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ABSTRACT

This report presents a comprehensive study of feedback active control with inertial
actuators to reduce the vibrations of mechanical systems. The basic Single Degree of
Freedom (SDOF) vibration iransmission problem is considered first in order to high-
light the physics of the following velocity feedback control functions: a) Proportional
feedback for the implementation of velocity control that generates active damping, b)
Integral feedback for the implementation of displacement control that generates ac-
tive stiffness, ¢} Derivative feedback for the implementation of acceleration control
that generates active mass, e) PID feedback for the implementation of velocity — dis-
placement — acceleration control that generates active damping — stiffness — mass, f)
PI feedback for the implementation of velocity — displacement conirol that generates
active damping — stiffness and g) PD feedback for the implementation of velocity —
acceleration control that generates active damping — mass. The control effects gener-
ated by an inertial force actuator and an inertial electro—dynamic actuator are then
studied with reference to the six control laws listed above. This analysis is focussed
on two problems: first the vibration control of a SDOF mechanical system and second
the vibration control of a flat plate distributed system. Both analyses are carried out
in three stages: first a mobility model is derived, second a stability analysis is pre-
sented with reference to the Nyquist stability criterion and third the control perform-

ances are assessed.
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1. INTRODUCTION.

This report is concerned with the study of inertial actuators for smart panels with a
decentralised feedback control system for the implementation of Active Structural
Acoustic Control (ASAC). In particular this report summarises a comprehensive study
of Single Input Single Output (SISO) active feedback control schemes using inertial

actuators.

In many engineering systems it is important to control the transmission of vibration
from a source of disturbance to other devices or to the environment since it might re-
sult in discomfort and loss of efficiency. In particular vibration of panels and shell
structures may generate high levels of noise which could be a problem in many appli-
cations, particularly in transportation vehicles such as aircrafts, helicopters, cars,
trains, etc. Therefore the background of this study is the control of vibration of thin
panels to avoid the excessive radiated noise. Vibration and sound radiation control can
be achieved with passive means such as mass damping and stiffness treatments ap-
plied on the radiating structure [1]. These methods have been proved to be efficient in
the high audio frequency range. However, they have little effect in the low audio fre-
quency range, where the response of the sound radiating structures are characterised
by well-scparated resonances [1]. In order to control vibration and sound radiation in
the low frequency range, active control methods have been considered. Frequently
both systems, passive and active, are used in parallel to improve the vibration control

and to reduce the sound radiation.

Active control architectures can be divided into two groups: feedforward and feed-
back control systems. In feedforward control there is a principal problem; a reference
signal should be known far enough in advance otherwise this control system is ineffi-
cient [2]. In this case feedback control schemes should be utilized. In fact, in feedback
control systems the reference signal is not necessary and the sensors and actuators are
closely attached or even can be embedded in the structure to be controlled. Feedback
control systems can be classified in three categories: a) Multiple Input Multiple Out-
put (MIMO) systems with fully coupled arrays of error sensor and actuators, b) De-
centralised MIMO feedback control schemes with arrays of independent sensor—
actuator pairs and ¢) SISO active feedback control schemes, using distributed sensor—

actuator pairs.

The fully coupled MIMO feedback systems are difficult to implement in practice,
since a reliable model of the response functions between all sensors and actuators is
required by the controller [3,4]. Elliott at al. [5] have shown that decentralised MIMO
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control gives quite good results which are comparable to those that would be obtained
from an ideal fully coupled MIMO feedback control system when the sensor—actuator
response functions are available. The implementation of MIMO decentralised systems
is much simpler than that of fully coupled systems, since simple SISO feedback loops
needs to be implemented. Elliott at al. [5] have shown that, provided the sensor—
actuator pairs are dual and collocated [6,7] then the system is bound to be stable if
proportional control is implemented. Therefore, the main issue of MIMO decentral-
ised control is concerned with the design of collocated and dual sensor—actuator pairs.
Moreover Elliott at al. [5] have shown than, when decentralised velocity feedback
loops are implemented in such a way as to synthesize active dampers, then, provided
an optimal gain is implemented in such a way the damping action is maximised with-
out priming the structure at the control position, both the frequency average vibration
and sound radiation of the structure are reduced. This is because the optimal tuned
active dampers reduce the amplitudes of the well separated low frequency resonance
of the structure which control the frequency averaged vibration and sound radiation of
the structure at the low frequency bands. In principle SISO feedback control systems
using distributed sensor—actuator pairs specifically designed to minimise the most ef-
ficient radiations modes [8] form the simplest and most convenient solution. How-
ever, they normally require strain transducers, such as piezoelectric transducers,
which can not be easily used in matched pairs as sensors and actuators since their
coupling is affected by the in—plane strain effect that “covers™ the coupling via the
bending vibration of the structure to be controlled [9]. In conclusion MIMO decentral-
ised Systems offers a good compromise between the fully coupled MIMO and the
SISO with distributed sensors control systems. The main issue of this strategy is the

design of collocated and dual sensor actuator pairs.

In this report the attention is focused on the design of inertial force actuators with ve-
locity sensors at their base. In particular the stability issues and control performance
effects of one control unit are studied with reference to the most common feedback
control functions:

a) Proportional Control for implementation of Velocity Feedback,

b) Integral Control for implementation of Displacement Feedback

¢) Derivative Control for implementation of Acceleration Feedback and

d) PID Control (Proportional-Integral-Derivative Feedback Control).

This report is subdivided in three chapters. Chapter 2 presents the main features of
SISO feedback control with reference to the fundamental problem of vibration isola-
tion in a SDOF mechanical system. Chapter 3 introduces the control of a mechanical
system using an inertial actuator. For simplicity the system under control is modelled
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with a SDOF system. Thus the complete system including the inertial control actuator
is modelled with two DOF. Finally in chapter 4, the control of a distributed system,
such as a flat plate, is considered. In order to better understand the physics of the sys-
tem, four models are considered where the feedback control loops refer to an ideal
sky—hook reactive force actuator, a practical inertial force actuator and an inertial

electro—dynamic actuator with either current or voltage control.

The study presented in the three chapters is organised in a consistent structure which
first introduces the mathematical model for the various control schemes, it then pre-
sents the stability analysis using the Nyquist criterion for SISO control loops [10] and

finally it gives the control performance results for all control schemes.






2. FUNDAMENTAL CONCEPTS OF FEEDBACK CONTROL.

In this chapter, the steady—state response of a SDOI active vibration control system
under harmonic excitation of the base will be considered. First, the response of this
system will be studied when there is no active vibration control assuming different
values of damping ratio. Second, the effect of a feedback control loop will be exam-
ined assuming a small damping ratio. A number of control architectures will be stud-
ied namely: a) Proportional Control for implementation of Velocity Feedback, b) In-
tegral Control for implementation of Displacement Feedback c) Derivative Control
for implementation of Acceleration Feedback and d) PID Control (Proportional—
Integral-Dertvative Feedback Control).

2.1 SDOF under harmonic motion of the base.

Figure 1(a) shows the notation used for the mass—spring—dashpot SDOF system con-
sidered in this chapter. In this report the mechanical cinematic (displacement, veloci-
ties, accelerations) or kinetic (force) functions have been taken to be time-harmonic
and given by the real part of counterclockwise rotating complex vectors (phasors), so
that, for example the displacement and force functions are given by

x() =Re{X(@)e’™}, fiH) = Re{F(w)e’™}, where o is the circular frequency [rad/s]
and j = /~1. Therefore x(1) and f¥) are the time—dependent harmonic and force func-

tion while X{(w) and F(w) are the complex frequency—dependent displacement and
force phasors. In order to simplify the formulation, the harmonic time dependence is
assumed in the mathematical expressions. Also, the first and second derivative of the

time—harmonic functions will be represented by velocity and acceleration frequency

dependent phasors; X(@)= jo X{o) and ¥(0)=-0"X(0)= jo X(o).

System Free-body diagram
(a) (a)

m, m,

! !

k, 1 \:
iy y(ty=Ycoswt ki (x-y) c,(x,-3)

t

Figure 1: Single degree of freedom system under harmonic motion of the base.



Considering the free-body diagram shown in Figure 1(b) above and using Newton’s

second law of motion (Z F = mX,), the following equation of motion is obtained:
mi +ox +ha=ay+hy, 2.1

where m; is the inertial mass, ¢; is the damping coefficient, &; the stiffness, x; is the

displacement of the inertial mass and the base excitation 1s given by:
y= Re{ Yef‘”’} , (2.2)

where Y is the amplitude. The right hand side of the Eq. (2.1) base can be seen as a
force f{1) acting on a “classic” SDOF mass—spring—dashpot system with a rigid base:

f =Cij/‘|'k1y . (23)
The steady state solution of Eq. (2.1} can be found by assuming:
x(f)={xe™} . (2.4)

By substituting Eq. (2.4) into Eq. (2.1) and solving for Xj, the following relation be-

tween the phasors of the mass and base displacement is obtained:

b+ joo

X(w)= p 7(w) . (2.5)

: —m1a)2 + joe,

Figure 2 shows the variation of the ratio between the velocity of the inertial mass and
the displacement of the base calculated assuming the physical parameters given in
Table 1 and for different damping ratios; & =¢/c, where ¢, is the critical damping:

¢, =2mo, , (2.6)
and @, is the natural frequency:
k
w, = = . 2.7
mh



Table 1: Physical parameters for the elements in the SDOF system.

Parameter Value
Critical Damping c.=2.83 N/ms™
Mass m;=0.015Kg
Stiffness k;=133.24 N/m
Natural frequency f»=10Hz

TZ 100+

E sor

E

m 60

=

E A0k

% 201

2 . ‘ ‘ .
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Frequency (Hz)

0 10 20 30 40 50
Frequency (Hz)

Figure 2: Modulus and phase of the ratio between the velocily of the inertial mass and the displace-
ment of the base of the system shown in Figure I(a) when the system is damped by a £=0.001 {solid
ling), &=0.1 (dashed line), &=0.4 (dotted line} or £,=0.8 (dash-dot line).

The key features of the SDOF system under study can summarised in the following

points:

e For an undamped system (&=0) jwX,/Y| tents towards infinity at resonance.
e The addition of small amounts of damping lead to important reductions of the
response at, or near, resonance but also increase the response at frequencies

much higher than resonance.
» Increasing damping causes the frequency of maximum response to move to

lower values.
e Increasing the amount of damping leads to a smoother phase transition.



Assuming the SDOF represents an isolation system, the results shown in Figure 2 in-
dicate that, in order to obtain the maximum vibration reduction, the spring element
should be selected in such a way as to keep the natural frequency as low as possible in
respect to the limitation imposed on the static displacement &= m;g/ k;, where g is the
acceleration due to the gravity, which also depends on the stiffness of the spring. Also
the damping effect should be as small as possible, although also in this case a com-
promise must be found in order to avoid excessive vibrations transmission around the

resonance frequency.

2.2 SDOF under harmonic motion of the base with a Feedback control loop.

The design problems highlighted above generate important limitations to the low fre-
quency passive isolation effect introduced by the spring—dashpot element. An interest-
ing and effective way to enhance the vibration isolation is the implementation of an
active control system. In this section the effects produced by a feedback control sys-
tem, which, as shown in Figure 3(a), is composed by a} a control sensor that measures
the velocity of the mass, b) a control actuator mounted in paralle]l with the spring—
dashpot elements that produces reactive forces between the mass and base and ¢) a
control system that implement a control function —H which in the simplest case is

given by a pure gain, —g.

System Free-body diagram
(a) (a)

x, ’ ' ‘ T F,
m, -gH(w) X,
ml

F,
ky -1 l l
Fc y(t)=YCOSCOt kl(xl_y) Cl(xl-y)
] P\ AN ANN
v v?

