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Introduction

In the design of an active sound profiling system it is important that all the components of the
system set-up are chosen carefully such that the system is as robust and efficient as possible.
This is particularly true for multichannel control systems, in which multiple loudspeakers are
used to control the sound at multiple error microphones, which is the subject of this report
and follows on from earlier work on single channel control systems [1]. Of particular concern
to the implementation of such a control system are the trade-offs involved in achieving specific
targets. For example, the degree of control that is achieved versus the amount of power
required to do so, and whether or not individual signals at individual microphones are to be
achieved or whether a global average within the cabin is sufficient. The choice of strategy can
vary both power to which the control system has to use, this is referred to as control effort,
and the robustness of the system; how easily the system can become unstable. To implement
these different strategies, adaptive algorithms are required to alter the control signal which in
turn will drive the loudspeakers within the cabin. Such algorithms have previously been used
in multichannel systems whose aim is to cancel sound within the cabin, but not to reshape
the soundfield as required in sound profiling. It is the future aim of the work reported here
to produce a working multichannel car system that can achieve cancellation, attenuation and
enhancement of a given engine order spectrum within the car cabin, such that a predetermined
“target” spectrum is produced within the car. At this point in time it is unclear to what degree
of control is required to achieve the subjective goals within a vehicle cabin, hence this report
presents several algorithms that can be used depending on the final control strategy chosen.

This document has been written to be both a general report and a specialised technical paper
that highlights specific areas that are relevant to fhe InMAR work area 4.5. The report first
explaing the multichannel problem in the car cabin, then the functioning of the algorithms
is covered, followed by a performance comparison of the algorithms in terms of stability and
control effort, including a discussion to conclude which algorithms are most suitable for a

vehicle’s control system.

The Multichannel Problem

In the current vehicle prototype control system there are only 2 error microphones and 2
control loudspeakers to perform active sound profiling at the drivers head position, however,
it is the aim of the project to create a system that can control the engine sound pressure
level (SPL) over the entire soundfield within the cabin, such that all passengers experience
the altered soundfield and are thus subjected to an increase in sound quality. To create such
a system, many error microphones and control loudspeakers, may be required, not necessarily
in equal quantities, as depicted in Fig. 1. Ideally the error microphones will be placed close
to the location of the driver’s and passenger’s heads, to give an approximate measure of the
pressure level experienced at the ear. Thus, it can be assumed by basing the standard vehicle
passenger capacity at four, including the driver, that for a complete multichannel system in the
order of 8 error microphones and 8 control loudspeakers will be required. In such a system,
containing this many microphones, the sound profiling problem is much more complicated
since several different performance criteria can be defined. These performance criteria vary in
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Figure 1: The soundfield within a car cabin can be controlled using an array of error micro-
phones and control loudspeakers.

terms of the properties required by the output signal, and include:

{1} Maintaining the amplitude and phase of each microphone output to be similar to target
signals that possess individual amplitude and phase information

{2} Maintaining only the amplitude at each error microphone similar to individual target
amplitudes, but with no concern to their relative phases

{3} Maintaining the sum of mean squared outputs to be similar to an overall mean square
pressure target, but with no concern for the relative magnitude and phases of the indi-

vidual output signal.

Each of these strategies will have their relative merits and failings, of which many are unknown
af this point, however, it is expected that strategy {1} will be most demanding in terms of
stability and control effort, whilst strategy {3} will be the least demanding. In active sound-
profiling, rather than active noise control, great attention has to be paid to the properties of
the signal produced at the error microphones. In active noise control, it is of little importance
what phase or amplitude the residual signal has from frequency to frequency, as the aim of
the control system is to merely reduce the SPL to as low a level as possible. In active sound
profiling, however, the subjective sound quality is the primary concern, which, in special cases,
can be greatly altered by the relative phases and amplitudes between engine orders. The
relative phase and magnitudes of specific engine orders can give the car engine the signature
sound that is associated with high levels of subjective sound quality. One such example is the
‘warble’-like sound that is produced by a typical V8 engine. This warble is generated by the
intermodulation of engine orders in the range 1-6, of which the phase and relative amplitudes
is inherent to the production of the sound. Thus, to implement a control system that is not
concerned with maintaining these relative properties could decrease the sound quality of the
engine rather than increase it. This is not always the case as for many engine orders the
phase is not important to the interpreted sound quality of the engine. It is suspected that
for a key engine order, such as the 98d engine order in a 4-cylinder vehicle, the phase of the
order is not significant to the subjective sound quality, and thus control strategies that are
not concerned with the phase of the signal at the error microphone may be suitable for gitch a
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Figure 2: Schematic showing the secondary acoustic paths of the plant between sources and
SEDS0TS.

control system. It should, however, not be forgotten that such psychoacoustic effects do exist
and can be altered by active sound profiling. '

In multichannel systems, such as that proposed for the vehicle here, the interaction between
the error microphones and control loudspeakers plays a very important part in the boundaries
of the system and how easily control can be achieved. Each microphone and loudspeaker in
the control system, and to a greater extend the amplifiers and digital-to-analogue conversion
hardware, has an associated amplitude and phase frequency-response. This is primarily dic-
tated by the relative positions of the microphones and loudspeakers and the acoustic response
of the cabin enclosure, and is often referred to as the ‘plant’ of the system. This series of
frequency responses that make up the plant can be represented by a set of complex equations,
which can in turn be simplified into matrix form. For a simple two-channel system under
anechoic conditions, with 2 error microphones and 2 control loudspeakers as shown in Fig. 2,
the complex plant matrix for a given frequency, only taking into account the acoustic path
length such that loudspeaker and microphone responses are considered to be flat, can be given

by
A -kl A —ikl
11 12
. . (1)
A ikl A p—jkiz2
l21 l22

G(jw) =

where the distances I, correspond to those in Fig. 2, m and n are the number of sensors
(microphones) and sources (loudspeakers), respectively. In a simple model, such as this, the
phase responses of the plant represent the acoustic delays between control loudspeakers and
error microphones, which is the time that the acoustic waves take to propagate through air at
the speed of sound. This matrix can now be used to calculate the contribution of each control
signal (the output from the adaptive filter) at the error microphone locations, such that if we
assume there is no disturbance signal present

y =Gu (2)

where y is a column vector of complex outputs measured at the error microphones and u is a
column vector of complex control signals sent to the control loudspeakers, all at a single fre-
quency. It is clear from (1) and (2) that the location of the microphones and loudspeakers can
greatly affect the control signals required to produce a given output at the error microphones.







This effect of the plant can be reduced substantially by choosing a control strategy that will
achieve its given criterion with a minimal amount of control effort and maintainable stability.

It is uncertain which strategy, {1}, {2} or {3}, is the most suitable for a vehicle sound profiling
problem, until it is it is completely clear what the criteria of the control system are. If, for
example, it has been chosen that it is desirable that the driver hears a different engine spectrum
to that of the passengers, for the advantage of driver feedback and passenger comfort, then
the target spectra at the drivers microphones will be different to those of the passengers.
To implement such a control strategy one of performance criteria {1} or {2} will need to
be chosen. However, if it is chosen that both driver and passengers are to hear the same
engine spectra then, depending on the properties of the plant, it may be adequate to use
performance criteria {3}, which may benefit the system in terms of required control effort and
system stability. Albeit, each of these different control strategies will require a corresponding
adaptive algorithm to ensure the target criteria is met in each of the cases.

The Algorithms

At the heart of an adaptive feedforward control system is the algorithm that updates the
weights of the adaptive filter. This algorithm must be tailored both to produce the best
results for the initial system requirements, but also be able to be adaptive to suit any new
changes that may arise in the development of the control system and will normally incorporate
an internal model of the plant response. One aspect that can be particularly demanding for
an active sound profiling algorithm is the ability to remain stable when plant model errors
are present. The nature of an acoustical system such as the interior of an automobile means
that the physical plant is continuously changing. These changes may be caused by variations
such as temperature, humidity, or alterations to the acoustic enclosure response, caused by
movement of the driver/passenger or the opening of a window or sun-roof. This dynamic
nature of the physical plant means that the fixed plant model will never be a perfect estimate,
and in addition is bound by the resolution of the digital filter used to model the plant. To
make matters more complicated it is desirable for the algorithms to use a minimal amount of
control effort to achieve the target spectrum. The use of excessive control effort to produce the
target spectrum can put unnecessary restrictions on the equipment used for sound generation,
such as the amplifiers and loudspeakers. The size of the loudspeakers used in a car is highly
restricted and using a minimal control effort algorithmn allows loudspeakers of lower power
and smaller size to be adequate to achieve control. Algorithms currently exist that perform
well either in terms of stability to plant model errors [1] or control effort [2], but not to both
especially at high enhancement gains.

