1%%0’—”- =Bl

Solving the system of equations we obtain the following expressions

o Continuity of slope

Aat+Ba~ =Cb*
(1.56)
Da* + Fa~ = Gb*

where the vectors at = {A*AF}T, bT = {B”“B,J{}T and a~ = {A~A7}
contain the amplitudes of the positive and negative z-going waves and the

matrices
11 [t
—i 1 T | a2l
1 -1 1 1
[—i 1 ] F:[m*/? —a-sﬂ]

Solving the given equations we evaluate the reflection and transmission co-
efficients; the results are complicated and are not given here.

11
a=[11] s

p=[} 1| =

(1.57)

i —1

17



1.5 Wave propagation in beams: Timoshenko
theory

1.5.1 Governing equation

Formulating the Euler-Bernoulli theory for beams we neglected the effects of
rotary inertia and shear deformation. As a consequence of these assumpions,
the plane transversal section remains plane and perpendicular to the cen-
troidal axis after the deformation. The Timoshenko beam theory considers
these two terms, removing the limitations of the Euler-Bernoulli theory.

Figure 1.8: Shear effect

Referring to Fig.(1.8), we notice that now the slope of the centroidal axis
dw/8z is due to the effect of the bending 1 (angle of deflection of the cross
section with respect to the vertical direction) and of the shear angle vp; it is
possible to write

ow

— =19 - 1.58

5 Y- (1.58)
The contribution due to g can be calculate by the following relation between

shear force and the shear strain:

T= G/’de = GvSk {1.59)
5

18



where x is the Timoshenko shear coefficient. The coefficient depends on the
shape of the section. Using Equations (1.58) and (1.59) we obtain the shear
force as

Jw
T = SGx (“’EE + w) (1.60)

where S is the area of the cross-section and G is the shear modulus of the
isotropic material.

Figure 1.9: Differential element of the beam

If we consider the differential element of the beam shown in Fig.(1.9}, we
can write the equation of equilibrium along the z axis and the equation of
equilibrium of the moment as

ar 82w
oM )

where /I is the second moment of area of the beam. If we substitute equations

(1.61) and (1.62) into the expression for the shear force {1.60) and the relation
between the moment and the bending angle ¢, i.e. M = EI g—i}, we obtain

two governing equations

oy Fw 8w

19



Bw 8 8%

where the body force ¢(z,t) = 0. These equation are coupled; we can reduce
them to a single equation. The result is

Eld*w T n E w + 3w + oI 8w _0 (1.65)

pS oxt S Gk /) 0x20t2 ~ 012 GSk 81+ '

Considering a time harmonic wave solution of the equation of motion
w(z, t) = et ko) (1.66)

we can obtain the dispersion equation
E 0?1

El* — pl |1+ — k% — pSW? + —uw? = :

p (-i—GE)w pw+Gﬁw 0 {(1.67)

If we define

P oo aPs I 1.68
ko=wil 5 ke = EI‘/; ko = wyf = (1.68)

equation (1.67} becomes

k* — (kg + kf) k2 + (kgkf — k%) (1.69)

Solving this equation we obtain two different wavenumbers: the first one

(ka) is a real number, the second one (k%) is imaginary. We define, instead

of calculated wavenumers, two real numbers k4, which coincides with the

real wavenumber k4 and kp: the last one is the modulus of the imaginary
wavenumber. These are given by

k J(k3+kz>+\/(k3+ks)2+4[kzb+kak§]
A -=
2

(1.70)

Lk 1J (k§ + k2) — \/ (K3 + k2)° — 4 [k2, + kEk?]
g = —/ = —
1 1 2

20



or

ka= \/%E ((&2 + %) + \/(22 +m) 41+ £2n2))

(1.71)
ts = 2[5 (@ 4+ - @+ +a0 + 2m)
iy 2
where
£=rkofky n=ks/ks (1.72)
The four roots of equation (1.69) are

ky=ka ko= —ka

(1.73)

kg = 'I.kB k4 = —"l:k.‘B

and the general solutions of equations (1.63) and (1.64) can be written as

w(.ﬁ’:,t) = it [A"'B"ik“-x-}-A_eik“"m—l—A;te_kBm +A;ek3x]

W (z,t) = et [RaAte Ha® — RyA-eha® + RpAFe™*8% — Rp Az ebs)
(1.74)

with

kGE% — pw? R = —kGkE — pu?

xGika B &Gkp

The four wavenumbers show the presence of two pairs of wavemodes. In
the low-frequency range, the values of the real wavenumber k4 is the same
as the wavenumber calculated using Euler-Bernoulli theory for beams; the
corresponding mode is a propagating mode. The imaginary wavenumber kg
corresponds to a nearfield wave. The imaginary wavenumber has a cutoff fre-
quency above which it becomes a real number; the corresponding wavemode
is propagating above this value of frequency.

Ray= (1.75)

21



1.6 Wave propagation in composite materials

1.6.1 Composite materials

Composite materials are made of two or more distinct materials, with differ-
ent mechanical and physical properties or shapes, joined in order to obtain a
new material with improved mechanical properties compared to those of the
constituents. They are usually constituted by reinforcements (long and short
fibers, particles, flakes,... ) embedded in a metallic or polymeric matrix. Usu-
ally reinforcements carry loads and are bonded together by matrices. The
principal advantages of composite materials are:

¢ high strength-to-weight ratio;
e corrosion and chemical resistance;
e tailoring.

Composite materials are usually obtained by joining some thin laminae; for
fiber reinforced materials the stacking sequence determines the mechanical
properties of the material. Multilayer composite structures are usually char-
acterized by transversal anisotropic behaviour, large transversal deformabil-
ity and high damage sensitivity: there is often some damage, such as breakage
of fibers or the matrix and, in particular, the non-perfect connection between
layers, called delamination. Defects in structures modify their mechanical
behaviour and, therefore, wave propagation.