Figure 3: SDOF under harmonic motion in the base with feedback control,

The equation of motion for the system shown in Figure 3(a) with a Proportional, Inte-

gral, Derivative, or combination among the three, Control functions can be derived



from the free-body diagram shown in Figure 3(b) using Newton’s second law of mo-

tion, which gives:

mljé] 4 ClJbl + k1x1 = C]y+ k]y+ ﬂ- . (28)

where f. =Re{Fcej “”} is the feedback reactive control force which depends on the

control loop used as described in the points below

s Proportional Control for implementation of velocity Feedback; in this case, the

output signal from the velocity sensor is feedback to the actuator via a negative
control gain -g, so that the phasor of the control force F, is directly proportional
to the opposite of the velocity of the mass:

F.=-gki(o) . (2.9)

Therefore substituting the steady state solution x, {t)= { X ™™ }, (Eq. (2.4)) into
the equation of motion (Eq.(2.1)), with y = Ye’”, and F, =— 2X, (a)), the follow-

ing expression for the complex amplitude of the response is obtained:

o
X p(@)= Lo ¥(). 2.10)
ke —mao’ +j0)(cl +g)

The denominator of this equation indicates that Proportional Conirol adds active
damping. This effect will be further discussed in Section 2.1 where simulations re-

sults for this control schema are presented.

e Integral Control for implementation of displacement Feedback; in this case, the

output signal from the velocity sensor is feedback to the actuator via a negative in-
tegral control function —g/je, so that the phasor of the control force £ is directly
proportional to the opposite of the displacement of the mass. Hence F, is given by:

ﬂ=—g5¢@=—g&@ﬂ- @.11)
Jjo

Following the same procedure as in the previous point, the complex response is

found to be in this case:

k + jow Y(a)). 2.12)

X_ =
] ,(a)) (ki +g)—mlco2 + joc



The denominator indicates that Integral Control adds active stiffness so that the
resonance frequency is moved to higher values as it will be further discussed in

section 2.4.

Derivative Control for implementation of acceleration Feedback: in this case, the

output signal from the velocity sensor is feedback to the actuator via a derivative
control function —jwg, so that the phasor of the control force Ft, is directly propor-

tional to the opposite of the acceleration of the mass. Hence F¢ is given by:
F, =—jogX\(o)=—gX\(0) . (2.13)

Once more, following the procedure highlighted in the previous points the re-

sponse is found to be:

k + joo
k —{m + g)o* + jox,

X,_p(o)= Y(o) . (2.14)

The denominator shows in this case that Derivative Control adds active mass
which moves the resonance frequency to lower values as it will be shown in sec-
tion 2.4.

As it will be shown in the following section 2.4: a) Velocity Feedback Control (Pro-
portional Control) can conirol the response at resonance, b) Displacement Feedback

Control (Integral Control) can reduce vibration at low frequency below resonance and
¢) Acceleration Feedback Control (Derivative Control) can reduce vibration at higher
frequency above resonance. Thus a combination of these three control approaches;
Proportional—Integral-Derivative Feedback Control (PID), is expected to enhance the

vibration isolation in all frequency range of interest.

Proportional-Integral-Derivative_(PID) Control; in this case, the output signal
from the velocity sensor is feedback to the actuator via a control function combin-

ing proportional, integral and derivative control so that, the phasor of the control
force F, is directly proportional to the opposite of the velocity—displacement—

acceleration of the mass. Hence F; is given by:
k . . .
F,= {— ke —j—; — jakp }Xl (@)=—kp X\ (@)K X (@) kX (@) . (2.15)

where kp_ ki and kp are the proportional, the integral and the derivative constants

respectively. Following the procedure seen above the response is found to be:

10



Ximl0)=1 kit joo ¥(o) . 2.16)

k +g;)—(m1 +gD)502 +ja)(c1 -i-gp)

The numerator shows that PID Control adds active damping, active stiffness and
active mass so that vibration reduction can be obtained in the three regions, below,

at and above resonance as it will be shown in the section 2.4.

2.3 Stability analysis.

A critical problem for the design of feedback control system is stability. To address
the problem of stability, several graphical techniques have been developed for Single
Input Single Output control schemes. Two of these techniques are the Bode and Ny-
quist plots [11]. The first one consists of plotting the magnitude versus frequency and
phase angle versus frequency of the open loop sensor—actuator frequency response
function. The second one is a polar plot of the open loop sensor-actuator frequency
response function as e varies from —o to c. Both of them rely on the Nyquist stability
criterion which state that “provided the Nyquist plot of the open loop sensor—actuator
frequency response does not encircle the Nyquist point —1+j0, then the control system
is stable”. Therefore in those cases where the sensor—actuator frequency response
function enters on the left hand side quadrants of the Nyquist plot, a limited range of
control gains can be implemented, so that the system is said to be conditionally stable.
If instead the Nyquist plot of the sensor—actuator response function occupies only the
right hand side quadrants of the Nyquist plot, i.e. the response function is strictly posi-
tive real, then the system is unconditionally stable. The same type of conclusion can
be drawn by considering the Bode plot of the open loop sensor-actuator response
function. If the phase plot is confined between +90° then the open loop sensor-—
actuator response function is real positive and thus the system is unconditionally sta-
ble. If the phase plot exceed +90° then the system could be either conditionally stable
or indeed unstable. Normally the concepts of gain and phase margin [1] are used to

assess the level of stability.

There are two necessary requirements in order to have an unconditionally stable sys-
tem: the sensor—actuator pair must be dual and collocated [6,7]. Indeed in this case the
sensor—actuator frequency response function is real positive definite so that its Ny-
quist plot occupies the right hand side quadrants as o varies from —oo to +c0 and thus

the Nyquist instability point is never encircled whatever the control gain.

11



l Yw)
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FC(CD) > Yli(m) = z /YI(CD)?

-gH(w}

X

Figure 4: Block diagram of feedback control system implemented on the SDOF system.

The response of the active system shown in Figure 3 can be formulated in terms of
mobility frequency response functions: Y=velocity/force. In this case, as shown by the
block diagram in Figure 4, the response at the error sensor can be modelled in terms
of the primary disturbance effect plus the closed feedback loop effect. This is a classi-
cal disturbance rejection control loop. Considering Figure 4 the following expressions

for X, and control force F, are obtained:

X =YV + K F, 2.17)
F,=-gH(0)X, , (2.18)

where, the mobility functions ¥, and ¥y are given by:

X , b+ jow

Y=24 =jo—2" 000 (2.19)
Y £ ki—mo’ + jo o
X _ 1

Yu=2H =jw — : (2.20)
F kh—mo” + jo ¢

and H(w) is a control function. Substituting Eq. (2.18) into Eq.(2.17), and solving re-

spect the velocity X, the following expression is obtained:

: Y
X =—12_y,
Y1+ gHY, (2.21)

12



where HY, is the open loop frequency response function between the velocity sensor
and the control actuator. If Re(HY11)>0, then Eq. (2.21) shows that X,/Y <1 for any
control gain and frequency, that is the feedback control monotonically reduces the ve-
locity of the system. Unconditionally stable control systems allow large control gains

without causing instability and hence may achieve superior control performance.

In the following sub—sections the stability for the different control architectures listed

above is studied.

§ Proportional Control. Velocity Feedback.

In order to implement negative velocity feedback, the output signal from the velocity

sensor is feedback to the actuator via a negative proportional control function; H(w)=

—g, and thus:
F,=-gky, (2.22)

Figure 5 shows the amplitude—phase and Nyquist plot of the open loop sensor—
actuator frequency response function HY}; in the frequency range between 0 and 50

Hz.

Z o0
T
£ 3
z 0 10
&
w207
=
§_ -40r 5
= -60 - =
] 10 20 30 40 50 E
Frequency (F1z) o i
g
90 =
13
=
J —104
=90L . n _i5 . . R H . . .
0 10 20 30 40 50 -15 ~10 -5 4] 5 10 15
Frequency (Hz) Real HY u

Figure 5: Frequency response functions; amplitude (top left), phase (bottom left) and Nyquist plot
(right) of the open loop sensor-actuator frequency response function in the frequency range between (-

50 Iz when a Proportional control is used.

The phase plot confirms that the frequency response function HYy, of the SDOF active
system is positive real so that the system is unconditionally stable. Alternatively the
Nyquist plot of HY; in Figure 5 (right plot) shows that the polar plot of the frequency

13



response function is entirely on the right hand side quadrants and thus it is positive
real, which also indicates the unconditional stability of proportional, that is negative

velocity feedback, control.

8§ Integral Control. Displacement Feedback,

In order to implement negative displacement feedback, the output signal from the ve-
locity sensor is feedback to the actuator via a negative integral control function;
H{er)y=g/jw, and thus:

F =—2-X, (2.23)

0 10 20 30 40 50
Frequency (Hz}

0 10 20 30 40 50
Frequency (Hz)

Figure 6; Frequency response functions, amplitude (top lefi), phase (bottom lefl) and Nyquist plot
(right) of the open loop sensor-actuator frequency response function in the frequency range between 0-

50 Hz when an Integral control is used.

As shown in Figure 6, in this case the phase plot indicates that the phase of the open
loop sensor—actuator frequency response function HY); exceed —90° at higher fre-
quencies above resonance. Therefore the Nyquist plot of HY11 is not confined on the
right hand side quadrants which suggests that the system could be unstable. Indeed the
Nyquist plot of HY7; in Figure 6 is characterised by a circle which occupies the bot-
tom quadrants only. Thus in principle, the system is unconditionally stable although
part of the circle is very close to the Nyquist instability peoint (—1+70) and thus it is
likely to intersect the negative real axis at higher frequencies even with little varia-
tions of the response function which can be easily generated by external factors that
would cause the system to become unstable. Also, when the polar plot of /Y1, enters

14



the circle of unit radius and centre (—1,70), but does not encircle the instability point
(~1,/0), then Re{1/(1+HY11)}>1 and thus, according to Eq. (2.21), even though the
system is not unstable, the response X, is magnified rather than minimised. This phe-
nomenon is known as control spillover. In this report the circle of unit radius and cen-

tre —1, 7O, will be referred as the “spillover circle”.

§ Derivative Control. Acceleration Feedback.

In order to implement negative acceleration feedback the output signal from the ve-
locity sensor is feedback to the actuator via a negative derivative control function;

H(w)=-gjo and thus:

Fc =—j@)gX1 » (224)

5 b
23

H@)Y | dB rel (ms /)
2

40 50
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Frequency (Hz) A LR
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2:_.
2 90
= -10f
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o} . ; n N 15 . . . . .
] 10 20 30 40 50 -15 -0 -5 0 5 10 15
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Figure 7: Frequency response functions; amplitude (top left), phase (botiom left) and Nyquist plot
(right) of the open loop sensor—actuator frequency response Function in the frequency range between 0-

50 Hz when a Derivative control is used.

As shown in Figure 7 in this case the phase plot indicates that the phase of the open
loop sensor-actuator frequency response function HY;, exceed + 90° at lower fre-
quencies below resonance. Therefore the Nyquist plot of HY/y is not confined on the
right hand side quadrants which suggests that the system could be unstable. Indeed the
Nyquist plot of HY;y in Figure 7 is characterised by a circle which occupies the top
quadrants only. Thus in principle, the system is unconditionally stable although part
of the circle is very close to the Nyquist instability point (—1470) and thus it is likely
to intersect the negative real axis at lower frequencies when the response function is
modified by the presence of external factors that bring the system to instability. In this
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case, the polar plot enters the spillover circle at low frequencies where control spill-

over vibration enhancement effects will therefore be generated for high control gains.