The following sections contain brief descriptions of the functioning of the four algorithms
compared in this report: the command-FXLMS, phase scheduled command-FXLMS (PSC-
FXLMS), automatic phase command-FXLMS (APC-FXLMS) and the magnitude-controlled
FXLMS without and with the sum of squared outputs control strategy (SOSO-FXLMS). For
a more in-depth working of the algorithms the reader is referred to Adaptive Algorithms for
Active Sound-Profiling, 2005 by Rees and Elliott {1] for the command-FXLMS, PSC-FXLMS
and APC-FXLMS, and appendix A on the magnitude-controlled FXLMS and sum of squared
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Figure 3: Block diagram of the FXLMS adaptive feedforward control algorithm.

output strategy.

Frequency-Domain Filter-Weight Adaption

All the algorithms used in this investigation are frequency domain based algorithms. This
means that all the signals required for the update of the adaptive filter are first transformed
from the time-domain into the frequency-domain via an FFT (fast Fourier transform}, where
the magnitude and phase of each frequency to be controlled is represented as a complex
number. The FFTs used in the algorithms buffer n samples of the signal that equate to one
period of the fundamental reference frequency and output a new vector of complex values
every n samples. Therefore, update of the adaptive filter is not instantaneous, and although
under some circumstances this could be detrimental to the convergence speed of the system it
is thought to make no noticeable difference in this application. This method has been used as
the new algorithms, require magnitude information of the error signals. This can be achieved
by computing a moving time-average and updating the weights every sample, but it is more
computationally efficient to do all computation in the frequency domain. To aid in the analysis
of all algorithms, the command-FXLMS has also been implemented in the frequency-domain
such that direct comparisons with the other algorithms can be made on a level playing field.
Thus, all variables referred to in the following sections are complex.

Command-FXLMS

The algorithm currently implemented in the prototype control unit of the vehicle is the
command-FXLMS. This algorithm is based on the filtered-reference least mean square (FXLMS)
algorithm widely used in feedforward active noise control. The FXLMS, shown as a block di-
agram in Fig. 3, is a simple algorithm that uses an instantaneous error output to predict the
gradient of the error surface of a cost function, J = efle, where

e(n) = d(n) + Gu(n) (3)

where e(n} is a column vector of complex output error signals at the n'? iteration of the
algorithm, d(n) is a column vector of complex disturbance signals, u(n) is a column vector
of complex control signals and G is a matrix of complex values that describes the plant. It
is the aim of the algorithm to vary the value of u(n) by the adaption of a matrix of complex
coefficients, W, such that the cost function is minimised. The gradient term is then used, via
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Figure 4: Block diagram of the command-FXLMS.

the multiplication of a convergence coefficient, o, that regulates the size of the gradient term,
to adapt the control signal, such that :

u(n + 1) = u(n) — aGPe(n) (4)

where u(n 1) is the updated complex control signal vector and G is the plant model! matrix.
The plant model is a digital filter that is used to emulate the effects of the physical plant, G,
such that the algorithm converges well towards the optimum value of u(n) and remains stable

in doing so.

The FXLMS, however, only possesses the ability to cancel signals, i.e. to reduce the output
towards zero. For active sound profiling the algorithm needs to be capable of producing a
residual error signal, in which the output may be less than, equal to or greater than the
disturbance signal, hence the FXTLMS algorithm is not sufficient to fulfil this task. Although,
with a slight alteration the FXLMS can be fooled info converging to a non-zero value. This is
done by replacing the error, e(n), in the gradient term to update the adaptive filter weights,
with a pseudo-error which is equal to

e'(n) = e(n) — c(n) (5)

where ¢(n) is a column vector of complex target or command signals. Thus, by using a new
control signal update equation, given by

u(n +1) = u(n) — aGHe'(n) (6)

the output now converges towards the target vector, rather than to zero. This alternate form
of the FXLMS is known as the ‘command-FXLMS’, and is shown as a block diagram in Fig.
4. In the diagram, e(n) has been replaced with y(n) to signify that the value is an output
and not an error.

The command-FXLMS is known to have similar properties to the FXLMS [1], but can also
use more effort than necessary. The command signal, ¢c(n), can have an arbitrary phase as
well as amplitude, which if out of phase with the disturbance signal, d(n) requires the control
signal, and thus the ¢ontrol effort, to increase unnecessarily in comparison to if ¢(n) and d(n)
were in phase. This would put small control loudspeakers under unnecessary strain to deliver
low frequencies at high outputs, which, in exireme cases, could lead to instability. One way
of reducing the amount of control effort used would be to measure the primary path phase
response, i.e. the time delay from the reference signal generation to the error microphone.
This transfer function could then be used to filter the command signal, and assuming no
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Figure 5: Block diagram of the PSC-FXLMS.

other variations occur, the disturbance and the filtered command sighals should be in phase
and thus use a minimal amount of control effort to achieve the target output. However, as
previously discussed, it is unlikely that the primary path will remain unchanged and will be
the same for individual cars. For this reason it would be more suitable to use an algorithm
that can predict the disturbance signal phase while online. This method is used by the PSC-
and APC-FXLMS algorithms that have the ability to align the phase of the command signal
to that of the disturbance signal, but do so to different degrees. In addition, although not
critical to the engine spectrum, if the disturbance and command signals are kept in phase this
would eliminate any cross-order phase issues that may arise of a subjective nature.

Phase Scheduled Command-FXLMS (PSC-FXLMS)

There exist several active sound profiling algorithins that attempt to ensure that the command
signal is in phase with the disturbance and thus reduce the amount of control effort required to
achieve the target output [1,2]. Unfortunately, many of these algorithms suffer from instability
problems when the magnitude of the plant model is not particularly accurate, especially at
high enhancement system gains, i.e. when the ratio of command to disturbance magnitudes
is large. However, an algorithm does exist that maintains both stability in the face of plant
model mis-estimation and achieves accurate target signal convergence at low control effort.
This algorithm is known as the phase scheduled command-FXLMS (PSC-FXLMS). The PSC-
FXLMS algorithm, schedules the phase of the command signal to that of the disturbance
signal’s by calculating an estimate of the disturbance, d(n). This estimate of the disturbance
signal is achieved by sending the control signal through an internal model of the plant and
subtracting the system output, y(n), as shown in Fig. 5. The phase of the estimate is then
calculated and the command signal generated with the same phase but with a new command
magnitude. By extracting the phase and re-generating the command signal, rather than simply
passing d(n) through a gain, instabilities due to plant model magnitude errors are eliminated.
The algorithm is still prone to errors in the plant model phase, however, and due to the use of
the plant model once again being used in the internal model to predict the disturbance signal
the PSC-FXLMS has less stability than the command-FXLMS.







Automatic Phase Command-FXLMS (APC-FXLMS)

To increase the stability of the PSC-FXLMS to plant model phase errors at high system gains,

as often required in active sound profiling, the degree of scheduling of the command gignal

phase can be altered. The phase of the command signal is changed such that when the system

gain is greater than unity the phase is only scheduled to a fraction of the disturbance signal

estimate’s, such that A

= 2D 4 (7)
C-+D

where C' and ¢, are the command signal’s magnitude and phase, respectively, and D and ¢4
are the disturbance estimate signal’s magnitude and phase, respectively, for a given channel.
This new algorithm is called the automatic phase command-FXLMS (APC-FXLMS) [1], and
increases the stability of the algorithm to plant model phase errors, but at the cost of increased
control effort relative to the PSC-FXLMS when the plant model is accurate. However, the
APC-FXLMS has the ability to be ‘tuned’, such that the control effort savings are increased.
This adaption of the APC-FXLMS is known as the ‘optimised APC-FXLMS’ and is discussed
further in appendix B. In this report the APC-FXLMS will be only used in its standard form,

as above in (7).

