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Chapter 1

Introduction

The sound radiation from vibrating structures plays an important role in the industrial
world. Accurate prediction of sound radiation remains a challenging problem to solve
for many situations. The sound radiation from structures is often determined in terms of
plates, as many structures such as machinery casings, car compartments or body shells,

hulls of ships, walls and floors of a building can be considered as plates.

A simplified model can be made by assuming a flat plate set in an infinite baflle, where
the velocity of the plate is known, whereas the velocity is assumed to be zero on the
baffle. The sound field above the plate can then be calculated by a Rayleigh integral
approach {1]. The sound power can be found either by integrating the far field acoustic
intensity over a hemisphere enclosing the plate or by integrating the acoustic intensity
over the surface of the vibrating plate. A knowledge of the vibration velocity is required
in both approaches. Since the modes of a plate with simply supported boundaries can
readily be found analytically, such boundaries are often assumed to simplify the velocity

field.

The radiation efficiency of a structure is defined as the ratio of the acoustic power
radiated per unit area by a vibrating surface to that radiated by an infinite flat surface
that is vibrating with the same average mean square velocity. The radiation efficiency

is thus given by

o=t W (11)
peS  peS < v? >
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where R, is the radiation resistance, W is the power radiated by the structure, p is the
density of air, ¢ is the speed of sound in air, S is area of the structure and < v2 > is its

spatially averaged mean square normal velocity.

Many papers have been produced concerning the sound radiation of a baffled plate.
Maidanik [2] worked on the radiation of a baffled plate for a broad-band case where the
radiation resistance was determined as a frequency band average. Several approximate
formulae were proposed for calculating the modal radiation resistance in the whole fre-
quency range. Wallace [3] studied the radiation efficiency of a finite, simply supported
rectangular plate in an infinite baffle determined theoretically from the total energy
radiated to the farfield. The radiation efficiency was determined for individual modes.
Asymptotic solutions for low frequencies were also presented. The results from Wallace
were used by Xie et al. [1]. A summation over the contributions of individual modes
was implemented to obtain the average radiation efficiency. It was found that using an

average over force point locations, the cross-modal coupling terms average to zero.

Williams [3] used a scheme based on the Fast Fourier transform (FFT). Rayleigh’s in-
tegral formula was evaluated numerically for baffled planar radiators, with specified
velocity in the source plane using the FFT algorithm. The bias errors appearing using
this technique were also described. Williams [6] also proposed a series expansion tech-
nique of the acoustic power radiated from planar sources. A Maclaurin expansion of
the Fourier transform of the velocity was used to calculate the first few terms of the

acoustic power,

The infinite rigid baffle frequently used as an approximation never exists in practical
cases. A more practical situation for flat plates is an unbaffled plate. The problem of
the radiation from an unbaffled flat plate is more difficult as the velocity is known over
the plate surface whereas in the plane of the plate elsewhere the pressure is known (zero)
and the velocity is unknown. However, several methods have been developed to solve

the problem.

Atalla et al. [7] gave a numerical solution for the sound radiation of an unbaffled plate
with general boundary conditions. The pressure jump was neglected when calculating
the velocity of the plate allowing any boundary conditions to be derived analytically at
the plate’s edge. The simulation was compared with measurements and showed good

agreement. However, the numerical implementation was found to be incorrect at high
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frequencies due to convergence problems. Laulagnet [{] gave an alternative solution by
presenting a double layer integral representation of the acoustic pressure. Both the pres-
sure jump and the plate displacement were developed in terms of a series of the simply
supported plate modes. The matrix of modal coupling coefficients wés numerically cal-
culated which later was used to define the accuracy of the radiation efficiency. In the
paper, the author used the normalized cross-modal radiation impedance instead of the
radiation efficiency. The real and imaginary parts of the radiation impedance were plot-
ted for certain modes and were compared with those of the baffled plate. Measurements

in air and water provided good validation of the theory.

Williams [%] applied an FFT based iterative technique to evaluate numerically the
acoustic pressure and velocity on and near unbaffled thin plates vibrating in ajr. How-
ever, this technique suffers from convergence problems at low frequencies where the
sound radiation of baffled and unbaffled plates shows significant differences. Oppen-
heimer and Dubowsky [10] introduced correction factors in the formula for a baffled
plate and then used curve-fitting to determine various coefficients using measured re-
sults. Although practical, this method is not sufficiently rigorous to be considered in

the present study.

More recently, Fahy and Thompson {i1] have developed a wavenumber domain scheme
involving inversion of a matrix equation. Intended for perforated plates, this method can
also be applied to unbaffled plates. The acoustic pressure was defined as a function of the
acoustic impedance which could be different above and beyond the plate region, creating
the mixed impedance boundary conditions. The acoustic power was then calculated in

the wavenumber domain.

Alternative approaches are available using numerical methods such as the finite element
method (FEM) or boundary element method (BEM). These allow arbitrary geometry to
be considered but do not provide the same physical insight as analytical methods. Several
studies relating to the sound radiation have been proposed based on these methods.
Nelisse et al. [12] proposed a study on the radiation of a bafled and an unbaffled plate
with arbitrary boundary conditions dealing with a complete fluid-structure coupling. A
Rayleigh-Ritz approach was used to develdp the plate displacement in the baffled case, as
well as the pressure jump in the unbaffied case. The radiation impedance was computed
using a numerical approach based on the BEM. Nolte and Gaul 1] investigated the

sound radiation from a vibrating structure in water. The pressure field in the fluid
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domain and the velocity field were determined by using BEM with input data of surface
velocities obtained from modal analysis from a FEM calculation. The sound radiation
can be identified by either fluid-structure interaction or by intensity vector measurements
in the acoustic near field. For a comparison, the sound radiation calculated by using
BEM was compared with the results obtained by a superposition of pulsating spheres.
Mattei [14] presented a formulation and a numerical solution using a simple BEM model
of a boundary integral equation for a baffled plate, and also developed an analytical

method for the constrained plate.

In this study the accuracy and computational efficiency of methods of Xie et al. [4],
Fahy and Thompson [11], Williams [5], [¢] and Laulagnet [3} for sound radiation from
bafled and unbaffled plates are compared and their advantages and disadvantages are
discussed. In a later phase, the modelling approach will then be extended to consider
the sound radiation from a perforated plate, both in a baflle and unbaffled, in which the
perforations are represented by an equivalent specific impedance, valid for holes that are

small and relatively close together compared with the acoustic wavelength.



Chapter 2

Radiation efliciency of a baffled
plate

Since plate vibrations generally involve many superimposed modes, the radiation effi-
ciency of a plate, in principle, can be obtained by summing the effect of all the modes
that contribute significantly in the frequency range under consideration [4]. Methods
described in this chapter and also Chapter 3 apply this theory to obtain the averaged
radiation efficiency of baffled and unbaffled plates. Simply supported plate boundaries

will be considered for simplicity.

2.1 Spatial domain approach

2.1.1 Power radiated in terms of plate modes

Figure 2.1 shows a rectangular plate of length a and width b set in an infinite rigid baffle.
Following the method of Xie et al. [4], by integrating the far field acoustic intensity over
a hemisphere of radius 7, for harmoenic motion at frequency w , the total acoustic power

radiated can be written as

2T w/2 2
w =f f Mr%inada de (2.1)
o Jo 2pc
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AZ

r= (6,4

F1aurE 2.1: Co-ordinate system of a vibrating plate.

where p(r) is the complex acoustic pressure amplitude at a location in space expressed
in spherical co-ordinates, r = (r, 8, ¢) at angular frequency w, p is the density of air and

¢ is the speed of sound.

The complex acoustic pressure amplitude p(r) can be written in terms of the plate
surface velocity using the Rayleigh integral [1] evaluated over the plate surface 5, since
the velocity is zero elsewhere on the baffle.

edkR
dx (2.2)

_ jkpe
pr) = 2 [0
where v(x) is the complex surface normal velocity amplitude at location x = {(z,y), k Is
the acoustic wavenumber (k = w/c) and R = |r — x| is the distance. A time dependence

of e/“ is assumed.