To study the effects of damage and delaminations in rods and beams,
at first we modify, in the following subsections, the wave equation for rods
and beams, taking into account the constitutive equations for orthotropic
materials. The following analysis has been developed in [6]

1.6.2 Constitutive equations for orthotropic materials

The generalized Hooke’s law, the relation between stress and strain compo-
nents, can be written as
0i5 = Cijki€hl (1.76)

where o;; is the 7 stress component, eg; is the &l component of the strain and
Ciji is the corresponding element of the stiffness matrix. The generalized
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Hooke’s law involves 21 independent coefficients; for orthotropic materials,
if z, y, z are principle axes, it becomes

( Gz ) (Cyp Crp Cia 0 0 0 7 € )
Tyy 012 022 ng 0 0 0 Eqyy
J o=\ _ Ci3 Ca C3 0 0 O } e\
Tzz N 0 0 O C44 0 0 Yz
Ty 0 0 0 0 Ci 0 || %
L Txy J L 0 O 0 O O 066 1\ '-Y:cy J

(1.77)

The coefficents Cj; in Eq. (1.6.2) are

1 —~ va3van Vo1 + V31vas g -+ Vgl
cy =F—= Cp=F =E
! 11/ -éu 1 g -+ v ? 11 v i a
Cro= E 31 21¥32 E 13 12V23 Cos = E — Y13¥3
N 1 L +éz> v ’ +Au v i 21 Vgl
» _
Cop = Ep 222 Au % _ Y /_\21 8 Gy = By ﬁ;z 21
(1.78)
Chs = Goz Css = Gz Ces = G2 (1.79)
with
A =1— pave) — Vaatay — V3a1v13 — 2ua1laaiis (1.80)

where E,, Es, E; are the Young’s moduli in the principal directions 1,2,3,
v;; are the Poisson’s ratios, and Gas, Gi3, Gz are the shear moduli in the
2—-3,1—3and 1— 2 planes.

Referring to the laminate fibre composite beam shown in Fig. (1.10), we
can formulate the following hypothesis:

e we consider a cross-ply laminate, where ply orientation is 0° or 90°, in
order to have only in-plane motion (i.e. loads in (z,y} plane generate
deformations only in {z,y} plane);

e the laminate is symmetric. As a consequence, there is not bending-
extensional coupling;

o if b= h, we can consider a plane stress condition.
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Figure 1.10: Composite beam

Because of the plane stress condition, the components of the stress 7y;, Tay,
oyy are very small. Since usually 055 >> 03, and 7., > 0., the significant
stress components are ¢, and 7,,.

The initial assumpions lead to the stress-strain relation

Oz — Gll 0
{ Ton }‘ [ 0 044} (1.81)
where the coefficients reduce to

Cn=E:xy Cu=0Gs (1.82)

with B, = Ey if 9 = 0° or E,, = E5 if ¥ = 90° and, similarly, G, = G13 or
Ga:z = G23-

1.6.3 Laminate constitutive equations for orthotropic
layers

We consider a laminate beam, built with N orthotropic laminae; in order
to write the constitutive equations for laminate structures, we refers to the
First-Order Shera Deformation Theory for laminate materials, as in Refer-
ence [6]. The FSDT is an Equivalent Single-Layer laminate theory, in which
the laminate plate is reduced to an equivalent single-layer structure; it is
based on the following hypotheses: the straight lines perpendicular to the
midsurface
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e remain straight after deformation;
o do not elongate during deformation;

e rotate, not remaining perpendicular to the midsurface after deforma-
tion.

According to the FSDT theory and taking into account the initial hy-
potheses, we can write the expressions for the longitudinal force F' and for
the moment M, referring to the considered beam as

5 -
F= / OandA =b / Oedz=bY / @ (L + zc,) dz (1.83)
y\ B k=1 7
and
% N Zkp+1
M, = _/szdS =b / Oppzdz = bz ] Q% (2, + ze,) zdz  (1.84)
s A k=1 3

[

where ¢! are the membrane strains and ¢, are the bending strains, 2y and
zp41 are the coordinates in the »_direction of the interfaces of the considered
layer and %, are the plane stress-reduced stiffnesses for each layer. The
equations reduce to

F= b (Alleg + Bnﬁ}c) (185)

My =b (Bnﬁg + Dllé:,];) (186)

Since the laminate is symmetric, the coupling term By between bending and
extension is negligible and the coefficients Aq and Dy, are

N N
An = Z Q% (21 — 21) = Z Ej (zr41 — 2k) (1.87)
k=1 k=1
N 3 3 N 3 3
Zigy— % Zpy1 — %
Py=Y Q’;I.(k_HS_*—) _ Zggﬂ_mé,_k)_ (1.88)
k=1 k=1
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If we consider Timoshenko beam theory, the shear force along the z axis can
be calculated as

& Rj2
T= E/szdA = kb / Tedz = K,bf%zdz = bk Aps Yz (1.89)
A _h _k
P3 2
where
N N
A= Z QL (zh1— 2z) = Z ng (41 — ) (1.90})
k=1 k=1

1.6.4 Equations of motions for orthotropic laminated
rods and beams

Rods

It is possible to write the equation of motion and expression for longitudinal
force and the wavenumber for an orthotropic laminated rod. Referring to
Fig.(1.1), the equilibrium of a differential element of a rod can be written,
neglecting the body force, as

aF 5u
where, for the beam shown in Fig. (1.10}, the longitudinal force is

du

F= bAn‘é"S; {1.92)
Equation (1.91) becames

v 10%

@ = ag"t'g (1.93)

where the phase velocity is
bAn,
—1 —_— 1. 4
=4/ 8 (1.94)
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The displacements and stress/strain relations for the k-th layer can be
written applying Love rod theory, as shown in section (1.3) for isotropic rods,
ie.

