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ABSTRACT

Periodic structure theory is concerned with the analysis of arrays of identical structural ele-
ments joined together end to end and/or side by side. This paper shows how it can be com-
bined with the finite element method to study both free and forced harmonic wave propaga-
tion in uniform rails, bars and structural stiffeners. It first reviews the fundamentals of mono-
coupled periodic structure theory by using it with a simple finite element to analyse longitudi-
nal wave motion in a uniform bar. Free and forced harmonic motion of both infinite and finite

bars are considered.

At high frequencies the cross-sectional distortion of the bar is allowed for by sub-dividing a
narrow slice of the bar into finite elements. Each slice then becomes a periodic element in a
multi-coupled structure to which the author’s mutti-coupled theory of free wave propagation
can be applied. This theory is reviewed and formally extended to deal with forced vibrations
of both infinite and finite multi-coupled systems. Applying it, one can use Just a single narrow
slice to predict accurate wave numbers or decay factors of propagating or evanescent waves
in bars of any uniform cross section and length. The size of the matrices involved in the cal-
culations depends only on the number of coordinates defining the cross-sectional displace-
ments of the single slice and not on the number of slices in the system length. For this reason,
the slices may be extremely narrow. Numerical problems permitting, the narrower they are

the more accurate the results.

Computed results are presented for the wave numbers and decay factors of free in-plane wave
motion in a thin uniform flat plate of finite width. Up to six simple finite elements were
employed in the single slice. The response of this plate to in-plane harmonic forces is also
examined and the influence of evanescent wave motion is briefly considered. Comparisons
are made with results from simple engineering theories (the Euler-Bernoulli and Timoshenko

beam theories) and from the exact theory of elasticity.
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1. INTRODUCTION

Periodic structure theory (PST) in conjunction with finite element analysis (FE) has now been
used for a nu ber of years to study harmonic wave propagation along uniform bars, rails and
open-section structural members. As these structures are usually very long and the wavelengths
of their high frequency vibrations are very short, the usual type of FE calculation for their free or
forced vibrations requires very many elements for accurate response levels to be computed . This,
in turn, can lead to enormous global stiffness and mass matrices and very long computation

times. The size of these is greatly reduced when periodic structure theory is invoked.

The history of this process can be traced back to 1973 when the present author published
his general theory of wave propagation in periodic structures {11. As implied by this phrase, the
theory is concemed with wave motion, rather than with the normal modes of vibration for which
FE methods are frequently and very conveniently used. The first step in the PST approach is to
find the *propagation constants’ of the wave motion across a single ‘periodic element’ of the sys-
tem. The periodic element is the fundamental structural unit which is repeated periodically and
identically throughout the whole structure. A propagation constant is the phase difference or
exponential decay factor across the element when certain time-harmonic ‘characteristic waves’
are progressing. If there are N, periodic elements in a unit length of the structure, the wave num-

ber of the motion is N, times the propagation constant.

An FE method to find wave numbers of waves in long uniform bars of arbitrary cross sec-
tion was first used in 1973 by Aalami [2], but this did not involve PST. In essence, he found the
frequency of a bar vibrating harmonically in a sinusoidal mode of prescribed wave number. A
single half-wavelength of the bar was subdivided over its cross section into a finite number of
solid elements. Across each of these the displacements varied linearly. The stiffness and mass
matrices developed for these were functions of the given wave number (and hence of frequency)

so the basic elements in this case would now be classified as spectral finite elements (SFE).

Aalami proceeded to set up the stiffness and mass matrices for the whole system. The
cross-sectional deflection and distortion was defined by N¢ displacement co-ordinates, so the

order of these matrices is Ne x Nc and the corresponding equations of harmonic motion led to an
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eigenvalue equation of order Nc x Nc. This yielded Nc frequencies at which waves with the
given wavelength could propagate. Dispersion curves were generated for several different
structural sections and showed (not unexpectedly) that an increase in the number of elements

over the cross section leads to increasing accuracy in the computed frequencies.

Note that Aalami’s method only finds the frequencies corresponding to prescribed
wavelengths. It does not find wavelengths or wave numbers for given frequencies, as can be done
with the PST formulation. Moreover, it cannot find the real frequencies of evanescent waves
which have complex wave numbers, simply because these wave numbers cannot be specified in
advance. Nor can it accurately predict the frequencies of the better known evanescent waves

which decay in space without spatial oscillation.