The power radiated can also be calculated by integrating the acoustic intensity over the
surface of the vibrating plate. The calculation is not developed further here as there are
singularities when R = 0, hence more effort will be needed to overcome the problems
in the Rayleigh integral. For further description of this approach, one can refer to the

work proposed in reference [15] or [L6].

The velocity v(x) at any location x on the plate can be found by summing over all the

modes of structural vibration of the plate.
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= Z Z UmnPrmn (X) (23)

m=1n=1

where Uy, is the complex velocity amplitude of mode (m,n} which depends on the form
of excitation and frequency. @ms(x) is the value of the associated mode shape function

at x, and m,n are the indices of the modes.

For simply supported edges, the mode shape function ¢m;m,(x} of the plate is defined by
Omn(Z,y) = sin (Egﬁ) sin (?) (2.4}

By substituting Eq.(2.3) and (2.4) into Eq.(2.2), the sound pressure is thus given by

p(r) = ZZ mn{“’kpcfsom( e } (2.5)

m=1n=1

or it can also be expressed as

=3 UmnAmn(r) (2.6)

m=1n=1
where Aynn(r) is the term in the brackets in Eq.(2.5).

Wallace [3} has produced an analytical solution for Amn(r), which is given by

—~® | (2.7)

where

_ab (—1)ymedé — 1 (—1)"efe — 1
= [(5/(m7r))2 - 1} {(Q/(ﬂ’”))2 - 1}

£ =kasinfcosp, o= kbsinflsing and r=|r|

Since w.u* =| u |?, substituting Eq.(2.6) into Eq.(2.1) gives the total radiated power as

co oo oo 0O e/
W = Z Z: Z Z {umnum » /2 f 2 Amn(r)Amn( } 251ﬂ9d9 dd)} (28)

m=1n=1m'=1n'=1
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where m’ and n' denote m and n in the conjugate form. This equation shows that
the total radiated power depends on the contributions of combination of modes. The
contribution is usually referred to as the self-modal radiation for m = m’ and n = 7/,
and cross-modal radiation for either m # m' or n # n’. According to Suyder and
Tanaka {15], the cross-modal coupling can only occur (non-zero value) between a pair of
modes with the same parity, i.e. both odd or both even in each z and y direction. Li and
Gibeling [16] have investigated that the cross-modal coupling could have a significant
impact on the radiated power, depending upon frequency and load condition. It is
found that without taking its contribution into account, the sound power may be over-
or under-estimated. However, Xie et al. [4] arrive at the conclusion that the contribution
of the cross-modal coupling can be neglected when the plate is loaded with uncorrelated

point forces averaged over all positions on the plate.

2.1.2 Average over forcing points

Following the procedure of {4}, consider a point force applied on the plate at the location
(20, 1p). To obtain the total radiated power, one can average the radiated power for all

possible locations of uncorrelated point forces on the plate. This is written as

a rb
W = i / / Wd:Eg dyo (2.9)
ab 0 0

Due to the orthogonality of the eigenfunctions, substituting Eq.(2.%) into Eq.(2.9) yields

oo oo 27 1r/2 n A
W = Zz{ab/ ] umnumndwgdyg/ / Am r) m”( r) 251n9d9d¢:}
1

m=1n=
(2.10)

This verifies that the total radiated power is a summation of the power radiated by each
single mode where the cross-modal coupling terms have now been eliminated. Eq.(2.10)

can also be expressed as

_ oo o _ .
W=> Y Wnn (2.11)
where W, is given by

o 2m 11‘/2 *
Won = |umn|2/ / Mﬁ a8 do (2.12)
0 Jo 2pc
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and |umn|? is the mean square of the modal velocity amplitude un,,, averaged over all

forcing positions.

From Cremer et al. [17], the modal velocity amplitude due to a point force applied at

a location (zp, y,) is given by

FWF @ (20, Yo)
2.13
B (L5 1) ~ ) Mo (2.13)

Umn =

where F is the force amplitude, W, is the natural frequency, 7 is the hysteretic damping

factor, and M,,, is the modal mass which is

1 M
Mupn = /pshtpim(x,y)dS = Zpsha,b =T (2.14)
g

where p,, b and M are the density, thickness, and mass of the plate respectively.

Therefore |Umy,|? can be calculated as

- 1 fe b 42| F)?
2= — mn d2o dyo = 2.15
|[wmn| ob fO fO UmnUmn GT0 YO [(wgnn — B2 £t M2 ( )

The natural frequencies wpy,, are given by

o= () [+ (2] 216)

where B = ER3/[12(1 — 1?)] is the bending stiffness in the plate in which E is the

Young’s modulus and v is the Poisson’s ratio.

From Eq.(i.1) and Eq.(2.12), the modal radiation efficiency omy, is given by

Wmn

peab< |uZ,.| >

Tmn =

where < |u2,,| > is the spatially averaged mean square velocity of a single mode averaged
over all possible force positions given by

—— 1 [— w2 FJ? [trmn |2
2 .t 2 - =
< |ufml > S fs [umnl® dzo dyo 2wk, — w?)2 + Pwl M2 3

mi

(2.18)
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Substituting Eq.(2.12) and (2.18) into (2.17) yields

2 A Amn r)Amn( ) P2
Tmn = 4/ f (pc)2 A dft de (2.19)

After algebraic manipulation, Eq.(2.14) can be expressed as

2 2w pm/2
S f f O sinf do do (2.20)
wdmn? Jy  Jy

where

cos(£/2) cos(e/2)
| stz s/ |
[E/mm ) — 1[(e/n) — 1]

\ /s

cos(£/2) and sin(£/2) are used when m is an odd or even integer respectively. Similarly,

cos{e/2) and sin(g/2) are used when n is an odd or even integer respectively.

Since sin(¢/2 + pm/2)== cos(£/2) and sin(£/2 + gm/2)==+ sin(£/2) where p is odd and

g is even, © can be expressed more efficiently as

_ [ sin(€/2 4+ mn/2)sin{{/2 4 nn/2) 2
o= { i(¢/mx)? — 1)[(g/nm)? — 1] } (2.21)

As an example, Figure 2.2 plots the radiation efficiency of modes (1,1) and (10,1) of a

rectangular plate having dimensions 0.65x0.5x0.003 m (details given in Section 2.4} in

terms of normalised frequencies k/kmn, where kmn = \/(m7/a)? + (nn/b)2. The fre-
quency resolution is 40 points per decade, spaced logarithmically. The doubled integral
in Eq(BZ{E} is evaluated using a built-in function in MATLAB implementing the two-
dimensional Simpson quadrature with various error tolerances, e. The results show that
the radiation efliciency increases as the frequency increases and then slowly converges

to unity above the maximum peak. The better e used, the better the curve converges.

Finally, the general average radiation efficiency o is then given by

;.?2:3 Zgll Wmn — '?::1 Zfﬂ Omn< |u$nn{ > (2 22)
peab< v2 > < 2>
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-
(=]
C}

radiation efficiency, o
radiation efficiency, ¢
-
(=]

kik

mn

(B}

Fiaure 2.2: Radiation efficiency of (a) mode (1,1) and (b} mode (10,1} of a sim-
ply supported baffied plate using the spatial domain approach: e=10"3%(—=), 1075(-..),
1077{—- =), 1079(—).

where < v2 > is the result of summation of the spatially averaged modal mean square

velocity < fuZ, | >, ie. [17]

<F>=ii<ﬁ§;> (2.23)

m=1n=1
Therefore

Y et Some1 Tmn < Uiy | >

?::1 E?D?..;l < |u127m| >

g =

(2.24)

:=1 E:):l Omn [(wgrm B w'2)2 =+ nzwfnn]“l
=1 2o (Wi, —w?)2 + nwh,, 11

Example results of o will be given in Section 2.4 below.

