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ABSTRACT

This report is concerned with triangularly-shaped actuators for the implementation
of direct velocity feedback control(DVFC) systems. From the general theory of the piezo-
ceramic actuator, the resultant actuation due to triangularly-shaped piezo-patch are de-
rived. The dynamic response of resiliently-mounted beam supported with both rotational
and linear springs at both ends is presented and the direct velocity feedback control of
the beam using the triangularly-shaped piezoceramic actuator positioned at either ends
of the beam is then studied.

It is found that the control system is influenced by the boundary condition of the
beam as well as the shape of the actuator. When the beam is clamped at both ends, the
triangularly-shaped actuator generates a force actuation which is perfectly collocated
and dual with a velocity sensor at the tip of the triangular actuator so that the control
system is unconditionally stable. In terms of control performance, however, the control
system for a simply-supported beam is better than that for the clamped beam although
the system is only conditionally stable. For practical boundary conditions achieved by
the combination of the rotational and linear springs, the linear spring is the essential
component necessary to achieve effectively collocated actuation in a desired frequency
range, while the rotational spring is not effective.

The effect of the shape of the actuator is finally investigated. The bigger top angle
the wctuator has, the bigger the plant responds. With wide angled triangularly-shaped
piezoactuator, hence the control effort can be saved. Another factor to be considered is
the effect of height of the actuator. The larger height of actuator, the larger in amplitude
of plant response can be obtained. The control effort can then be lowered with a larger
height of actuator. The two factors, the top angle and the height, are however dependent
variable such that the top angle is decreased when the height is increased. Another effect
of the height is thot the frequency range where stability is guaranteed is decreased as the
height increases. It is necessary, therefore, to find the optimal dimension of the actuator
for the given beam in order to mazimise the control performance in the frequency range

of interest.
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Chapter 1

Introduction

Control of the low-frequency sound transmission through a lightly damped and lightweight
panel in aircrafts, space vehicles, automobiles and underwater vehicles is an important
design issue. The sound transmission at low frequencies can be reduced by control-
ling the response of the panel itself and by modifying the radiation efficiency of the
low frequency resonant modes[1]. It is hence necessary to stiffen the panel in order to
increase the first few natural frequencies, or to apply damping materials to the panel
in order to reduce the response at the resonant frequencies. These passive techniques
have a limited performance at the low frequencies and require substantial variation to
the structure of the panel causing several drawbacks such as the change of geometry
and weight and the increase of costs[2]. Alternatively, active control techniques could
be employed where sensor/actuator transducers governed by an active controller used.
There are two main kinds of actuators for this structure: force actuators and strain
actuators. Using point velocity sensors the force actuators can easily form a collocated
and dual sensor-actuator pairs which is particularly convenient for the implementa-
tion of direct velocity feedback control schemes that enables the control of broadband
random disturbances. However, this configuration tends to be heavy and occupy large
volumes. To achieve compact and light weight smart panels, strain actuators have been
considered. Normally arrays of square piezoelectric patch actuators with accelerometer
sensor at their centre are used[3—6]. This configuration, however, has a difficulty to en-
sure unconditionally stable feedback loop because the sensor-actuator pair is not truly
collocated and dual. Furthermore, the actuation resultant obtained from the piezo-
patch is a distribution of moments along the edges which more effectively couples into

higher modes of the structure so that the gain margin is relatively low.

Recently Gardonio and Elliott{2] have proposed to use triangularly-shaped piezo-actuators
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arranged along the perimeter of the radiating structure with accelerometers at their
top vertexes. In this context they found that the configuration gives much larger gain
margin and better performance than using the square patches. Since in practice the
boundary condition is not perfectly simply supported condition, more understanding
about the force and moments generated by the triangularly-shaped piezoceramic actu-
ator on a structure with compliant boundaries is required.

In this study, based on the formulation of a generally-distributed piezoceramic patch[7,
8], the actuation resultant due to a triangularly-shaped piezoceramic actuator is derived
in Chapter 2. The application of the resultant actuation to a beam model is then
presented in Chapter 3. Using the formulations derived in Chapters 2 and 3, a direct
velocity feedback control system for beams using the triangularly-shaped actuator is
studied in Chapter 4, in order to find the effect of the boundary condition encountered
in practice and the shape of the actuators on the stability and the performance of the

control system. Finally conclusions are summarised in Chapter 5.



Chapter 2

Actuation Resultant due to
Triangularly-Shaped

Piezoelectric Actuator

The excitation due to the piezoelectric actuator results from the elastic coupling of
the actuator and the structure on which it is attached. Assuming first-order shear
deformation(7,9] in the structure, the governing equations of laminated piezoelectric
plates has been derived by Lee[7], from which it is known that the actuation due to
the piezoelectric actuator is expressed with the spatial differential operator of an strain
induced transducer, e.g., piezoelectric actuator, as follow!;

0 321\(% ) + 8 32A($:y) 0 82A($, y)

LMz, y)] = ez Er €52 52y 2e34 520y (2.1)

where A(z,y) is the distribution function describing the shape of the piezoelectric ac-
tuator® and egl, egz and eg6 represent the piezoelectric stress/charge constants with
respect to the structure axes. When the skew angle between the transducer and the

structure axes is 8, they can be estimated by
e=T"Y{g)Cd (2.2)

where e is the vector form of the piezoelectric stress/charge constants, e = {¢%; ¢J, €317,
T is the stress tensor transformation matrix[7] from the structure axes to the piezo-

"The coefficient 2 in the last term does not appear in ref [10]
2Strictly speaking, this function denotes the shape of the electrode on the piezoelectric actuator. In
this case, however, they are the same.
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material axes. The inverse transformation is then

cos® 6 sin? g —2cosfsind
T1(0) = sin? 6 cos? 6 2cos#siné (2.3)

cosfsin —cosfsind cos?f —sin?f

C is the stiffness matrix of the piezoelectric actuator;

r Yezr vpzrYpzT 0 §
3
1—vpgr 1 ;,VI%ZT
vezrYpzT PZT
C=| 775 — 0 , (2.4)
PzT Voar
0 0 _ Ypar
B 2(1 +vpzr) J

where Ypzr and v are Young’s modulus and Poisson’s ratio, respectively, of the piezo-
electric actuator, and d’ is the vector form of the piezoelectric strain/charge constants

with respect to the piezo-material axes so that d’ = {dgq, dg,Q, 0}7.

Assuming that the plate is very thin, isotropic and homogeneous and the passive effects
of the piezoelectric actuator are neglected, the governing equation for a flat plate with
a piezoelectric actuator of an arbitrary shape as shown in Figure 2.1 can be written as

P w *w &w hs
Dy (63:4 + 282$82y + 84;9') + ph 5 = g(z,y,t) + EL[A(x, )]ves () (2.5)

3
where Dy, = ﬁé—’%}gj is the bending rigidity, w is the transverse displacement of the
plate, p is the density, h is the thickness of the plate, g(x,y,t) is an externally applied
excitation, v.s(t) is the applied voltage to the piezoelectric actuator, and hs = hp+hpzr

in which hApzy is the thickness of the piezoelectric actuator.