Pe

Magnitude-Controlled FXLMS with Individual Magnitudes Specified

As discussed earlier, it may not be necessary for the phase of the output signals to be of any
specific value, but only that the magnitude of the signal is maintained at a specified level. Tt
would seem that this reduced constraint on the production of the control signals would result in
a reduction in control effort, as unlike full active cancellation, sound profiling can be achieved
from multiple solutions. One such algorithm that performs in this manner is the magnitude-
controlled FXLMS, which adapts the weights of the adaptive filter using a gradient term who's
step size is controlled by the difference between the magnitudes of the output signal, Y (n),
and the command signal, C, which i a non-complex scalar matrix, as no phase information
is required. This algorithm is unique in the way it uses a positive convergence coefficient,
when Y(n) > C, to adapt the filter weights, which in essence makes the algorithm unstable
and increases u(n). When Y(n) < C, however, the effective convergence is negative, as in
the FXLMS. This instability is controlled, however, by the magnitude difference term just
discussed. As derived in appendix A, the control signal update equation for the magnitude-

controlled FXLMS is given by
u(n+1)=(1- fp[C — Y]Al|) u(n) + a[C — Y]Y1G Uy(n) (8)

where u(n + 1) and u(n) are the new and previous complex control signal vectors, Cand Y
are diagonal matrices of the command levels and the output levels, respectively, and Gisa
matrix of complex plant model responses between sources and sensors, as shown in Fig. 2. It
should be noticed that in comparison to the command-FXLMS update equation, (6), (A.10)
has an additional term that in multiplied by the current control signal, u{n). This is known as
a leakage term and allows the algorithm to keep on converging towards the minimum control
effort solution, even when the output has converged to the target values. p is & parameter







that defines the degree to which the leakage term contributes to (A.10). This is discussed in
further detail in appendices A and C.

Although the magnitude-controlled FXLMS was originally thought to reduce the control ef-
fort load compared to previous algorithms, it is shown analytically in appendix A that the
optimum value of the control signal that also results in the minimum control signal is equal
to that of the command signal set to the same phase as the disturbance signal. Therefore, the
magnitude-controlled FXLMS can not out perform the PSC-FXLMS algorithm if the phases
of the disturbance were known, even though it has less performance criteria. This, however,
does not mean that the magnitude-controlled FXLMS converges upon the optimal solution
in the same way as the PSC-FXLMS. As the magnitude-controlled FXLMS arrives at the
same optimum value of u as the PSC-FXLMS, it would be acceptable to assume that the
magnitude-controlled FXLMS could be used in place of the PSC-FXLMS and potentially save
on the additional computation that is required to align the command signals phase to that of
the disturbance signal’s. Unfortunately, the magnitude-controlled FXLMS also requires almost
as much computation to derive the magnitude of the output signal, and thus no real advantage
would be gained. The analytical stability properties of the magnitude-controlled FXT.MS are
also unknown, but a preliminary simulated analysis is included in this investigation.

Magnitude-Controlled FXLMS for the Sum of the Mean Square Outputs
(SOSO-FXLMS)

As discussed in the multichannel section, it may not be necessary for each error microphone
to be driven to a specific output level, but instead the overall soundfield of the car interior
be driven towards some predetermined average SPL. In this case the individual phase and
magnitudes measured at each of the microphones are no longer used to update the adaptive
filter, but rather a ‘sum of the mean square outputs’ from all of the microphones combined.
This removes the constraints of phase and magnitude at each error microphone and allows
the potential for a lower control effort to be achieved through a sum of any control signal
combination. The phase and magnitude of each control signal are still altered progressively
like in all the other algorithms, but are allowed to converge on any value as long as the sum of
all the squared outputs converges on the mean squared target value. As with the magnitude-
controller FXLMS, to ensure that the optimum control vector is achieved, that is to achieve
the target output with the minimum amount of contrel effort, a leakage term is included in
the algorithm which is proportional to the control effort. Thus, as described in the appendix
A, the update equation for the control signal vector is given by

- yym“m]@%M) )

un+1) = [1— pu(n)un)] un) +a
(n+1) = [1 - pu(m)u(n)] u(n) + [ et

where € is the mean command magnitude for the entire microphone array and p is the
control effort weighting parameter. The difference between ¢ and the root sum of squared
outputs, 1/yP(rn)y(n) which determines whether the algorithm increases or decreases the
control signals, is normalised by /yH(n)y(n) to make the algorithm less sensitive to the
magnitude of y(n). The size of p dictates the amount of control effort that is allowed to be
used to achieve the target output. If this is too big, then the converged output will not be
accurate to that of €, while if it is too small then the algorithm will take a very long time
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to achieve the minimum control effort even once the output has converged on the command

value.

Algorithm Performance Comparison

This section presents the results of simulations conducted using the five algorithms previously
discussed in this report. Although the aim of this work is to investigate the most appropriate
multichannel algorithm, analysing the performance of an algorithm in a multichannel system
can often be confusing, hence this section will also include results showing the algorithms used
in a single-channel system for the benefit of understanding the way in which the algorithms
function. It should be noted that the comparisons made will also compare the relative merits
of the control strategies chosen.

The procedure of sound profiling has four modes of control: cancellation, attenuation, neutral
and enhancement. The most demanding of these four modes both in terms of stability and
control effort is enhancement and for this reason the results of the simulations presented are
all generated with the algorithms in enhancement mode. Thus, it is assumed that if stability
is retained for an algorithm in enhancement mode then stability is also retained in all other
modes and will be covered later in the report.

The level of enhancement that the algorithms are expected to perform has been chosen from
measured /target values for the vehicle in question, which show that the greatest enhancement
required for any order at any point over the complete engine speed and load range is +17 dB,
which corresponds to a gain of & 7.1. For the simulations presented in this section the stable
converged enhancement gain is set to 8, to account for variations in the measured spectrum

that may occur between individual cars.

To test the extent of the algorithms stability in the single channel simulations, errors were
deliberately introduced into the plant model in the form of a phaseshift. This phase error is
varied in incremental phase steps of /8 =~ 22°, which for a sample rate of 16 samples per period
equates to one sample. All algorithms are unaffected by plant model errors in magnitude to
the same extent as the FXLMS algorithm, and thus magnitude errors are excluded from this

investigation.

It is important that the reader understands that for all of the new algorithms designed to fulfil
both magnitude and phase criteria the value of the control effort is dependent on both the
phase of the disturbance signal and the phase error in the plant model. In the case of the PSC-
FXLMS and APC-FXLMS the command signal is generated using a model of the disturbance
signal which in turn is estimated using the plant model. Therefore, if the the phase response
of the plant model is incorrect neither will be the phase of the command signal, relative to
that of the disturbance signal. Depending on whether the disturbance signals phase leads
or lags the reference frequencies and whether the plant model’s phase response leads or lags
the physical plant’s means that the phase difference between the disturbance and command
signals can vary significantly. This means that under certain conditions some algorithms that
wottld not normally be expected to have a lower control effort value than other algorithms may
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do so, which can be seen in Fig.’s 6(c) and 6(d). Therefore, when analysing the control effort
performance of an algorithm it is important to know under what conditions the algorithms
are most likely to spend the majority of the time. It must be assumed that for the majority
of the time the plant model estimate is accurate to that of the physical plant and thus when
comments are made on the control effort of the algorithms this is done so under the conditions
of a perfect plant model, ie. G(2)/G(z) = 1.

A of all the MATLAB programs used in this report can be found in appendix D.

Single Channel Simulations and Results

The results of simulations for all the algorithms, except the SOSO-FXLMS, in a single chan-
nel system are presented in Fig. 6. The SOSO-FXLMS3 has been excluded from the single
channel simulations, as in the limit of one channel the SOSO-FXLMS becomes the magnitude-
controlled FXLMS. The figure shows five plots of the algorithms, for different plant model
phase errors, profiling a pure tone disturbance signal whose phase, relative to the reference
signal, changes from w -+ 3/4 ® — 1/2 @ — 3/4 m. These phase transitions can be seen by the
slight blips in the convergence of the output magnitude and the variation in the control effort.
The reason for the phase shift back to 3/4 7 is to show that the algorithms command signal
is adapting to the disturbance signal and not just cycling through the phase, specifically in
the case of the magnitude-controlled FXLMS.