2.2 Wavenumber domain approach

2.2.1 Governing equations

The sound radiation from a mode of vibration of a finite plate set in an infinite baffle can
also be determined by wavenumber decompaosition of the spatial distribution of velocity

in the mode [15].
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fluid

= afK

[l §

5 Infix 1
FIGURE 2.3: Propagating wave in a plate

Consider first a two-dimensional infinite vibrating plate, having velocity », which is in
contact with a fuid in the semi-infinite space z > 0 as shown in Figure 2.3. A plane
transverse wave is travelling in the plate with arbitrary frequency w and wavenumber &.
Sound is radiated by the plate into the fluid with the same wavenumber component in

the z direction.

As the propagation of a plane wave in a two-dimensional space is expressed by

p(z,z, t) =p e“j{rz:c-l-r’czz)ejwt (2.25)

the condition must be satisfied that & < k, i.e. the plate wave speed is greater than the
speed of sound in the fluid, to allow the wave to propagate away from the plate surface.
Also to fulfill this distinct condition, the positive sign must be chosen for k, whereas

the negative sign is disallowed as no wave can propagate toward the surface of the plate.

The acoustic variable of the fluid in the z direction must be the same as that of the

plate, i.e. kz = x so that the wavenumber relationship is given by
ky = +(k* — E2)Y/? (2.26)

where k is the acoustic wavenumber, k = w/c.

Consider the spatial Fourier transform of an arbitrary velocity distribution v(z)
— oo -
Viks) = / v(z)e %2 dy : (2.27)
—00

and its inverse Fourier transform
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1 [~ .
o(z) = f 7 (ks )eT=2 dk, (2.28)
27 J o
Thus if v(z) represents the plate velocity, or zero on the baffle, the velocity distribution

of a plate in a baffle can be expressed as an integral over wavenumber.

The radiated pressure field can be related to the surface normal velocity distribution
through the specific acoustic impedance. The specific acoustic radiation impedance is
defined as the ratio of complex amplitudes of pressure and particle velocity at a single

frequency and wavenumber.

The linearized equation of momentum censervation in the z direction is given by

dv, dp

par +5-=0 (2.29)

where v, is the component of particle velocity in the z direction and p is the pressure.

For harmonic motion at frequency w, this gives in terms of complex amplitudes
d;
dwpv,(z) + d—z =0 (2.30}

Therefore for the case of the plane travelling wave given by Eq.(2.23), this yields

— k
S . 315 (2:31)
jwp dz wp

For a given wavenumber, the acoustic impedance can then be written as

PO . (2.32)

Thus in terms of the wavenumber transforms, Eq.(2.32) can be written as

Pk,
za(ky) = ng;c; = _‘*’%)1/2 (2.33)

Considering now a plane wave travelling in the plate surface with a component in the

z and y directions, having wavenumber components &y and ky, kg is then replaced by



Chapter 2 Radiation efficiency of a baffled plate 15

k2 + kg. The direction of travel is at an angle ¢ = tan™'(k;/k,) to the z-axis. Thus
from Eq.(2.33), the surface pressure field wavenumber component related to the velocity

wavenumber component is given by

(P (kz, ky)]z=0 = e k‘;”)_ Y V (ke ky) (2.34)

Referring to Eq.(2.28) for a two-dimensional case, the surface pressure field and the

surface normal velocity are

1 oo >0 —_ .
[ple, )]e=0 = 5 / / [P(ky, ky)]zmo /=R dk, dk, (2.35)
-0 J —oo
va{m, y) V(kz,k ) elkemthuy) gr o dk, 2.36)
41'r2

The power radiated is calculated by
e 1 i
W= 32 [ sl vio) dr a (2.37)
5

where R denotes the real part.

Therefore by substituting Eq.(2.33) and (2.36) into (2.37) gives

W = J{kzz+Eyy)
321r4 {,/ [_/ f km’k Ne=oe dkz dky
(2.38)

5 / / ?*(k;, k;) e—j{k;2+k;y) dk}x dk;] d:cdy}
—00 J —00

The range of double integration over the surface S can be changed from —oo to o0

because the particle velocity v is ensured to be zero outside the plate boundary.

Thus substituting Eq.(2.31) into (2.33) gives

W = 1 _Ie /00 fOO ] fDU wo I?(k: k )ej(kz:r+kyy) dk- dk
3278 | oo oo [/ oo oo (K2 — K2 — E2)/2 7T « dky

(2.39)

f f V* (K], k) e IthamtRa) di) dk’]dmdy}
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If the integration is first performed over z and y, by changing the order of integration,

the Dirac delta functions are obtained i.e.
f f ke—ke)z o=k —R)0 gy dy = Am?8(ky — KL )6(ky — k) (2.40)

Hence Eq.{2.39) can be simplified as

— 1 =0 o0 wp —~ 9
Wﬁf_m /_m iy ¥ (e Rl dhe dhy (2.41)

In addition only wavenumber components satisfying the condition (B2 + kg)l/ 2 <k
contribute to sound power radiation; elsewhere the term (k% — k2~ kﬁ)l/ 2 is imaginary.

The range of integration can therefore be limited to give

k ~
ky)|* d T 2.4
W / ] _ k;2 k% o kS)}/g |V(k:c= y)l k dky ( 2)

In the two-dimensional spatial Fourier transform, an individual mode velocity distrib-

ution is decomposed into a continuous spectrum of spatially harmonie, travelling plane

wave components, each having a certain wavenumber vector which is given by
— a b -
an(kﬂ:: ky) = f ./ Umn ‘Pmne_'f(kxm-'-kyy) dr dy (2-43)
0 Jo

where 1l?n-m(fs:;,;, k) is the complex amplitude of the wavenumber component. Integration

yields [18]
V(a, 8) = tmahk~2(e + 59) (v + J<) (2.44)
where
Ae (=) (%)
o2 - (2] [ - (38)°)

e=(—1)"cos(aka) -1,V = (—1)™"* sin (wka)

v=(—1)"cos{Bkb) — 1, ¢ = (—1)"* sin (8kD)
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oik}

g
\ - ‘

k=( k: + ky;))la ‘.\

B

f
e

(a) (b)

FIGURE 2.4: {a) Radiation circle and {b) Integration performed as a series of rectangles
defining the area under the graph. The sample points are taken at the middle of the
rectangles.

radiation efficiency, s
radiation efficiency, &
=]

FIQURE 2.5: Radiation efficiency of (a) mode (1.1) and (b) mode (10,1) of a simply sup-
ported bafiled plate using the wavenumber domain approach: do = d@ =0.20 (-}, 0.15
(--+), 0.0 (—- =), 0.05 (—) m.

efficiency converges as the sampling accuracy increases. It can also be seen that using
the wavenumber domain approach, the results are exactly the same as the results of the

spatial domain approach, given in Figure 2.2.

To find the average radiation efficiency over all modes, Eq.(2.21) can be applied. Exam-

ple results are given in Section 2.4 below.
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2.3 The Fast Fourier Transform (FFT) based approach

The Fourier transform of the velocity in the calculation, as defined in Eq.(2.27), can
be solved much faster by using the Fast Fourier Transform (FFT). Compared with
numerical integration of the conventional Fourier transform, the FFT can reduce the
number of computations needed for N points from 2N? to 2N logy N [19]. In addition,
as many programming languages, such as MATLAB, provide a built-in FFT function,

the task of programming it is much reduced.

2.3.1 Steps of calculation and bias error

Williams [5] first implemented the numerical evaluation of the radiation efficiency using
the FFT method. Rayleigh’s integral formula can be evaluated for planar radiators
of any shape, with any specified velocity in the source plane. Rayleigh’s formula as

expressed in Bq.(2.2) is rewritten by using a kernel®

. jwp emika"y?+d)?
h(z,y,d) = jwpg(z,y,d) = T P T (2.48)

where g(z,y,d) is the half-space Green’s function evaluated at z = d.

In convolution form, Rayleigh’s formula can be expressed as

p(x,y,d) = v(z,y) ® h{z,y,d) {2.49)

Thus by applying the convolution theorem, one can obtain

pz,y,d) = FUV (ke, ky) H (g, ky, d)] (2.50)
where F~1 denotes the inverse Fourier transform, V is the Fourier transform of v and

H is the Fourier transform of h, given by

—jk2d
k.

e

ﬁ(km, ky,d) = jwpé(km,ky,d) =wp (2.51)

"Note that Williams [3] uses the time dependence of e~ instead of £/, This has been changed
here for consistency with the remainder of this report
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in which o = k;/k and 8 = k,/k are the non-dimensional wavenumbers and a and b are

the plate dimensions.