§ PID Control,

In order to implement a combination of negative displacement velocity and accelera-
tion feedback, the output signal from the velocity control sensor is feedback to the
control force actuator via a negative combination of Proportional-Integral-Derivative
functions; H{w)= —g{ kp + ki/jo + jokp} and thus:

k X
F, = —g{kp +—L+ jok }Xl, (2.25)
J

where kp, k1 and kp are Proportional, Integral and Derivative Control constants respec-

tively and their values are summarized in Table 2.

Table 2: Physical parameters for the Proportional, Integral and Derivative Control constants.

Parameter Value
Proportional Control Constant kp=10.1
Integral Control Constant k=10
Derivative Control Constant kp=0.001126

These Integral and Derivative Control constants have been chosen in such a way that
the resonance frequency of the system is kept the same than with no control. The un-
damped resonance frequency of the PID controlled system can be found by setting to
zero the denominator in Eq. (2.16) assuming the complex term due to passive and ac-

tive damping to be zero:
ke + &y —(my +kp ), =0 . (2.26)

The undamped resonance frequency of the PID active system is therefore given by:
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o, = [tk (2.27)
ny + kD
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Figure 8: Frequency response functions, amplitude {top left), phase (bottom left) and Nyquist plot
(right) of the open loop sensor-actuator frequency response function in the frequency range between 0-
50 Hz when a PID control is used.

In this case the phase plot in Figure 8 indicates that the phase of the open loop sensor—
actuator frequency response function HY1; is positive real. Alternatively the Nyquist
plot in Figure 8 (right plot) and Figure 9 show that the open loop response function
HY),, is entirely on the right hand side quadrants, which also indicates the uncondi-
tional stability of the system. This is due to the fact that the system adds the same per-
centage of Integral control (Active stiffness) and Derivative control (Active mass); so

that their phase lag and phase lead effects are balanced.
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Figure 9: Zoom of the Nyquist plot shows in Figure 8.
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In general it can be concluded that if the Integral and Derivative Control gains are
chosen in such a way as to maintain the same resonance frequency of the system, then
the Nyquist plot of the open loop sensor—actuator frequency response function HY;
will be characterised by a circle in the right hand side quadrants as in the case of no

control.

2.4 Control Performances.

In this sub—section the control performances for the different control architectures in-
troduced above will be studied. In the following points the ratio between the velocity

of the mass and the base

£ =—Yl2_m,.. (2.28)
Y 1+gH{)Y,

will be plotted using the different control function H(w).

§ Proportional Control,

In this case the control function utilized is a Proportional function; H(w)=—g . Figure
10 shows that the addition of small amounts of control gain lead to consistent reduc-
tion of the response at, or near, resonance without producing any harm at higher fre-

quencies. Also the phase transition is smoothened out.

(=3
=
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Figure 18: Modulus and phase of the ratio between the velocity of the inertial mass and displacement
of the base of the system shown in Figure 3(q) when the system has a small damping ratio (£=0.001)
and different values of gain; g,=0; no-gain (solid line), g,=0.1 (dashed line), g;=0.5 (dotted line) or
g,=1 {dash-dot line) when a Proportional control is used.
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In summary, Proportional Control adds active damping such that vibrations reductions

are generated at resonances frequencies without side effects below and above reso-

nance frequencies.

§ Integral Control.

In this case the control function is an Integral function; H(w)= —_ﬁ- .
Jjo

—_
oo
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1

[iwX /Y] dB rel.(ms™/N)
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Figure 11: Modulus and phase of the ratio between the velocily of the inertial mass and the displace-
ment of the base of the system shown in Figure 3(a) when the system has a small damping ratio
(£=0.001) and different values of gain; g:=0; no-gain (solid line), g,=10 (dashed line), g;=50 (dotted
line) or g,/=100 (dash-dot line) when an Integral control is used.

Figure 11 shows that using Integral control the system adds active stiffhess moving
the resonance frequency to higher values. Thus the system produces vibration reduc-
tions at low frequencies below resonance only. The increase of the resonance fre-
quency can be interpreted as a result of the control spillover effect discussed in sec-
tion 2.3, which is confirmed by the Nyquist plot in Figure 6 which shows that part of
the Nyquist plot of the open loop sensor—actuator response function enters the spill-

over circle of centre —/+70 and radius 1.
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§ Derivative Control.

In this case the control function is a Derivative function given by H (a)) =—jog.

—_
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Figure 12: Modulus and phase of the ratio between the velocity of the inertial mass and the displace-
ment of the base of the system shown in Figure 3(a) when the system has a small damping ratio
(E=0.001) and different values of gain; g,=0; no-gain (solid line), g.=0.001 (dashed ling), g;=0.005
{dotted line) or g,=0.01 (dash-dot line} when a Derivative controd is used.

Figure 12 shows that using Derivative control the system adds active mass moving the
resonance frequency to lower values. Thus the system produces vibration reductions
at high frequencies above resonance only. Also in this case the lowering of the reso-
nance frequency can be interpreted as a control spillover effect as suggested by the
Nyquist plot in Figure 7 which shows that the low frequency part of the Nyquist plot

of the open loop sensor—actuator response function enter the spillover circle of centre

—1+70 and radius 1.
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§ PID Control.

In this case the control function used is a combination of Proportional-Integral—

Derivative function H (a)) =— g{kp + k—I +7j a)kD} .
jo
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Figure 13: Modulus and phase of the ratio between the velocity of the inertial mass and the displace-
ment of the base of the system shown in Figure 3(a) when the system has a small damping ratio
(£=0.001) and different values of gain; 2u=0, g.=0, gn=0; no-gain (solid line), gi2=10, g,=0.1,
2n2=0.001; (dashed line), gis=30, g03=0.5, gn3=0.005 (dotted line) or gu=100, go4=1, gns=0.01 (dash-

dot line) when a PID control is used.

As it was seen in previous sections; a) Proportional Control reduces vibration at reso-
nance, b) Integral Control reduces the vibration at low frequency below resonance and
¢) Derivative Control reduces the vibration at high frequency above resonance. There-
fore, as shown in Figure 13, using a combination among the three will reduce the vi-

bration in the three regions.
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3. FEEDBACK CONTROL ON A SDOF SYSTEM WITH INERTIAL
ACTUATOR.

In this section, the dynamic response of a two degree of freedom system will be con-
sidered. The aim of this study is to introduce the analysis of vibration control using
inertial actuators. Therefore, considering the drawing in Figure 14, the bottom mass—
spring—dashpot elements represent the system to be controlled which is excited by the
force 1. The inertial actuator is composed by an additional mass—spring—dashpot sys-
tem placed on top of the system to be controlled, so that, as will be shown in section
3.2, a control force is generated on the mass m; by reacting on the mass #,. The form
of this excitation will be f;(f)= Re{ﬂ (w)e’ a”}, where F{w) is the complex amplitude.
The response of this system will be studied first when there is no feedback active vi-
bration control and then when various types of feedback control functions are imple-

mented.

As in the previous chapter different Control architectures will be studied; a) Propor-
tional Control for implementation of Velocity Feedback, b) Integral Control for im-
plementation of Displacement Feedback ¢) Derivative Control for implementation of
Acceleration Feedback d) PID Control (Proportional-Integral-Derivative Feedback
Control) €) PI Control (Proportional-Integral Feedback Control) and f) PD Control
{Proportional-Derivative Feedback Control).

3.1 Two DOF under harmonic force when there is no control feedback.

Figure 14(a) shows the notation used for the mass—spring—dashpot two DOF system
considered in this chapter.
System Free-body diagram

(a) with no feedback
(&

Inertial control - J
Actuator , e, i l
- T kycoxy) Col¥s%;)
P
! ", 1 I
System X
to be —= fT J m,
controlled 1
foo Al !
N .

kx, CX,

Figure 14: Two DOF system under harmonic force when Fe=().
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Considering the free-body diagram with F.=0 shown in Figure 14(b) above and using

Newton’s second law of motion to each of the masses gives the equations of motion:

{m}jél + (Cl + Co )x1 - CQJICZ + (k[ + kz )x1 - k2x2 = _f]

mgjfz - 62-7&1 + Cg)&g — kle + k2x2 =90
Eq. (3.1) can be written in matrix form as:

Mi+Cx+Kx=h,f. ,

where:

(3} 5(5) = x-()
i=|  , x=| | and x= .
Xa Xa X3

The steady state solution of Eq. (3.2) can be found by assuming:

x{t)= Re{ Xem} ,

where:

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

By substituting Eq. (3.8) into Eq. (3.2), and solving for X, the following expression is

obtained:
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X(w)={-oM+ jo C+K}"' WK, (3.10)

Table 3: Physical parameters for the elements in the SDOF system.

Parameter Value
Resonance frequency of the structure to be controlled Jua=40Hz
Resonance frequency of inertial actuator Juz=15Hz
Mass of Structure to be controlled m;=0.350Kg
Mass of the Inertial actuator m;=0.030 Kg
Stiffness of the structure to be controlled k;=22110° N/m
Stiffness of the inertial actuator k;=266.5 N/m
Critical Damping of the structure to be controlled cer = 175.9 N/ms™
Critical Damping of inertial actuator Co2= 5.65 N/ms™
Damping ratio of the structure to be controlled g =0.01
Damping ratio of the inertial actuator G=01

The physical parameters used in the simulation study presented in this chapter are
summarized in Table 3.

Inertial actuator Controlled system Inertial actuator Controlled system
resonance résonance résonance resonance
¢ ' — ;
E or \ % or
=) =)
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o~ it —_ 07
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—90¢ : Re—— i { 270k . il
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Frequency (H2} Frequency (Hz)

Figure 15: Modulus and phase of the velocities of the system to be controlled (m,) (left plots) and the
inertial actuator (my) (vight plots) of the system shown in Figure 14(a) when there is no active vibra-
tion control considering different values of damping ratio; £=0.001 (solid line), £=0.03 (dashed line),
&=0.06 (dotted line), £,=0.1 (dash-dot line) or £=0.3 (dotted line).

The mass and stiffness of the actuator has been chosen much smaller compared to that
of the system to be controlled. In order to obtain the maximum vibration reduction
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and stability in the resonance of the system to be controlled, the natural frequency of
the resonance of the actuator must be lower than the natural frequency of resonance of
the system to be controlled [5]. Therefore the mass/stiffness ratio of the actuator
should be selected in such a way as to keep the natural frequency of the actuator lower
than frequency of the system to be controlled. As shown in Figure 15, the first reso-
nance, at about 15 Hz, is primarily a control actuator resonance since X>>X). The sec-
ond resonance, at about 40 Hz, is mainly linked to the response of the base system to
be controlled since X;>X>. As seen for the SDOF problem, when damping level in the
system to be controlled, ¢y, is increased then the response at its fundamental resonance
frequency at about 40 Hz goes down although in this case there is no degrading effect
at higher frequencies as was noted for the base vibration SDOF problem considered

above.

3.2 Two DOF under harmonic force with Feedback Control.

A valuable way to enhance the vibration isolation of the structure to be controlled is
the implementation of active control. In this section the effects produced by a feed-
back control system, which, as shown in Figure 16(a), is composed by a) a control
sensor that measures the velocity of the mass of the system to be controlled; m, b) the
inertial actuator composed by the top spring—dashpot—-mass system and c) a control

system that implement a control function f{@).

As done in the previous chapter, different Control architectures will be studied; a)
Proportional Control, b) Integral Control, ¢) Derivative Control, d) PID Control (Pro-
portional-Integral-Derivative Feedback Control), e) PI Control (Proportional-Integral
Feedback Control) and f) PD Control (Proportional-Derivative Feedback Control).