u = (T)

v = =V YU,y (1.95)
w = —f2u,,

€zp = Uz (1 96)

k _ pk
U:cz - Eru'il'

where E* is the Young's modulus for each layer in the x direction. The
variation of the strain energy is now

S = / [0€22022] AV = [JuF]g - /5?1.F,m dr (1.97)
v 9
and the variation of the internal work is
(5W-mt = — fV pk [u,u du + Uyt dv + W, 511}] dv =

= _ fOL [fs o (u,tt Su+ (uf2)2 120,741 0,z + (u{‘3)2 22U 5u,$) dS] dx

(1.98)
Defining
h/2 Bep1
(pS)* = /pde =b f prdz = bZ / (1.99)
s —~h/2
and
(pJ)" = f [0 ((vh)2y? + (v5)?2%)] dS(1.100)
g
we can write
L L
Wi = = [ 108 )z = (p) e 0l + JRC
9 0
(1.101)
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If we equate the variation of the internal work and the variation of the
strain energy, the equation of motion can be written as

&y &%u du
* . * 2 * = 1 2
(BaS) 53 = (05) 5 ~ (o)) 3335 (1.102)
with
hf2
(E.S)" = / EfdS =b f Efdz (1.103)
s —h/2 :

The expression for the longitudinal force is now

ou 8 u
= gt J)——— 1.
F = (E.S) 7 T {pJ) T (1.104)
and the wavenumber is
(pS)" w?
= 1.1
. \/(Ex‘g)* - (pJ)* w? (1.105)

Beams

The equilibrium of the beam element shown in Fig.(1.5), using equations
(1.85) and (1.86), is
84_11) 1 8w
ozt a? of?

bDyy
=/ 1.
a 5 | (1.107)

Using Timoshenko beam theory, equation (1.65) for an orthotropic lami-
nate beam becomes

=0 (1.106)

where

bDH 84w I 1 SDH 64'1.!) 3211) pI 84w .
pS dr* S a

= 1.108
EA441 72 9t2 + ot? + I{.A44b ot 0 ( }
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and, considering a time harmonic solution w (z,t) = ! =%=) of the former
equation, we find the wavenumbers to be

pl SDny ol SD;; \1? pSw?  prISuwt
ka=4|— -
A=A Tehn (1 + K,A44f) i [bDn Yt/ Ty T mAneDy
(1.109)
pl SDy pl SDi\1? pSw?  pRISwt \ .
kn = —_ — —
#=\ oD (1 + HAMI) \/[wu Yl )| T4 \on ~ mawwny )
(1.110)
The coefficents R4 and Rp in equation (1.111) become
Aggbrk? — pSu? — Aybrky — pSw?
- Rp = 1.111
Ra Kik 4 Agb B rkAubkg (1-111)
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Chapter 2

The Spectral Element Method

2.1 General aspects of the Spectral Element
Method

The most common tool we use to study the structural dynamics is the Finite
Element Method. If the structure we are considering is very complicated, it
is possible that the model will have a high number of degrees of freedom,
needing a big computational effort. The Spectral Element Method allows
to study wave propagation in structures directly in the frequency domain,
obtaining the exact dynamic stiffness matrix of the element. Each beam
is considered as a single element, and therefore the computational effort
is very small; using the Spectral Element Method it is possible to remove
some approximations of Finite Element Metod, because it uses exact ghape
functions and because there is not any discretization. These advantages are
particularly important if we are considering an high frequencies. Complex
structures can be studied as an assemblage of simple beam and rod elements.
Doyle ([7]) has developed, for beams and rods, two elements: a two node
element of finite length, and an element with one node, of infinite length,
called throw-off element: the latter can transport energy out of the system.
This element is usually used to model long beams, that usually require a high
number of elements, when using a Finite Element model.

This chapter presents the spectral element for isotropic and orthotropic
rods and beams.
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2.2 Spectral Element Method for rods

2.2.1 Shape functions

To develop the Spectral Element Method for longitudinal waves it is necessary
to calculate the shape functions of a given rod.

i
N Uz,
—it —
F F,
L
X

Figure 2.1: Rod element with two nodes

We consider the two-node rod element shown in Fig.(2.1) and we write
the expression for the longitudinal displacement writing as a sum of positive
and negative travelling waves. Suppressing the term ¢*? it becomes

u(z) = CTe ™ 4 O emi(lm2) (2.1)
where L is the length of the considered rod. If the values of the displacements
at the ends of the rod are known, it is possible to determine the amplitudes
of the positive and negative propagating waves C and C~ by solving the
equations

w(0) = CT + C e * =7, (2.2)
u(l)=CTe ™+ C™ =8y (2.3)

Substituting the values of C* and C~ in equation (2.1), we obtain
u(z) = gu{x)t + go(z) 2 (2.4)

where g1(x) and ga(z) are the frequency-dependent shape functions for the
rod and are given by

g (:L‘) — [e—ika:. _ e—z‘k(ZL—:c)]/A (2‘5)
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{(a) Throw-off rod element-Left {b) Throw-off rod element-Right

Figure 2.2: Throw-off rod elements

ga(z) = [~ + e/ (26)

where ‘
A=[1—e ¥ (2.7)

A single node element is one which extends to infinity in one direction.
It is sometimes termed a semi-infinite or throw-off element and it conducts
energy out of the system. For the throw-off element shown in Fig.(2.2}, i.e.
one which extends to —oo, the longitudinal displacement, neglecting the giwt
term, assuming that there is no incident wave from —oc,is given by

u(z) = C e (2.8)
We impose the known value of the displacement on the node, i.e.

w(0) = C~ =1 (2.9)

and the displacement can be rewritten using the shape function go (r) = et*=

For the left-hand side semi-infinite element shown in Fig.(2.2(b)), the

displacement is

where the shape function is

niz)= e {2.12)
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2.2.2 Dynamic stiffness matrices
The internal force in the rod is given by

F{z) = ESa—u = ES[g;(z)Us + go(z)s) (2.13)

At the ends of the two-nodes rod element the forces are
Fy = —F(0) = -ES[g1(0)u; + g(0)iz] (2.14)

F, = F(L) = BS|gy (LY + g5(L)] (2.15)

Writing equations (2.14) and (2.15), in matrix form, we obtain the dynamic
stiffness matriz Dy for the two-nodes rod element, i.e.