Referring to the co-ordinates in Figure 2.[ for wavenumber components, it is found that

ke ="k sing cos¢ and k,; = &k sin 0 sin ¢.

Thus by relating Eq.(2.44) to Eq.(2.7), it can also be found that

~ 2

Substituting Eq.(2.14) into Eq.(2.42), the sound power radiated by a single mode is thus

= _ Polumnl? |tmn|? Vi-o? A2 (T'? 4+ 11%)
W'm, - 772k2 / / 1 — 042 62)1/2 dﬁ do (246)
where [ = (g7 — 9¢) and II = (9 + £¢). Because only spectral components of Vinn With
a2+ 32 < 1 can radiate sound to the far field, the integrands over o and 3 are calculated

for the area of non-dimensional wavenumber space enclosed by a circle of unit radius

centred on the origin.

From Eq.(2.17), as < |u2,,| > equals |u2,,|/8, the modal radiation efficiency is

viceZ 2 2
(I'* + 117}
T = a0 (kb)j / A2 gy 48 de (2.47)

2.2.2 Singularity solution

A singularity problem occurs when the values of sample points over o and 3 coincide
with the radiation circle a®+3% = 1 or k§+k§ = k2. Although not rigorous the following
approach is found to give reasonable results. If kf, =k + kg, the infinity when k, = &
can be avoided by taking the sample points in the middle of rectangular integration
segments of length dk, (see Figure 2.-4). Thus in the calculation of the double integral

in Eq.(2.47), this is implemented by selecting suitable sample spacing da and d3.

Of course, the spacing samples must be chosen sufficiently small to obtain such a smooth
graph, especially to ensure that the radiation efficiency converges to unity above the
critical frequency. Figure 2.5 shows the results for the same plate dimensions as those in

the previous section with do = dB8 = 0.20,0.15,0.09, 0.05 m. It shows that the radiation
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where
— (L2 2 2y1/2 2 2 2
ko = (B2—k2—k2)12, k% > k2442
— i L2 2 23172 2 2 2
=i(k2+ k2 kY2, K< k4K

From a knowledge of v(z, y), a process of calculating p(z,y, d) using the FFT can be

performed as follows:

1. Calculate the discrete Fourier transform (DFT) using the two-dimensional FFT

algorithm of v(z, ¥) to obtain vp(km, ky).
2. Calculate H (kqg, ky, d) from Eq.(2.51).
3. Multiply results of (a) and (b).

4. Calculate the inverse DFT of result (c).

The velocity v(z, y) is defined on every point of a baffle having a length and width of L.
The points are sampled with the spacing sample of a;. The plate itself occupies a region
in the centre of this baffle as can be seen in Figure 2.4, The velocity on the rest of the
baffle is zero. However due to the truncation of the FEF'T, the region beyond that shown
in Figure 2.6 is effectively periodic. This produces so-called replicated sources. Thus L
must be chosen sufliciently large to prevent overlapping the pressure field p(z, y) with

that from the replicated sources causing a bias error in the analysis.

The two-dimensional DFT of v(z, ¥) can be written as

N/2-1 Nf2-1
VD(?"/_\A; sAk) = a? Z Z v(pas, gas)e —g2n(rp+sq) /N (2.52)
p=—N/2q=—-N/2

where N = L/a; and Ak = 2xn/L.

2.3.2 DModified Green’s function

From Eq.(2.51) it can be seen that the Green’s function é(kx,ky,d) becomes infinite

when &, = 0 although the integral is finite. To avoid another bias error in the resulting
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FIGURE 2.6: Diagram of a plate in a sampled baffie for sound radiation calculation using
the FFT.

integral, the averaged Green’s function G over an annulus ky < kg < ks is introduced [3].
g

For d = 0, this yields

—25[(k% — EDY? — (k2 — k)7

G= . k<,
¢ (kF — &%) i
_0:R2 _ pdylj2 2 1.20\1/2
— ZJ(k k1)2 +22(k k?) , kl < b S kQ,Q
(k3 — k1)
2 2hZ/2 2 231/2
AR RV
(k3 — k3)
—j 3
= T s kD - 01 (253)

where ky = ko — Ak/2, ky = ko + Ak/2 and ky = (p* + ) 2 Ak.
Therefore G from Eq.{2.51) is now replaced with @ from Eq.(2.53). Substituting this
into Eq.(2.50), the acoustic pressure on the source plane (d = 0) is now

p(@,9,0) = uwpF [V ke, iy )G Rz, Ky, d)] (2.54)

Finally, the power radiated by the plate can be calculated in the spatial domain, given

by

In Williams [5], a typing mistake is made on the operator of the denominator, e b3+ kL
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radiation efficiency, ¢
radlation efficiency, 6
=

(b)

FIGURE 2.7: Radiation efficiency of a simply supported batiled plate using various FFT
points. (a) mode {1,1): L =64 m, a; =01 m (—— ); L=128m, a, =01 m (— ) and
(b) mode (10,1): L =64 m; a;, =01 m {---}, a; = 0.05m {(—- =), es =004 m (— ),
a; = 0.03 m {(— }.

L L
W= /0 fo Rip(z, v, O)o(z, y) dz dy (2.55)

since »(z,y) is real. Alternatively, in the wavenumber domain, the sound radiation

power is given by
1 k m " .
W= / / RIB* (ko kg )T (ks b)) dl (2.56)
o Jo

where k; = rAk and k, = sAk and * denotes the conjugate form. The wavenumbers

are filtered so that only those satisfying k2 + k2 < k? are retained in the calculation.
The radiation efficiency can be found by applying Eq.(1.1}.

Figure 2.7 presents the results for modes (1,1) and (10,1) uwsing various numbers of
points in the FFT, i.e. using different baffle lengths, L and sample spacing, a;. From
Figure 2.7{x), using L = 6.4 m and a; = 0.1 m, a bias error appears at low frequency.

Tt can be seen that the error is then reduced by using larger values of L {larger baffle).

For the higher mode, the bias error is very small at low frequency and is not shown in
the plot. However, without changing the baffle length, a finer resolution of sample points
is required to obtain the true result of the radiation efficiency. This can be explained
as follows. In mode (10,1), there are 5 structural wavelengths in the plate length L. In
this case L = 0.65 m is used, therefore A = 0.65/5 = 0.13 m. Meanwhile more than two
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FiGURE 2.8: Modal and average radiation efficiency of a simply supported rectangular
baffled plate {0.65 x 0.5 x 0.003 m aluminium plate with # = 0.1) using wavenumber
decomposition:—, modal radiation efficlency; — , average radiation efficiency.

points are required to represent one wavelength digitally. Therefore the sample spacings
needed are s < 0.13/2 = 0.065 m. Figure 2.7(b} presents the radiation efficiency using
L = 6.4 m and different values of a,. It is clear that for a; = 0.1 m, the result does
not capture the interference due to the modal pattern. For a; < 0.065 m, the results
converge to the true value of radiation efficiency as the resolution of the sample spacing

gets finer. It appears that 3 or more points per wavelength are required.

2.4 Comparison of the baffled methods

2.4.1 Example results

A comparison is made of the above methods by applying them to calculate the average
radiation efficiency of a rectangular plate having dimensions of 0.65 x 0.5 x 0.003 m,
density 2700 kg/m?®, Young’s modulus 7 x 10}° N/m? and damping loss factor 0.1. The

frequency resolution is 40 points per decade, spaced logarithmically.