System Free-body diagram
(a) with feedback

(B)
X !
m, X,

Inertial control < 7 s
Actuator K IR l l T I
— k klrsx) o)
/’ 1

m ET f Il
5
b A )

p— '
klxl CoX,
Vil (i Llidddd

System
to be -
A

controiled

Figure 16: Two DOF under harmonic force with feedback.
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In this case the response of the active system shown in Figure 16 will only be formu-

lated in terms of mobility frequency response functions.

3.3 Stability analysis.

As done in section 2.3, the stability of the feedback control loop will be assessed in
view of the Nyquist criterion considering the Bode and Nyquist plots of the open loop

HY sensor—actuator frequency response function.

j’F (@)

YIZ((D)

+

N pryman e (@),

X

Fy

-gH(w)

Figure 17: Block diagram of Feedback Control implemented on the Two DOF system.

Following the same procedure as in section 2.3, the response of the system shown in
Figure 16 can be formulated in terms of mobility functions. From Figure 17 the fol-

lowing expression for X, and control force F, are obtained:
X, =YoF +HiF, (3.11)
F,=-gH(0)X, , (3.12)

where the mobility functions ¥, and Y2, are given by:

V=20 —joll 0]{f~oM+ jeCc+K}F) (3.13)

1

F.=0

X
Klel

4

= joll 0] {{—a)M+ ij+K}“-{"ll}J : (3.14)

=0
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where F is the excitation force vector defined by:

o[
=40 (3.15)

The open loop sensor—actuator frequency response function HT1 depends on the spe-
cific control function H implemented in the feedback loop. The stability of the differ-
ent control functions will be studied in the following points. Substituting Eq. (3.12)
into Eq. (3.11), and solving respect to the velocity of the mass to be controlled (1),

the following expression is obtained:

Y

X =z p
vl (3.16)

where HY; is the open loop frequency response function between the velocity sensor
on the mass of the system to be controlied (1) and the control force. As anticipated in

the previous chapter if Re(#Y1;)>0, then Eq. (3.16) shows that X,/ F, <1 for any con-
trol gain and frequency, that is the feedback control decrease the velocity of the base

system for any control gain and frequency.

§ Proportional Control,

In order to implement negative velocity feedback, the output signal from the velocity
control sensor on the mass of the structure to be controlled (m) is feedback to the ac-

tuator via a negative Proportional control function H{w)=-g, and thus:
F=—gX, . (3.17)

Figure 18 shows the amplitude—phase and Nyquist plots of the open loop sensor—
actuator frequency response function HY1; in the frequency range between 0 and 100
Hz.
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Figure 18: Frequency response functions; amplitude (top left), phase (bottom left) and Nyquist plot
(right) of the open loop sensor—actuator frequency response function in the frequency range between ()

100 Hz when a Proportional control is used.

In this case the phase plot indicates that the phase of the open loop sensor—actuator
frequency response function starts from +270°, drops to +90° after the first resonance
of the actuator and then goes to —90° after the resonance of the system to be con-
trolled. Therefore the Nyquist plot shows two circles (one for each resonance); the left
hand side circle is “controlled” by the resonance of the actuator and the right hand
side circle is “controlled” by the resonance of the mass of the system to be controlled.
The actuator circle is confined on the left hand side quadrants which suggest that the
system is unstable. Indeed the Nyquist plot in Figure 18 indicates that for large control
gains the Nyquist instability point (—~1470) can be encircled, so that, the control system

goes unstable.

§ Integral Control.

In order to implement negative displacement feedback, the output signal from the ve-
locity control sensor on the mass to be controlled (m,) is feedback to the actuator via a

negative Integral control function H{w)=—g/jw, and thus:

g 5
F::- - X . .

28



0.4y v S

TE ok
E 03r
3 -20
ﬁ_ —40t 0.2
z o}
= 50 ' : . : =
0 20 40 60 20 100 =
Frequency (Hz) o o ---- --- A femte coo oo
E;
180 £
-0.1
. sof
- 02
T o0
N et 03
—180E w w : o4k ‘ )
0 20 40 60 80 100 0.5 0 0.5

Frequency (Hz) Real HYII

Figure 19: Frequency response functions; amplitude (top left), phase (bottom left) and Nyquist plot
(right) of the open loop sensor—actuaior frequency response function in the frequency range between 0-
100 Hz when an Integral control is used,

In this case the phase plot indicates that the phase of the open loop sensor—actuator
frequency response function exceed +90° at lower frequencies below the resonance of
the inertial actuator and —90° at higher frequencies above the resonance of the mass to
be controlled. This is due to the fact that with Integral Control the system adds —90°
phase lag to the open loop sensor—actuator response function of the Proportional con-

trol system.

Therefore the Nyquist plot shows two circles one on the top side quadrants, which is
due to the actuator-resonance, and the other on the bottom side quadrants, which is
due to the resonance of the system to be controlled, which suggest that the control
system could go unstable, both at low and high frequency. In fact part of the circles
are very close to the Nyquist instability point (~1+70) and thus even with little varia-
tions of the response function which can be easily generated by external factors the
system can become unstable. Besides, the two circles enter the spillover circle so that
the control spillover effects are likely to happen at low and high frequencies when the
high control gains are implemented. The larger size of the lower loop suggests that the
spillover effect associated to the second resonance, and thus at higher frequencies, is

likely to be more effective.
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§ Derivative Control.

In order to implement negative acceleration feedback, the output signal from the ve-
locity control sensor on the mass to be controlled () is feedback to the actuator via a

negative Derivative control function H{w)=gjw, and thus:

F =—joX, . (3.19)

4ot
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Figure 20: Frequency response functions; amplitude (top lefi), phase (bottom left) and Nyquist plot
(right) of the open loop sensor—actuator frequency response function in the frequency range between (-
100 Hz when a Derivative control is used

In this case the phase plot indicates that the phase of the open loop sensor—actuator
frequency response function is about +360° at lower frequencies below the resonance
frequency of the resonance frequency of the actuator. This is due to the fact that with
Derivative Control the system adds +90° phase lead to the Proportional system.

Therefore the Nyquist plot shows two circles one on the top side quadrants due to the
SDOF system to be controlled and another much smaller on the bottom side quadrants
due to the inertial actuator which suggest that the system could be unstable. Accord-
ing to the plot in Figure 20, the system should be unconditionally stable although part
of the circles are very close to the Nyquist instability point (—1+70) and thus the closed
loop is likely to become unstable even with little variations of the response function
which can be easily generated by external factors. Similarly to the previous control
case, control spillover is likely to happen both at low and higher frequencies although,
as seen for the integral control the larger size of the top circle indicates that the bigger

spillover effect occurs at higher frequencies.
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§ PID Control.

In order to implement a combination of negative displacement velocity and accelera-
tion feedback control, the output signal from the velocity sensor in the mass to be con-
trolled () is feedback to the control force actuator via a negative mix of Propor-
tional-Integral-Derivative control function H(w)= —g{ ke + ki/jo + jowkn} and thus:

k .
Fo= —g{kp +j—;+ Jjokp }X 1s (3.20)

where kp, k and kp are Proportional, Integral and Derivative Control constants respec-
tively and their values are summarized in Table 4. Figure 21 shows this control func-

tion.

H(a}| dB
|5

Z(H{m))
o

1
Frequency {Hz)

Figure 21: Control function when a PID Control is used.

Figure 21 shows that a) at the second resonance (o) is a proportional function con-
trols the response; b) below the second resonance H(m) is an integral function, and c)

above resonance the second resonance H{w) is a derivative function.

Table 4: Physical parameters for the Proportional, Integral and Derivative Control constants used in
the two DOF system.

Parameter Value
Proportional Control Constant kp=1
Integral Control Constant k= 1000
Derivative Control Constant kp=0.01583
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The Integral and Derivative Control constants have been chosen in such a way to

maintain constant the undamped resonance frequency of the system to be controlled.

= 0 I8,
£
T
E, -20r 831
E
@ L
8 0.2
é alr
= g : . =
0 20 40 50 20 100 ;
Frequency (Elz} o 0
150 E
0.1

= 90
> -0.2
N ar -0.3

o0k . . \ \ E| L . .

-04
0 20 40 60 30 100 -0.5 0 0.5
Real qy,,

Frequency (Hz)

Figure 22: Frequency response functions; amplitude (top left) and phase (bottom lefi). Nyquist plot
fright plot) for the frequency response functions between a collocated ideal velocity sensor in the mass
to be controlled (m;) and force actuator in the 0-100 Hz frequency range in a two DOF when a PID

Control is used.

The Bode plot in Figure 22 shows that the phase of the open loop response is about
180° below the first resonance of the actuator, it then goes down to about 0° and rises
to +45° at about the second resonance linked to the system to be controlled. Finally it
moves down to —45° above this resonance and it gradually moves back to 0° as the

frequency rises.

Therefore the Nyquist plot in Figure 22 shows two circles one on the right hand side
quadrants due to the system to be controlled and other much smaller on the top side
quadrants due to the inertial actuator which suggest that the system could be unstable
at low frequencies. Indeed the zoom of the Nyquist plot shown in Figure 23 indicates
that the sensor—actuator response function can became close to the instability point

(—1+470) at low frequency when large control gains are implemented.
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Figure 23: Zoom Nyquist plot shows in Figure 22.
In order to keep the same resonance frequency of the base system, the proportional &

and derivative kp constants have been chosen in such a way to satisfy the following
relation:

o :l{((kl ke, )+ ky )m, + ey (my +kD)}

T2 (ml +kp )mz

s (321)

+“1_\ﬁ(k1 vk, )+ k) )m, +k2(m1+kD)}2 _4{((kl+k,)+k2)k2 —kf}

2 (ml +kj, )mz (ml +kp )mz

where @, is the second natural frequency which is primarily linked to the vibration of
the base system. As a result, the integral constant 4; is much higher than the derivative
constant kp so that the derivative control effect at higher frequencies is likely to be

more effective than the integral control at lower frequencies.

§ PI Control.

In order to implement a combination of negative velocity and displacement feedback
the output signal from the velocity control sensor in the mass to be controlled () is
feedback to the control force actuator via a negative combination of Proportional-
Integral control function H(w)= —g{ kp + ki/jw} and thus:
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k .
F.o= —g{kp +.—1}X I (3.22)
Ja

where kp and k; are Proportional and Integral constants respectively and their values
are summarized in Table 4. Figure 24 shows the control function.
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Figure 24: Control function whern a PI Control is used.

Figure 24 shows that up to approximately 50 Hz the Integral function controls the re-

sponse which then starts to move towards a Proportional function.
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Figure 25: Frequency response functions; amplitude (top lefl) and phase (bottom left). Nyquist plot
(right plot) for the frequency response functions between a collocated ideal velocity sensor in the mass
to be controlled and force actuator in the 0-100 Hz frequency range in a two DOF when a PI Control

is sed
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As shown in Figure 25, in this case the phase plot of the open loop response function
indicates that the phase of the open loop sensor—actuator frequency response function
exceed +90° at lower frequencies below the resonance frequency of the inertial actua-
tor and ~90° at higher frequencies above the resonance frequency of the system to be
controlled. This is due to the fact that with PI Control the system adds almost —90°
phase lag to the open loop frequency response function of the proportional control
loop. The Nyquist plot shows two circles one on the top side quadrants due to the ac-
tuator resonance and the other on the bottom side quadrants due to the resonance of
the system to be controlled. Indeed the Nyquist plot shown in Figure 25 is character-
ised by two circles where as shown in the zoom of Figure 26 the actuator circle is

turned towards the Nyquist instability point (—~1+70).
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Figure 26: Zoom Nyquist plot shows in Figure 25.