For these simulations the leakage factor, for the magnitude-controlled FXLMS algorithm, has
been set to a value of g == 0.0001. The optimum value of p required for implementation in
the a particular system is not known, but it is important that the value of p is addressed. As
discussed in appendix A, if the value of p is too high then the algorithm does not converge
accurately enough to the desired output level. On the other hand, if the value of p is too low,
the speed of the algorithm to adapt to find the lowest control effort, once convergence has

occurred, is slowed.

From Fig. 6 it can be seen that, when the algorithms are stable, convergence upon the
target output is achieved through all disturbance signal phaseshifts. The most noticeable
characteristic of the plots in Fig. 6 is that the PSC-FXLMS (green line) enters a limit cycle
for all values of G(z) # G(z). However, when the algorithm is stable it performs best out of all
of the algorithms, in terms of control effort. As previously discussed the control effort used by
each algorithm varies according to the phase of the disturbance signal and the value of G(z),
but on average the command-FXLMS uses the greatest amount of control effort, while due
to the small leakage factor the magnitude-controlled FXLMS and the APC-FXLMS perform
similarly and both bave lower control effort than the command-FXLMS, when G(z) = G(z).
As shown in appendix A, the minimum control effort achievable by the magnitude-controlled
FXLMS in theory is the same as that of the PSC-FXLMS, but due to the slow convergence
towards the minimum control effort, the magnitude-controlled FXLMS sometimes uses a larger
control effort than the PSC-FXLMS.

Tn cancellation mode, not shown here, all algorithms behave very similarly and so the results
are not shown. There is only one combination of magnitude and phase that can achieve
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complete cancellation of the disturbance signal in this mode, and thus all the algorithms
use the same amount of control effort to achieve this. Inaccuracy of the plant model does
not affect the amount of control effort used, but does affect the rate of convergence, output
accuracy and the stability of the system. In attenuation and neutral modes, however, the
algorithms once again behave differently. The command-FXLMS uses the greatest control
effort, while the PSC- and APC-FXLMS,which are identical in these two modes, use minimum
control effort unless plant model inaccuracies are present. The magnitude-controlled FXLMS,
although converges quickly on the desired output, takes significantly longer to converge on
the minimum control effort. This is because the leakage term has to be small to allow the
algorithm to converge accurately, but slows the adaption of the control signal phase. All
algorithms in these modes are highly stable.

Multichannel Simulations and Results

Fig. 7 shows the convergence of all five algorithms for an equal gain enhancement in a 2
channel (2 loudspeakers and 2 microphones) system, with a plant response described by (1).
The disturbance signals have been given slightly different magnitudes, as they would be in a
real-world system, and the phase of the disturbance signal changes from 7 — 3/4 = half way
through the simulation. The simulation has been conducted with a perfect plant estimate, such
that G{z) = G(z) where G(z) is symmetric. This allows a control effort comparison to be made
with no complications of instability or control effort increase due to plant estimate instabilities.
From figures 7(a) to 7(d), which all fulfil criteria {1} as discussed previously, the command-
FXLMS has the greatest control effort, closely followed by the APC-FXLMS. Also, as seen in
the single channel simulations, the PSC-FXLMS and the magnitude-controlled FXLMS have
the best control effort, which are approximately equal, but the magnitude-controlled FXLMS
takes a considerable amount of time to achieve the minimum control effort, even though the
output signals have converged to their respective target signals. It should also be noted that if
the APC-FXLMS was optimised, as discussed in appendix B, to the correct system gain and
was stable, it could also achieve the minimum control effort. However, even the algorithms
that achieve the minimum control effort for criteria {1} require a relatively large amount of
control effort to deal with the cross coupling of the plant. Tn contrast, it can be clearly seen,
from Fig. 7(e), that the SOSO-FXL.MS uses far less control effort than all other algorithms
to achieve the mean square output at both microphones. Only having to fulfil criteria {3},
allows the SOSO-FXLMS use less than a quarter of the control effort required, for example, by
the PSC-FXLMS to fulfil criteria {1}. In addition, due to the weak control signal constraint
on the algorithm, the convergence of the SOSO-FXLMS to the averaged target output is far
quicker than all other algorithms.

This saving in control effort is largely due to the parameters set in the simulation. If for
example, the disturbance signals and target signals were identical for both channels, then
the control effort required by the PSC-FXLMS and the magnitude-controlled FXLMS would
be the same as that for the SOSO FXLMS. This would, however, require a symmetric plant
response, as in the simulation, Even a slightly asymmetric plant response would make it much
harder for the algorithms that maintain criteria {1}, on page 2, to achieve their target values
and thus increase the control effort.
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Assuming that the system is linear and that adaption of the filter coefficients is slow enough,
the evolution of the system to deal with mulfiple frequency control, would not affect the
stability, convergence or control effort of any of the algorithms.

Algorithm Performance Summary

The following section surmmarises the performance of all five algorithms from the multi-channel
simulations conducted and, where relevant, from the single channel simulations.

Command-FXLMS

Ag can be seen from the plots in Fig.’s 6 and 7 the command-FXLMS has the most predictable
behaviour of all the algorithms. This is due to it’s simplicity, which results in it’s high
level of stability and was the primary reason that the command-FXLMS was chosen for the
prototype vehicle control unit. As discussed in the introduction, the command-FXLMS uses no
information about the phase of the disturbance signal and thus may have to use a large amount
of control effort compared to the other algorithms to achieve a desired output. However, as
suggested earlier, primary path analysis could be used as additional phase information to
filter the command signal and reduce the control effort expenditure. It is unknown whether
or not this approach will improve the control effort in practice, but until measurements of
the variation of the primary path over time can be taken the effectiveness of this method will

remain unknown,

PSC-FXLMS

As discussed in [1], the PSC-FXLMS operates excellently in attenuation mode, but as can
be seen from the plots in Fig.’s 6 and 7 does not possess the required stability to fulfil it’s
primary function at high enhancement gains. At these high gains even small errors in the
plant model phase can cause the algorithm to enter a limit cycle, and thus lose control. It is
unknown to what accuracy the plant model is required in practice, but it is suspected that
the continuously changing environment of a typical car journey will prove to extreme for the
algorithm to remain stable at these gains.

APC-FXLMS

It can be seen from Fig.’s 6(a) and 7 that the APC-FXLMS does require less control effort
than the command-FXELMS, and at a system gain as high as that required in the extremes of
automotive sound profiling the amount of control effort saved over the command-FXLMS is
"marginally reduced. This reduction in control effort saving brings into question the efficiency
of the APC-FXLMS, in terms of the amount of addition computational power that is required
to calculate the estimate of the disturbance signal.
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However, as discussed in appendix B, the APC-FXLMS can be ‘tweaked’, such that the control
effort savings are maximised. Such tweaking requires an estimate of the system gain, which
can be provided from measured and target spectra, so that the APC-FXLMS produces control
effort savings as high as the PSC-FXLMS, but with increased stability. Provided that the
estimated measured /target gain is reasonably accurate the algorithm will remain stable, but
until full real-world implementation of this version of the algorithm can be investigated the
stability of the algorithm is not certified, unlike the original version.

Magnitude-Controlled FXLMS

The magnitude-controlled FXLMS is still a relatively unknown algorithm. Unpredictably, as
shown in Fig. 6, it seems to be the most stable of all the algorithms, even more so than
the command-FXLMS, which converges slowly when experiencing large plant model errors.
However, the properties of the algorithms control signal prove to be a little strange, especially
when there is inaccuracy in the plant model. The leakage term that ensures that the algorithms
command phase aligns with that of the disturbance signal causes the control effort to oscillate
from maximum to minimum over time, as discussed in appendix A. This is not shown in any
of the figures, as it occurs over several thousand iterations. However, even though the average
control effort is still lower than the command-FXLMS, the magnitude-controlled FXLMS
would still require loudspeakers of an equal power rating to the command-FXLMS to cope
when the control effort is at a maximum.