Generalised functions can be used to describe the distribution of the transducer. The
generalised functions can conveniently be dealt with the Macauley notation[10]. For
instance, < x — a >" represents a step function, h{x — @), which begins at z = a. The
derivative with respect to = of the step function is given by < z — o >~! which is
the delta function at z = @, i.e, 8(z — a). The derivative of this delta function yields
< z —a >"2, a doublet function at 2 = a, i.e, §{z — a). The integral of the step
function with respect to z yields a ramp function, < z — ¢ >!, which is zero up to
z = @ and then is equal to z — a. Using the characteristics of the multidimensional
general functions that can be expressed by the product of one dimensional generalised
function of each direction, the distribution function can be defined. For example, the
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Arbitrary shaped 2D
Piezoelectric actuator

Figure 2.1: Thin flat plate with an arbitrary shaped piezoelectric actuator.

region of two-dimensional distribution shown in Figure 2.2 can be described by

y= fr(z), fory > 0 over z € [x3,21] (2.6)

y = fo(z), fory < 0 over z € [za,x1]

where z; and z2 are the x extrema of the boundary. This distribution can be described

uging the generalised function and the characteristics as follow;
Nz, y) = (< t—zy>' — <z —m >0) (< y— folz) >0 — <y — fi(x) >0) (2.7)

Within the boundary, the distribution has unit amplitude, A = 1, and outside of
the boundary it has zero amplitude, A = 0. Equation 2.7 can be used to describe a

two-dimensional distributed transducer of arbitrary shape.

The spatial distribution defined in Equation 2.7 is a product of two terms one of which
is solely dependent on x and the other of which is dependent on both z and y, so that

Alz,y) = Ar(z)Ag{z,y). (2.8)

and the partial derivatives of this distribution function with respect to z and y can be

expressed as

%ﬁ’w = Aj(z)As(z,y) + Al@)%’ (2.9)
and
aAg;, Y _ Ay o) Ql}_zéﬁg_,y_) | (2.10)

Taking higher-order spatial derivatives of the function successively to Iquations 2.9
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v

Figure 2.2: A general distribution function in two-dimensional space.

and 2.10, one can obtain the derivatives in Equation 2.1.

82A(1": y) Y] aA?(‘T? y) aQAZ (LC, y)
“ozdy A1($)a—y Al(m)T&‘y’ (2.11)
and
82A($7 y) _ " 7 6A2 (CL‘, y) BA% (SC, y)
a2 = A(x)' Az, y) + 2A7(z) e + Al(zn)—ma$2 (2.12)
and 92A(z, ) 82 As(z, )
L,y 20T, Y
P Aq (m)way2 . (2.13)

Substituting Equation 2.7 into Equations 2.11 to 2.13, one can obtain an explicit ex-
pressions for the Laplacian of the distribution function in terms of the generalised
functions. The derivatives of the distribution function can be worked out using the

spatial distributional chain rule[10].

Now, consider the triangularly-shaped piezoelectric distribution shown in Figure 2.3.
The shape can be described by Equation 2.7, where f1(z) = —~mz--b and fa(z) = mz—b;

A(m,y)=(<m>0-—<ac—a>°) (<y—mm+b>0—<y+mm—b>0) (2.14)

Assuming that the distribution of the piezoelectric actuator on the plate is represented
by the coordinate system coincident with the material coordinates(skew angle 6 =
0), one can obtain the result of the piezoelectric operator, LIA(z,y)]. Substituting
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y=H()= -mx+b

Figure 2.3: Triangularly-shaped piezoelectric distribution

Tquation 2.14 into Equations 2.11, 2.12 and 2.13 leads to

LAzy)] = eh(<z>—<z—a>"7) (2.15)
x(<y—mz+b>° - <y+mz—>b>°)

e <z—a>"Y

- 2megl(<:c>_
><(<y—-m3:+b>“1m~<y+mw-—b>_1)
+ (m2ed ted) (x>0 —<zr—0>")

><(<y—m:c—|—b>_2—<y+m:c—b>‘2).

The physical interpretation of Equation 2.15 can be clearly addressed following the ref-
erence[10]. The first term in Equation 2.15 denotes the distribution of doublet functions
of magnitude €3, on the lines z =0 and z = a, but only between the lines y = mz — b
and y = —max 4 b. Thus there is no distributed doublets on the line 2 = a because the
sloped lines intersect at z = & so that no boundary exists. The third term in Equation
2.15 denotes the distributed doublets of magnitude m2ed, +e3,, on the lines y = mz—b
and y = ~mz + b, but between x = 0 and z = a. The second term in Equation 2.15
expresses the delta functions of magnitude of 2me}; acting downwardly at the points
(0,b) and (0, —b) and of 4me); acting upwardly at the points (a,0). Figure 2.4 depicts
the results of the actuation operator generated by a triangularly-shaped piezoelectric

actuator.

Equations 2.5 and 2.15 show that, for a given piezoelectric material bonded on a plate
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dmey,

Figure 2.4: Results of the piezoelectric operator acting on triangularly-shaped distribution

3 hosos1502
10 T T T i T T T 5

5 €85

—
()
~

Normalised Force and Moment, 2(F,M/{h v _}
=

-1 1 £ 1 I ] 1 '
0 10 20 3o 40 50 60 70 80
Actuator Angle(degres)

Figure 2.5: Variation of actuation with the actuator angle
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Table 2.1: Geometry and physical parameters for the piezoelectric actuator

Parameters Symbol Unit Values

Thickness hpzr mm 1.0

Young’s modulus Yoot GPa 63

Density PPZT kg/m3 7600

Poisson ratio vpzT 0.29

Piezoelectric stress/charge constants  d3,, V/m(or C/N) 166 x 10712
A V/m{or C/N) 166 x 10712
Ao V/m(or C/N) 0

with skew angle § = 0, the magnitude of actuation depends on the thickness of the
piezoelectric actuator (hpzr), the thickness of the plate (hp) on which the actuator is
attached, and the shape of actuator (m = b/a = tan@pzr). Figure 2.5 shows their
dependence on the shape of actuator. Table 2.1 shows geometry and physical param-
eters for the piezoelectric actuator used in the calculation. While the moment on the
side along the y axes is constant, the other forces and moments strongly depend on the
shape of the actuator. The excitation effectiveness of the actuator bonded on a struc-
ture, however, depends on the coupling of the excitation field with the modal response
of the structure, rather than the absolute value of the actuation. The effectiveness of
the force generated to the response of the structure is directly related to the modal
displacement at the force location while that of the moment is related to the slope of

the mode at the moment location.



Chapter 3

Triangularly-Shaped Actuator on

Beams

3.1 Governing Equation and Boundary Conditions

Consider a beam supported on springs as shown in Figure 3.1. The beam is subjected
to forces and moments along the length. Assuming it behaves as the Euler-Bernoulli
beam, the equation of motion for the forced lateral vibration of a uniform beam is
obtained[11,12]:
oT
Eb(w; Z, t) = f(ﬂ;‘,t) + B_SE(Z-’ t)’ (31)

where f(z,t) and T'(z,t) are the external force and moment per unit length of the

beam, respectively, and Lp{w;z,t) is the beam dynamic operator expressed as

0w w
Lo(wiz,t) = E(1+J77)I'3—$‘4‘($:t) +pAog (2,t), (3.2)

where F is Young’s modulus, [ is the moment of inertia of the beam cross section about
the y axis, n is loss factor, p is mass density and A is cross sectional area of the beam.
For the harmonic motion as w(xz,t) = W(z,w)e*?, Equation 3.2 can be written as

4
Eofows 5,) = B(L+ ) 50 (2,0) — pAu?W (z,0) (3.3)

Since the triangularly-shaped actuator generates forces and moments, they are included
in the model shown in Figure 3.1. A general boundary condition can be represented