() ps[ 0 4O BN {2} o
where

LES ~2ikL 5 ,—ikL
DE"=D1+= 1k [1-}—3 2e ]

] o BhL | —9e~kL 14 kL (2.17)

In the same way we can calculate the dynamic stiffnes for both the throw-off
elements to be

Df = D; =ikES (2.18)

For a laminate composite rod with rectangular cross-section, the dynamic
stiffness for the throw-off elements, referring to Equation 1.87, are

Df = D} = bAnik (2.19)

2.2.3 Dynamic stiffness matrix: Love rod theory

According to the section (1.6.4), the dynamic stiffness matrix for both the
throw-off orthotropic laminate rod elements, using Love rod theory, is

D} = Dy = (B,8)" ik — (pJ)" ikw? (2.20)
referring to Equations 1.103 and 1.104.
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2.3 Spectral Element Method for beams

2.3.1 Spectral Element Method using Euler-Bernoulli
theory

As for the case of rods, to develop the Spectral Element Method for beams we
write the expressions for displacement and rotation, using the Euler-Bernoulli
theory, as

o(z) = Z—: = —ikATe™* — gATe ™ 4 ikATe "I £ pAZemMET
(2.21)
Using vector notation
w(z) | _ g9(z)
(50 = wtsas 1A (2:22)
where
g(z) = { e7*L gkl gmik(i-z)  g—k(L-s} (2.23)
and the vector of wave amplitudes is
A={ A" ar A~ A7)} (2.24)
z
M, M,
» A,
' 0
~ T, T,
X

Figure 2.3: Two nodes beam element
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Referring to Fig.(2.3), we apply the boundary conditions at the two nodes
to get

w(0) = AT + At + Ame L | Aze M =

$(0) = —ikA*T — KA} +ikA; + kAL = 6

(2.25)
w(L) = Ate™*L 4 Afe L 4+ A= + A7 = W
$(L) = —ikATe™ L — kA+e L 4 ik AT + kAT = 6
Writing the former equations in matrix form we obtain
1 1 gL gmhL At iy
—ik —k ike~#*L ke Rl | | AF 1
p—ikL o—FL 1 1 A L= | @ (2.26)
—ike~%L  _ke Rl ik k AZ oo
or
GA =W (2.27)

The forces F = {T;MszMg}T at the ends of the beam of length L are
calculated knowing the internal forces 7', M at the given positions x = 0 and
x = L, according to the given coordinate system and are

T, 7(0) 9" (@) g"(z)
My | ) Mo | _ g"(z) _ g'(z) i
T [ ] -T(L) =5 Zgia) A=ELy gy (6F
M, M(L) g"(x) g'(z)
28)
The matrix form is
T ik? —k3 —ikPe L JBekL
M| k2 —k? RlemlL  _fFeTHL |
T, (| —inteht ket i —k? e
Mo —kPe—ikL KeTH  —? k?
(2.29)

It is straightforward but tedius find an analytical expression for the dynamic
stiffness matrix Dy, which can be written as

F =D& (2.30)
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where F is the vector of forces, W is the vector of displacements and rotation
and the dynamic stiffness matrix for flexural waves is

e ¢"(2)
g9'(z) g"(z) -1
D,=FEI i A=F] G 231
/ e " (z) (23D
9"(z) g"(z)
z z
M, - M,
Vi N Vi
X kalbele X
(a) Throw-off beam element-Left {b) Throw-off beam element-Right

Figure 2.4: Throw-off beam elements

In the same way, referring to the throw-off element shown in Fig.(2.4(a}),
the displacement and rotation can be written as

’tU(’L‘) — A+e—ikz+A:ewkx

Su _ (2.32)
dlz) = = —ikAte T ~ kAYe R
The boundary conditions can be written as
w(0) = AT + At = @
(2.33)

6(0) = —ikA* — kAT = 4

It is possible to calculate the coefficients A™ and A} and therefore the shape
functions of the Euler-Bernoulli semi infinite element. They are given by

'LU(SL‘) = Q’..-;_l) [e-ikw _ ie—kx] Dy + (""2%11 [e—ikm . ie_k”’] 51 (234)
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From the displacement, we can write the forces on the end of the beam, to
obtain the dynamic stiffness matrix

{ J\% }=EI[§§;§ DE z(fi 1k ] { % } (2.35)

F = D} & (2.36)

or

where F = ’.?1 .('T/fl}T, W = 'l’a]_al

The dynamic stiffness matrix for the semi infinite element extending to
—o0, shown in Fig. 2.4(b)beam on the left-hand side is found in a similar
way to be

(2.37)

D;ﬂEI[(i—I)kE' —ik? ]

—ik? i+ 1)k
For a laminate orthotropic semi-infinite beam with rectangular cross-
secton, the dynamic stiffness matrices become

i — 3 i 2
D;=b911[§k2 1)k (f B} 1)k] (2.38)
- i— 1k —ik?
D; = bDyy [ (—ikzl) it Dk ] (2.39)

referring to Equation 1.88.
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2.3.2 Spectral Element Method: Timoshenko beam