Figure 2.8 presents the modal and average radiation efliciency calculated using the
wavenumber domain approach. The spatial domain approach gives identical results

hence these are not presented here. It can be seen from the average radiation efficiency
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FIGURE 2.9: Self-radiation efficiency of each mode of a baffled plate: (a) odd-odd mnodes;
(L) even-even modes; (¢) odd-even modes and (d) even-odd modes.

that the overall result below 70 Hz depends on the first mode (mode (1,1}). The veloe-
ity of the plate shown below (see Figure 2.11) indicates that the first mode dominates
the response in this region, and moreover it has the highest modal radiation efficiency.
Above 70 Hz, the average radiation efficiency suddenly drops and then rises gradually
until it Teaches the maximum at about 4 kHz. This peak at about 4 kHz is the critical
frequency, i.e. f. = (psh/B)Y/%c?/2m where p, is the density, A is the thickness and B is
the bending stiffness of the plate. For the plate thickness considered, 3 mm, the critical

frequency is 4022 Hz.

Figure 2.0 shows the modal radiation efficiencies of modes, separated into odd-odd,
even-even, odd-even and even-odd modes. From Figure 2.5, the slope of the average
radiation efficiency at frequencies below 70 Hz is 20 dB/decade. It can be seen that

it corresponds to the slope for the odd-odd modes where the first mode is dominant.
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Acting like monopole sources, the odd-odd modes are the highest mode contributing to
the sound radiation, see Figure 2.9(u}. The even-odd and the odd-even modes, with 40
dB/decade slope, act like dipole sources. They radiate sound less effectively than the
odd-odd modes, see Figure 2.9{c} and (d). Meanwhile the even-even modes resemble a
quadrupole source behaviour. They are the smallest modes in the sound radiation with

a slope of 60 dB/decade, see Figure 2.4(h}.

It is interesting to note that these slopes apply at low frequencies up to around 300 Hz.
Above 300 Hz, where the width of the plate (0.5 m) is greater than half an acoustic
wavelength, the curves are more complex due to interference effects before rising to a
peak at a frequency where the acoustic wavenumber equals the plate number in their

mode.

Figure 2.10 presents the average radiation efficiency for various values of the damping
loss factor. It shows that the significant effect of damping to the souﬁd radiation lies in
the frequency range between the first peak and the critical frequency. The trend of the
radiation efficiency in this frequency range is dominated by the ’edge’ modes (ka < 1
and kb < 1) and ’corner’ modes (ka < 1, kb > 1 or ka > 1, kb < 1) [15] where
the cancellation of the radiation from adjacent regions on the plate takes place. The
radiation from the first mode, which has the form of a monopole source, is not affected
by the damping. The radiation efficiency is also independent of the damping above the

critical frequency.

The modal velocity amplitude around each resonance decreases as the damping increases,
see Eq.(2.13), while the decrease of modal velocity amplitude also decreases the spatially
average velocity. With higher damping, waves propagating from the force point decay
faster so that the effect of the nearfield close to the force point has a greater importance

than the contribution of resonant modes [18].

It also can be seen that the trend has considerable fluctuation at low frequency and gets
smoother as the frequency increases. This can be related to how many modes contribute
in the frequency range of interest. This can be investigated from the response of the
plate shown in Figure 2.11. The modes can be still differentiated at low frequecies
(up to about 300 Hz), but at high frequencies, the modes are very dense so that the
average response becomes almost a smooth curve. The modal density n{w) determines

the number of modes in a unit frequency band. For bending waves on a plate, it is



Chapter 2 Radiation efficiency of a baffled plate 26

oy

10 'F

radiation efficiency, ¢

107 /

10"3 A ) 2 3
10 10 10 10
frequency [Hz]

FiGURE 2.10: The average radiation efficiency of a baffled plate with different damping loss
factor: —, 0.2; ---, 0.1; ——, 0.05; — - —, 0.1

independent of frequency and is given by [17]

5

where § is the plate area, & is the plate thickness and ¢ = /E/ps{1 —v?) is the

longitudinal wavespeed in the plate. The modal overlap factor is given by
MOF = n(w)wn (2.58)

where 7 is the damping loss factor. This is shown in Figure 2.12 for n = 0.1. This
indicates that MOF=1 occurs at around 300 Hz. At high frequency, where MOF>1,
the contribution of single modes is of interest than the average over several modes. In
Figure 2.10 it can be seen that the radiation efficiency curves become more smooth above

300 Hz for n = 0.2, 600 Hz for » = 0.1 and 1200 Hz for n = 0.05, i.e. for MOF>2.
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Frcure 2.11: Contibution of modal mean square velocity {—1) to total mean square velocity
() of a rectangular plate {0.65 x (.5 x 0.003 m aluminium plate with n = 0.1).
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FIGURE 2.12; Modal overlap factor of the plate {0.65 x 0.5 x (0.003 m aluminium plate with
n=10.1).
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2.4.2 Calculation time

Considering Eq.(2.20) in the spatial domain approack, the modal radiation is calculated
by integrating over a hemisphere of farfield positions. Using the wavenumber domain
scheme, the radiation efficiency is found directly for each wavenumber, but integration is
then performed over wavenumber compoenents which contribute to the radiated sound.
This method can also be used to plot the spectrum of the plate velocity [18] as a function

of wavenumber. This gives a better insight into the mechanism of sound radiation.

Both methods involve double layer integrals. However in the spatial approach, the
caleulation has to deal with integrating factors of the form of sin {sin (A)cos (B)) as
expressed in Eq.(2.7), Eq.(2.20) and (2.21). To obtain a good accuracy of result, this
form must be solved with a good resolution of integration segments. Consequently, this
increases the calculation time. On the other hand in the wavenumber domain approach,
the equation has been performed more efficiently as the integration only employs the
multiplication of the form of sin (4) or sin (B) (see Eq.(2.17)). A sufficient resolution,
not necessarily as good as that in the spatial domain, can save significant amount of the
calculation time. Using MATLAB on a personal computer Pentium 4® 0,99 GB RAM,
the calculation using the wavenumber domain approach with da = dB = 0.03 based on
400 modes takes approximately 8 minutes. For the spatial domain approach, to have a
good convergence at high frequencies up to 10 kHz, the error tolerance needed is 1077,
With the same number of modes, the calculation of the radiation efficiency takes more

than 4 hours.

Despite the advantages of the FFT algorithm, the FF'T approach is not found to be an
efficient method as this technique is not a direct methoa to calculate the radiation effi-
ciency. It is time consuming as the averaged Green’s function E needs to be constructed
first before implementing the inverse FFT of the plate velocity for each frequency, and
later calculating the acoustic power. As described in section 2.3, an accurate result
needs good resolution of sample points and a larger baffle is required to overcome the
bias error at low frequency, especially in the first mode. The calculation of a single modal
radiation efficiency for 64 x 64 points FFT takes 11 seconds. The equivalent cal¢ulation
is estimated to take more than 15 hours for the average over all modes. Therefore, the

calculation of the averaged radiation efficiency using this method s not encouraged here.
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Radiation efficiency of an

unbaffled plate

3.1 Iterative scheme using the FFT

3.1.1 Algorithm

Continuing the FFT method for calculating the sound radiation for baffled plates,
Williams [9] also developed this for application to unbaffied, finite plates. This in-
volves using an iterative scheme where Rayleigh’s integral and its inverse are written in

the wavenumber domain. The FFT algorithm is then implemented to evaluate them.

Applying the averaged Green’s function used in the baffled plate caleulation in section

2.3, Eq.(2.54) gives Rayleigh’s integral formula as
p(,,0) = juopF 7 [V (ke by )Clkz, £y O] (3.1)
Inverting Eq.(3.1) gives
v(z,3) = —(i/wp)F " [Pke, by )/ Clhz, by 0] (3:2)

In the case of a baffled plate, the velocity is defined on the plate and is zero on the

baffle. This velocity is then used to define the pressure everywhere. For an unbaffled

29
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plate, neither the velocity nor the pressure are fully known and therefore an iterative
procedure is employed. The velocity is used to estimate the pressure on the plate, and
the pressure is then used to calculate the velocity beyond the plate. Eq.(3.1} and (3.2)

are the basic formulae used in the iteration process.

Assuming P is the plate region and E is the exterior region in the plane of the plate,
the mixed boundary condition for the unbaffled plate is v(z,y) = vi(z,y) on P and
p(z,v,0) = 0 on E, where v;(z,y) is the given velocity. Note that in the FFT method,

E is only defined over an aperture of dimensions L x L.