SOSO-FXLMS

Although the SOSO-FXLMS can not be directly compared to the other algorithms in this
report, as it cannot fulfil both phase and magnitude output criteria, it is useful to see how a
sum of squared outputs approach compares to the best algorithms that use criteria {1}. The
simulations run, using the SOSO-FXLMS, show that the algorithm allows both considerably
faster convergence and a considerable reduction in control effort, due to the flexibility of the
constraint put upon the control signals. It would seem from this initial investigation of the
SOSO-FXLMS that, if a mean level across all microphones was acceptable within the car
cabin rather than individual levels and phases at individual microphones, this method far
out-performs all the other algorithms.

Conclusions

The aim of this report was to investigate the relative merits and failings of both new and
existing sound profiling algorithms, and there performance criteria, for use in a vehicle sound
profiling control unit. The algorithms were tested in terms of the amount of control effort used
and their stability to plant model phase errors. These two properties are of key importance to
the functioning of the control system. Obviously, the stability of the system dictates whether
the algorithm can retain control or not. The effect of control effort is much more subtle and is
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a measure of how hard the control system has to work, proportional to the power required to
be delivered by the control loudspeakers. The amount of control effort can vary substantially
and is dependent on the relative phases of the disturbance, control and target output signals.
Thus, depending on whether or not the algorithm has enough information on these signals will
affect the algorithms ability to minimise the amount of control effort used to achieve a given
output. Whether an algorithm requires a large amount of control effort or not can effect the
hardware that is required in the control system and it is thus advantageous to keep the control
offort to a minimum. The algorithms were tested in simulations that model the extremes of
sound profiling in a multichannel control system.

From the simulations conducted in this report it can be concluded that for fulfilling perfor-
mance criteria {1}, i.e. where both the phase and the magnitude of the output signal are
relevant, the APC-FXLMS seems the most appropriate algorithm to be nsed in the control
umit. The algorithm, in it’s current form, does not decrease the required control effort by
much compared to the command-FXLMS, but with a degree of tweaking this control effort
saving could be increased. More importantly, the only algorithm that provides control with
less control effort is the PSC-FXLMS, which has been proven to not be stable enough at the
high system gains required for the sound profiling in the C-MAX.

Tt has been shown that if the performance criteria is changed, such that only the sum of
squared outputs is considered rather than individual signal properties, as in criteria {3}, great
control effort savings using the SOSO-FXLMS algorithm can be achieved. The important
question to ask, however, is whether or not an average sound field is acceptable within the
car cabin. The answer to this question is subjective in nature and it is important that tests
are carried out to discover the impact, if any, that an averaged sound field has on the sound

quality within the car.






Appendix A

The Development of A
Magnitude-Controlled Adaptive

Algorithm

In this appendix two new algorithms based on the learning algorithm known as Oja’s Rule [3],
taken from principal component analysis, are proposed to be used to update the adaptive filter
weights of a feedforward control system such that any predetermined value can be obtained
under the performance criteria {2} and {3}, with the smallest amount of control effort possible.
Both algorithms proposed converge on the target output in a different way to previous FXLMS-
hased algorithms, by having a positive convergence coeflicient, which makes the algorithm
numerically unstable, but by using other controlling terms the algorithims stability can be

retained.

The “Oja’s Rule” Algorithm (Oja’s LMS)

This algorithm was originally designed to be used for the principal component analysis of
neural networks, in which it was stated by Hebb [4] that “ when an azon of cell A is near
enough to excite a cell B and repeatedly and persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is incrensed”. This statement gave birth o the Hebbian learning algorithm,
which describes how the output of an axon, y(n}, changes over time, n, with an input firing
the axon, z(n), by changing a weight vector, w, which describes the transter function between
the input and ouiput, such that y(n) = wx(n). The weight vector adaption is thus described
by the equation

w(n+ 1) = w(n) + A{n)ly(n)x(n)] (A1)
where f(n) is a step-size parameter. If left unchecked such a system is boundless and numeri-
cally unstable, which lead to the work of Oja [5], who proposed a normalised Hebbian rule, in
which the weight vector is normalised at each iterative step, thus keeping the algorithm from
going unstable. After normalisation and considering only the first order terms this changes

18
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(A.1} to

w(n+1) = w(n)[L — B(r)y*(n)x(n)] + B(n)ly(n)x(n)] (A.2)
It can be seen from (A.1), that the Hebbian rule bears a very close resemblance to the LMS
algorithm, used in feedforward active control, except for the sign of the step-size parameter. It
was further noticed that Oja’s rule could in fact be used for the adaption of a weight vector to
produce a desired output from a sinusoidal input signal and thus achieve active sound profiling.
This, however, requires a small alteration to {A.2} as the output required is now equal to the
difference between the output from the adaptive weights and an additional disturbance, d(n),
such that y(n) = d{n) + wl(n)x(n). We now rewrite (A.2) as

win+ 1) = w(n)[1 — apu(n)u(n)] + ay(n)x(n) (A.3)

where the step-size, §(n}, has been replaced with the convergence coefficient «, to conform
with active control notation. In addition the second term in the square brackets, that prevents
the algorithm from going unstable and determines to which value the algorithm will finally
converge upon, has been changed to now be dependent upon the control effort term u™ (n)u(n),
where the output from the weights u(n) = wT(n)x(n), and p is a parameter which determines
the value of the final output y(n). By controlling the value of p and the sign of a the
algorithm can be made to adapt the weights such that the disturbance signal is either cancelled,

attenuated or enhanced.

Determination of Control Effort Parameter p

The value of p is chosen such that y(n) will converge to the same amplitude as a desired signal,
known as the command signal, ¢(n), such that criterion {2} is satisfied. Thus it was initially
proposed that the control effort parameter were to be scheduled according to the equation

A 1
= P elm)l = Tyl

where ¢ is a constant that determines the rate at which p changes. Tn practice the magnitudes
of ¢(n) and y(n) can be obtained from taking a running average of the two signals. As can
be seen from (A.4), as |y(n)| tends to |c(n)| the value of p increases and thus slows down the
adaption of the weight vector, hence the algorithm in theory converges towards the desired
command amplitude, as in Fig. A.l. It is still important, however, to choose a suitable value
for p/. For example if ¢’ is too small when in enhancement mode (i.e. for positive o, negative
a would be required for attenuation), as shown in Fig. A.2, the output exceeds the command
amplitude. While, if p' is too large when in enhancement mode, ag shown in Fig. A.3, the
output never achieves the command amplitude.

(A.4)

In some cases, even when the value of o’ seems to be chosen correctly, this can sometimes
result in a sudden increase of the controlling term as |le(n}| — |y(n)|| — 0, which results in a
jump of the weight vector values, which causes the output y(n) to bounce along the desired
amplitude of ¢(n), as shown in Fig. A.4. To fix this problem a small constant can be added
to the denominator in {A.4), which stops p becoming to large. However, this then Himits the
accuracy to which the output can achieve the desired command amplitude, and in effect is the
same as scheduling p to too large a value.
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Figure A.1: Enhancement of output signal amplitude lu(n)| to amplitude of ¢(n) with |d(n)| =
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Figure A.4: Enhancement of output signal amplitude |ly(n)] to amplitude of c(n) with |d(n)| =
1, le(n)] = 2, @ = 0.001 and p’ = 0.005.

Unfortunately, the choice of p’ is not a simple task and depends on many factors. From
(A.3) we can sec that the adaption of the weights is not only dependent on the value of
the convergence coefficient and the gradient of the cost function term, but also on p and
u(n). Unlike algorithms such as the command-FXLMS, ANE-LMS and PSC-FXLMS [1],
Oja’s algorithm does not use a pseudo error, which is the difference between the output and
the desired signal, to produce the cost function surface. This has the benefit that it uses a
minimum amount of control effort to produce the desired output, but also means that the
gradient term has no direct correlation to the control effort. This means that if |d(n)| is large,
even if |¢(n)| is large, the gradient term will still be large, even though |u(n)| is small, therefore
a large valiie of o is required to control the algorithm. Oppositely, if [d(n)| is small and |¢(n}]
large, then initially the gradient is small, and thus requires a small value of ¢ such that the
algorithm does not stop adapting the weights to soon. It therefore seems that to select the
correct value of ¢/, knowledge of the disturbance signal amplitude is required. Furthermore,
the use of large values of «, to increase convergence speed, further decreases the tolerance of

an inaccurate scheduling of p/.