Shape functions for the semi-infinite beams

Referring to the beam shown in Fig.(2.4(a}), the displacement and rotation,

using Timoshenko theory, are

w(x) = Ate 4T 4 Ate F57

W{z) = RaAte 4% + RpAfete®

(2.40)

where ka4, kg, R4 and Ry are given in Equations 1.109, 1.110, 1.111. We

impose the boundaries conditions

’LU(O)=A++ATT=QI

P (0) = RaAY + RpAf = W

(2.41)

Solving for the constants A™ and A;, equations (2.40) can be now written

as
w (33) = gw1{61 + ng"ybl

¥ (:E) = g"f)lﬁi + g¢2¢1

where the shape functions are

1 .
Gl = Z [_RBe—ikAx + RAe—kEa:]

1 —ikazx —kpzx
Guz = 7 [T =T ]

1 —~ikAT —kpgT
Gyl = A [“‘RARBG AT 1 RaRpe ™8 ]

Gu2 = % [RAe—'ik:Am _ RBewkE:r:]

and where A = R4 — Rg. The shear force and the moment are
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T = 1Sk (w _ i"i’)
oz
(2.44)
oy

Calculating the internal forces at the end of the element, we find that the
dynamic stiffness matrix for the beam is such that

{ ﬂT}l } N { Ai;f((%)) } =Djw (2.45)

1 [ GSk (kBRA — ikARB) GSk (ikA + Ry — kg — RB} } { w }

+ -
D7 =X | EI(RuRsks — iRsRuks) EI(iRaks— Rsks) .

(2.46)

For the throw-off beam shown in Fig.(2.4(b)} we have

w{xr) = C-eka® 4 O~
(2.47)
Yz} = - RaC ™ etka® — RBC’;ekB"’

At the origin of the coordinate system, the displacement and rotation are

A (2.48)
¥ (0) = —RaC™ — RpCy =t

The shape functions are now
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[~ Rpe™® + Rae*®”]

B> =

Gu1l =

Guz = % [_eikAa: + ekg:c]

(2.49)
1 .
Gul = Z [RARBezkA:I: _ RARBeka}
1 thaT kpzx
Gy2 = K [RAB — Rge :L
The vector of the forces for the semi-infinite beam is then
Ty —T(0) } A-{ wy }
= =D 2.50
{MI} {M(O) g (2:50)

with

-~ — 1 |: GS&(kBRA_ikARB) GSR(,‘CB-I-RB-”ikA—RA) }
A

Dy = X | El(ikaRaRs — kzRaRs) EI(ikaRa — ksRa)
(2.51)
Referring to subsection {1.6.3), the dynamic stiffness matrices for lami-
nate orthotropic semi-infinite beams are

D — l [ Aubs (kBRA — ?:kARB) Agabr (’Lk,q + Rs— kg — RB)
I = A | bDy1 (RaRpks — iRaRgks) bDu (iRaka — Rpkg)
(2.52)
]"j" _ i [ Aubr (kBRA — ‘LkARB) Agabr (kB + Rp — ik — RA)
f 7 A | bDy (iksRaRp — kpRaRg) bDi1 (ikaRa — ksRp)
(2.53)
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Chapter 3

Estimation of reflection and
transmission coefficients using

the SE Method

3.1 General aspects

As shown in the first chapter, the presence of discontinuities such as a change
in section of the beam causes a partial reflection of the propagating wave.
The presence of a defect in the structure also causes a partial reflection and
transmission of the incident wave; this characteristic can be used to infer the
presence of defects. The aim of this chapter is to apply a damage detection
method which is able to detect the presence of delaminations in composite
orthotropic laminated beams,by estimating the reflection and transmission
coefficients due to the presence of defects. It is well known that, for an
infinite rod without any defect or discontinuity, the reflection coeflicient is
zero and the transmission coefficient is one, because the incident wave is
totally trasmitted. Any deviation from these values is an indication of the
presence of some discontinuities or damage. The method, developed by Shone
et al.([1], [?]) models the damaged infinite beam using a Finite Element model
of the delaminated area, jointed at the left-hand side and at the right-hand
side to two semi-infinite beams, modelled by Spectral Element Method.
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3.2 Condensed dynamic stiffness matrix-FE
model

3.2.1 Dynamic stiffness matrix for the damaged area

SE FE SE

4 DELAMINATION [

Figure 3.1: Model of the beam with SEs and FE

We model the damaged area of the beam shown in Fig.(3.1) using a finite
elemente model. There is a delamination between two layers of the beam.
It is assumed that the considered laminate is symmetric, so that there is no
coupling between bending and torsion. The dynamic stiffness matrix of the
beam can be calculated, if we know the mass and stiffness matrices M and

K, as

D=K-w'M (3.1)

If we assume that external forces are applied only at the nodes on the left-
hand side and right-hand side of the FE modelled region, we can partition the
matrix into elements associated with the boundary and the internal degrees
of freedom. If ¢y, and ¢ are the vectors of boundary and the internal degrees
of freedom and £, is the vector of the external {orces on the boundaries, the
partition of the dynamic stifiness matrix can be written as

Gl-[RElz) e

By writing the second row to dirimate ¢;, it is possible to obtain the con-
densed dynamic stiffness matrix Drg as

fi, = [Dbb — Dy, - D;l . Dzb] , qbb =Dygg - (:bb (33)