The following iteration algorithm is used:

1. Start with the boundary condition for the baffled plate, i.e. v(z,y} = vi(z,y} on
P and v(z,y) = 0 on E on the plane at z = 0. For a simply supported plate,
Eq.(2.3) is used for v;(z,y). Implement the two dimensional FFT to find V (ke ky)

(see section 2.3).

2. Use Eq.(3.1) to obtain pfz,y,0). Retain this solution for P but set plz,y,0) =0
on E.

3. Find P(k,, k,) using the FFT and calculate the new v(z, y) for the whole plane at
z =0 from Eq.(3.2).

4. Check the mean square error of the reconstructed velocity field from

N
e= > | (z,y) — vz, )] P /N (3.3)
0

where N is the total number of points considered on the plate region P.

5. If the root mean square error (RMSE) is more than a certain tolerance, the iteration
is repeated from the first step by setting v(z,y) = vi{z,y) on P and leaving v(z, y)

unchanged on E.

When the iteration is stopped, the boundary condition in the exterior region E, p(z, y, 0) =
0 should also be closely achieved. Williams [¢)] found that for RMSE less than 0.005, for
a unit maximum amplitude of v;(z,y), the pressure magnitude on E was generally three

orders of magnitude below its maximum value on P.



Chapter 3 Radiation efficiency of an unbaffled plate

31

radiation efficiency, ¢

radiation efficiency, o

FiGURE 3.1: Radiation efficiency of mode (1,1) of a simply supported unbaflled plate using
the FFT method (0.G5 x 0.5 x 0.03 m aluminium plate with % = 0.1): ——, spatial domain;
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Equivalent approaches of caleulating the radiated power as those used for of the baf-

fled plates can be employed, either by integrating over the spatial domain or over the

wavenumber domain using Eq.(2.35) or Eq.(2.56) respectively.

3.1.2 Convergence problem

Figure 3.1 plots the radiation efficiency of mode (1,1) using both approaches (spatial

and wavenumber domains) to calculate the radiated power (Eq.(2.33) and Eq.{(2.56)) for

a plate having the same dimensions and properties as in the previous sections. From

Figure 3.1¢{a) and (c), it can be seen that using the spatial domain, the calculation results

in a discontinuity below 100 Hz. Some results are actually negative. This limitation of

using the spatial domain could be because the calculation includes all the wavenumbers,
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of which those outside the radiation circle that contribute to the non-propagating waves
may not cance! each other at low frequencies due to numerical inaccuracies. Meanwhile,
results are obtained over the whole frequency range using the wavenumber domain for
as = 0.1 m, but the slope of the graph deviates below 50 Hz for L = 6.4 m. This is
due to bias error from the replicated sources {outside the window L x L) as explained
in section 2.3.1. This can be overcome by having a larger aperture i.e. in this case L is

increased to 12.8 m, see Figure 3.1{c}.

Convergence problems appear due to the sample spacing a, used. It is found that using
as; < 0.05 m, the results for both values of L fail to converge below 200 Hz as seen in
Figure 3.1(b} and (d). This might be due to the pressure discontinuity at the plate’s
edge. In fact, for an unbaffled disc of radius a, Williams [9] found that the mean square
error did not converge for ka < 1.7. The results shown here suggest that it is connected
with the sample spacing a, rather than the size of the radiating plate. Unfortunately
finer resolution is required to represent higher order modes so that it appears that this

iterative FF'T method cannot cope with higher order plate modes.

3.2 Wavenumber domain using modal basis

Laulagnet [%] has proposed a numerical evaluation for calculating sound radiation from
a simply supported unbaffled plate where the pressure jump and the plate displacement

are developed as a sum over the plate modes.

3.2.1 Derivation of equations

Consider a flat thin unbaffled plate with a surface area S, located in an infinite medium,
excited by a harmonic force distribution F(z,y) of angular frequency w. Ap(z,y) is the
difference of the acoustic surface pressure, thus the pressure jump at the plate’s edge

due to the transverse motion, given by

Ap(z,y) =p (z,y) —p* (z,7) (3.4)

where p~(z,y) and p*(x,y) are the surface pressure on the z axis at z = 0_ and 2 =0,

respectively.
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FIGURE 3.2: A simply supported plate enclosed by a volume V in the medium with its
bounding surface S.

The force distribution is assumed to act normal to the plate. One can apply the equation

of motion expressed as
BV*u(z,y) - mwiw(z,y) = F(z,y) + Ap(z,y) (3.5)

where B is the bending stiffness, m is the mass per unit area, w(z,y) is the transverse

displacement of the plate and V* is given by

o4 204 o1

4 __ Y —
V=t T o2 o Byt

(3.6)
The pressure anywhere in the volume encompassing the plate can be found by using
Green’s function, see Figure 3.2, According to Kirchhoff’s integral theorem, the pressure
in the swrrounding fluid can be expressed by

p(M) = fs (MQ)%;M) —~ G{Q,M)ai—p;) ds (3.7)

where M denotes a point in the medium, ng is the normal to the total surface taken at
point @ on the plate, G(Q, M) = e™7*R/4x R is the free-field Green’s function with R

the distance between point 7 and M.
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The Green’s function must satisfy
VEG(Q, M) + k*G(Q, M) = 8(z — 20)d(y — y0)3(z — 20) (3.8)
where § is the Dirac delta distribution, @ is at (z, ¥, z) and M is at (%o, ¥0,20). By

using the two dimensional spatial Fourier transform of Eq.(3.8), the Green’s function

can be expressed as

G _? /‘OO fOO ejk:c{x_xﬂ)ejky(y‘"yﬂ)ejkz(z_ZO)

8m? f o/ k,

where k, = /k? — k2 — k2.

Considering that only outgoing waves from the plate are allowed in the caleulation, the

dkg dk, (3.9)

surface integral in Eq.(3.7) can be reduced to S, i.e. the whole surface of the plate, Spy
and Sp—. The surface at infinity is neglected since it is assumed that there is no wave

reflected back to the plate.

Restricting attention to the pressure at a point M above the plate (half space, z = 0),
by considering the normal ng parallel to the z-axis as illustrated in Figure 3.2, Eq.(3.7)
can be decomposed as

0G(Q, M)}

_ (0 26(@,M)
s == [ P @ dsyt [ 5 (@% 5 s

(3.10)

Opt j‘ ap~
+ G(Q, M)=— dS,. — G(Q, M) ~— dS,-
Sp+ (Q )BZQ -+ Sp_ (Q )BZQ P

where M € V*, ie. V1 is the half-space above the plate.

Since the gradient of the acoustic pressure is a continuous function on the plate mid-
surface Sy and the plate thickness is assumed to be very small compared with its iength
and width, the simple layer contribution can be neglected; Sp+ and Sp_ become 5.
Thus from Eq.(3.10), it is obtained that

dp*  Op”

fSpG(Q,M) (EZ_Q_%) dS, =0, Qcs, (3.11)

Therefore
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pon) = | 2p28@M) 4o (3.12)
Sp 0zg
Substituting Eq.(3.5) into Eq.(3.12) yields
a M
p(4) = [ (B9 () - mePu(a,p) - F(@,) G(Q’ 9@ M) s, (3.13)

where Q € Sp,, M c V.

The two-unknown fields, i.e. the acoustic field p(M) and the vibration of the plate w(@)

in Eq.(3.13) can be related using Euler’s function in the plane of the plate at z=0.

op 2
—(M)l:=0 = pw w(M)
o2 (3.14)

8?G(Q. M)

dzq0zpm 45

= [ (BY*(@) - muu(Q) - F(@Q)

Sp
where §/02g and 88z are the derivatives at @ and M in the z direction respectively.

From Eq.(3.1.4), a sohution for the displacement w can be found by setting @G =M.

3.2.2 Integral solution using modal summation

The displacement can be considered as the summation of a series of plate modes. Similar

to Eq.(2.3) for the velocity, the equation can be expressed as

w(z,y) = Z denfpmn z,9) (3.15)

m=1n=1

where dyy,.is the modal displacement amplitude and ¢, is the associated mode shape

function as in Eq.(2.4).