By running simulations over a range of values for all parameters, it can be concluded that the
sensitivity of scheduling p to achieve the desired output amplitude has to be so precise that
practical implementation of the algorithm is highly unlikely to work effectively.

The magnitude-controlled FXLMS

Continuing from the work presented on the use of Oja’s rule [5], for the update of an adap-
tive filter for active sound profiling, this section shows the creation of a new FXLMS based
algorithm, known as the magnitude-controlled-FXLMS, which also at times uses a positive con-
vergence coefficient to achieve a desired output. The resulting algorithm is presented along
with results of simulations showing the relative merits and failures of the algorithm. The use
of the algorithm is shown as both a single channel and multichannel/multi-frequency active
sound profiling controller, which is used exclusively as a frequency domain adaptive algorithm.
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The Single Channel Frequency Domain magnitude-controlled FXLMS

The magnitude-controlled-FXLMS algorithm was developed to overcome the problems experi-
enced by Oja’s LMS algorithm. The first of these was to remove the need for an effort weighting
parameter, who's value proved very difficult to determine to provide gooed convergence. In-
stead, it was decided that the convergence would be controlled by a varying step-size which
would be dependent on the difference between the command magnitude level, C' = |¢(n})|, and
the current output magnitude level, |y(n)], complying with criterion {2}. This calculation of
the output magnitude uses a moving time average, which requires a buffered output signal.
The presence of this buffer removes any computational load advantage that a time-domain
LMS approach may have over it’s frequency domain counterpart, as updating the filter weights
on a sample by sample basis would require a large degree of computational power. For this rea-
son, it was chosen that the algorithm would be operated exclusively in the frequency-domain,
which when controlling multiple tones will increase the computational efficiency. This requires
the implementation of both an FFT and an IFFT, to transform the ‘real-world’ signals in and
out of the frequency-domain. The FFT is calculated every N samples where N is the length of
the FFT and is also the minimum number of samples required to construct one period of the
lowest reference frequency. This means that the weights are only updated every N samples,
but is an acceptable update rate to retain control. The resultant N point spectrum is then
folded and normalised to give a useful N/2 point spectrum. The complex values are then
taken from the spectral bins corresponding to the reference frequencies in question. For this
reason, the wavelength of the reference frequencies chosen must be an integer multiple of the
sampling frequency, [, ie 1/f, must be an integer value, where f;, is the normalised frequency.
Using these complex values, the magnitude of each output signal from each spectral bin can

thus be determined using

ly(n)l = V/Re{y(n)}? + Im{y(n)} (A.5)

In addition to this initial meodification, the output magnitude is used to normalise the the
output signal. This ensures that the step-size does not become to large at high output levels
even though the required control signal level to achieve the desired output may be small, due
to C' ~ |y(n)|. Thus the update equation for the control signal for a single frequency is given

Y )
C —ly(n .
u(n+1) = u(n) + « ( )] ) Gy (n) (A.6)
where, assuming that the reference signal frequency has a magnitude of unity and has no
phase relative to itself, u(n+ 1) and u(n) are the new and old complex control signal values, o
ig the convergence coefficient, G is the complex plant response at the reference frequency and
y(n) is the current complex output signal. In this section it will be assumed that all variables

are complex, and are represented in the frequency-domain.

To reiterate, the alm of these algorithmss is to produce the target output with the minimum
amount of control effort possible. It was discovered, however, that if the algorithm has already
converged upon an initial command level, i.e. w(n) # 0, and the disturbance signal phase is
then changed, the minimum control effort is no longer retained, as shown in Fig. A.5{a}. This
effect occurs when the algorithm is in enhancement or attenuation mode, as both these modes
have multiple solutions, to combinations of control signal phase and magnitude, to reach the
desired output level. This increase in control effort occurs because the initial sum of the control
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Figure A.5: Convergence of the magnitude-controlled-FXLMS in enhancement modes with an
additional phase shift of 7/8 in the disturbance signal at n = 1000. |d(n)| = 10, C = 15,
o = 0.1, fn = 1/16, N = 16 and G(2) = G{(z) = 1. The dashed line shows the minimum

control effort achievable.

signal and disturbance signal, after the phaseshift, is no longer equal to the desired output
level, This directly affects the gradient term of the update equation by increasing the value of
the step-size. To correct for this phaseshift, only the phase of the control signal needs to be
altered to regain the desired output level with the minimum control effort, yet the magnitude
term also increases. Hence, by the time the phase has reached the value at which the desired
output is achieved, the magnitude of the control sigral is no longer at it’s minimum value.
Expectedly, the degree to which the control effort exceeds the minimum value is dependent
on the size of the disturbance phaseshift. It can be seen from Fig. A.5(b) that this maximum
control effort occurs when the phaseshift equal to 3/4 .

It was realised that to fulfil the convergence criteria with a minimum of control effort, as with
Oja’s LMS, a leakage factor term had to be introduced info the algorithms update equation.
Thus becoming

uln+1)= (1 - pju(n) +« (M) G*y(n) (A7)
ly(n)]

where p is the leakage factor, which can either be a constant or a value dependent on another
variable such as control effort. This leakage term subtracts from the value of the weight, thus
allowing the gradient term to never reach zero and allowing the algorithm to cycle through all
values of magnitude and phase to find those that correspond to the minimum control effort. In
addition it was decided that the leakage term would be made to be dependent on the difference
between the command level, ¢, and the output level, |y(n}|. This puts less constraint on the
choice of the constant p, as the leakage term is now self-regulating and the output signal
normalised, thus the update equation becomes

) u(n) + o (O—‘;(lf%) G*yn) (A.8)

wln+ 1) = (blm
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Figure A.6: Convergence of the magnitude-controlled-FXLMS in all four sound profiling
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effort achievable.
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Figure A.7: Convergence of the magnitude-controlled-FXLMS in enhancement mode for dif-
ferent values of p. |d(n)| =1, C =2, @ = 0.1, f, = 1/16, N = 16 and G{z) = G(z}. The
dashed line shows the minimum control effort achievable.

Fig. A.6 shows the convergence of the magnitude-controlled-FXLMS in all four active sound
profiling modes. It can be seen from the plots that the algorithm possesses a dual convergence,
once for the output and once for the control effort, i.e. the control signal will still continue to
converge towards the minimum control effort without affecting the output, once the output
has converged to the target level. By increasing the value of p the rate at which the algorithm
converges on the minimum control effort is increased, while the accuracy to which the output
can achieve to that of the target output is reduced, which can be seen from Fig. A7 for
p = 0.001 and 0.0001 in enhancement mode. In addition the rate at which the algorithm
converges on the minimum conirol effort is dependent upon the degree of enhancement or
attenuation, i.e. the greater the value of C/D the longer the algorithm takes to achieve
minimum control effort, even though the desired output may have been achieved already.

The Effect of Plant Model Errors

The magnitude-controlled-FXLMS at an initial glance seems to be governed by the same
parameters for stability as that of the standard FPXLMS. This includes the condition that for
stable convergence the plant model and physical plant must be within £+90° phase of each
other. As shown in Fig. A.6, once the algorithm is allowed to converge fully, the control
effort required to achieve the desired output is at a minimum, provided the plant model is an
accurate estimation to that of the physical plant, i.e. G(z) = G(z). As with all other FXLMS
hased algorithms, if G(z) # G(z) then the control signal will not be perfectly in or out of phase
with the disturbance signal and the control effort required for convergence will increase above
the minimum, as shown in Fig. A.8. However, errors in the plant model also cause another
unwanted effect in the control effort. If the phase error and system gain, C/|d(n)|, are large
enough, once the control effort has converged on the minimum value the filier weights continue
to adapt. This results in the perpetual increase of the control signal phase, which causes the
control to increase once more, see Fig. A.9. As long as the control signal is not adapting too
quickly, this does not affect the output signal, which remains converged and stable. The rate
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Figure A.8: Convergence of the magnitude-controlled-FXLMS in enhancement mode for an
inaccurate plant model. |d(n}| = 10, C = 15, o = 0.1, p = 0.001, fp = 1/16, N = 186,
G(z)/G(z) = »~' ~ 22°. This can be compared to the case where G(z) = G(z) in Fig.
A.6{d). The dashed line shows the minirmum control effort achievable.

at which the control effort oscillates is dependent on the value of p, the system gain and the
degree of plant model phase error.

