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1 INTRODUCTION 
There is an increasing awareness of the potential environmental impact of anthropogenic noise, in 
particular sonar, in underwater environments. This impact is most dramatically illustrated by the 
mass strandings of beaked whales that have been attributed to the use of military sonars [1, 2]. In 
order to avoid endangering cetaceans (whales and dolphins) Navies monitor for cetaceans prior to 
employing high power sonars. Similarly, in many part of the world, there are legal requirements on 
commercial operations, such as seismic surveying, to undertake suitable monitoring for cetacean so 
as to avoid unnecessary disturbance. 
 
Presently most cetacean surveying is undertaken visually. Evidently visual monitoring is of limited 
utility since its effectiveness is strongly dependent upon the prevailing weather conditions and much 
of the time cannot be conducted at all, e.g. at night and in fog. Further problems arise because 
some species undertake long dives, spending a high proportion of their time below the surface. 
Other species are particularly cryptic, the prime examples being the beaked whales; spotting these 
animals even when they are at the surface can only be reliably achieved in good weather 
conditions. 
 
Passive acoustic monitoring offers a powerful alternative methodology. One is able to detect a 
vocalising animal at considerable distances, commonly at ranges that exceed those at which visual 
monitoring is feasible. The performance of passive acoustics also is much less dependent on the 
weather and can be implemented 24 hours a day. Further there is considerable potential for 
automating such processing.  Passive acoustic monitoring is not without shortcomings; obviously 
passive acoustics can only detect animals when they vocalise.  Some species of baleen whales are 
not very vocal, whilst some species of odontocetes (toothed whales) predominantly vocalise during 
dives, largely remaining quiet when they are near the surface. In many respects visual and acoustic 
monitoring complement each other and a comprehensive monitoring system may employ elements 
of both modalities. 
 
The distance between an animal and the survey platform is an important piece of information in any 
decision regarding mitigation. In the case of visual monitoring it is relatively straightforward to 
estimate range once an animal has been spotted. This paper seeks to explore techniques for 
estimating range to animals based on passive acoustics.  There has been considerable work on the 
use of acoustics for localisation of animals. In particular the work of Spiesberger describes methods 
for localisation based on hyperbolic and isodiachronic methods [3].  These methods rely upon one 
estimating the relative delay between sensor pairs and then inverting a propagation model to infer 
source location.   
 
There are broadly two classes of passive acoustic monitoring system that are considered.  The first, 
the short aperture systems, which are typified by towed arrays.  These are convenient for 
deployment, but the accuracy of the localisation is severely impaired by their short aperture.  Most 
such systems typically employ arrays with lengths <10m.  The large aperture systems employ 
sensors positioned over distances on the order of kilometres.  Such systems may consist of sensors 
deployed through towed arrays, sonobuoys, bottom mounted sensors or combinations of these.  
The obvious disadvantage of large aperture systems is the difficulty in deploying them, bearing in 
mind that data needs to be synchronously captured from all of the sensor sites.  However the large 
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aperture systems provide location estimates with potentially much greater accuracy than the small 
aperture systems. 
 
Passive acoustic localisation methods have been applied predominantly to the vocalisations of 
sperm whales (Physeter macrocephalus).  During dives, these animals produce distinctive trains of 
clicks, which they use for echolocation purposes.  These clicks are emitted at extremely high 
amplitudes (on-axis sound pressure levels 230-240 dB re 1μPa @ 1m [4,5]) and so are audible 
across large ranges.  Most commonly the train of clicks occur at regular intervals.  The precise 
interval between click pairs varies as a function of time, so that the resulting time series is 
approximately periodic.  The inter-click intervals are typically of the order of 1s. 
 
Estimating the relative delay for sperm whale vocalisations is a non-trivial problem.  For large 
aperture systems the time delay between sensors maybe of the order of seconds and so 
encompasses periods that may span several inter-click intervals.  This adds considerable 
complexity to the delay estimation process, which will be discussed in more detail later.  When 
processing data from short aperture arrays, the expected time delays are short, normally in the 
millisecond regime.  But the arrays are commonly towed at relatively shallow depths, around  
10-20 m, and so the received signals often contain strong surface reflections and may also exhibit 
reflections from the sea bottom.  The problem of delay estimation becomes significantly more 
complex when there are multiple animals vocalising simultaneously, resulting in interleaved click 
trains contaminated by multi-path effects. 
 
This paper describes the analysis of sperm whale recordings collected from a bottom mounted 
sensor array with a long aperture.  These data being made available as part of a recent workshop 
(2nd International Workshop on Detection and Localization using Passive Acoustics, Monaco, 2004).  
The data were collected at The Atlantic Undersea Test and Evaluation Center located at the tongue 
of the ocean, close to Andros Island, Bahamas.  The problem of estimating delay information from 
such data is explored, examining and contrasting various approaches.  The resulting delay data are 
then used to infer the animal location using an inversion routine. 
 