Now these evanescent wave-types had long been known to exist in periodic structures,
their wave numbers having been computed for many different types of structure by penodic
structure analysis. However, an element of unrealism hangs over such studies since real
engineering periodic structures never exist in practice. On the other hand an FE model of a
uniform bar or rail can represent a truly periodic structure if the bar is divided into equal slices
(of length 81, say), each of which is subdivided identically into solid finite elements. Since all
slices are identical and are coupled identically to their neighbours, each slice clearly constitutes
a structural periodic element. Wave motion along this system can be studied by invoking
Floquet’s theorrem for periodic structures (see Brillouin [3]) which relates the Nc displacement
co-ordinates {g;} on the left-hand face of the slice to those on the right-hand face, {gr}. The
theorem simply states that when a free wave passes through a periodic structure {g.} = {gr}e*.
A is the propagation constant of the motion and is the unknown found by PST. When it is purely
imaginary ( = ig, say) it represents the phase difference between the motions at the two ends of
the slice. With N, elements in a unit length of the structure ( N = 1/8L) the total phase
difference between the motion at each end of the unit length is N g and this, of course, is the
wave number £ of the wave motion. {q.} and k¥ = Mg completely define the deflections and
distortions of the whole periodic element (the stice). Global stiffness and mass matrices can be
set up and used in an eigenvalue calculation to determine £ for a given frequency. This is the

essence of PST which can be usefully combined with FE analysis to solve directly for all possible
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wave numbers for a given frequency. It extends Aalami’s method to include evanescent,

non-propagating waves in addition to the sinusoidal propagating waves.

Different methods have been used over the years to set up the relevant dynamic equations
for different types of periodic element. They include closed-form receptance solutions for
beam-type elements (e.g. rails on sleepers) [5], FE analyses of stiffened plate and shell
configurations [6,7, 8} and a simple Rayleigh-Ritz method for a beam element [9] . In all of
these studies, the periodic length was dictated by the given structural design, e.g. the
sleeper-spacing beneath the rail or the spacing of the stiffeners on a plate. But when the rail, bar
or stiffener can be considered to be unimpeded by supports and the PST approach is used, the
periodic length may be made as small as one wishes, within limits. PST only ‘operates’ ona
single element and the number of FE slices in a unit length of the member does not influence the
overall computation time. In principle at least, the slice could be infinitesimally small, so it
follows that the length wise variation of its displacement can take the simplest possible linear
form. Up to a point, reducing the length of the element enhances the accuracy of the PST-FE
calculation which is limited only by the number of elements within a single slice. Too.much
reduction, however, can lead to computational problems associated with rounding errors etc. and

causes the accuracy to deteriorate.

Thompson [10] (following a suggestion from the author) used the combined PST-FE
approach to investigate high frequency wave propagation along a railway rail. Although these
rails are pertodically supported on identical chairs and sleepers (and in consequence have often
been quoted as examples of periodic structures) high frequency, noise-producing short waves can
pass almost unimpeded over the supports if they are undamped. In that case they can be ignored
and long-range vibration transmission along the complicated rail section can be analysed by the
combined PST-FE method. All that has to be studied is a single thin slice of rail whose
displacements along its short length can vary in the simplest linear form and not in the form of a

wave with a specified wave number.

Since Thompson’s work, other investigators have modified and extended Aalami’s
approach to study wave motion along bars and rails, thin-walled cylinders and open-section

beams. SFE’s of a distinctive form were used in which all displacements varied in the
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propagation direction in proportion to ¢ while across the section of each element they varied
in simple linear or polynomial forms. The resultant stiffness matrices consisted of sums of up to
four matrices, each multiplied by a power of k. Gavric [11] considered thin-walled cylinders
and open-section beams with linear or bi-linear variations of displacement across the elements.
Widehammer [12] and Finnveden [13] considered uniform bars, describing the cross-sectional
displacements in terms of continuous polynomial functions. Nilsson [14] used the same general
approach to study structural and acousto-structural configurations which included car tyre
sections, conical shells and periodically stiffened plate/shell structures. This method allows
wave numbers to be found for given frequencies and vice versa, but although it allows complex
wave numbers and decay factors of evanescent wave motions to be computed, the only results

presented were for undecaying propagating waves.

It is important to observe that in each of references [11] to [14] new stiffness and mass
matrices had to be derived for the elements for each type of structure. The elements were devel-
oped particularly for studies of unidirectional wave-motion (all displacements being proportional
to e”) so Nilsson called the technique the ‘wave-guide finite element method’ (WFEM’)
although the elements themselves were special forms of SFE’s. More recently Mace et al [15]
claimed the term ‘wave-guide finite element’ (WFE) for the PST method of using simple finite
elements in studies of unidirectional wave propagation. The elements themselves and their
matrices are essentially independent of wave number and can actually be used to study any type
of wave or modal motion, not just the unidirectional motion along a wave-guide. As already
stated, this approach has the advantage that the element matrices can be obtained from
commercial software packages. The WFE’s of [11-14] may have better claim to the term but are
disadvantaged by requiring new matrices to be formulated for each new problem investigated.
Mace ef al used element matrices from the ANSYS package in conjunction with PST equations
first presented in {1] and proceeded to study wave motion in uniform beams, simply-supported

plate strips and visco-elastic laminates.