The Multichannel Channel Frequency Domain magnitude-controlled FXLMS

The multi-channel version of the magnitude-controlled-FXLMS is essentially the same as that
of the single-channel version, however when changing the update equation from single- to
multichannel, care needs to be taken when changing the scalar variables in (A.6) to vector
and matrix variables. This applies specifically to the normalisation of the output vector, yv(n),
which must perform an element-wise division with the vector of output magnitudes. This
can be represented instead in matrix form, by taking the inverse of a diagonal matrix who’s
non-zero elements contain the magnitudes of the output signals, such that

ly{n)) 0 -~ 0
v 0 |yaln) : (A.9)
: 0
0 e 0 |ye(n)l

where k is the number of sensors used in the system. The update equation is now written for
a multichannel system as

u(n+1) = (1 - |p[C - ¥]™Y|) u(n) + ofC - Y]Y'G "y(n) (A.10)

where u(n + 1) and u{n) are the new and previous complex control signal vectors, C is a
diagonal matrix of command level values of the same form as Y and G is a matrix of complex
plant model responses between sources and sensors, as shown in Fig. 2 for a 2 source/2
sensor system. For the multi-channel simulations shown in this report the physical plant was
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Figure A.9: Wandering effect of the magnitude—controAlled-FXLMS in enhancement mode for
ld(n)| =1, C =5, fn=1/16, a=0.1, p=0.001 and G(z)/G(z) = 272,

generated using the same format as on page 259 from Flliott’s Signal Processing for Active
Control, which is given by

A e—ikin !ie—jkllz

Gliw) = | * (A.11)
jw) = .
Ae_jkhl _A_eﬁjklzz
251 lag

In this report A is set equal to 1. Although this frequency-domain approach to the plant does
not give any transient response information to the plant, it is still a valid approximation of

reproducing the physical plant.

Assuming the algorithm is stable and the system is well-defined, i.e. the number of sources is
equal to the number of sensors, the magnitude-controlled-FXT.MS has the ability to produce
any output at any of the sensors and enables the soundfield to be tailored to a specific shape,
thus satisfying criterion {2}, as shown for two different tones in Fig. A.10. It can be seen
from the figure that the algorithm is perfectly capable of performing active sound profiling on
such a 2-by-2 multichannel/multi-frequency system. In addition, the figure shows two plots
for different values of p. It can be clearly seen from these two plots that, as discussed earlier,
the greater the value of p the greater the inaccuracy of the convergence to the desired output.

Minimum Control Effort with No Phase Criteria

It can be shown that the minimum effort achievable by the magnitude-controlled FXLMS for a
given target; output to satisfy criterion {2}, both for single channel and multichannel systems,
is equal to the minimum control effort by an algorithm that satisfies criterion {1}, but possesses
the ability to schedule the phase of the command signal to that for the disturbance signal’s,






28

wn

Output magnitude [y{n)|
'S

Output magnitude [y(n)|
o

()
w

1]
n

—_
—_

o
(=]
N

0.5 1 1.5 2 0 0.5 1 15
jteration n % 10° iteration n %10

o

(a) p=0.001 (b) p = 0.0001

Figure A.10: Convergence of the multichannel /multi-frequency magnitude-controlled-FXLMS
:n enhancement mode for two different leakage factors of p. di =[7 5], dg = [6 4], ¢1 = [4 6],
co=[57), fi=11z fo=2Hz fs = 32 Hz, N =32 and G(z) = G(z), where I11 = I3 and
ly9 = lp1 i.e. a symmetric plant. The vectors d;, ds, c; and ¢z contain the non-zero elements
of the disturbance and command signal levels, respectively for each reference frequency.

as achievable by the PSC- and APC-FXLMS3 algorithms [1]. This can be shown analytically
by considering a 2 microphone /2 loudspeaker multichannel single frequency system. Let the
complex output signal equal
y(n) = d(n) + GHu(n) (A.12)
which, when both the output and control effort have converged, is equal as a steady state
solution to
¢ =d -+ Glugy (A.13)

If we only consider the solution to criterion {2}, then we are no longer concerned with the
phage of the command signal, thus we only search for the solution to

le| = |d + G™uop| | (A.14)

If we now consider the case where we satisfy criterion {1}, where the phase of the command
signal is now relevant, we can write (A.13) in terms of magnitude and phase, such that

Cred®a ] Dqeita (e den (Gype JPo12 {7, e
CoelPez | — Doeidu - Ggred%en GogeiPa22 Upeitus

Tf the algorithm has the ability to schedule the phase of the command signal to that of the
disturbance signal’s then we can assume that ¢e1 = ¢a1 and ¢ea = a2, and similarly that

(A.15)

Z[G11U1B+j(¢“1—¢'g“) + G12U28+j{¢u2*¢>312)] = et (A.16)

and
4[@21U16+j(¢u2“¢czl) + G22U26+j(¢u2—¢622)] = hea (A.17)
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Both sides of (A.15) now have the same phase, which means that the magnitude of the sum
of all terms in (A.15) is equal to the sum of all magnitudes of the terms in (A.15). Therefore,
if all phase information is ignored from (A.15) then the magnitudes of uep for criteria {1}
and {2} are equal, and thus the control efforts are the same. This proof shows that instead of
using an algorithm that tries to predict the phase of the disturbance signal, like the PSC- and
APC-FXLMS, an algorithm such as the magnitude-controlled FXLMS could be used instead.
Which could eliminate the need for an internal model [1] and an FFT to conduct the algorithm
in the frequency domain. Although, the magnitude-controlled FXLMS still requires a running
time-average to calculate the magnitude of the output signal, which would probably show that
the computational saving is so small to be of no consequence.

Conclusion

This report proposes two new algorithms for use in a feedforward active sound profiler. It
was shown that from the two algorithms, the magnitude-controlled FXLMS could be suitable
for both single- and multichannel control, while Oja’s LMS required adjustment to such a
fine degree as to be useless. In addition it was found that the magnitude-controlled FXLMS,
designed to satisfy only magnitude criteria at the error microphones, uses the same steady-
state control effort as a magnitude and phase criteria algorithm if the command signal phase is
equal to that of the disturbance signal. It can be seen in this short report that the magnitude-
controlled-FXLMS is an algorithm that is capable of performing multichannel active sound
profiling and by far out performs the Oja-LMS algorithm, discussed in the first section of this
report. However, it is unclear how the algorithm will perform in real-time experiments and
compare to other active sound profiling algorithms. It is suspected that the success of the
algorithm will be dependent on whether or not applications are tolerant to the algorithms
output inaccuracy and or slow convergence to the minimum control effort, which may prove
to be useless in the reduction of dependence on the power rating of the loudspeakers chosen
for the control system.






Appendix B

The Optimised APC-FXLMS

Tt has been previously shown that although the APC-FXT.MS has increased stability to plant
model phase errors over the PSC-FXLMS, it does so at the expense of increased control ef-
fort. In fact in many cases the control effort advantage that the APC-FXLMS has over the
command-FXLMS can be marginal. This raises questions of whether the additional com-
putation that is required for the APC-FXLMS is worth it or not. It has been discovered,
however, that the APC-FXLMS can be slightly altered to produce much improved control
effort properties.

The coefficient ‘2’ in (7), ensures that there is a smooth transition from enhancement to at-
tenuation, where the APC-FXLMS acts like the PSC-FXLMS in attenuation mode. However,
the APC-FXLMS can be altered such that the coefficient is changed to 1 + 3, and thus (7)
becomes R

D b= 1+8
c+D'* 1+¢/D

where 8 is the predicted enhancement gain, C/D, based on measured and target data. From
(B.1), it can be seen that once the algorithm has converged -and assuming that the plant
model and estimated enhancement gain are accurate, the numerator and denominator of the
fraction will be equal and thus the command and disturbance phases will be equal and the
control effort will be a minimum. Interestingly, when the plant model is not accurate the
algorithm has almost the same stability as when using the original phase scheduling in (7).
This stability is retained becaunse the value of D rises when the plant model is inaccurate and
thus the scheduling of ¢, is reduced. As with the original algorithm, when ¢ # ¢, the control
effort increases above the minimum, which will increase as the actual enhancement gain moves
towards neutral mode or to gains above that predicted.