Chapter 3. Triangularly-Shaped Actuator on Beams 12

Figure 3.1: Bernoulli-Euler beam with a general boundary condition, subject to force and
moment actuation '

with a rotational spring and a linear spring at each end of the beam. The boundary
conditions resulting from the configurations are given by the moment and shear force

balance at the ends. Hence, the boundary conditions are, at x =0,

Bg_w_kRa_w ag_w__“‘l.cfmw (3.4)
oz2  EI 8z’ dx3 EI '
and at z = L
6’2w }CR Ow 83'{0 kT
— — == ——W (3.5)
Ox? EI 9z Oz EI
where kgr and kr are the linear and rotational spring constants, respectively.
3.2 Dynamic Characteristics of Free Vibration
Consider the homogeneous equation of Eguation (3.1) expressed as
Fw 8w
Efw(w, t) + pA-B—HtE(m, t) = 0. (3.6)

The first step toward obtaining a solution of Equation 3.6 is to assume the solution as

a harmonic solution as shown Equation 3.7.
w(z,1) = oz), (3.7)

where ¢(z) is a complex function of z alone. Upon substitution of Equation 3.7 into

Equation 3.6, the exponential function of time cancels out, leaving new differential
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equation as a function of z. The equation is expressed by

P0=) _ grg(ay = (3.8)

Azt
where 3% = wzgﬁ, ie. 3= i\/g or f=+j+ sz
Taking spatial Laplace Transform of Equation 3.8 it is formed
(5"~ 8Y)2(s) = 5°¢(0) + 5°¢'(0) + 5¢”(0) + ¢”(0). (3.9)

Solving for ®(s) in Equation 3.9 and expanding the right-hand side by partial fractions
yields

1
20) = 3 (gt 7o) 40
1/ 1 .
+ 5(32+52+32— 2)¢(0)
1 -8 "

1 —1 1 11
MY (82+ﬁ2 T —ﬁ2> 70

The inverse transform of Equation 3.10 is

o(z) = PO )+¢(O)V(ﬁ$)

S(8z)

ot ¢"(0) —o2t T(ﬁ z) (3.11)

+ ¢n (O) ﬂ3

where
Ulx) = %(cos z + cosh z)
Viz) = %(sinx + sinh z) (3.12)
S(x) = %(coshx —cosz)
T(z) = —;-(sinh z — sing)

Noting that U(0)=1, V(0)=0, S(0)=0, T(0)=0, U’'(8z) = AT (Bz), V'(Bxz) = BU(Bx),
S§'(Bzx) = BV{(Bx), and T'(Bz) = BS(Bz), substituting the boundary conditions (3.4)
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and (3.5) into Equation 3.11 yields the frequency characteristic equation as

[bobr(ap + ar) + (by — br)](cos BL sinh 3L + sin 8L cosh SL)
+ [aoar(bo — br) — (a0 + ar)](cos BLsinh L — sin 3L cosh 3L) (3.13)
— 2(apar, — bobr) sin BLsinh 8L + (1 — aparboby)(cos BL cosh BL — 1)
+ (arb; — agbo)(cos B cosh B+ 1) + 2(aoby — apbe) cos Scosh F =0

where
an = —kL
0~ EI
_ kL
ayr — m (314)
_ k=
bo = EIj
kr
b, = —H_ .
L= BI5 (3.15)

and it should be noted that ag, ar, by and by, are function of 3, when solving Equation
3.13. The roots of Equation 3.13, 3, L, give the natural frequencies of vibration from

the Equation 3.16 as follow :

EI \?
_ 2 _
wn = (Fnl) (p L4) ,nm=1, 2, 3, ... (3.16)

where the values of §,L satisfying Equation 3.13 are obtained numerically by using
non-linear equation solving algorithm such as Newton’s method. In order to avoid the

singularity in ¢, (z), Equation 3.11 is written in four different forms.

When 0 < ag, < co and 0 < by, < 00, the mode shape function is
bn(2) = & [CO{U (Bn5) — a0nT(Bas)} + V (Ba) -+ b1 S (Br)] (3.17)

where

0(1) - aLnV(ﬁnL) + (aLann — 1)8(67“5) - bOnT(/GnL) (3 18)
" V(ﬂnL) - (C"{]n + aLn)U(ﬁnL) + aUnaLnT(ﬁnL) . .

When 0 < apn < oo and 0 < bp, < 00,

bn(z) = £ {c}f) {T(ﬁﬂm) - Ei—nU(ﬁnx)} + V(8o + bonS (Bc) (3.19)
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wh
T oo — V(L) = bonT(Bal) + (aznbon = DS(GL) 520)
" [lazn/aon) + U (BuL) — azaT(BnL) — (1/aon)V{Ba L) '
When 0 < ar, < oo and 0 < bz, < o0,
on(z) = e |CE{U(Bnz) — aonT(Brz)} + E[)l——V(ﬁn:n) + S(ﬁnx)} (3.21)
where
0(3) _ (aLn/bUn)V(ﬁnL) - T(;BRL) 4 (a’Lﬂ - 1/bOn)S(ﬁnL) . (322)

V(ﬁnL) + Uf{}naLnT(ﬁnL) - (aLn + aOn)U(ﬂnL)
When 0 < ar, < oo and 0 < by, < o0,
$n(z) = en [055) {T(ﬁnm) - %U(ﬁnm)} + -E%]_V(ﬁna:) + S(ﬁnm)} (3.23)

where

o) = (a1n/bon)V (BaL) — T(BnL) 4 (arn — 1/bon)S{BnL) (3.24)
" [(aLn/GOR) + 11U(/6nL) - aLnT(ﬁnL) - (1/aﬂn)v(ﬁnL)- .

The constant &, shown in Equations 3.17, 3.19, 3.21 and 3.23 is a normalisation factor

satisfying that
L
1 / ¢2 (z)dx = 1. (3.25)
L Jo

To examine the effect of the boundary condition on the dynamics, it is convenient to

define non-dimensional spring constants for the linear spring constant,

kL3
= .26
= (3.26)
and for the torsional spring constant,
krL
= 27
T= 27 (3.27)

Figure 3.2 shows the variation of the natural frequencies with the linear spring constant
when 7 = 0.0001 and 7 = 10°. When 7 = 0.0001, the beam’s dynamics is changed from
being free-free to being simply supported as the linear spring constant increases. Figure
3.3 shows the variation of the natural frequencies with the torsional spring constant
when & = 0.0001 and x = 10%. When x = 108, the beam’s dynamics is changed from
being simply supported to being clamped as the torsional spring constant increases.
Figures 3.4 to 3.6 show the variation of the natural modes respectively with reference
to the linear and rotational stiffness. It can be seen that the first two modes, originally
rigid body modes, turn into the flexible modes of a simply supported beam when
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Table 3.1: Mechanical properties and masses

symbol value unit descriptions
E 65 MPa  Young’s Modulus
7 2650 kg/m® density
v 0.3 Poisson ratio
L 0.50 m length
b 003 m width
h 0002 m thickness
7 0.01 loss factor

k = 100. Other higher modes are affected by the mount stiffness at higher values of

the stiffness.
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Figure 3.3: Variation of natural frequencies with the rotational spring constant, 7
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3.3 Equivalent Actuation Resultant for Beams