§ PD Control.

In order to implement a combination of negative velocity and acceleration feedback
the output signal from the velocity control sensor in the mass to be controlled (m;) is
feedback to the control force actuator via a negative combination of Proportional—
Derivative control function H{w)=—g{ kp + jewkp} and thus:

F,=—glke + jokp }X, (3.23)

where %p and kp are Proportional and Derivative Control gains respectively and their

values are summarized in Table 4. Figure 27 shows that below about 10 Hz H(®) is
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proportional function while at higher frequencies above 10 Iz it is a derivative func-

tion.
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Figure 27: Control function when a PD Control is used.
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Figure 28: Frequency response functions; amplitude (top left) and phase (bottom lefi). Nyquist plot
{right plot) for the frequency response functions between a collocated ideal velocity sensor in the mass
to be controlled and force actuator in the 0-100 Hz frequency range in a two DOF when a PD Control

is used.

In this case the phase plot in Figure 28 indicates that the phase of the open loop sen-
sor—actuator frequency response function exceed even 180° at lower frequencies be-
low the resonance frequency of the inertial actuator. This is due to the fact that with
PD Control the system adds almost +90° phase lead to the open loop sensor—actuator
frequency response function of the proportional control.
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Therefore as shown in Figure 28 the Nyquist plot show two circles one on the top side
quadrants due to the base system to be controlled and the other much more smaller on

the bottom side quadrants due to the inertial actuator.
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Figure 29: Zoom Nyquist plot show in Figure 28.

The zoom in Figure 29, shows that the circle due to the low frequency actuator clearly
intersects the real-negative axis which indicates that for too large control gains the

system may go unstable.



3.4 Control performances.

In this section the control performances for the various control architectures discussed
in the previous section will be studied. In the following points the ratio between the
velocity of the mass of the system to be controlled () and the harmonic force 7,
X,/F=Y%,/(1+ gHY,,) will be plotted with reference to the various H(w) control

function.

§ Proportional Control.

X /F | B ref.(ms™'/N}

0 20 40 60 30 100
Frequency {(Hz)

Figure 30: Modulus of the ratio between velocity of the mass of the system io be controlled and the
harmonic force of the system shown in Figure 16(a) when a Proportional Control is used and different
values of gain; g,=0; ro-gain (solid line), g:=10 (dashed line), g;=50 (dotted line) or =100 {dash-

dot line).

Figure 30 shows the active control effects produced by a proportional control function
H (a))= —g. From this figure it is possible to highlight that the addition of small
amounts of control gain lead to large reductions of response at the resonance of the
system to be controlled. This is because the control force generated by the inertial ac-
tuator produces an active damping effect that, as seen in the previous chapter, tends to
reduce the vibration of the base system at resonance frequencies. However it also pro-
duces a spillover effect at the inertial actuator resonance as was highlighted by the left

hand side circle in the Nyquist plot in Figure 18.
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§ Integral Control.

Figure 31 shows the effect of a Integral control function (0)=-g/jo.

1

ljoX /f | dB rel.(ms~'/N)

o] 20 40 60 80 100
Frequency (Hz)

Figure 31: Modulus of the ratio between velocity of the mass of the system to be controiled and har-
monic force of the system shown in Figure 16(a) when a Integral Control is use and different values of
gain; g;=0; no-gain (solid line), g,=10 (dashed line), g;=20 (dotted line) or g,~60 (dash-dot line).

From this Figure it is possible to highlight that Integral control adds “Active Stiff-
ness” moving the resonance frequency of the system to be controlled to higher values
and the resonance frequency of the actuator to lower values. Thus the system pro-
duces vibration reductions at low frequencies below the resonance of the system to be

controlled, also spillover on the resonance of the actuator is generated as indicated by

the Nyquist plot in Figure 19.
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§ Derivative Control.

Figure 32 shows the effects generated by a Derivative control function A (aJ) =—jog.
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Figure 32: Modulus of the ratio between velocity of the system to be controlled and harmonic force of
the system shown in Figure 16(a) when a Derivative Control is use and different values of gain; g,=0;
no-gain (solid line), g,=10 (dashed line), g;=20 (dotted line) or g, =60 (dash-dot line).

In this case Derivative Control adds “Active Mass™ moving the resonance of the struc-
ture to be controlled to lower values, so that vibration reductions are produced at
higher frequencies above the resonance of the system to be controlled. Also the reso-
nance frequency of the actuator is moved up so that for high control gain it merges
with the resonance of the system to be controlled which is actually falling down under

the effect of the active control action.
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§ PID Control.

Figure 33 shows the control effects generated by a combination among a Propor-

tional-Integral-Derivative function; (0)=- g{kp + ﬁ +J cokD} :
jo

[ijiﬂ'Fll dB rcl,(ms-lfN)

] 20 40 63 20 0
Frequency (Hz)

Figure 33: Modulus of the ratio between velocity of the system 1o be controlled and the harmonic force
of the system shown in Figure 16{a) when a PID Control is use and different values of gain; g,=0; no-
gain (solid line), g,=10 (dashed line), g5=20 (dotted line) or g,~60 (dash-dot line).

This Figure highlights that PID Control adds: “Active damping”, “Active Stiffness”
and “Active mass” keeping constant the resonance of the system to be controlled. This
system produces vibration reductions in the three regions; below, at and above the
resonance of the structure to be controlled. Also, it produces large control spillover
effect at the actuator resonance. However the control performance of this loop is lim-

ited by stability as it was seen in section 3.3,
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§ PI Control.

Figure 34 shows the control effects produced by a combination between Proportional—

Integral functions; H(w)=—-gik» + &/ jo}:

fieaX /F | B rel.{ms ™ /N)

0 20 40 60 80 100
Frequency (Hz)

Figure 34: Modulus of the ratio between velocity of the system to be controlled and harmonic force of
the system shown in Figure 16(a) when a PI Control is use and different values of gain; g,=0; no-gain
(solid line), g,=10 (dashed line), g:=20 (dotted line} or g,~60 (dash-dot lire).

This figure highlights that PI Control adds “Active damping” and “Active Stiffness”
moving the resonance of the system to be controlled to higher values. This Control
moves down the resonance of the actuator and produces spillover due to the Integral
Control effect at low frequencies. Thus, the system produces vibration reductions in
two regions; below and at resonance of the system to be controlled. However PI con-

trol slightly detriment the response above the resonance of the system to be con-

trolled.
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§ PD Control.

Figure 35 shows the control effects produced by a combination between a Propor-

tional-Derivative functions; H{w)=—g {kp + jookn b
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Figure 35: Modulus of the ratio between velocity of the system to be controlled and harmonic force of
the system shown in Figure 16(a) when a PD Conirol is use and different values of gain; g,=0; no-gain
(solid line), g:=10 (dashed line), gs=20 (dotted line} or g,=~60 {dash-dot line).

This figure highlights that PD Control adds “Active damping” and “Active mass”
moving the resonance of the system to be controlled to lower values. Also the reso-
nance of the actuator is moved up, so that for high control gain it merges with the
resonance of the system as it was explained above in Derivative Control case. Thus,

the system produces vibration reductions in two regions; at and above the resonance

of the system to be controlled.
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4., FEEDBACK CONTROL IN A PLATE.

In this chapter, the dynamic response of a distributed system such as a plate will be
considered. The study is subdivided in six parts. The first part introduce the model for
the response of a simple supported plate excited by a primary force with an ideal collo-
cated velocity sensor and point force actuator feedback control system. The second
part illustrates the model for the same plate with an inertial force actuator for the feed-
back control loop. The third and fourth parts show the model for an inertial electro—
dynamic actuator mounted on the plate with an ideal collocated velocity sensor at its
base for the implementation at either current or voltage control feedback. The fifth and
sixth parts discuss the stability and control performances of these systems for the P, I,
D and PID different control functions considered in previous chapters.

4.1 Feedback Control with velocity sensor—point force actuator pair.

The system studied in this section consists of a simply supported plate with an ideal
collocated velocity sensor and a point force actuator feedback active vibration control

system as shown in Figure 36.

———————————— -gH(w) F———-

Figure 36: Simply supported plate excited by a primary force f, with an ideal collocated velocity sensor
and a point force actuator feedback control system.

The phasor of the transverse velocity on a generic point of the plate structure,

A (x, y,a)) and at control sensor position, W, (x,,, yc,a)), can be expresséd in terms of

the primary and secondary excitations as follow [10]:

i, (x,y,0) = Y, (x, 3, 0)f, (@) + Y (x, y 0)f @), (4.1)

wo @)=Yy (@) f,(@)+ Y (@) fA0), (4.2)
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where j:p(a)) is the phasor of the incident primary excitation and £,(@) is the phasor

of the control excitation. The four mobility terms in Eq. (4.1) and (4.2) can be written

by the following formulae [107]:

V(. y.0)=dxyh, (o). (4.3)
Y (xy.0)=¢(xyh. (o), @4
Y (@)=9.(x.)a,(@), (4.5)
Y (@)=b.(c.5. ). (), (4.6)

where ¢(x, ) and ¢,(x,,»,) are row vectors with the first N natural modes of the plate

calculated in a generic point (x,y) and in the control point (x.,y.} respectively:

¢(x,y)=i_¢1 (x,y) ¢2(x,y) e Py (x,y)_], (4.7)

oAny)=dlxr.) dlroy.) o duleny)ls (4.8)

and a, (@), a,(w) are column vectors with the first N modal responses of the plate due

to cither the primary or control excitation:

i ap,l (G))

a,(0)= af’{(w) (4.9)
_ap,N (0))
i ac,l (C())

a(w)= a”‘z:(m) : (4.10)
_ac,N (6’))

The terms in the primary modal response vector, a p(a)), are given by:
: Gun (X5 V)
a, = jo =L (4.11)

A[(wi A+ 7 - w2] ’
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while the terms for the force in the control modal response vector, a, (a)), are given by:

Bun(XesVe) ,
Aoz, a+ jn,)-0?]

a = jo (4.12)

where @, is the natural frequency of the (m n)th natural mode of the plate, gma(x,¥) 18
the (m,n)th natural mode of the plate at position (x,y), A=phi /4 is the modal normali-
zation, p is the density of the plate, / and 4 are respectively the dimensions and thick-
ness of the plate, and 7; the loss factor. The natural frequencies and modes of the plate

at the position (x,y) are respectively:

2 2
2
w,,(xy)= Eh |22 2Z ), (4.13)
2
lzp.s (1 -V ) lx ly
4, (5, y) =sin| = |sin| 22|, (4.14)
I, I,

where E is the Young’s modulus, and v; Poisson ratio of the material of the plate. From the
previous definitions, the mobility functions of the Yo, and Y. are given by the following ex-

pressions:

o~ ¢m,n(xc>yc)¢m,n(xp:yp)

) : s (4.15)
ol Al 1+ s )- 07
oSS S ) (4.16)

weit Allwz, 04 jn-0?]
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Table 5: Geometry and physical parameters for the panel.

Parameter Value
Dimensions I, 1,=0.414x0.314 m
Thickness A=1 mm
Mass density p=2700 kg/m’
Young’s modulus F=T.1x1 0 N/m
Poisson ratio v5=0.33
Loss factor ns=0.02
Position of the control system X, ¥=0.33l, 0.714,
Position of the primary excitation xp, Yp=0.15/, 0.44/,

4.2 Feedback Control with a velocity sensor—inertial actuator pair.

As shown in Figure 37, the response of a plate with an inertial actuator and an ideal

velocity sensor at its base for the implementation of a feedback control loop is now
"E‘L

Sl “T i

Figure 37: Schema of an actuator mounted in a simple supported plate with an ideal collocated velocity

considered.