The same kind of modal series can also be applied for the excitation force given by

F{w,y} = Z Z an@mn(may) (3.16)

m=1n=1

where Fpn, is the generalized force for mode (m,n).
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Substituting Eq.(3.15) and Eq.(3.16) into Fq.(3.14}, the equation can then be written

as

o 00
pwg Z Z dmn(xomn(mﬂs yD) =

m=ln=l (3.17)
9°G
/ ZZ[m Wnn — dmn — mn]%omn( )3 920 (‘T Zo, Y, QO,Z—ZO—O)d:Edy
Sp m=1n=1

where wyny, 18 the resonance frequency for a single mode, similar to Eq.(2.16) defined by

Winn = k20 (5) (3.18)

m

where kny, denotes the modal wave number of mode (m,n), which for a simply supported

b=/ ()" + (5)° 519

and where the modes @, satisfy

plate is given by

B V4‘Pmn(may) = mwaznn‘f’mn(x: y) (3.20)

If the mode shape of the simply supported plate, say pp, is defined according to Eq.(2.4),

using the orthogonality relationship, one can obtain

S,
f @unn Ppg dSp = ~FOraping (3.21)

r

where ¢ is the Kronecker’s delta.

Applying this to Eq.(3.17)} yields

P —dpq Z Z dmn - an]Cpqmn (3-22)

m==1mn=1

where Cpgmn is the acoustical cross-modal coupling terms, i.e.

82G )
Cpqmn = f ] !,qu(i‘u"o, yU)a—(ma o, Y, Yo, 2 = 20 = 0) ‘Pmn(:ca y)d:cda:gdydyg (323)
Sp 4 8p 2’32’0
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Substituting Eq.(3.9) into Eq.(3.23) and performing the two integrals over S, yields
j o o0 _
Cogrn = 53 [ ) /_ e Bl ), ) e (3.24)

where @mn(ks, ky) is the Fourier transform of the mode shape ©mn(2,y) which is ex-

pressed by

a pb
Cmnlkz, ky) = / [ Gran (T, y)e_J(k”"—“+kyy) dz dy (3.25)
¢} g

After evaluating analytically

~ _ab [(=1meiE -1 (~1)"e™9X — 1
plte) = i [y [t 1] O

where g = kza and x = kyb.

For the conjugate form of the modal shape @}, (2, ), the result is identical except that

the sign of the exponential is changed from negative to positive, i.e.

o _oab [ (=Pt 1] [ (=1)%eX -1
Poalbn by) = 230 [(u/(m))z . 1} [(x/(qwm - 1] (3.27)

It can be seen that @mn or &y, are identical to  in Eq.(2.7).

From Eq.(3.25), it can be found that the integrand, with respect to k, is an even
function when the mode orders (p,m) are of the same parity. Also, with respect to ky,

it is an even function when the mode orders (g,n) are of the same parity.

Therefore Eq.(3.24) can be simplified as
j (o] o0
Cramn = 525 f /0 ez Bz o) B i, ) b (3.28)
0

when p and m are of the same parity and g and n are also of the same parity. The

remaining cases will have Cypgmn = 0.

Finally after substituting Eq.(3.26) and Eq.(3.27) into Eq.(3.28), it is found that

C 2 (Y [ [ r k. dk
parn = Crnnpg =~ () [ [ T 0 e (3.29)
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where

1—{-1)cospu 1-{—-1)%cosy

~ ((p/pm)? = D((u/mm)? - 1) ? ((x/gm)? = D{(x/n7)* - 1)

In practice, the infinite limits of the double layer integrals over k; and ky can be limited
as in [8] to

B = 1+ K, ke = 1+ KOS (3.30)

for some K > 1.

To overcome the singularities in the integration, the method used in the wavenumber

domain in Section 2.2.2 can be applied.

From Eq.(3.22), after numerically evaluating Cmnpq, the displacement modal amplitude

dpq can be found by solving the linear system
2 2 2 5p
[Omnpq]{m(wpq — w)dpg} — pw I[I] {dpg} = [Crunpgl{ Fpq} {3.31)

where [Crnpg] 18 the cross coupling matrix and [I] is the identity matrix of size N x N.

After inverting Crynpq this gives

S -
{m(""'gq - wz)dpq} - PW2‘f[Cmnpq] ! {dp} = {Fpe} (3.32)
The influence of the fluid on the plate motion can be identified from the last term on
the left-hand side, which by multiplying the term with Sp/4, can be written in terms of

the so-called cross-modal radiation impedance {Zmnpg|, i.e.

2
[Zmnpq]{jwdpq} = —ng (%) [Cmnpq]_l{dpq} _ (3-33)
Therefore
2
{Zmﬂpq] = Jwp (%E) [Omnpq}_l (334)

If the matrix [Zy;npg] is normalized to pcS,/4, the normalized cross-modal radiation

impedance, which is the same term as the radiation efficiency, for a simply supported
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unbaffled plate is then defined. It expressed as

1 5 _
[O’mnpq] = m[zmnpq] = szp[cmnpq} 1 (3.35)

Here, one has to invert the matrix [Crnpg] first. Thus [oymnp,] strongly depends not only
on the accuracy of the calculated [Crppq] but also on the size of the matrix {Crnpq) to be
inverted. In order to simplify the calculation without dealing with a matrix inversion,

an approximate formula can be applied which is defined by

Sp 1

(3.36)
4 CPQP‘I

[0pgpel = Jk

in which the off-diagonal terms in Crunp, are neglected. In other words, as in the baffled
plate case in section 2.1.2, only the self-modal radiation contributions are taken into

account in the calculation. The effect of the cross-modal coupling is eliminated.

Laulagnet [S] showed that compared with the exact solution, the approximate one gives

a very good approximation in light fluid such as air.

The radiation efficiency of the unbaffled plate takes into account the fluid loading on
both sides of the plate but has been normalised only by the area of one side. To have an
equivalency to the radiation efficiency of the baflled plate, as a consequence, the term

{0 pqpq] has to be further divided by two.

3.3 Results and comparison with baffled plate

Figure 3.3 shows a result for a rectangular plate having the same dimensions and prop-
erties as the baffled plate described in section 2.4. It can be seen that the slope of
the average radiation efficiency is 40 dB/decade at very low frequencies instead of 20

dB/decade found for the baflled plate.

With different values of damping loss factor, Figure 3.4 shows the same phenomenon as
that in the baffled plate where the radiation efficiency increases as the damping increases.
As explained in section 2.4, with high damping, the contributions of individual modes

become less important and consequently the curves become smoother. Moreover the
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radiation efficiency, ¢

frequency [Hz]

FICURE 3.3: Modal and average radiation efficiency of a simply supported unbaffled plate
(0.65 % 0.5 x 0.003 m aluminium plate with = 0.1):—, modal radiation efficiency; —-,
average radiation efficiency.
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FIGURE 3.4: The average radiation efficiency of an unbaffled plate with different damping
loss factor: —, 0.2; ---, (.1; ——, 0.05; — + —, 0.01 (aluminium plate: 0.65 x 0.5 x 0.003 m).

near-field in the vicinity of the driving point force has a greater effect, increasing the

scund radiation.

Figure 3.7 compares the average radiation efficiency of the baffled and unbaffied plates.
As well as the difference in slope noted at low frequency, in the region of acoustic short-

circuiting between 100 and 3000 Hz, the unbaffled plate has a lower radiation efficiency
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radiation efficiency, ¢

frequency [Hz]

FIGURE 3.5: Comparison of average radiation efficiency between unbaffled (—) and bafiled
(——) plates {0.65 x 0.5 x 0.003 m aluminium plate with # = 0.1},

than that of the baffled plate. Without the baffle, the plate becomes an ineffective
radiator at low frequencies where the wave cancellation phenomenon is more efficient
due to the short circuit effect from one side of the plate to the other. It is shown that
in this region, the frequency dependance is approximately 10 dB/decade for the baffle
plate and 20 dB/decade for the unbaflled plate.