Many researchers[13-15] have used a triangularly-shaped actuator to approximate a
linear shading of a piezoelectric actuator in one dimension which gives two concentrated
force at both ends and a concentrated moment as shown in Figure 3.7. In the previous
applications[13-15], however, a very long triangular actuator covering the whole length
of the beam has been used such that the actuator angle was very small, e.g. fpzr <
4.3° in reference[15]. In this case the contribution of the moment distribution along
the lateral sides can be negligible. Since the shape of the actuator in this study is
not constrained, the equivalent actuation for beams due to the triangularly-shaped
actuator should be obtained from the two dimensional formulation shown in Figure 2.4
by projecting all component of actuation on the beam axes, x, shown in Figure 3.8.
The forces at the verteces of the base edge of the actuator are summed up and act
at the left end of the beam. The moments along the base edge is also modelled as a
concentrated moment at the left end of the beam. The moments along the lateral sides
generate bending and torsional excitation. The bending components along each lateral
side are summed, while the torsion components are eliminated when projecting on the
beam axes. The resultant one-dimensional equivalent excitation is depicted in Figure
3.9. Note that the expressions in Figures 2.4 and 3.8 are the resultant of the Laplacian
operator, thus the moments and forces generated are calculated multiplying %s—vcs (t).
Therefore, the forced equation of motion of motion for flexible vibrations of a beam

with a triangularly-shaped actuator at one end can be expressed as

4dme’y,

26,1 0O 7 > X

4med;,

Figure 3.7: Result of Laplacian of one dimensional transducer distribution
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Loz d) = hsv;s(t) [4med, {6(z — a) — 6(z)}]
. hsv;s(t) [Qbegla(;(;)] (3.28)
_ _m_hsvgs(t) [2(m2621 + egz)%%%(% {U(z) - Uz - a)}

where £p(w) is the beam dynamic operator, shown in Equation 3.2 and UY{) is the step
function. The first term in Equation 3.28 denotes the concentrated forces at z = 0
and z = a, the second term the concentrated moment at z = 0, and third term the
distributed moments between z = 0 and £ = a. Since the derivative of the step function

with respect to z is the delta function, i.e,

O (z — a)

% =4&(zx —a) (3.29)

the equation of motion becomes

1s2e®) fymed, (5(z — a) - 3()}]

" -—hs'”;s(t) [Zbegl 6{;(;)} (3.30)
hsves(t)

- [2m(m2ed; + ) {6(x) — 6(z — a)}]

Ly(w;z,t) =

The third term is now two concentrated forces at z = 0 and z = a as shown in
Figure 3.10(a). Physically, the distributed moments can be interpreted with pairs of
forces generating the moments. However, apart from the forces at the boundary, the
internal force components are eliminated each other because of same magnitude with
opposite direction by the constant distribution of moment. Figure 3.10(b) shows the
equivalent actuation resultant for beams due to the triangular actuator in terms of
one concentrated moment at z = 0 and two concentrated forces at x = 0 and z = aq,
assuming that dgryr = daror and dyg = 0 as shown in Table 2.1. The equivalent, actuation

in Bquation 3.30, therefore, becomes

Ly(w; z,t) = mel hstes(t) [ (m® +3) {6(z — a) — 6(2)} + a%(;)] (3.31}

for which the relationship, b = atanfpzyr = ma, is used.
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Figure 3.8: Actuation for beams due to the triangularly-shaped actuator obtained from two
dimensional approach. Note that the expressions in the figure are the resultant of the Laplacian
operator so that the moments and forces generated are calculated multiplying hgv.,(t)/2.

dme®y,

2be;, OA)A)*)‘)‘)& » X

2m(m?e®y+e%,)

4medy,

Figure 3.9: Equivalent actuation resultant for beams having a distributed moment term
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2m(m2e%y+e%,)  4méy,

Y

dmey,  2m(m?e;res,)

(a) Equivalent concentrated force of the distributed moments along the
sloped side

2mé; (m?+3)

2mey (m?+3)

(b} Equivalent resultant with the assumption of el = eda

Figure 3.10: Equivalent actuation resultant for beams with concentrated actuation. Note that
the expressions in the figure are the resultant of the Laplacian operator o that the moments
and forces generated are calculated multiplying hsve,(£)/2.
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3.4 Beam Response to Triangular Actuator Excitation

The response of beams due to the excitation generated by a triangularly-shaped piezo-
electric actuator can be obtained using a modal expansion of the response as highlighted
by Equations from A.1 to A.6. Thus the response is modelled as a summation of the
modal amplitudes at the response position each multiplied by the corresponding modal
excitation generated by triangulariy-shaped actuator. The modal excitation can be
expressed substituting the right hand side of Equation 3.31 into Equation A.6 as

Folw) = medihsVes(w) [(m® + 3) {#na) — ¢a(0)} — g (0)] (3.32)

where F,,(w) is modal excitation and V,s(w) is the amplitude of the driving voltage. The
velocity response per unit driving voltage, which is referred as to the transfer function,

can then be expressed as

s s]

jw % hs /
N e s D CRORTC) AL BCED

n=1

It is useful for physical interpretations to divide this expression into four functions for
each term of actuation, a point force at x = 0, another point force at 2 = a, a point

moment at z = 0 and a distributed moment at 0 < z < a.

For the point force at z = 0,

o jwdn(z)med by
Vio@) = 2 A gmag — o 20O (334)
for the point force at z = a,
o~ jwdn(z)med hs
Vialz,w) = > pAiT( / fj);;z%lﬁ oy 2ol (3.35)

n=1

for the point moment at z = 0,

d fln (T mel 3 ;
Vmoloy0) = 3 —Ebe SR [agi(0)], (3:36)

n=1

and finally for the distributed moment at 0 <z < g,

i i med b
Voalo) = 3 TR secpr {gn(a) = O} (337)

n=1



Chapter 4

Direct Velocity Feedback Control
for Beams using a Triangular

Actuator

4.1 Formulation

Figure 4.1 shows the schematic arrangement and the block diagram of the feedback
control system for the beam. The feedback gain will be assumed to be constant so that
direct velocity feedback control is implemented. The total velocity response at z, can

be expressed as
Up (@, w) = Ypr(jw) fp + Yer(jw) Vs (4.1)

where Y, is the mobility function due to the primary force, f, at z, given by

N
Yor(jw) = ) An(jw)n(p)dn(@r) (4.2)

n=1
and Yy, is the transfer function defined in Equation 3.33 at z = z,, given by

Yor(jw) = 3 An(w)dn(@r)medihs [(m? + 3) {fnfa) — $n(0)} — agf(0)] . (4.3)

n=1

Ap{jw) is given by Equation A.5.

Therefore, the sensor output before control, d, and the transfer function of the plant
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(a) Schematic arrangement (b) Block diagram

Figure 4.1: Active feedback control system using a triangular-shaped piezoceramic actuator

are given by d(jw) = Ypr(jw)fp and G(jw) = Y (jw), respectively. So, Equation 4.1
can be written as
v (jw) = d(jw) + G(jw)Ves. (4.4)

The driving voltage fed back from the velocity sensor, Vg, is represented by the sensor
output multiplied by the feedback gain, i.e.,

Ves (jw) = —vr(jw) H (jw) (4.5)

Provided the control system is stable, the spectrum of the total velocity output, vy, is

related to the spectrum of the sensor output before control, d, as follow.

d(jw) 1+ G{jw)H(jw)’

or(jw) ! (4.6)

The Nyquist stability criterion is used as a graphical method for determining the sta-
bility of a closed-loop system by investigating the properties of the frequency-domain
plots of G(jw)H{jw). For the closed-loop control system expressed by Equation 4.6 to
be stable, the Nyquist plot of G(jw)H (jw) must encircle the (—1,40) point as many
times as the number of poles of G(jw)H (jw) that are in the right half of the s-plane,
and the encirclement, if any, must be made in the clockwise direction [16]. In this
case, both G and H are stable, so instability is indicated by any enclosure. The total
response to the primary disturbances and the secondary control action can be obtained.
Also, from Equation 4.5, the secondary control action can be expressed as