42



3.2.2 Reduction of the nodes and of the DOFs

To join the models of the two semi-infite beams with the model of the de-
laminated region, it is necessary to reduce the degrees of {reedoms of the
FE model by writing equilibrium and compatibily equations at the junc-
tion between the SE and the FE models. The semi-infinite beams present a
single-node with three degrees of freedom (translation in the z direction, u,
translation in the z direction, w and rotation y around the y axis). The FE
model has D nodes on each face and a various number of degrees of freedom
for each node, depending on the element we have used to mesh the beam.
In order to explain the method, we consider an element with two degrees of
freedom per node (u and w). Referring to Fig.(3.2), we can write equation
for the reduction of the degrees of freedom. For a generic node i of the FE
model, the nodal displacements are related to those of the SE by

ul =yl — plz
(s=wrs
SE i .e EE

Figure 3.2: Reduction of the degrees of freedom

where z; the coordinate of the node i in the z direction (the origin of the
local coordinate system is on the mid-plane of the beam and coincides with
the node of the SE). We can write the former equations using matrices as
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L . (Y
EINOE E R

w
i lPL
For the right-hand face we can write the same equations, i.e.
R
R u
u; |10 - R | _me.R
{w;'*}_[o 10 ] ";R =Ti¢ (36)

The complete system of equations is formed by assembling equations 3.5 and
3.6 for all nodes and is

¢re = Tosp (3.7)

where the vector of the degrees of freedom of the FE and of the 5I models
are

T
prs—{wb ol ub whb . ob owh ol wf of uf . ub f )
(3.8)
dsp={ ut wh gl Wf Wk f} (3.9)
The complete transformation matrix is then
p- Tf 0 -
T 0
T O
T = D R (310)
0 T}Q
L0 TS
where 0 is a matrix of zeros or appropriate size.
The condensed dynamic stiffness matrix is
Drrg =T - Drg- T (3.11)

where Drg is a 2D by 20 matrix and Dppg is a 6 by 6 matrix.
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3.3 Assembling the FE and SE models

To assemble SE and FE models, we first form the dynamic stiffness matrices
for the spectral elements D™ and D™ on the left-hand side and the right-hand
side of the FE model for longitudinal and flexural waves, i.e.

Do
DT = [ 0* DY ] (3.12)
and
- _ Dr.!' 0
b2 0] 610

The dynamic stiffness matrix for the complete infinite beam, written in a
local coordinate system, is

DT 0 1}
Do.=|0 Dprg 0 (3.14)
0 0 D~

The assembled local DSM is a 12-by-12 matrix. We can write the matrix
tranformation from local coordinate systems to global coordinate system us-
ing the matrix

C= (3.15)

O el -l
- - O

where Iis a 3 by 3 identity matrix. Hence the global dynamic stiffness matriz
is

Dgion = CT « Dy x C (3.16)

The global dynamic flexibility matrix is the inverse of the dynamic stiff-
ness matrix

H = (Dgion) " (3.17)
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3.4 Estimation of reflection and transmission
coefficients

The aim of the work is to estimate reflection and transmission coefficients in
presence of a change in the structure. To estimate these coefficients for a de-
laminated beam, we consider a wave propagating in positive-x direction from
the left-hand semi-infinite beam; this wave is incident on the delamination,
as shown in Fig.(3.3).

Figure 3.3: Reflection and transmission at the delamination.

The applied method (reference [1]) uses superposition to evaluate the
coefficients. The first step of the method is called blocked case: referring to
Fig.(3.4)}, if we consider a propagating wave incident on the fixed end of a
semi-infinite beam, we can calculate the internal force due to the propagating
wave. To evaluate the internal force, named the blocked force, we apply Love
rod theory and Timoshenko theory for longitudinal and flexural waves. At
first we evaluate the reflection coeflicient for longitudinal and flexural waves.

As seen in subsection (1.2.3), the reflection coefficent for longitudinal
waves is r; = —1. For flexural waves, we write displacement w and rotation
¥ (1.74) in matrix form as

w e—?:kASE e‘*kg A+ e'ikAm ekB A~
{ W }—_- [ Rae %4% Rpe~*s ] { At }+|i —RaeifaT  _Rpehs ] { A }

Equating them to zero at x = 0 gives
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Figure 3.4: Blocked case

{ 8 } = Zaj; + Ya,, (3.19)
where a* = {ATAT}T, a= = {4" A7} and
e‘“‘ikAﬂT e—kB
Z= [ RAe—ikA:C RBe—kﬂ ] (3‘20)
e’ikAx eks
Y = |: _RAeikAm _RBekB } (3‘21)

The reflection coefficent matrix for flexural waves is thus

rr=Y 'Za* (3.22)

The full matrix of reflection coefficients is then
o — [ rn 0. }
0 l‘f
‘The blocked force for an incident longitudinal wave, according to the Love

rod theory, for an orthotropic laminate beam, referring to subsection (1.6.4),
is

FU° = —2iky (ES)" + 2ikw? (pJ)" (3.24)
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For flexural waves, according to equations (1.74), (1.85) and (1.89), we can
write

oI T
Ft}l { M } = (Ml +M2rﬂex) a;;a (325)
where
[ bA44f’§ (—'RA - Zk.‘A) bA44ﬁ1 (—RB - k‘B) !
M, = . 3.26
! L bDn (—?,kARA) bDu (_kBRB) ] ( )
and

[ bA44!€, (—RA — ZkA) bA44K: (“RB —_ .ICB) |
] bDy, (—?;kARA) by, (_kBRB)

The complete blocked force matrix, relating the nodal forces at the six nodal
semi-infinite SE DOFs for each of the possible incident waves, is given by

M, = (3.27)

Ftbto 0 0

0 F¥e(1,1) F¥°(1,2)
wo _ | 0 F¥°(2,1) F¥°(2,2)
- 2
F o 0 . (3.28)
0 0 0
0 0 0

In the second step of the method we apply the blocked force, with opposite
sign, to the node between the left-hand semi-infinite beam and the FE maodel,
as shown in Fig.{3.5).