$o = (1+ ) ” (B.1)

There is, however, a hidden form of instability, which is dependent on the inaccuracy of the
predicted enhancement. If the predicted gain enhancement is much larger than that of the
actual enhancement gain then ¢, can become very large and, although it is not guaranteed,
can send the algorithm into a limit cycle. Although this instability only arises when the
enthancement gain estimate is extremely inaccurate. Albeit, if the actnal enhancement gain is
within close enough proximity of the predicted enhancement gain then the APC-FXLMS will
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perform like the PSC-FXLMS but with far superior stability and achieve gains in excess of
the PSC-FXLMS’ stability.






Appendix C

Geometry of a Sound Profiling Cost
Function Surface

The cost function surface is a geometrical representation of a desired cost function with respect
to the values of the adaptive filter weight coefficients. In the case of single channel sound
profiling problem only two filter weights are required, which can be represented by a single
complex weight value. As only two variables are required to represent all the filter weights
we can plot the cost function as a 3-dimensional image with the x- and y-axes representing
the real and imaginary components of W, and the z-axis as the cost function. In a standard
active noise control system that use the FXLMS algorithm to cancel the disturbance signal,
tgnoring the effect of the plant the cost function for a single channel, single frequency system

is given by
J=¢e*e=(d+u)"(d+u) (C.1)

where e is the error signal between the measured output and the desired output, d is the
disturbance signal, u is the control signal and ¢ is the command signal, where all variables
are complex and steady state and { }* denotes the complex conjugate. The resulting cost
function surface is hyper-parabolic and is shown in Fig. C.1. As can be seen from Fig, Cl1,
this surface only has a single point that represents the minimum value of the cost function.
This means that the algorithm, which will only come to rest when the gradient of the surface
is equal to zero, will always find filter weight values that correspond to the minimum value of
the cost function, provided satble convergence.

In the case of a sound profiling system, as discussed at the beginning of the report, there are
several output criteria that can be fulfilled by such a system. The choice of a specific output
criteria can alter the position and shape of the cost function surface, which can in turn change
the location of the minimum value of the cost function. In the case of criteria {1}, where both
the magnitude and the phase of the output signal are defined, the shape of the cost function,
although moved, remains hyper-parabolic, with a single minimum, the same as the active
noise control cost function. However, if criteria {2} is chosen, where only the magnitude of
the output signal is defined, but with no concerns for the phase of the output, the shape of
the cost function surface is no longer hyper-parabolic. For criteria {2} the cost function for a
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Figure C.2: 3-dimensional plot of the cost function surface for magnitude controlled active
sound profiling, where |¢| = 2 and |d| = 1.

single channel can be described as
J=¢*=(ld+u| - |e))? (C.2)

where the complex conjugates are no longer necessary as all values are real. The cost function
described by (C.2) is plotted in Fig. C.2. As can be seen from the figure, the cost function
for criteria {2}, although shown on a logarithmic scale, is no longer parabolic with a single
point minimum, but now has a minima which is ring shaped. All points on this ring are of
equal value and can thus be the solution to criteria {2}. This geometry of the cost function,
is what makes the idea of criteria {2} so appealing, as the ring minima has the advantage of
being obtained via any number of combinations of phase and magnitude. This reduces the
constraints on the algorithm both in terms of convergence time and stability. However, the
shape of the cost function also brings about an inherent problem when trying to achieve the
minimum control effort. As all points on the ring are of equal value, once a point on the ring
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Figure C.3: 3-dimensional plot of the cost function surfacefor magnitude controlled active
sound profiling with control effort, where ¢ =2, d=1 and p=0.1.

is reached a standard gradient descent algorithm will stop adapting, as all points on the ring
have zero gradient. This means that although one solution may be achievable by using the
minimum amount of control effort (defined by the point on the ring closest to the origin),
unless the algorithm has already achieved this value, it will never be able to. The solution to
this problem is to some how distort the cost function surface such that it only has a single
minimum, which is located at the point of minimum control effort.

One way of changing the shape of the cost function is by introducing an additional term to the
cost function in (C.2). If this term was proportional to the control effort then the minimum
control effort and the minimum of the cost function would be co-located. An example of such
a cost function can be derived by simply adding a term to (C.2), as given by

T = (d+ul - ) + pu*u (C.3)

where p is known as the control effort parameter, which defines the contribution of the
control effort term «*u to the cost function. If the new cost function is now plotted, as shown
in Fig. C.3, it can be seen that there is only one point that defines the global minimum.
Provided the algorithm is given enough time to converge upon the global minimum, using
this cost function both the target output and the minimum control effort will be achieved.
Unfortunately, this is not entirely true. By distorting the shape of the cost function surface,
by the addition of the control effort term, the value of the filter weights at the minimum are
also distorted. This means that when the algorithm reaches the global minimum of the cost
function surface the valie of the weights no longer exactly produce the target output. The
contribution of the control effort term in (C.3) depends on the distance from the origin in the
weight plane and thus, unless the amount of control effort required to achieve control is equal
to zero, which would apply no control, the cost function minimum will never exactly result
in the production of the target output., However, the difference between the optimum filter
weights, those that produce the target output, and those corresponding to the minimum of
the cost function can be minimised. This is done by altering the value of the control effort
parameter, p. By making the value of p small the contribution of the control effort term to
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Figure C.4: Contour plots of the cost function surface. The two figures show the difference in
surfaces for different values of control effort parameter p.

the cost function is decreased and thus the distortion and the error from the target output
minimised. However, by decreasing the contribution of the control effort term, the gradient
of the cost function surface towards the global minimum is reduced, as shown in Fig.C.4. It
is clear to see from the figure that the plot of p = 0.01, Fig.C.4(a), has contours that are
almost all circular, implying a very small amount of tilt to the cost function surface. In Fig.
C.4(b), however, there is an increase in banana shaped contours that implies a greater tilt
to the cost function surface, as in Fig. C.3. As discussed in the main text, with regards to
the leakage term in the magnitude controlled FXLMS algorithm, this slows the convergence
of the algorithm to the global minimum. The algorithm may have converged to the ring of
equal output magnitude, but if the gradient across the ring is small the algorithm will descend
slowly to the global minimum. This poses the question “what is more important speed or
accuracy?” The answer is probably a balance between the two, but this will depend on the
application and environment of the control system.






Appendix D

MATLAB Simulation Programs

The following section gives a brief description of the MATLAB programs used to generate the
results and figures contained in this report.

allFDSCSF.m

This program simulates the active sound profiling of a single-channel single-frequency system.
Some of the inputs include: disturbance signal frequency and amplitude, command signal
amplitude, plant phase response, plant model phase response, selection of algorithms to use,
convergence coefficient value and simulation run length. The program can output various
plots including time series of the output signal magnitude and control effort.

all2by2SCFD.m

This program is the multichannel equivalent of allFDSCSF.m. It simulates a multichannel,
single-frequency for a 2 sensor/2 source system. In addition to the allFDSCSF.m the locations
of the sensors and sources can be input as 2-D coordinates, which then generates the corre-
sponding plant response matrix between sources and sensors for an anechoic environment.
The program outputs plots of both combined and individual output magnitudes and control

effort.

all2by2MFFD.m

This program is the same as all2by23CFD.m, except it simulates the control of two frequencies
instead of one.
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ASPcostfunction.m

This program plots the 3-D cost function surface of a complex filter weight for active sound
profiling. Inputs include: disturbance magnitude, command magnitude, choice of performance
criteria and value of control effort parameter. The program outputs a series of figures that
show the cost function swrface in a manner different ways including 3-D mesh plots and 2-D

contour plots.

ojaLMS.m

This program simulates the active sound profiling of a single-channel single-frequency dis-
turbance signal using the Oja’s LMS algorithm, as described in appendix A. Inputs include:
disturbance signal magnitude, command signal magnitude, reference frequency, sampling fre-
quency, convergence coefficient value and control effort parameter.
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