. 'H(jw)}?w(jw)

Ves = T3 GO A () (4.7)

Assuming the feedback gain to be constant, and employing the relationship, Gjw) =
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Yer(jw), to the Equation 4.7, the secondary control action is rewritten as

—hYpr(jw)

Ve = T Y Goo)

Fo (4.8)

The response of the beam with the control system can be derived in terms of the product
of the vector with the modal amplitudes at the response position and the vector with
the modal velocity excitations as given by Equation A.7. The modal amplitude vector
in Equation A.7 relative to the total response can be defined as

a=ap + as, (4.9)

where ay,, is the vector with the modal amplitudes due to the primary force, fp, given
by
ap = fplArd1(zp), Aagalmy) ... aAnd’n(wp)}Ta (4.10)

and a., is the vector with the modal amplitude due to the control action by the

triangularly-shaped piezoceramic actuation with Vg, given by
Aps = {AlF], A2F2 Yy )A‘TLFTL}T- (411)

Suabstituting Equation 4.8 into the Equation 3.32 yields the modal force, Fy, due to
the actuation. The kinetic energy and the acoustic power can now be estimated by

Equations A.11 and A.12, respectively, to evaluate the control performance.

4.2 Plant Response and Stability

4.2.1 Effect of the Boundary Condition

The plant response, Ys,(jw), is the velocity response at z = =z, generated by the
triangularly-shaped actuator with the unit driving voltage, i.e Vs = 1, which can be
evaluated by Equation 3.33. It can be written in the form;

Ysr(ar,w) = Z An(jw)meglhsﬁbn(mr) [(m2 +3) {¢nla) — ¢n(0)} — 345:1(0)] - (412)

n=1

The behaviour of the plant response thus depends on the boundary conditions(x and 7),

the shape dimensions of the triangular(a, b, or #pzr) and the location of the sensor(z,).

For the initial simulations, the beam is assumed to be clamped at both ends(x = co
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and 7 = oo) and the sensor is located at z = a. The actuator’s dimensions defined
in Figure 2.3 are assumed to be ¢ = 2bmm and & = 15mm, i.e., #pzr = 31°. Since
én{0) = 0 and ¢,(0) = 0, when the beam is clamped at both ends, the plant response

of the clamped beam can be written as

Gjw) = Y9 (a,w) = Z An(jw)mel he(m? + 3)¢; (a). (4.13)
n=1

Since secfpzyr > 0 and m = tan@pzr > 0 for the physically possible shapes, i.e,
Opzr > 90°, it can be expected that the phase of the plant response always stays
between -+90°, and so the control system is to be unconditionally stable!. Figure 4.2
shows the velocity sensor-triangular actuator plant response of a clamped beam with
the sensor at x = a . The phase is confined between £90° and the Nyquist curve
stays in the right hand side, showing the unconditional stability. Dips in the response
function at about 10kHz, 40kHz and 80kHz are due to the sensor position located at a
node. Those frequencies are corresponding to the n-th natural frequencies such that the
first, second or third nodal point of the n-th mode is equal to the height of actuator, a.
As discussed in Chapter 3 those frequencies decrease as the stiffness of the boundary,
# and/or 7 decrease since the corresponding nodal points occurs at lower modes. The
frequency of these drops can be obtained explicitly for a simply supported beam since
the coordinate of the first nodal point of the n-th mode can be expressed as L/n for

n > 2.

When the beam is simply-supported(x = oo and 7 = 0), ¢,(0) = 0 but ¢/, (0) # 0. The
plant response can be expressed as

Gjw) = Y% (a,w) = ZAn(Jw med hsn(a) [(m? + 3)bnla) — adl (0)] . (4.14)

n=1

Thus the moment at z = 0 couples into the modes while the force at 2 = 0 does
not. Since the moment couples more efficiently into higher modes, an extra phase shift
occurs at a high frequency. Figure 4.3 shows the the velocity sensor-triangular actuator
plant response for a simply-supported beam when the sensor is located at z = a. It
can be seen that the control system is only conditionally stable with gain margin of
about 65dB. The conditional stability is due to the existence of the non-collocated,
non-dual moment actuation at x = 0. The response at the sensor location is given
by the sum of the response due to the concentrated force at x = @ shown in Figure
4.4(a) and the response due to the distributed moment between z = 0 and x = o shown

in Figure 4.4(a). At frequencies below 7kHz, the two responses are out-of-phase but

'However, it should be noted that the distributed moments along the inclined edge of the actuator
can couple into the transverse plate modes so that unconditional stability is not anymore guaranteed.
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Figure 4.2; Plant response for a clamped beam from the triangularly-shaped piezoceramic
actuator to the velocity sensor at z = a.



Chapter 4. DVFC for Beams using a Triangular Actuator 32

the magnitude due to the forces is much bigger than the other. The phase of the total
response shown in Figure 4.3 stays between 4:90°. Around 7kHz, however, the response
due to the force goes down because the corresponding normal modes have their nodes
around sensor location leading to a small response but also inefficient actuation. Since
the moment excitation component is located at the end of the beam away from the
sensor and couples efficiently into higher order modes, the response due to the moment
excitation component remains relatively large at higher frequencies. However, the total
response at higher frequencies where the phase exceeds —90° is still small compared
to the low frequency where the phase is between £90° so that a large gain margin is
available. This phase characteristics can be seen from the modal coupling factor given
by

Tn = ¢u(a) [(m* + 3)¢a(a) — ad, (0] , (4.15)

where T, is the modal coupling factor. Since the phase of A,(jw) in Equation 4.14
always stays between =:90°, the phase shift occurs when the sign of the modal coupling
factor is changed from positive to negative. Figure 4.5 shows the variation of the sign
of the modal coupling factor with the mode index, n, and the shape of the piezoceramic
actuator, #pzr. It can be seen that, for this actuator, the phase shift is first introduced
by the 15th and the 20th modes whose effect becomes predominant at their resonances,
which agrees with the total plant response shown in Figure 4.3(a). Also, it can be seen
from Figure 4.5 that the phase change effect can not be removed by changing the angle
of the actuator, however it can be moved to higher order modes by narrowing the angle.

One possible way to remove the phase shift is to increase the rotational spring constant.
Assuming that x — oo, the plant response is expressed as in Equation 4.14, but ¢/, (0)
decreases as T increases as shown in Figure 3.6 so that the sign of the modal coupling
factor, shown in Equation 4.15, changes sign at higher n. Figure 4.6 shows the variation
with the rotational spring constant at both ends of the open loop velocity sensor-
triangular actuator plant response for a simply-supported beam with the rotational
springs. It can be seen that the phase shift is moved up from low frequencies to
high frequencies as the rotational spring constant increases. It is noted however that
the plant response is decreased at low frequencies as the rotational spring constant
increases. Tt is hence necessary to trade off between performance and robustness. Figure
4.7 shows Nyquist plots of the four plant responses which show that the gain margin

is increased as the rotational spring constant increases.