 
2 DELAY ESTIMATION  
The estimation of delay can be optimally computed (assuming a Gaussian model for the noise and 
signal) based on cross-correlation [6].  In practice delay estimators based on cross-correlation offer 
good performance even when the measured signals have properties that deviate from those 
invoked in order to claim optimality.  Consequently the most common methods for computing delay 
are based on some form of cross-correlation.  In this section we shall discuss three methods for 
performing delay estimation.  
 
2.1 Correlation of the Raw Time-Series 

When analysing raw time series data from a vocalising sperm whale on a large aperture array, there 
are several practical issues that need to be considered.  One example of this arises because the 
cross-correlation function contains multiple peaks.  The reason why this can be problematical can 
be seen when considering the acoustic data from a sperm whale shown in Figure 1.  The correlation 
function for this signal is shown in Figure 2.  For robust delay estimation one desires this function to 
contain a single peak, corresponding to the appropriate delay.  However for a click train sequence 
the correlation function contains many peaks.  It is a difficult task to determine which of these many 
peaks is the “correct” value that aligns the two signals (further analysis of this data suggests that the 
correct delay is -2.1s). 
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Figure 1. Example Sperm Whale Click Trains Measured on Two Bottom Mounted Sensors 

 

 
Figure 2. Cross-Correlation Function Computed for the Data Shown in Figure 1 

 
The problem is further exacerbated by the fact that there is a lack of coherence between the signals 
measured at distant sensors.  Figure 3 shows an expanded view of two clicks, chosen to ensure 
that they correspond to the same click emitted by the animal.  It is evident that the detailed structure 
of clicks is not faithfully reproduced on the two sensors.  This figure also highlights that each 
individual click has a complex structure, being composed of several pulses.  This pulsed structure 
can be related to the physiology of the sperm whale [5].  The click is generated at the upper frontal 
region of the sperm whale. It is then reflected between a pair of air sacs before exiting the front of 
the whale.  Additional reflections occur between these sacs.  This causes each click to be made of 
a series of pulses.  The observed character of the click depends on the orientation of the animal 
relative to the observer.  Figure 4 depicts a series of sperm whale clicks recorded at a single 
sensor.  It shows a series of 240 consecutive clicks aligned based on the leading edge of the initial 
pulse.  In the plot each vertical line represents a single click, where amplitude is encoded via colour.  
This figure demonstrates how the internal structure of the click varies on a click-to-click basis.  The 
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source of this variability is believed to be the varying orientation of the animal relative to the sensor 
as it moves through the water.  This variability provides part of the reason why clicks have a 
different structure when observed on different sensors.  Coherence is further reduced by the fact 
that the signals have propagated considerable distances through different paths in the ocean, and 
so are subject to different random perturbations of mean acoustic properties. 

 
Figure 3. Example Sperm Whale Click Trains Measured on Two Bottom Mounted Sensors 

 
Figure 4. Plot of Clicks Aligned on the First Pulse 
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2.2 Correlation of the Detection Statistic 

An alternative to correlating the raw time series data (coherent correlation) is to compute the 
correlation of the envelopes of the signals (incoherent correlation).  Rather than simply analysing 
the envelope of the signal, better performance can be achieved if an optimised detection statistic is 
computed [7] that represents the envelope of the normalised whitened signal.  The incoherent 
approach provides estimates that are more robust to subtle changes in the waveform.  This 
robustness is attained at the cost of a reduction in potential accuracy of the method.  It should be 
noted that the extra accuracy associated with coherent processing is only available if the signals are 
truly coherent and Figure 3 suggests that, for these data, this is not the case. 
 
Figure 5 shows the detection statistic, which forms the basis of the incoherent processing, 
computed for the same data depicted in Figure 1. These detection statistics are smoothed 
temporally using a 1024 point Hanning window.  The smoothing process improves the correlation 
function by removing fine detail in the envelope, but again affects the potential accuracy of the 
method.  The 1024 point smoothing window has support of roughly 20 ms which corresponds to the 
approximate length of a click.  Consequently this smoothing removes features within a click that 
may not be coherent between sensors.  Figure 6 shows the correlation function computed based on 
these detection statistics.  This case demonstrates the effectiveness of employing the detection 
statistic in preference to the raw time-series data.  The correlation function in Figure 6 exhibits a 
clear peak close to the correct delay of -2.1s, in contrast to the correlation function in Figure 2.  This 
correlation function still contains a large number of false peaks that can potentially generate 
erroneous estimates of delay, inducing large errors in the consequent estimates of location. 
 