-gH(w)

F3

SENSOF.

Figure 38 shows in details the forces and displacements acting on the elements of the

actuator which is mounted on the plate at the control point.
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k CL;L_I

Figure 38: Schema with the notation for the forces an displacement at the connecting points between the
elements of the accelerometer which is mounted on an aluminium plate with a collocated force actuator.

Table 6 : Physical parameters for the inertial actuator.

Parameter Value
Mass m=0.03 Kg
Stiffness k=118.45N/m
Critical damping ce = 3.76 N/ms™!
Damping c=0.75
Natural frequency fa=10Hz
Transducer coefficient ¥=2.6 N/A

In this case the velocity at a generic point of the plate w, or at the control sensor posi-

tionw, and the velocity of the actuator mass W, can be expressed using the following

mobility formulae:

Wy =Y, fp + Yo Sas (4.17)
w, =¥, f,+ Y./ (4.18)
wm = mem -

where Y, and Y,, are the point motilities respectively at the conirol position (xc.yc) and

a generic plate position (x, y) with reference to the force at the base of the actuator, ¥m
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is the mobility function of the inertial mass which can be derived from Newton’s sec-

ond law:
S =m0, (4.19)

s0 that:

_Jow, 1
Y, = I3 _j%' (4.20)

The two equations in (4.18) can be written in the matrix form as follow:

w=Yf+Y,f,, (4.21)
where
-4
w=4 b, (4.22)
Wm
¥, 0
Y=(0 ij (4.23)
Ju
f= ) 424
A 429
Y
Y, { ; } (4.25)

The constitutive equation for the spring and damping elements in parallel could be

written as follow:

Fu == =2 )= clob, — 0, ) = —k( e —&J—c (h=¥n).,  (426)
jo jo

o =k —w ) -1 (0, —wc)=—k(ﬂ— e )—c (irm =02 (4.27)
Ja  Jo
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where the relation w(a)) = v'v(a))/ jo was used. The two equations (4.26) and (4.27) can

be written in matrix form as follows:

f=—7w, (4.28)
where
le ZIZ]
Z= R 4,29
(zﬂ Zs (4:29)
and
k
Zy=Zy :(—;—-&-c ), (4.30)
Jjo
k
Zip =7y = —+c |. (4.31)
ja

In order to take into account the effect of the control force generated by the control ac-

tuator, equation (4.28) is rewritten as:
f=—Zw+h,f., (4.32)

where

+1
b, = {_ l}’ (4.33)

and £; is the control signal. Substituting equation (4.32) into equation (4.21) and solv-
ing with respect to the velocity vector, the following expression for the velocity of the

control sensor and actuator mass are derived:

W=y, fotYefe (4.34)

where y, and y, are given by:
y,=(1+YZ)'Y,, (4.35)
y.=(I1+YZ) " Yh,. (4.36)
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From Eq. (4.34) the velocity at the control sensor position W, can be expressed as:

w, =Y f, + YT, 437

where
Yo =qy,, (4.38)
Yi=qy,, (4.39)

where q is a row vector given by:
q=[1 0]. (4.40)
Substitution of Eq. (4.34) into the Eq. (4.32) gives:
f=2.f.~Zy,f,. (4.41)
where
Z,=—Zy.+h,. (4.42)
The force f, transmitted to the plate can therefore be obtained from Eq. (4.41):
Jfo=arofe—aZy, fr, (4.43)

where q is given in Eq. (4.40). Equation (4.43) gives the force transmitted from the in-
ertial actuator to the plate structure when a primary force f, is also acting on the plate.
In the case with no primary force, i.e. £, = 0, then, as shown in Figure 39, the force f,
transmitted to the base per unit of control force f; can be derived. Below the fundamen-
tal resonance of the actuator there is hardly any transmitted force to the structure. At
resonance the transmitted force f, is much greater than the control force f, and above
resonance the transmitted force has constant amplitude equal to the control force.
There are little drops of the transmitted force £, in correspondence to the plate reso-
nances since little reaction is provided by the plate at these frequencies. Also, at fre-
quencies below the resonance frequency of the actuator, the transmitted force is out of
phase with the control force while, above the actuator resonance it is in phase with the

actuator force,
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Figure 39: Force transmitted to the base structure per unit of control force.

The transverse velocity in a generic point of the plate w, can be calculated substituting

Eq. (4.43) into Eq. (4.17), so that:

W, = X fy + Yo o (4.44)
where ¥, and ¥} for this case are given by:

=Y, - Y.aZy,, (4.45)

Yi=Y,9z,. (4.46)
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4.3 Feedback control with a velocity sensor—inertial electro—dynamic actuator driven

current.

The system studied in this section consists in an inertial electro-dynamic actuator
mounted on a simply supported plate with an ideal velocity sensor at its base for the

implementation of a feedback active vibration control system with current control.

I T

Figure 40: Schema of an inertial electro—dynamic actuator with current control mounted on a simply

supported plate.

As shown in Figure 40, the coil-magnet electrodynamic actuator is modelled in terms
of a resistance R. and inductance L. for the coil. According to Biot-Savart’s law, the
reactive force generated by the coil-magnet system is directly proportional to the cur-
rent I, in the coil [4].

Je=w 1, (4.47)

where  is the transducer coefficient given by Table 7. Substituting Eq. (4.47) into
Equation (4.37) the velocity at the sensor point due to the primary force f; and control

current I, can be obtained:

. A )
w, =Y, f,+¥. 1, (4.48)
where Y/ is the point mobility at the control position when a current control is used:

Y, =y (4.49)
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Substituting Eq. (4.47) into Eq. (4.43) the transmitted force f, at the base using a cur-

rent control can be obtained:
fo=azy I.—qZy,f,. (4.50)

Equation (4.50) gives the force transmitted from the inertial actuator to the plate when
a primary force f; is also acting on the plate. In the case with no primary force, i.e.
Jp =0, then, as shown in Figure 41 the force transmitted to the base per unit driving
current is found to be similar to that shown in Figure 39 for the ideal inertial actuator
but shifted by 10logo |1/, which considering the properties listed in Table 7 corre-
sponds to 4.1 dB.

[f /1 |(rel. N/A)IB

a ¢

i
Frequency (Hz}

0 ! 0 10° 10*
Frequency (Hz)

Figure 41: Force transmitted to the base structure per unit driving current by the coil.

The transverse velocity on a generic point w, of the plate can be calculated substitut-

ing Bq. (4.50) into Eq. (4.17):

W, =Y f, + Yl (4.51)
where Y;, and ¥, for this case are given by:

Y =Y,-Y.dZy,. (4.52)

Y. = y¥,0z,. (4.53)
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4.4 Feedback control with an inertial electro—dynamic actuator with voltage control,

The system studied in this section consists in the same inertial electro—dynamic actua-
tor mounted on a simply supported plate with an ideal velocity sensor at its base for the

implementation of a feedback control loop with voltage control as shown in Figure 42.

Tj; W:L -gH{(w) %

Figure 42: Schema of an inertial electro—dynamic actuator with voltage control mounted on a simply

supported plate.

Table 7: Physical parameters for the inertial electro—dynamic actuator.

Parameter Value
Transducer coefficient of the coil ¥=2.6N/A
Resistance of the coil R, =208
Inductance of the coil L,=0.002 H

In this case, because of the back e.m.f. effect generated by the relative motion between
the mass and the coil, the current /; in the coil of this inertial electro-dynamic actuator

is governed by the following relation [4]:

dl,
dt

RI +1, =U,—yhw, (4.54)

where R, is the resistance and L the inductance of the coil, Us is the applied voltage

and —y h,w is the back electromotive force due to the vibration of the inertial mass

with respect to the base of the actuator.

Considering harmonic vibration and electric functions, Eq. (4.54) becomes:
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(R, +joL ), =U,~w hw (4.55)

Thus substituting the current /; from the Eg. (4.55) into Eq. (4.47) the electro—magnetic

actuation force, f; when a voltage control is used can be expressed as:

U, -y hw

fo= e (4.56)

where
h=[-1 1, (4.57)
Z,=R,+joL,, (4.58)

Substituting Eq. (4.56) into the Eq. (4.34) and solving with respect to the velocity vec-

tor, the following expréssion can be obtained:

W= Qcpfp +Q. U, (4.59)
where
2h -1
Qcp :(I-i_yc'l‘%] Ypo (460)
v\ v
=\ T+y,—* —, 4.61
Q.. ( Ve ZEJYCZC (4.61)

From Eq. (4.59) the velocity at the control sensor position can be expressed as:

w, =Y, f,+Y U, (4.62)

where in this case
Y, =qQ, (4.63)
I,Cg = chc * (4.64)

and
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q=[1 0]. (4.65)

Substituting the current in the coil 7, from Eq. (4.55) and velocity vector w from Eq.
(4.59) into Eq. (4.50), the actuator force f, transmitted to the plate using a voltage con-
trol signal can be obtained:

~ (4.66)

e

2
z, gz, 'h,Q,
ﬁ]:qz-w(]mwthm)Us_[quP_;_ ijp’

Considering the case with no primary force, i.e. f, = 0, the force transmitted to the base
per unit of driving current is derived as shown in Figure 43.

[

I£ /U |(rel. NfFA)IB

a

10
Frequency (Hz}

AL

Frequency (Hz)

Figure 43: Force transmitted to the base structure per unit driving voltage by the coil.

Figure 43 shows similar plot to that found for the current driven actuator, except that at
higher frequencies the transmitted force is characterised by amplitude roll off and a
phase lag which are due to the electric inductance effect which is similar to a mass ef-
fect. Also, the voltage driven the actuator is characterised by larger drops of the trans-

mitted force at the resonance frequencies of the plate structure. The transverse velocity
in a generic point W, can be calculated substituting Eq. (4.66) into Eq. (4.17):
W, =Y f, + YU, , - (4.67)

Where ng and ¥ are given by the following expressions:
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h
T =Y, —f;a[qup +——”‘ZSZ’Q”C} (4.68)

&

A
Yy = }Zaq—zs"y-(lwh,Qm)- (4.69)

e

4.5 Stability analysis.

The stability analysis for the four control systems with a) the ideal point force actuator,
b) inertial force actuator, and inertial electro-dynamic actuator with ¢) current control
and d) voltage control can be carried out with reference to the classic rejection feed-

back block diagram shown in Figure 44 using the appropriate mobility functions ¥,

and ¥, (Y, Y, or Y5, ¥ior Y , ¥ or ¥, ¥ for the control arrangement under
study.
lﬁ(m)
Y (@)
+ .
K [Ty @ o),
-gH(®)

Figure 44: Block diagrams of feedback control system implemented on the plate.

Considering first the system with the ideal point force and inertial force actuators, the

control force is given by:
fil@)=—gH (@) (), 4.70)

while for the current—driven and voltage—driven inertial electro—dynamic actuator the

control current and control voltage are given respectively by:
I, =-gH(o,, 4.71)

and
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U, =—gH{oh,, (4.72)

where H{w) is the control function. Substituting Eq. (4.70) into Eq. (4.2) and Eq. (4.37)
and solving for w,, the velocity at control point for the point force actuator and for the

inertial force actuator are derived with reference to the primary excitation by:

i il / 4.73

W =———- B .

1+ gH(o)Y, (4.73)
YA

R — 4.74

Y= 1+gH(a)) 7 Tp “4.74)

where G, = H(w)Y,, and G, = H(@)Y, arc the open loop frequency response func-
tions between the control velocity and either the control point force or inertial actuator

reactive control force.