To investigate the effect of the translational spring constant, a beam with the boundary
condition shown in Figure 4.8 is considered. The angular displacement at the ends is
fully constrained while the translation is only partly constrained by the linear springs.
For this case, ¢/,(0) = 0, and so the plant response can be obtained from Equation 4,12
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Figure 4.5: Variation of the sign of the modal coupling factor with the mode index, n, and
the shape of the piezoceramic actuator, 0pzp. The white region denotes stable modes and the
black region unstable.

as
Yor(ar,w) = > An(jw)mel hsn(@r) [(m? +3) {#n(a) = ¢a(0)}] - (4.16)
n=1

Figure 4.9 shows the velocity sensor-triangular actuator plant response for beams with
the boundary condition 7 = oo and & = 0. It displays a marked instability effect
as shown in Figure 4.9(b). When & — 0, dn{a) & ¢n(0)(assuming ¢n(a) > 0) at
frequencies less than n-th natural frequency(f < fu) such that n ~ L/a. Therefore
Yyr(2r,w) — 0, as can be seen in Equation 4.16, where fn is about 2kHz in this
case. Precisely, at such frequencies, ¢,(a) < ¢,(0) and thus the phase of the plant
response is outside the range of +90°. Figure 4.10 shows the contribution of each
actuation component of the triangularly-shaped piezoactuator. It can be seen that the
contribution due to the forces at £ = 0 and x = o are almost of the same magnitude
but the response due to the force at = 0 is slightly bigger and with opposite phase
at low frequencies. The total plant response is hence characterised by a phase outside
the £90° range. As can be seen from Figures 3.5 and 3.6, the contribution of the forces
at z = 0 to the response at the sensor location can be reduced by increasing the linear

spring constant since ¢,(0) is decreased as the linear spring constant is increased.

Figure 4.11 shows the variation of the velocity sensor-triangular actuator open loop
frequency response with the linear spring constant(x) for beams with the boundary
condition 7 = co at both ends. When imposing linear springs with s = 1000 to the
beam, shown in Figure 4.8, the phase of the first three modes is in the range +90°.
When the stiffness is increased to & = 10%, the phase is in the range £90° for the
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Figure 4.8: Boundary condition to investigate the effect of the linear spring on the stability of
the control system.

response up to 6th resonating mode, but the response at the first resonating mode is
decreased by about 20dB. Increasing the stiffness further to x = 10°, the phase shift is
obtained in correspondance to the first dip which is caused by the height of the actuator.
Increasing the stiffness further to x = 108, the plant response is almost the same as that
of the clamped beam shown in Figure 4.2 and thus has a large gain margin. Figure
4.12 shows the Nyquist plots of the open loop velocity sensor-triangular actuator as
the linear spring constant is varied. It can be seen that the gain margin increases as
the linear spring constant increases. It is however noted that the plant response at low
frequencies decreases as the linear spring constant increases. Therefore, it i8 necessary
also in this case to trade off between the performance and robustness of the control

system.

The effect of the boundary conditions on the stability of the direct velocity feedback
control system using the triangularly-shaped piezoceramic actuator has been examined
so far. The rotational springs at the two boundaries affects the frequency response only
at the dips caused by the height of the actuator. However, the influence is not serious
because a high gain margin can be obtained. The linear spring affects seriously the
stability at the low frequencies starting from the n-th resonance where the first nodal
point of the n-th mode reaches the height of the actuator. A required stiffness can
be found for a given beam and actuator. For the case under study, the linear spring
constant should be greater than x = 10° to obtain a high gain margin. Although it is
possible to obtain a higher gain margin with a higher linear spring constant and Jor a
higher rotational spring constant, the control performance depends on the amplitude
of the plant response. Since the rotational spring tends to cause the plant response
to decrease, there exists an optimal value for the best tradeoff between stability and

control performance. To decribe this effect, performance index(PT) is defined as

Pl =GM + PR (dB), (4.17)
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triangularly-shaped piezoceramic actuator to the velocity sensor at z = a.
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where GM is the gain margin in dB and PR is the maximum plant response expressed
by
PR = 20log,¢(Yao)max (dB). (4.18)

Figure 4.13 shows the variation of those three values in terms of the linear spring
constant and the rotational spring constant. It can be seen from Figure 4.13(a) that,
at low linear spring constants up to k = 10%, the rotational spring helps to increase the
gain margin while at higher linear spring constants the rotational spring does not affect
the gain margin. It can be also seen from Figure 4.13(b) that, at low rotational spring
constants up to s = 102, the linear spring decreases the maximum plant response, while
at higher rotational spring constants the linear spring does not affect the maximum
plant response. Tt can be found, therefore, as shown Figure 4.13(c) that the performance
index is increased as the linear spring constant increases while it is decreased at 7 =
20 when x = 10° as the rotational spring constant increases. Note, however, that
the stiffness when 7 = 20 does not strongly couple into flexible modes as shown in
Figure 3.3(b). This means that the active control system using a triangularly-shaped
piezoceramic actuator can yield a reasonable performance for a beam with practical

boundary condition with a high linear spring constant.

It is also noted that the control performance is to be limited by the new boundary
effect of the actuator at a high feedback gain[17].

4.2.2 Effect of the Actuator Shape

‘The stability is also affected by the shape of the actuator. The shape of the actuator can
be defined by the height of the triangularly-shaped actuator, a, and its half top angle,
Opzr. Since the plant response varies with the location of the velocity sensor, which
corresponds to the height of the actuator in this case, the effect of the shape is examined
first by keeping the height constant. The width of the beam is assumed as large as
the width of the base of the triangular actuator. The ratio of the actuation resultants
hence depends only on the angle for given beam and actuator material as shown in
Figure 3.10. The actuator shape considered first is shown in Figure 4.14 with the top
angles of @pzr = 15°,30°,45°,60°,75° The plant responses are calculated for the five
shapes and shown in Figure 4.15. It is found that the magnitude of the plant response
increase monotonically as increasing fpzr having the same phase characteristics up to
the frequency where the moment along the base of the actuator begins to affect the
total response, which is about 3kHz in this case. In this context it can be also seen
that the gain margin decreases while the maximum amplitude of the plant response
increases as Opzr increases, so that the performance index is almost the same, which is
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Figure 4.14: Actuator shapes varied with the top angles of 8pzr = 15°,30°,45°,60°,75°. The
boundary condition of the beam is that £ = 10° and 7 = 0.

about 26dB in this case as shown in Figure 4.16. It should be noted that the actuator
with wider angle is preferable although the performance index is the same since the
control effort is less. For actual beams, however, the width is limited and the height of
actuator should be in the range of values such that the force generated at the vertex
can couple into the beam modes up to the frequency of interest and the sensor at the

vertex can respond.

The effect of the actuator’s height is now examined with three different sizes of actuator
with the same top angle having 8pz7 = 37° and the height of 5mm, 10mm and 20mm
as shown in Figure 4.17. The plant responses are shown in Figure 4.18. The response
increases as the size of actuator increases at low frequencies, but the bigger actuator
leads to the instability at lower frequency. The actuator height is hence limited by
the frequency where the reduction should be guaranteed. The performance index is
obtained again for the actuators as shown in Figure 4.19. It can be seen that the
performance index is very small when the actuator size is small, i.e. small height. This
is because the force generated by the actuator at the vertex could not couple into the
structure effectively while the moment generated along the base of the actuator can
couple into. For further investigation of the actuator height, four different actuators
as shown in Figure 4.20 is now considered. They have the same base, b = 15mm, but
have different heights of 20mm, 50mm, 100mm and 200mm, corresponding to fpzT =
37°,16.5°,8.5° and 4.3°. Figure 4.21 shows that the magnitude of the plant responses
at low frequencies up to 500Hz increases as the height of the actuator increases, while
it decreases up to 2kITz. This is because of the variation of the dominant actuation
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Figure 4.19: Variation of the performance index with the size of the triangularly-shaped piezo-
ceramic actuator. The boundary condition of the beam is that kK = 10° and 7 = 0.