Using the same personal computer specification as in the baffled plate (Section 2.4.2)
with K = 1, dk; = 2ma/dn and dky, = 2wb/dn for dn = 40, the calculation of the

averaged radiation efficiency takes approximately 4 hours.

The ratio between the radiation efficiencies of unbaffled and baffled plates is presented

in a dB difference in Figure 3.6 for various plate dimensions.
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a=0.325m, b=0.5m a=3.85 m, b=0.5 m

radiation efficiency difference [dB}
radiation efficiency difference [dB]
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FICURE 3.6: Ratio between radiation efficiencies of unbaffled and baffled plates presented
as a dB difference for plates with various dimensions.
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Radiation efficiency from a single

point force position

In the previous chapters, the average radiation efficiency of a simply supported plate
was obtained from the summation over the modes. This method has the advantage
that information is provided about the contribution of the various modes to the sound
radiation. Moreover no accountt is needed of the cross-modal radiation. However, it does
not correspond to a practical situation since the result is averaged over all point force

positions on the plate.

In this section the distribution of the radiation efficiencies from several single point force

positions is studied for a bafiled plate.

The method is explained as follows. The velocity of the plate v{z,y) due to a single
point force position at a location (g, ¥g) can be calculated as a sum of modes. Recalling
Eq.(2.3), the expression is given by

oo o0

‘U(:E,y) = Z Z umnﬁpmn(a’:y) (41)

m=1n=1

where @, is the mode shape function from Eq.(2.4) and um, is the complex velocity

amplitude of the mode from Eq.(2.13).

The velocity in the wavenumber domain ?(kx, ky) is then obtained by applying the two-

dimensional FFT to v{z,y). Therefore for each frequency, the FFT method for a simply

43
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FiGURE 4.1: Samples of point force position on the plate.

radiation efficiency, ¢

frequency {Hz]

FicURE 4.2: Distribution of radiation efficiency over 20 point force positions on piate
{0.65 x 0.5 x 0.003 m aluminium plate with n = 0.1).

supported baffled plate described in section 2.3 can be implemented, but now it is for

the total velocity at each frequency, not on a mode-by-mode basis.

For an example result, 20 points are selected scattered over on the plate’s surface as
shown in Figure 4.!. The plate dimensions and properties are still the same as those in
the previous chapters. In the FFT method, the baffle length L = 12.8 m and the spacing
sample a5 = 0.03 m are used. The radiation efficiencies obtained are plotted together in

Figure 1.2
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FIGURE 4.3: Excitation at the node point of mode (2,1).

The results show the same trend as that of the average radiation efficiency, see Figure 2.8,
It reveals that the radiation efficiencies from different point force positions only vary
between about 50 Hz and the critical frequency around 4 kHz, i.e. mainly in the corner
and edge mode regions. As these regions are the focus of observation, the bias error
clearly seen at very low frequency due to the application of the FFT method can be
ignored. It is also interesting to see that some high peaks appear in the variation. These
peaks show that certain modes become dominant due to the absence of other certain
modes. For instance from Figure 4.2, the radiation efficiency having the highest peak
at around 140 Hz is obtained when the point force is applied at the middle of the plate
(point No.4). The excitation at the middle of the plate does not generate modes (2,1) or
(1,2) because the force is applied exactly at the node point of the modes, see Figure 4.3.
Mode (1,1) then becomes dominant over a wider frequency range leading to a higher

overall radiation efliciency.

Figure 1.} shows the range of the variation corresponding to the 10% and 90% bands at
each frequency in narrow band and also in 1/3-octave band, arranged with the increasing
damping (7 = 0.05, n = 0.1 and 7 = 0.2} to see the variation with different damping
loss factor. As seen in the figure, the average radiation efficiency (calculated directly
using the wavenumber domain nﬁethod) lies among the variations. It can be seen that
there is no significant change appears in the extent of the variation except at few specific

frequencies.

Figure 4.5 shows the range between the 10% and 90% curves, now plotted in dB (10
logig o). Around the peaks at 160 Hz and 230 Hz, the variation increases with reducing
damping, but above 300 Hz there is no consistent effect of damping. These phenomena
can be clearly seen in 1/3-octave band in Figure 4.4. The consistent damping effect. is

only between 160 Hz and 230 Hz. Figure 1.7 shows the averaged and 10/90 percentile
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curves of the radiation efficiency for three different plate dimensions.

From Figure .4, one can see the dip at 100 Hz in the average result is relatively close to
the minimum range of the variation {10 percentile}. The same phenomena also appears
in each case in Figure 4.7. This dip corresponds to the natural frequency of the first even-
odd mode (2,1), see Figure 2.11. The peaks in the variability in Figure 4.5 corresponds
to the dips in the mean-square velocity, not to resonances (see Figure 2.11). On the
contrary, one can note that the dips in the variability, especially up to 300 Hz, correspond
to the resonances. This means that the averaged radiation efficiency can be better

estimated from any point force positions at the plate resonances.

The variation of the radiation efficiency also does not change significantly with the
plate dimension. As seen in Figure 4.7, only some peaks are developed and or shifted
depending on the point force position relative to the plate surface. Figure -2 shows
that the trend of the variability is still the same for different plate dimensions. At
low frequencies the results are influenced by the errors from the FFT method when

calculating the radiation efficiency.
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FIGURE 4.4: Range of radistion efficiency variation using 10/90 percentiles {——) and
average radiation efficiency (—) in narrow band (left side) and 1/3-octave band (right side}
(0.65 x 0.5 x .03 m aluminium plate with: (a)-{b}. 5 = 0.05, (¢)-(d). n = 0.1, (e}-{f).

7 =0.2).
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FIoURre 4.5 Variahility of radiation efficiency from 10/90 percentiles (0.85 x 0.5 x 0.03 m
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FIGURE 4.6: Variability of radiation efficiency from 10/90 percentiles in 1/3 octave band
{aluminium plate: 0.65 x 0.5 x 0.03 m.}: =005 (—); n=01(—-); 5=02( -}
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average radiation efficiency (—) (alumininm plate, n = 0.1; (a). 0.65 x 0.5 x 0.03 m,
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Chapter 5

Conclusions

Several methods for calculating the average radiation efficiency of baffled and unbaffled
plates have been investigated. The radiation efficiency is calculated by applying a point
force averaged over all positions on the plate. Cross-modal terms are not taken into

account in the average radiation efficiency.

The spatial domain approach, due to the complexity and oscillatory nature of the inte-
grand, needs a high resolution of integration segments to obtain an accurate result of
the radiation efficiency of a simply supported baffled platé. The wavenumber domain
approach has been found to be much more efficient. Using this method, the caleulation
time can be reduced significantly. The result shows that at very low frequencies, the
slope of the average radiation efficiency of a baffled plate is 20 dB/decade. It is also
found that for baffled plates, the FFT method {5] does not provide an efficient way for
calculating the average radiation efficiency. Although the FFT itself is fast, the calcu-
lation time increases to calculate the modified Green’s function required to avoid the

singularity.

For the unbaffled plate case, the iterative method using the FFT [} is used to develop
the sound pressure field of a vibrating unbaffled, simply supported plate. It appears
that this method has a convergence problem at low frequencies. It is also found that
it can not cope with higher order plate modes. A method proposed by Laulagnet [§]
gives a better result. It is found that the slope of the average radiation efficiency at very
low frequencies is 40 dB/decade. Up to a frequency just below the critical frequency,
the radiation efﬁcien.cy of an unbaffled plate is lower than that of a baffied plate, the
difference increasing as frequency is reduced. It also reveals that in the short circuiting

31
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region, the baffled and unbaffled plates has frequency dependences of aprroximately 10
dB/decade and 20 dB/decade respectively.

The FFT method is not efficient in terms of calculation on a mode-by-mode basis.
However, this method can be implemented to calculate the radiation efficiency from
baffled plate for a single point force position. Selecting 20 points scattered over the
surface of the plate, the variation of radiation efficiencies due to a single point force
position appears to vary mainly in the corner and edge modes regions. It is also found

that damping and plate dimensions have no significant effect on the variation.
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