 

 
Figure 5. Smoothed Detection Statistic Plotted for Data Shown in Figure 1 
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Figure 6. Correlation Function Computed Based on the Smoothed Detection Statistics 
 

 
An illustration of the problems associated with this approach is shown in Figure 7.  This depicts 
delay estimates computed using windows of 30s of data.  The window is translated by 7.5s between 
estimates, i.e. overlapped by 75%, before the next delay estimate is computed. This process is 
repeated to cover a period of 5 mins.  From Figure 7 we see that in this instance there are 4 periods 
in which the delay estimates are very inaccurate.  Furthermore, close inspection of the data 
between 3 and 4 minutes reveals that the estimated delay in that interval is also inconsistent with 
the other results, being offset by roughly by roughly 1s.  Hence for this data set roughly 30% of the 
delay estimates are seriously in error. 
 
The continued failure of this approach results from the ambiguity caused by the fact that the sperm 
whale click train is close to being periodic, so that the correlation function contains a large number 
of spurious peaks.  Correlation methods inherently introduce spurious peaks, so that in order to 
obtain robust delay estimates we consider an alternative philosophy.  

 
 

 
 

Figure 7. Delay Estimates Computed for a Sliding Window 
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2.3 Time of Arrival Differences (TOADs) 

The final method is a histogram-based technique.  The initial requirement is to detect all of the 
clicks in the time series.  The detection statistics, plotted in Figure 5, provide an optimal basis for 
this detection.  The fact that the detection statistic is pre-normalised means that fixed absolute 
thresholds can be used.  A double thresholding scheme [8] is employed to estimate the extent of 
each click, and the peak in the detection statistic is considered as marking its location in time (this 
time is denoted tp,n for the nth click on the pth sensor).  The fact that the clicks are not periodically 
spaced in time means that the time differences dm,n=t1,m-t2,n have a statistical distribution which 
exhibits a strong peak at the true time delay between sensors.  Thus by estimating the probability 
density function (pdf) (here based on histogram methods), and looking for peaks in the pdf of dm,n, 
one can estimate the delay. 
 
In a multi-path environment, reflections in received time series generate a secondary peak in the 
distribution.  If all the reflections are detected, then the height of this secondary peak matches that 
of the peak due to the direct path and may lead to an erroneous delay estimate.  To make the 
method robust one needs to be able to discriminate between reflected returns and the direct paths.  
This discrimination only needs to detect a significant proportion of the reflections, so that the 
secondary peak is reduced in amplitude.  There are several features of the waveforms that can be 
used as the basis of this discrimination.  The most reliable of the ones explored for this paper was 
to estimate the rate of decay of the detection statistic.  The reflections, having come from a rough 
surface (that of the sea), have a larger decay time than the direct path clicks.  Hence by removing 
the detected peaks in the signal, corresponding to clicks with a large decay time, one removes 
reflections.  The decision to remove a click can be based on thresholding the decay rates, or by 
rejecting a fixed percentage of clicks with the slowest decay rates.  Mistakenly rejecting a few clicks 
which correspond to direct paths reduces the height of the primary peak. However it does not 
seriously affect performance, so long a significant majority of rejected peaks correspond to 
reflections. 
 
Figure 8 displays the result of such processing.  The direct paths for the detection statistic, shown in 
the lower frame of Figure 5, have been highlighted.  Inspection of Figure 8 also illustrates how the 
detection statistics corresponding to the reflected paths have a significantly longer decay than the 
direct paths, a feature even more evident in Figure 9. 

 
 

Figure 8. Smoothed Detection Statistic, as Lower Frame of Figure 5, Direct Paths Indicated by * 
 
The localisation scheme adopted in this paper also requires one to estimate the additional delay 
associated with the reflected path in each channel.  To achieve this, the peaks associated with each 
click are aligned.  A new reduced detection statistic is then computed for each channel by taking the 
median of the aligned detection statistics.  A median operator is preferred to the mean because of 
its inherent robustness, which means that the results are not adversely affected by a small number 
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of errors, such as false identification of direct or reflected path.  An example of this median 
detection statistic is shown in Figure 9.  These results are computed over an extended time axis, 
which covers a sufficiently long period so as to include the following click in the sequence.  Because 
the clicks are emitted at intervals which vary, then peaks associated with the subsequent click are 
not reinforced by the median operator and thus the resulting amplitude of this peak is attenuated.  
However the echo follows the direct path by an amount which almost constant over the analysis 
window, so it is not significantly attenuated by the median operator. 

 
 

Figure 9. Median of the Aligned Detection Statistic 
 

 
3 LOCALISATION 
Section 2 describes how one can compute the delays between hydrophone data recording 
sequences of sperm whale clicks and, furthermore, how one can compute the additional delay 
associated with the surface reflected path.  This section discusses the method used to infer source 
location based on the measured time delays. 
 