For the case of the inertial electro—dynamic actuator, substituting Eq. (4.71) into Eq.
(4.48) and Eq. (4.72) into Eq. (4.62) and solving for w,, the velocity at the control

point for both cases, current and voltage control, are respectively given by:

YA

W, = Wf (4.75)

I

W, =— 4.76
1+ gH(a)) 77 (4.76)
where G, = H(@)Y. and G, = H(»)Y. are the open loop frequency response func-
tions between the control velocity and either the current (G, = w’ /1) or the voltage

(G, =w? [U_) driven to the coil.

As anticipated in the previous chapters if the real parts of G, &,, G, or (G, are posi-
tive real for all frequencies, then (4.73), (4.74), (4.75) and (4.76) show that W,/ f, <1

for any control gain and frequency. Thus vibration control is obtained without the dan-
ger of instabilities. Considering the ideal point force actuator, the transverses velocities

in a generic point of the plate when there is control can be calculated substituting

Equations (4.73) and (4.70) into Eq. (4.1) which solving for W, gives the closed loop

response:
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(., gHWY,
W, = (Yi;p ch 1+ H(C‘))ch pr ‘ (477)

Considering the inertial actuator, then substituting Equations (4.70) and (4.74) into Eq.

(4.44) and solving for w, the closed loop response is given by:

1/i)b |:pr Yc{

Finally considering the inertial electro—dynamic actuator, substituting (4.75) and (4.71)
into Eq. (4.51) or substituting Equations (4.76) and (4.72) into Eq. (4.67) and solving

qupﬂfp. (4.78)

/_'\
\__/‘*-.-/

for w, gives the closed loop response for the current and voltage driven control

schemes respectively:

gH(0)Y,
Wy = I:};p _K’Jc{qzs —_'_—i;p_f_i_ qZYp fp 3 (479)

H(@)Y.]
wb = {pr Y!Jc|:qusyj ((1—1/; thcc)ﬂjg_Ig((a)'—w))-%_} v hIQCPJ+quPi|}fP : (480)

In the following points the bode and Nyquist plots for the four control systems will be
studied in order to asses their stability properties.
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§ Proportional Control.

The control function in this case is H{w)=—g:
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Figure 45; Bode plots of the open loop FRF of the feedback systems using: @) a point force, b) inertial
Jorce actuator, inertial electro—dynamic actuator with ¢) current and d) voltage control in the 1-50 KHz

frequency range when a Proportional control function is used.

The phase plot in Figure 45a confirms that the open loop frequency response function
HY,. of the control system with an ideal control force 1s positive real and thus provides
an unconditionally stable control system. Alternatively the phase plots of the control
systems with the inertial force actuator or inertial electro—dynamic actuator with cur-
rent or voltage control (Figure 45b, ¢ and d) indicate that the phase plot starts from
+270°, drops to +90° after the resonance of the actuator and then oscillates between
+90° and —90° for the resonances of the plate. The first 180° phase drop from 270° to
90° is due to the inertial actuator which, as shown in Figure 39, Figure 41 and Figure
43, below the actuator resonance frequency transmits a control force to the plate 180°
out of phase with the control force signal. In the voltage control case (Figure 45c) at
higher frequencies above 1 KHz, the phase plot goes to values beyond —90° because of
the coil inductance effect at higher frequencies. This inductance effect also brings
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down the amplitude of the open loop response function at higher frequencies. The plant
responses for the three systems with inertial actuators are similar to that of the two
DOF system studied in chapter 3 except that in these cases the base system is a distrib-
uted structure with o degrees of freedom which introduces many resonances as clearly

highlighted by the peaks in the open loop response function.
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Figure 46: Nyquist plots of the open loop FRF of the feedback systems using: a) a point force, b) iner-
tial force actuator, inertial electro—dynamic actuator with ¢) current and d) voltage control in the 1-50
KHz frequency range when a Proportional control function is used.

The Nyquist plot of Figure 46a shows that the polar plot of the open loop response
function of the system with an ideal control force is entirely confined on the right hand
side quadrants, which also confirms the unconditional stability of Proportional Control.
However the Nyquist plot of the control systems with the inertial force actuator and
inertial electro—dynamic actuator with current and voltage control (Figure 46b, ¢ and d)
show one circle on the left hand side quadrants which is due to the resonance of the
actuator while the right hand side circles are due to the resonances of the plate. The
actuator circle is confined on the left hand side quadrants which suggest that the sys-

tem is only conditionally stable since for large control gains it can encircle the Nyquist

63



instability point. The higher frequencies effect of the voltage—driven inertial electro—
dynamic actuator is better seen in the zoom Nyquist plot in the Figure 47d. This plot
shows that the open loop sensor actuator response function of the voltage—driven iner-
tial actuator systern is characterised by high frequencies circles that goes to the nega-
tive real part.
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Figure 47: Zoom of the Nyguist plots show in Figure 46.

In general, the zoom plots in Figure 47 highlights that apart from the ideal case with a
point force actuator, the low frequency resonance introduced by the mass—spring iner-
tial actuator occupies the circle of unit radius and centre in the Nyquist critical point so
that, even for moderate control gains that ensures conditional stability, control spill-
over effects occurs around the actuator resonance frequency.

Therefore having a “small” actuator resonance frequency is very important in order to
get a stable control loop with large control gains but also to get little control spillover
effects at low frequency around the resonance of the actuator. This “low amplitude”
resonance of the actuator is normally obtained by designing an actuator with low natu-
ral frequency. There is however an intrinsic limit to achieve this since the stiffness of
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the actuator must be large enough to suspend the mass without a too big static deflec-
tion, therefore a compromise must be found between a stiff enough spring to support
the static weigh of the suspended mass an a soft enough spring to guarantee a low fun-
damental resonance frequency of the actuator. Further improvements can be made by
adding and internal velocity feedback loop to the actuator in order to create active

damping on the actuator that reduces the amplitude of its resonance [12].

Also an integral displacement feedback loop can be added so that a self levelling sys-
tem can be obtained which would enable the use of very soft suspension systems for

the inertial mass [13].

§ Integral Control.

In this case the control function is H (0)=-g/jo:
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Figure 48: Bode plots of the open loop FRF of the feedback systems using: a) a point force, b} inertial

force actuator, inertial electro—dynamic actuator with ¢) current and d) voltage control in the 1-50 KHz

frequency range when an Integral control function Is used,
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As shown in Figure 48a, the phase plot indicates that the phase of the open loop sen-
sor—actuator frequency response function /Y. of the control system with an ideal con-
trol force exceed —90° and the amplitude goes down at higher frequencies. Alterna-
tively the phase plots of the control systems with the inertial force actuator and inertial
electro—dynamic actuator (Figure 48b, c and d) indicate that the phase of the open loop
sensor—actuator frequency response function starts from 180°, drops to 0° at the reso-
nance of the inertial actuator and then oscillates between 0 and 180° at higher frequen-
cies above the first resonance of the plate. As discussed above, this is due to the actua-
tor dynamics which as shown in Figures 39, 41 and 43 gives a transmitted force 180°
out of phase at frequencies below its resonances. In this control case the amplitude of
the open loop tends to decrease with frequency because of the integration 1/ja effect.
For the voltage—driven inertial actuator this effect is even higher because of the induc-
tance effect which also introduces an extra phase lag and amplitude drop at higher fre-
quencies, as shown in Figure 48d.
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Figure 49: Nyquist plots of the open loop FRF of the feedback systems using: a) a point force, b) iner-
tial force actuator, inertial electro—dynamic actuator with ¢) current and d) voltage control in the 1-50

KHz frequency range when an Integral control function is used.
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The Nyquist plot of HY, for the control system with ideal control force in Figure 49a
is characterised by circles which occupy the bottom quadrants only. This is due to the —
90° phase lag which is added by the Integral Control. The system is therefore bound to
be stable although spillover effects may occur at higher frequencies which could turn
up to instabilities in case the system is perturbed by external disturbances. The Nyquist
plot of HY, the control system with the inertial actuator (Figure 49b, ¢ and d) show
one circle on the top side quadrants, which is due to the actuator—resonance and others
on the bottom side quadrants, which are due to the resonance of the plate. The zoom
plots in Figure 50 show that the locus of HY,; never crosses the real negative axis ex-
cept for the inertial electro—dynamic actuator with voltage control system which has
higher frequencies circles crossing the real negative axis because of the phase lag in-
troduced by the inductance. In general, when integral control is implemented the sys-
tem can go unstable, both at low and high frequencies, if external perturbations were to

modify the system.
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Figure 50: Zoom of the Nyquist plots show in Figure 49.
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§ Derivative Control.

In this case the control function is H{w)=—jwg :
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Figure 51: Bode plots of the open loop FRF of the feedback systems using: a) a point force, b} inertial
force actuator, inertial electro—dynamic actuator with ¢) current and dj voltage control in the 1-50 KHz

Jrequency range when a Derivative control function is used.

As shown in Figure 51a, the phase plot indicates that the phase of the open loop sen-
sor—point frequency response function HY for the control system with the ideal force
actuator oscillates between 180° and 0° and the amplitude goes up with frequency.
This is due to the +90° phase lead effect generated by the derivative controller. Alter-
natively in the case of the control system with the inertial actuator (Figure 51b, ¢ and
d) the phase plot starts from +360°, drops to 180° after the resonance of the actuator
and then oscillates between 180° and 0° and goes beyond 0° for the voltage—driven ac-
tuator. Also in this case the 180° phase shift at the actuator resonance frequency is due
to the dynamics of the actuator which, at frequencies below this resonance generates a
transmitted force with phase opposite to that of the control input. As shown in the am-
plitude plots in the four pictures, the derivative control magnifies the amplitude pro-
portionally to frequency. However, this effect is mitigated by the inductance effect of
the driving—coil in the case of voltage—driven actuator.
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Figure 52: Nyquist plots of the open loop FRI of the feedback systems using: a) a point force, b) iner-
tial force actuator, inertial electro—dynamic actuator with c) current and d) voltage control in the 1-50
KHz frequency range when a Derivative control function is used.

The Nyquist plot of HY,., with the ideal point force actuator in Figure 52a shows that
the frequency response function is not confined on the right hand side quadrants. In
fact the Nyquist plot is characterised by circles which occupy the two top quadrants.
Thus, in principle, the control system is unconditionally stable although same of the
low frequencies circles are very close to the Nyquist instability point as it is shown in
more details in Figure 53a. Thus, the system is conditionally stable and prone to con-
trol spillover effects at low frequencies where the locus of HY. enters the circle of unit
radius and centre (-1, jO). In the cases of the control systems with either the inertial
force or inertial electro—dynamic actuators, Figure 52b, ¢, d and Figure 53b, ¢, d show
one circle on the bottom quadrants which is due to the resonance of the actuator and
others circles for the resonances of the plate on the top quadrants. Figure 53b, ¢ and d
show that in these cases the locus crosses the negative real axis and thus the systems
are only conditionally stable. Moreover, even for moderate control gains they are likely

to generate high control spillover effects.
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§ Proportional-Integral-Derivative (PID) Control.

The control function in this case is a combination of Proportional-Integral-Derivative
control functions; H (a))=—g{ kp+k;/jo+ jo kp }, where kp, k1 and kp are Propor-
tional, Integral and Derivative Control constants respectively. These constants have
been selected in such a way as to keep the first resonance of the panel constant when
the control gain is raised. Since the first resonance of the panel corresponds to that of

the base system considered in Chapter 3 for the two degrees of freedom model, then
the constants are the same as those in Table 4 and the control function that is shown in

Figure 21.
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Figure 54: Bode plots of the open loop FRF of the feedback systems using: a) a point force, b) inertial
force actuator, inertial electro-dynamic actuator with ¢) current and d voliage control in the 1-50 KHz
frequency range when a PID control function is used.