between the force and moment generated by the actuator for a given height. Another
important feature is the cut-off frequency where the phase leg exceeding —90° occurs.
This frequency decreases as the height of the actuator increases. For the case considered
here, those frequencies are at 4kHz, 3kHz, 2kHz and 800Hz. The variation of the
performance index shown in Figure 4.22 with the different height of actuator reflects
all these behaviours. When the actuator is too small, the force does not couple into the
modes efficiently so that the performance index is rather low. When the actuator is

too large, the phase shift occurs at rather low frequency so that the performance index
becomes relatively small.
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Figure 4.21: Variation of the plant response with the size of the triangularly-shaped piezoce-
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Figure 4.22: Variation of the performance index with the size of the triangularly-shaped plezo-
ceramic actuator. The boundary condition of the beam is that x = 10° and 7 = 0.
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4.3 Performance

In this section the performance of the direct velocity feedback control system for beams
using a triangularly-shaped piezoceramic actuators is investigated considering the beam
system, shown in Figure 4.1, with only one sensor-actuator pair and a force primary
excitation located at z = 0.8L. The effect of the boundary condition is examined first
using the actuator shape of @ = 25mm and b = 15mm. The effect of actuator shape on
the performance is then discussed for a resiliently-supported beam whose stiffness are
x = 10% and 7 = 0. The shapes considered here is the same combinations as considered

previous section as shown in Figures 4.14, 4.17 and 4.20.

Figure 4.23 shows the performance in terms of the total kinetic energy and the acoustic
power for a clamped beam excited by a concentrated force at = 0.2L and when subject
to the feedback control system with gains of 10%,10* and 10°. It can be seen that the
total kinetic energy and the total acoustic power decrease at resonance frequencies
as the feedback gain increases. Increasing the feedback gain further, however, begins
to increase the response at other frequencies because the control action, which is a
force in this case, is high enough to make the control point be a new boundary[18].
Therefore, the control system has a best performance at an optimal gain. Another
thing to be noticed is that to obtain the same performance shown in Figure 4.24 the
feedback gain is relatively higher than that for a simply supported beam. Figure 4.24
shows the control performance for a simply-supported beam under the same control
system. Better performance than with the clamped beam can be achieved with a
smaller feedback gain. The feedback gains used in the simulation are 100, 1000 and
2000. Tt should be noted that the control system for a simply supported beam is only
conditionally stable. The maximum gain in this case is about 2000, which is obtained
from Figure 4.3. Control spillover occurs between 5kHz and 7kHz as predicted in
the plant response shown in Figure 4.3. Figure 4.25 shows the control performance
of the direct velocity feedback control of a resiliently-mounted(s = 10° and 7 = 0)
beam using a triangularly-shaped piezoceramic actuator(a=25mm, b=15mm) with the
feedback gains of 100, 300 and 600(maximum gain). The control performance is almost
the same as that for simply-supported beam except for the maximum gain and the

control spillover occurred between 3kHz and 4kHz.

The performance of the control systems can now be evaluated in terms of the normalised
kinetic energy and acoustic power given by
JERE(f, hydf

KE(h) = 10logy Lt————, dB 4.19
0819 K, ) (4.19)
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Figure 4.23: Control performance of direct velocity feedback control of a clamped beam using
a triangularly-shaped piezoceramic actuator(a=25mm, b=15mm) with the feedback gains of
103,10* and 10°.
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Figure 4.24: Control performance of direct velocity feedback control of a simply supported beam
using a triangularly-shaped piezoceramic actuator(a=25mm, b=15mm) with the feedback gains
of 102,10% and 2 x 103,
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Figure 4.25: Control performance of direct velocity feedback control of a resiliently-
mounted(x = 10°and7 = 0) beam using a triangularly-shaped piezoceramic actua-
tor{a=25mm, b=15mm) with the feedback gains of 100, 300 and 600.
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and

. JEW(, R)df
Ew (]

where KE and W represent the normalised average kinetic energy and acoustic power,

W(h) = 10lo (4.20)

respectively. Also, KE and W represent the total kinetic energy and acoustic power
under the feedback control, respectively, and KE, and W, are those without control.
f1 and fy are the lower and the upper frequency of the frequency range of interest.

The normalised performance, integrated up to 1kHz, is compared in Figure 4.26 for the
three boundary conditions: clamped, simply-supported and resiliently-mounted. The
normalisation is performed in the frequency range between 0 and 2kHz. It can be seen
that a maximum reductions of the clamped beam are restricted to 10dB in the kinetic
energy and 8dB in the acoustic power by the new boundary effect of the actuator. The
control system for the simply-supported beam gives much higher reduction of 25dB in
the kinetic energy and 10dB in the acoustic power due to the efficient plant response.
For the practical boundary condition(x = 10° and 7 = 0}, the reduction of 20dB in
the kinetic energy and 11dB in the acoustic power can be achieved. It is found that
the reduction in kinetic energy is brought down as the linear spring constant is lowered
leading to smaller maximum gain. The reduction in the acoustic power, however, is

slightly increased.

The effect of the shape of the triangular actuator on the performance of the control sys-
tem implemented for the resiliently-mounted beam(x = 10° and r = 0) is investigated.
The variation of the shape is shown in Figures 4.14, 4.17 and 4.20. Figure 4.27 shows
the effect of the actuator’s top angle on the normalised control performance. With
this actuator shape variation, the same reduction of 15dB in the kinetic energy and
8dB in the acoustic power can be achieved at increasing feedback gains as the width is
reduced. Tt can be seen that the smaller top angle the actuator has, the bigger feedback
gain is required to obtain the same performance. Figure 4.28 shows the effect of the
actuator size with the same top angle as shown in Figure 4.17. They have the same
top angle while the base and the height are increased with the same rate. It can be
found that the maximum gains are almost the same, which is between 400 and 500,
while the reduction performance is much different from each other. The larger actuator
yields the more reduction in both the kinetic energy and the acoustic power. Finally,
we considered more practical variation of the actuator shape for the beam application
which are the same base of actuator having four different heights as shown in Figure
4.20. These shape combination include the variation of the top angle and the variation
of the height, but note that either the top angle or the height is independent shape

variable because of the constant base. The variation of the performance with the shapes
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Figure 4.26: Variation of the normalised control performance, integrated up to 2kHz, with
the feedback gain from 1 to 10° for clamped beam(solid line), simply-supported beam(dot-
dashed line) and resiliently-mounted beam(x = 10° and 7 = 0)(dashed line), of beams using a
triangularly-shaped piezoceramic actuator{a=25mm, b=15mm)
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Figure 4.27: Effect of the actuator’s top angle on the normalised control performance with the
feedback gain from 0.1 to 10% for the resiliently-mounted(x = 10° and 7 = 0) beam using a
triangularly-shaped piezoceramic actuator with b=15mm and 0pzr = 15° (thick solid), Opzr =
30°(dotted), 9pzr = 45°(dot-dashed), Opzr = 60°{dashed), #pzr = 75°(solid).
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Figure 4.28: Effect of the actuator shape on the normalised control performance with the
feedback gain from 0.1 to 10% for the resiliently-mounted(x = 10° and 7 = 0) beam using a
triangularly-shaped piezoceramic actuator with 8pz7 = 37° and a=5mm({solid), 10mm(dashed)
and 20mm (dotted).
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are not consistent as shown in Figure 4.29. This result is the trade off of the effect of
the top angle and the effect of the height. When the base is constant, the height is
decreased as the top angle increased. Therefore, we can consider an optimal shape for
a given base of actuator, the control purpose and the frequency range. From the four
shapes of the actuator, the best performance can be achieved using the intermediate

shape in the top angle and the height.
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Figure 4.29: Effect of the actuator shape on the normalised

10

control performance with the

feedback gain from (.1 to 10* for the resiliently-mounted(x = 10° and 7 = 0) beam using a
triangularly-shaped piezoceramic actuator with b=15mm and a=20mm(solid), 50mm(dashed),

100mm{dotted) and 200mm(dot-dashed).