The resulting wave amplitudes a;, and &7, are related to the nodal forces

—Fble Yaz,
(TN e
The superposition of the first and the second cases (blocked force due to

the fixed end and the application of the opposite of the blocked force) results
in the net nodal force being zero. We obtain

by

+ —_ p—
0—H.pio_ | a7 +Y (ise +ay) (3.30)
Zb,
The reflection and transmission coefficents are thus given by
r=-Y'{ HF¥+Z } (3.31)
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Figure 3.5: Blocked case

t = —Z 1h,F¥ (3.32)

where

H,

Il

5
&
&

(3.33)

and

Hy = | Hs1 Hs2 Hss (3.34)
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Chapter 4

Numerical results

4.1 General aspects

In this chapter we apply the method developed earlier to estimate the re-
flection and transission coefficient of a laminated infinite beam with a de-
lamination. We show how the Finite Element model for the delaminated
region is built. Numerical results are shown, considering different stacking
sequences of the beam and different lengths of the delamination and position
between layers, in order to establish a relation between these parameter and
the values of the reflection and trasmission coefficients.
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4.2 Finite Element model of the delaminated
region

Ansys 7.1 was used to model the damaged area. The structure is modelled
using plane elements {Plane42) with four nodes and two degrees of freedom
at each node (translation in x and z direction}, using the plane stress option.
The element size is 0.25 mm by 0.25 mm.

The modelled structure is an 8-layer laminate beam of carbon fibers and
epoxy matrix; the density of the composite material is p = 1496 kg/m® and
the elastic properties of the material are shown in table (4.1}.

E [Pa] | By = Lilell | E; = 7.857¢9 | Bj = 7.857¢9
v | vz =03344 | v; =00.3344 | ug = 0.345
G [Pa] | Grz = 3.292¢9 | Gi = 2.44¢0 | Gog = 3.292¢9

Table 4.1: Material Elastic Properties
Here, direction 1 is along the fibres, direction 2 is perpendicular to the

fibres in the plane of the laminate and direction 3 is the axis out of the plane.
The dimensions of the FE modelled beam are shown in Fig.(4.1). For all the

z

L X

Figure 4.1: FE model of the delaminated region

numerical cases we have considered the dimensions are: L = 50 mm, h =2
mm and b =2 mm.
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4.3 Numerical results

In order to evaluate the reflection and transmission coefficients, analytical
models of the Spectal Elements of the semi-infinite beams were implemented
in Matlab. Using a Matlab code we join the two SE with the FE of the
damaged region, as described in section (3.3).

4.3.1 Undamaged beam

The stacking sequence of the considered undamaged beam is [0/90/90/0]s.
In this case, because of the symmetry of the lamination, there is no coupling
between bending and torsion; if the lamination is not symmetrical, incident
waves of one type scatter into waves of all types, e.g. incident longitudinal
waves give bending waves as well as longitudinal waves.

The magnitudes of the longitudinal reflection and transmission coefli-
cients for this case are shown in Fig.(4.2) and Fig.(4.3); the coefficients are
plotted as a function of h/) 4, where h is the height of the beam and A4 is the
Timoshenko bending wavenumber. As expected, the values of the reflection
and transmission coefficients in the absence of delamination are very close to
zero and one, respectively, for low values of i/Aa.

07
o5t
05F
a4t

| -

T a3l

0.2%

G1r

00 002 004 008 08 01 012 014 016

h/A,

Figure 4.2: Magnitude of longitudinal reflection coefficient: undamaged beam
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Figure 4.3: Magnitude of longitudinal transmission coefficient: undamaged
beam

For values of frequency such that (h/A4 > 0.12) there are very substan-
tial errors, because the method uses two models (the finite element model for
the damaged area and the spectral element for the semi-infinite rods) with
different distributions of displacements and, consequently, different distrib-
utions of stress. The flexural reflection and trasmission coefficients for the
same undamaged beam are shown in Fig.(4.4) and Fig.(4.5)

It is possible to notice the effect of the non-perfect junction between the
two semi-infinite beams modelled with the SE and the finite beam modelled
using FE: to join them it is necessary to make some approximations, such as
the reduction the number of nodes and degrees of freedom for each node. This
junction causes partial reflection of the incident wave that is clearly visible if
we consider high frequencies: in fact, as shown in the considered picture, the
value of the reflection coefficient grows as the ratio (h/A4) grows. We can
notice a periodic trend of the value of the coefficent, due to the continuous
reflection of the waves between the boundaries of the beam modelled with
FE. The position of peaks depends on the length of the FE modelled beam
and the wavelength. To minimise this effect it is necessary to use a more exact
FE model and to develop Spectal Elements based on higher order theories.

53



0.08

207}

206} ﬂ '
005+ 5

b 002 004 006 008 01 012 014 016
h/A,

Figure 4.4: Magnitude of flexural reflection coeflicient: undamaged beam
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Figure 4.5: Magnitude of flexural transmission coefficient: undamaged beam

Subsequent figures will be plotted cosidering the ratio 2/A4 < 0.1, in order
to have the maximum error close to 8 per cent on the value of the reflection
coefficient for axial waves.
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4.3.2 Delaminated beam

In order to evaluate the effect of the presence of the delamination on an in-
cident flexural incident wave we have plotted in Fig.(4.6) and Fig.(4.7) the
flexural reflection and transmission coefficients for the damaged and undam-
aged cases. The delamination of length L = 20 mm in this case is in the
centre of the FE modelled beam, between the fourth and the fifth layer.
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Figure 4.6: Magnitude of flexural reflection coefficient: delaminated beam

The coefficients for the undamaged beam and for the delaminated one
are very different: the effect of the reflection due to the non-perfect junc-
tion between the models can be neglected if compared with the effect of the
delamination. The longitudinal reflection and transmission coefficients are
obtained considering the longitudinal waves due to an incident longitudinal
wave. These coefficients in this case are the same as those for damaged and
the undamaged case because, for a delamination at the centre of the beam,
symmetry implies that there is no discontinuity.