As shown in Figure 54a, in this case the open loop sensor—actuator HY. frequency re-

sponsé function for the control system with an ideal force actuator exceed +90° be-

tween the first resonance of the plate and 10 KHz. This is due to the effect of Deriva-

tive control above the first resonance of the plate. Alternatively in the case of the con-

trol system with either the inertial force or electro—dynamic actuator (Figure 54b, ¢ and
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d) the phase plot starts from -+180°, drops to 0°, oscillates between —45° and +45° once
and then oscillates between 0° and 180° above the first resonance of the plate. Also the
higher frequency derivative effect in the controller produce a constant rise of amplitude
with frequency of the open loop response function when the voltage—driven inertial
actuator is used, this higher frequency effect of the derivative control is mitigated by

the inductance effect of the coil however at the expenses of an additional phase lag.
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Figure 55: Nyquist plots of the open loop FRF of the feedback systems using: a) a point force, b) iner-
tial force actuator, inertial electro—dynamic actuator with c) current and d) voltage control in the 1-50
KHz frequency range when a PID control function is used.

As show in Figure 55 and more in detail in Figure 56, the integral control effect in the
PID controller below the first resonance of the plate locates the HY,, locus—circle for
the actuator resonance in the top quadrants as seen in Figure 49 and Figure 50 for the
purely integral control case. The derivative effect locates the HY,. locus—circle for the
first resonance of the plate on the right hand side quadrants as typically happens with
proportional control (see Figure 46 and Figure 47). Finally the derivative effect at
higher frequency moves the circles to the top quadrants and produces the typical am-
plification effect proportional to frequency. When the voltage—driven inertial actuator
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is used, then, it is found the typical higher frequencies phase lag and amplitude drop

which is counterbalanced by the amplification effect of the derivative control.
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Figure 56: Zoom of the Nyquist plots show in Figure 335.
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4.6 Control performances.

When distributed flexible systems are considered, such as for example the plate con-
sidered in this chapter, then it is convenient to represent the overall vibration of the

plate in terms of the total kinetic energy which is given by the following formula:
1 . 2
T(0)=> [ P, (s, . 0) (4.81)

where p is the mass density, 4 is the thickness of the plate and v, (x, y,@) is the trans-

verse velocities on the plate surface. Substituting either Equations (4.77), (4.78), (4.79)
and (4.80) into Eq. (4.81), the kinetic energy of the plate is obtained for the four con-
trol configurations with either the point force, inertial force actuator or the inertial elec-

tro—dynamic actuator; current and voltage driven:

T(w) = %Mf; [, +a%*7 F'la, +a7 |1, (4.82)

where * denotes the complex conjugate, 7 the hermitian transpose and a’;*’” are the

column vectors with the modal excitation terms due to the four control loops which are

given by:

o gllo),

LA A (4.83)
H(w)Y?
a;c = _ac(qzs _l—f—}}g(a)))%—F quP] ’ (484)
gH(w)Y, ‘

- _a{q b 1+H((w)1’pf +qupJ, (4.85)

. qz .y gH(@)IZf.f

__ RAN. M-Sk el SRR :

ay ac[ Z ((1 v th“)I+H(a))YCCU +y hQ, 1+qZy, (4.86)

In the following points the kinetic energy is plotted against frequency for the different

control functions.
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§ Proportional Control.
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Figure 57: Total flexural kinetic energy of the plate, when it is excited by an unit primary force using a
a point force, b} inertial force actuator, inertial electro—dynamic actuator with ¢) current and d) voliage
control with no control gain; g,=0, solid line, having a feedback gain of g;; dash line, and its optimal g;
gain; fine line and very high gain; g,= 10°; dotted line when a Proportional Control is used.

Figure 57 shows the active damping effect and the rearrangement of the modal re-
sponses of the plate when the gain of the control loop increase. From these plots it is
possible to highlight important features of this control system; a) there is an optimal
gain that reduces the kinetic energy substantially, b) with relatively larger gains than
the optimal value, the system rearranges its modal response so that new resonances
come into sight and ¢) in the case of the system with the inertial actuator mounted on
the plate (Figure 57b, ¢ and d) the addition of high gains lead to spillover at the reso-
nance frequency of the actuator. This characteristic behaviour is represented in Figure
58 where the minimum value of the ratio between the 0—1 kHz frequency averaged ki-
netic energy of the plate with and without feedback control is found for an optimal

gain while for bigger gains than this one the ratio of the kinetic energies increases.
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Figure 58: Ratio of the plate (otal kinetic energy without and with feedback control integrated from 0 to
1000 Hz, plotted against the gain in the feedback controller, g, for the a) point force, b) inertial force
actuator, inertial electro—dynamic actuator with ¢) curvent and d) voltage control and for the following
Jeedback control functions; Proportional; fine line, PID; dash line.

Figure 58 shows that the proportional feedback gives the best 0—1KHz frequency aver-
aged control effect whereas PID is the optimal function 0-100 Hz frequency averaged

control effect.

Table 8: Optimal gains and normalised kinetic energy reduction for the ratio between 0 fo 1KHz.

Point Force Actuator Current Control Voltage Control
Preportional | 33.31 -2.7dB 3321 -2.1dB 1176 | -1.8dB 255.29 -2.3dB
PID 11.76 -2.0dB 10.59 -1.8dB 3.74 -1.1dB 76.63 -1.9dB
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Figure 59: Ratio of the plate total kinetic energy without and with feedback control integrated from 0 to
100 Hz, plotied against the gain in the feedback controller, g for the a} point force, b) inertial force
actuator, inertial electro—dynamic actuator with ¢) current and d) voltage control and for the following

feedback control functions; Proportional; fine line, PID; dash line, PI; dash-dotted line and PD; doited

line.

Table 9: Optimal gains and normalised kinetic energy reduction for the ratio between 0 to 100 Hz.

Point Force Actuator Current Control Veltage Control
Proeportional | 24.37 -10.3dB 2437 | -8.5dB 8.6 -7.7dB 195.64 -8.5dB
PID 14.48 -11.4dB 1448 | -9.6dB 5.1 -3.7dB 104.73 -9.9dB
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§ Integral Control.
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Figure 60: Total flexural kinetic energy of the plate, when it is excited by an unit primary force using a
a point force, b) inertial force actuator, inertial electro—dynamic actuator with ¢} curvent and d) voltage
control with no control gain, g;=0, solid line, having a feedback gain of g,; dash line, and its optimal g;
gain; fine line and very high gain: g,= 10° dotted line when a Integral Control is used.

Figure 60 shows the Active stiffness effects produced by the integral controller and the
rearrangement of the modal responses of the plate when the gain of the control loop
increases. From this figures it is possible to underline that the addition of even small
amounts of control gain moves the resonance frequency of the plate to higher values
and the resonance of the actuator to lower values (Figure 60b, ¢ and d). Thus, the sys-
tern produces vibration reduction at low frequencies below the first resonance of the
plate. Also for the case where the inertial actuator is used, spillover is generated on the

resonance of the actuator as indicated by the Nyquist plot in Figure 49.
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§ Derivative Control.
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Figure 61: Total flexural kinetic energy of the plate, when it is excited by an unit primary force using aj
a point force, b) inertial force actuator, inertial electro~dynamic actuator with ¢j current and d) voltage
control with no control gain; g,=0, solid line, having a feedback gain of g2; dash line, and its optimal g;
gain; fine line and very high gain; g,= 10°: dotted line when a Derivative Control is used.

In this case, Figure 61 shows that Derivative control adds *Active mass” to the system;
moving to lower values the resonances frequencies of the plate. Vibration reduction is

produced only between the first and second resonance of the plate.
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§ Proportional-Integral-Derivative (PID) Control.
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Figure 62: Total flexural kinetic energy of the plate, when it is excited by an unit primary force using a)
a point force, b) inertial force actuator, inertial electro—dynamic actuator with ¢) current and d) voltage
control with no control gain; g,=0, solid line, having a feedback gain of g,y dash line, and its optimal g;
gain; fine line and very high gain, g,~ 10°%; dotted line when a PID Control is used.

Figure 62 highlights that Proportional-Integral-Derivative control adds; a) Active
stiffness at low frequencies below the first resonance frequency of the plate; obtaining
vibration reduction in this region, b) Active damping near the first resonance of the
plate; controlling the vibration reduction near the first resonance frequency of the plate
and ¢} Active mass at higher frequency, above the first resonance frequency of the
plate; achieving vibration reduction at higher frequencies up to the second resonance of
the plate. Also it is possible underline that at higher frequencies above the first reso-
nance of the plate, the control system adds “Active mass” moving down the resonances
frequencies of the higher order modes. Also for the case where an inertial actuator is
mounted on the simple supported plate (Figure 62b, ¢ and d), the actuator resonance is
moved down due to the Integral control effect at low frequency As a result much

smaller spillover effects are obtained when large control gains are implemented.
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4. CONCLUSION.

This report has presented the modelling of different feedback control systems where
inertial actuators are used in smart panels for ASAC control. For each system, the ef-
fect produced by velocity, displacement, acceleration, a combination among the three
or between two of them control loops have been considered in detail. The introductory
study on a SDOF system has shown that a) Proportional control implements velocity
feedback control; controlling the vibration respond at resonance, b) Integral control
implements displacement feedback control; reducing vibration at low frequencies be-
low the resonance, ¢) Derivative control implements acceleration feedback decreasing
the vibration at higher frequencies above resonance, and d) PID Control implements a
combination of velocitydisplacement—acceleration reducing the vibration below, at

and above resonance.

In the chapter 2, the simplest vibration control problem is considered, which consists
of a simple degree of freedom (SDOF) system under harmonic motion of the base. In
this chapter the inconveniences of using a passive control and the advantages of em-
ploying active control are highlighted. Passive control shows that the addition of small
amounts of damping leads to important reductions of the response at resonance but
also detriment the response at higher frequencies. However, the effects of active con-
trol depend on which control function is implemented. For instance the vibration re-
sponse could be reduced at resonance (Proportional Control, i.e. active damping), be-
low resonance (Integral Control, i.e. active stiffness), above resonance (Derivative
Control, i.e. active mass) and below, at and above resonance (PID Control, i.e. active
damping-stiffness—mass) without detriment in the others regions. However the con-
trol performances of theses loops are limited by stability. Proportional and PID con-
trol are unconditionally stable not crossing the real axis while Integral and Derivative
Control are also unconditionally stable crossing the real axis and could lead to insta-

bilities and spillover respectively at higher or lower frequencies.

Chapter 3 introduces the control of a SDOF mechanical system with an inertial actua-
tor. As an example, the SDOF system to be controlled could be a simplified model of
a simple supported plate taking into account just one mode of vibration. In this case,
stability problems due to the actuator dynamics appeared, since the actuator adds a
new resonance frequency which produces an extra 180° phase lag in the sensor-
actuator frequency response function. In order to reduce this stability problem, this

resonance should be much lower than the resonance to the system to be controlled.

Chapter 4 deals with feedback control in a plate. In the first part of this chapter, a
simple supported plate with an ideal point force actuator is considered. In this case,
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the system is unconditionally stable for all the control systems; however spillover ef-
fects are produced for the integral and derivative control systems. In the following
parts of this chapter, the point force is substituted by an inertial force actuator or iner-
tial electro—dynamic actuator with either current or voltage control, which adds a new
resonance frequency lower than the first mode of the plate. This actuator adds insta-
bilities problems for most of the control schemes. In general, the system will be just
conditionally stable for the proportional control system while it will be uncondition-
ally stable for the rest of the control systems. However spillover problems appear for

all the control systems.
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