Chapter 5

Conclusions

This report is concerned with triangularly-shaped actuators for the implementation of
direct velocity feedback control systems. From the general theory of the piezoceramic
actuator, the excitation effects due to triangularly-shaped piezoelectric patches are
derived, which consist of forces at the vertexes and moments along the edges of the
actuator. The resultant actuation effect in beams is then formulated, which results in

a moment and a pair of forces.

The dynamics of resiliently-mounted beam supported by both torsional and linear
springs at both ends is presented and the direct velocity feedback control of the beam
using the triangularly-shaped piezoceramic actuator positioned at either ends of the
beam with velocity sensors at the top vertices is then implemented. It is found that
the control system is influenced by the boundary condition of the beam. The shape of
the actuator also affect the stability and the performance of the control system. When
the beam is clamped, the triangularly-shaped actuator is perfectly collocated and dual
with the velocity sensor at the tip so that the control system is unconditionally stable.
In terms of performance, however, the control system for a simply-supported beam is
better than for the clamped beam although the system is only conditionally stable. For
practical boundary conditions achieved by the combination of the torsional and linear
springs, the linear spring is essential component to effectively achieve collocation in a

desired frequency range, while the torsional spring does not affect so much.

The effect of the shape of actuator is finally investigated. The bigger top angle the
actuator has, the bigger is the amplitude of the plant response. With wide angled
triangularly-shaped piezoactuator, the control effort can be saved. Another factor to
be considered is the effect of height of the actuator. Large plant responses can be
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achieved with a larger height of the actuator. The two factors, the top angle and the
height, are however dependent variable such that the top angle is decreased when the
height is increased. Another effect of the height is that the frequency range where
stability is decreased as the height increases. It is necessary, therefore, to find the

optimal dimension of the actuator for a given beam in order to maximise the control

performance in the frequency range of interest.



Appendix A

Response, Kinetic Energy and
Radiated Sound Power of Beams

The general solution of Equation 3.1 can be expressed as the sum of the normal modes
expressed as Equations 3.17, 3.19, 3.21 or 3.23 according to the range of the spring

constants. Hence, the response of the beam is written as
m P
w(z,t) = walw)dn(z)e?” (A.1)
n=1

Taking Fourier transform to Equation A.1l, the total response in the function of fre-

quency is given by

w(zr,w) = Z Wy (W)on (), (A.2)

where wy, is the modal amplitude of the response. Also, the velocity distribution of the

beam is represented by

o(,w) = D an(@)n(2), (43)
n=1

where a,, = jww,. Substituting Equation A.1 into Equation 3.1 and employing Equa-
tion 3.25 and the orthonormal property of the normal modes, we can obtain the modal

amplitude expressed by
an = Ap(w)Fp{w), (A.4)

where

I
A0l = AT oy~ s
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and A is the cross sectional area of the beam, (,, is the modal damping ratio, and F}, is
the modal excitation term which will have a component due to the external force and

the external moment, so that

L L T
Fo(w) = ]D Flaw)b(@)de + /0 ?%ﬂf—t—)-qb(a:)dx. (A.6)

In Equation A.2, the velocity distribution of the beam is assumed to be a finite modal

series

v(z,w) = Zan

~ aqu(sc) (A7)

where N is the number of modes taken into account, a is the vector of modal velocity

amplitude, a,, i.e;
a= {a'la a2, ', a'n}Ta (AS)

the superscript H indicates the Hermiltian transpose and ¢(xz) is the vector of modes

at a position z, i.e,

d(x) = {¢1(x), da(z), -, on(z)} . (A.9)

The total kinetic energy of the beam is defined to be
Blw) = pA/ v(z,w) [*dz. (A.10)

Introducing Equation A.7 and orthonormal property of the modes shown in Equation
3.25 into Equation A.10, the kinetic energy can be expressed by

E{w) = ﬁa a. (A.11)

Assuming the beam is in an infinite rigid baffle, the sound power radiated by the
beam is calculated using Cunefare[19]. When the velocity distribution on the beam is
expressed by Equation A.7 and the modal velocity amplitude vector is available, the
sound radiated power from the infinitely baffled beam can be expressed by

W = affMa, (A.12)

where M is the modal radiation resistance matrix in which the diagonal terms are self-
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radiation resistances and the off-diagonal terms are the mutual-radiation resistances.
The numerical values of the elements of them matrix M have been calculated, for
example by Cunefare{19] and Baumann, et al [20], by integrating the far-field pressure.
Also, Elliott, et al[21] presented a method of calculating the matrix by considering a
number of elemental radiators. In this study, we summarised their work and used to
calculate the matrix M. If the vector of complex lnear velocities, v, of each of theses
elemental radiators is given, the sound pressure immediately in front of each source p

is written by
p=2Zv (A.13)

where Z is a matrix of specific acoustic impedances which is symmetric so that Z = Z7.
Since the acoustic power radiated by this array of elemental sources is proportional to
the real part of the sum of the conjugate volume velocities of each radiator multiplied

by the corresponding acoustic pressure, the acoustic power is
S LH
W = §R8(V P {A.14)

where S is the area of the radiators which are assume to be same size, for convenience.

Using Equation A.13, Equation A.14 can be rewritten as

W = gRe[vHZV]
= SRelv(2” + 2 (A.15)

= vARv

where R = (5/2)Re(Z) expressed of the form

r ) sin(kria) sin(kryy) 7
krio krir
sin(kra) .
R w?pS? % 1 e : T
 4me . (A.16)
sin(kry) 1
L krpa i

But, v can be expressed as
v = ®a, (A.1T)

where € is I % N matrix of the discretised mode shape. Hence, the radiated acoustic

power i, using FEquation A.15 and A.17, written as

W = a"®"RPa. (A.18)
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1t is noted that the accuracy of the estimated radiated power will increase with the num-
ber of elemental radiators considered (I). Comparing equation (A.35) with Equation

A.12, the modal radiation resistance matrix should be
M = o7 R®. (A.19)

Since the radiation matrix R is given as Equation A.16, we can easily calculate the
modal radiation registance matrix R and then the acoustic power expressed as Equation
A.12. In this study, the kinetic energy and radiated acoustic power are used as a cost
function for optimisation. Also, they are used to estimate the performance of the noise
control. The radiation efficiency is useful for evaluating the physical characteristics of

control performance. The radiation efficiency is generally defined as
o= W/ pcSt @(t)) (A.20)

where St is the total radiating area of the beam and <$(t)> is its space average mean-

square velocity. Introducing Equations A.18, A.19 and <E(t)> = af’a/2 into A.20, the
radiation efficiency can be written as

oij = 2M;;/peSt (A.21)
Equation A.21 can be expressed in the matrix form as
% = 2M/peSt, (A.22)

whose diagonal elements are the radiation efficiencies of each structural modes alone,
which is called the normalised self-radiation efficiencies, and whose off-diagonal elements

are the normalised mutual-radiation efliciencies.
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