There are a variety of methods that can be used to achieve this localisation [9,10,11,12] based on 
propagation models of varying complexity.  We seek a scheme in which the computational demand 
is small, which leads us to consider methods based on simplified propagation models. The 
technique employed in this work exploits the simplest propagation scenario, namely an isospeed 
medium – implying rectilinear propagation.  In practice the medium will certainly not be isospeed but 
we accepted degradation associated with this assumption as the penalty to be paid to achieve the 
requisite algorithmic simplification.  
 
The algorithm described is a hyperbolic localisation scheme that is a variant of the method 
attributed to [11] in [10].  However we are dealing with an over-determined system of equations: six 
sensor measurements are used, whereas in fact four would be sufficient for this application.  The 
location we compute minimises the cost function 
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where rs is the assumed position vector of the source, rk is the position vector of the kth sensor, 
dk(r), is the distance from the source to the kth sensor, c is the speed of sound in the medium, 1,kτ  is 

the measured delay between the first sensor and the kth sensor and ( )1,ˆ k sτ r  is the modelled delay 
between the two sensors assuming the source location rs. 
 
The above cost function is expressed in terms of path length differences rather than delays, as 
witnessed through the inclusion of the factor c in (1).  This factor ensures that the cost function and 
its parameters are dimensionally matched. Because the speed of sound is a constant, this choice 
makes no difference to the optimum source location.  It does, however, slightly simplify the 
optimisation procedure, mitigating the numerical problems that can occur because of the very 
different scales of the cost function (which temporally is measured in seconds) and the source 
location (which is measured in metres). 
 
Our localisation algorithm utilises the surface reflected paths [12] (see Figure 10).  The surface 
reflections offer measurements effectively made on a virtual sensors, doubling the number of 
elements in the array and dramatically increasing the vertical aperture, and hence increasing the 
accuracy with which one can estimate depth. 
 

 
Figure 10. Geometry of Virtual Sensors via the Surface Reflections 

 
 
We choose to locate the minimum of the cost function (1) using the Nelder-Mead simplex algorithm.  
In an attempt to reduce the probability of convergence to a local minimum, the algorithm is 
initialised using several different starting conditions, and the minimum yielding the lowest overall 
value for the cost function is selected. 
  
 
4 RESULTS  
The results in this section describe the above methods applied to data collected on a series of 
bottom mounted sensors.  The sensor locations for the particular subset of elements used in this 
study are shown in Table 1.  It should be noted that the aperture of the array (excluding virtual 
sensors) in the horizontal plane is roughly 3 km by 5.6 km, whereas the vertical aperture is only 0.2 
km.  This asymmetry in the distribution of sensors provides the motivation for employing the surface 
reflections.  By exploiting the virtual sensors the vertical aperture increases to over 3 km, providing 
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a greater balance in the sensor geometry, increasing the robustness to the inherent shortcomings of 
the rectilinear propagation assumption. 
 
 

Sensor Number x-Coordinate (m) y-Coordinate (m) z-Coordinate (m) 
1 3661 -1236 -1554 
4 -1985 -3111 -1362 
5 1349 -4285 -1523 

Table 1. Sensor Locations 
 
 
Figures 11 to 13 summarises results obtained from a total of 5 minutes of acoustic data, from three 
hydrophones, the sampling rate being 48 kHz.  Each estimated source location is computed on the 
basis of a 30 s window, which is translated through the data using a 75% overlap, providing 37 
location estimates covering the 5 minute period.  In Figures 11-13 each position estimate is 
indicated by a “*”. 
 
Figure 11 shows a plan view of the results over an extended spatial scale. This allows one to see 
the estimated source locations and the sensor locations in the same plot.  On this scale the detail of 
the track associated with the source motion are obscured. In order to present these details, Figure 
12 shows the same results on an expanded scale (on this plot the direction of motion is indicated).  
Figure 13 shows a similar plot in the vertical plane, so that one can observe the estimated depth of 
the animal and how it moves through the water column. 

 
Figure 11.  The results of localisation, shown in plan view on a small scale 
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Figure 12. The results of localisation, shown in an expanded plan view compared to Figure 11. 

 
Figure 13. The results of localisation, shown in an expanded side view compared to Figure 11 
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5 CONCLUSIONS  
The effectiveness of tracking algorithms for passive acoustic monitoring has been explored.  The 
problem of estimating the delay between trains of sperm whale clicks has been considered and the 
problems associated with the use of correlation based methods have been highlighted.  A simple 
source location method that exploits surface reflections has been implemented and shown to yield 
realistic predictions of the motion of an animal over a 5 minute period. 
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