4.3.3 Various delamination lengths

['h] Flexural reflection and transmission coefficients for various lengths of
the delamination, are shown in Fig.(4.8) and Fig.(4.9). We have considered
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Figure 4.7: Magnitude of flexural trasmission coefficient: delaminated beam

delamination of length L = 20 mm, L = 30 mm, L = 40 mm, between the

fourth and the fifth

layers.
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Figure 4.8: Magnitude of flexural reflection coefficient: delaminations of var-

ious lengths
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Figure 4.9: Magnitude of flexural transmission coeflicient: delaminations of
various lengths

It is possible to notice that as the length of the delamination gets larger,
the first peak of the reflection coefficient occurs at a low value of /A 4. Thisis
because it arises as a result of interference effects, which depend on the length
of the delamination. Delamination shifts in the negative z direction. Another
way to visualise the effect of the length of the delamination is to plot the
coefficients against the ratio (k4 Lger)/(2m),where k4 is the wavenumber and
Lyer is the length of the delamination, as shown in Fig.(4.10) and Fig. (4.11).
From these figures we can notice that the first peak occour approximately
at the same frequency, varying the length of the delamination. Therefore we

can conclude that, because the effect of the delamination is the introduction
of a reflection of waves at its end, the first peak will be the result of this
reflection. The following peaks are the result of the interferences between
the reflected waves and they occur at different frequencies, depending on the
length of the delamination that causes them.

We consider again delaminations of various lengths, changing the layers
between which the delamination lies. The values of the coefficients calculated

for a delaminaiion between the second and the third layer are shown in
Fig.(4.12) and Fig.(4.13).
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Figure 4.10: Magnitude of flexural reflection coefficient: delaminations of
various lengths between the fourth and the fifth layer
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Figure 4.11: Magnitude of flexural transmission coefficient: delaminations of
various lengths between the forth and the fifth layer
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Figure 4.12: Magnitude of flexural reflection coefficient: delaminations of
various lengths between the second and the third layer
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Figure 4.13: Magnitude of flexural transmission coefficient: delaminations of
various lengths between the second and the third layer
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It is possible to notice that the values of the reflection and transmission
coefficients, in this case, are very different from the values in the undamaged
case. There is not a regular trend of the coefficient as in the previous case
and the plots present many peaks. The different behaviour is probably due
to the effect of the bending-extensional coupling. The beam has, in fact,
a symmetric stacking sequence; as a consequence, there is not coupling be-
tween bending and extension. The delamination between the second and the
third layer divide the laminate into two non-symmetric sublaminates, the
consequence is the presence of the coupling. The presence of the coupling
can be clearly shown considering the off-diagonal terms of the matrices of the
reflection and transmission coefficients. In the Fig.(4.14) the amplitude of
the reflection coefficient 74 for a delamination of length L = 20 mm between
the fourth and the fifth layer and the second and the third layer are shown.
The coupling term r; gives the amplitude of the reflected bending wave due
to an incident longitudinal wave.
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Figure 4.14: Coupling term: reflection coefficient ris

If the resulting sublaminates are symmetric r;5 is negligible (no coupling);
if the sublaminates are not symmetric, r1» generally increases with frequency.
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4.3.4 Various positions of the delaminations between
layers
The third considered case presents beams with delaminations of length L =

20 mm, with different position between layers; the results are shown in
Fig.(4.15} and Fig.(4.16).
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Figure 4.15: Magnitude of flexural reflection coeflicient: various positions
between layers

The fourth case considers a beam with stacking sequence, {0/90/0/90]s.

The reflection and transmission coefficients for different position of the de-
lamination between layers are shown in Fig.(4.17) and Fig.(4.18).
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Figure 4.17: Magnitude of flexural reflection coefficient:

between layers
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Comparing the former figures with Fig.(4.15) and Fig.(4.16) it is clearly
visible that reflection and transmission coefficients are not strongly affected
by changing the stacking sequence.
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Figure 4.18: Magnitude of flexural transmission coefficient: various positions
between layers
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Conclusions

The described work presents the evaluation of the reflection and the transmis-
sion waves due to the presence of a delamination in a laminated multilayered
composite beam. The infinite beam has been modelled joining the Finite
Element model of the delamainated area and two Spectral Element models
of semi infinite beams. The Spectral Element models are developed using
elementary rod theory, Love rod theory, Euler-Bernoulli and Timoshenko
theories.

The presence of the delamination is evaluated comparing the amplitude
of the reflection and transmission coefficients of an undamaged and a de-
laminated beam. It is well-known, in fact that, for an undamaged beam
the incident wave is totally transmitted; the presence of the delamination
causes a partial reflection (and a consequent partial transmission) of the
incident wave. The coefficients have been evaluated considering incident
bending waves; the longitudinal coefficients do not point out the presence of
the defect. The non-perfect junction between models influences the numer-
ical results; in order to minimize this effect we consider a limited frequency
range.

The length of the delamination and its position between layers influence
the value of the reflected and transmission coefficients. If we divide a sym-
metric laminate into two non-syrmmetric sublaminates, the off-diagonal terms
of the reflection and trasmission matrices are not negligible because of the
coupling effect between longitudinal and flexural waves.

Future work should minimise the effect of the junction between models
and to develop Spectral Elements according to higher order laminate theories
and evaluate if this is a suitable basis for a delamination detection technique.
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