When there are Nc coupling co-ordinates between the adjacent periodic elements, the
FE-PST form of WFE analysis yields a quadratic eigenvalue problem for the £’s. This is easily
reduced [4] to a linear eigenvalue problem of order 2Nc x 2N which is twice that of Aalami’s

equations but only one half of some of Nilsson’s. The 2N; wave numbers found consist of Nc
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positive/negative pairs, each pair corresponding to the same wave travelling in either the positive
or negative direction. Further manipulation of the equations (see Thompson [10]) can reduce
them to the order N x Ne from which only one of each eigenvalue pair is computed. The
calculation of wave numbers also yields the wave eigenvectors (the {q}’s) which effectively

define the modes of cross-sectional displacement corresponding to each wave.

A point harmonic force at a given location generates waves which travel outwards in both
directions from the source and knowing their eigenvectors, one can determine the forced wave
amplitudes. If the structure is infinite and uninterrupted, outgoing waves only are generated and
combine to produce the total motion. In a finite structure, they are reflected back to the source
by the boundaries or other discontinuities and the whole set of outgoing and reflected waves
combine in the correct proportions to satisfy the overall boundary conditions of the structure.
Viewed in this way, the calculation of the total response now involves a wave motion study,
rather than one of forced normal modes. It can yield the response at any point in a bar or rail

forced harmonically at any other point.

The purpose of this paper is to show how this can be accomptished and can be regarded
as a sequel to the author’s general theory of 1973 [1]. 1t lays a complete foundation for
combimng PST with FE analysis and extends the former free-wave theory to deal with motion
which is forced harmonically at an arbitrary single point. First presented is the most elementary
example of a s'imple uniform bar undergoing longitudinal plane-wave motion. The theory is then
developed to deal with wave motion which may include combined longitudinal, flexural,
torsional deflections and non-planar cross-sectional deformation. It is then applied to study a
thin, uniform flat plate of finite width. Wave numbers (real, imaginary and complex) and
harmonic in-plane responses are calculated over very wide frequency ranges and calculated
values are compared with those obtained from both simple engineering theories (the
Euler-Bernoulli and Timoshenko beam theories) and the exact elasticity theory. The results
further expose the high frequency limitations of the Timoshenko beam theory. The significance
(or otherwise) of evanescent wave motions is investigated for some special cases of forced

vibration,
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2. THE PRINCIPLE APPLIED TO FREE LONGITUDINAL WAVE MOTION IN A UNIFORM BAR

2.1 THE DETERMINATION OF THE WAVE NUMBERS

The simplest possible application is to the elastic uniform bar of cross-sectional area A, density p
and elastic modulus £. Its simplest finite element is of small length 8. across which the dis-
placements and direct strains are uniform. A unit length of the bar contains 1/, = Ne of these .
The longitudinal displacements and axial forces at the left and right hand ends of the element are

s, ug, F1, 'y respectively as in the following Figure 1.

Assume that the direct longitudinal strain in each element between the ends is uniform and the
mass of the element is assigned in equal amounts (pA45L/2) to the ends of the element. The stiff-

ness and mass matrices for this element are found to be

t - } and M= pA&L/Z{é ?J (1)

K= EA/&L{ 1

When the bar undergoes free harmonic wave motion, the element forces and displacements are

related through

{ }2 }: [K-sz]{ Z; }zEA/éLH _11 ‘11 }—-wzpé'Lz/ZE{ é ? H{ fﬁi } )

Now p/E = 1/cj, where c; is the speed of free longitudinal wave motion in the simple bar. The

corresponding wave number is k; = w/c; , $0 w*pdL%/2E = kISL2/2.

When a free wave travels through a periodic system of such elements, the displacement and force
at the left hand end of any element B are " times those at the left hand end of the preceding ele-

ment A, 50
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Uy _ Uz
{ Fy }B - e‘“{ Fy }A )

For compatibility and equilibrium between the clements A and B:

[135 _ Upr Uy _ Ug
{FL }B_{"‘FR }A 50 {FL }A_eﬂ{_pR }A 4)

Substituting these into Eq. (1) and putting F;/EA = f; leads to

1 1 1 -1 .10 1
{—8’1 }fL= NEJLH -1 1 }—kﬁéL /2[ 01 ]]{ e‘ }ZJL (5&)

but Npdl = 1 so this can be expanded and rearranged into the form

1-k3SL2R—e* -1 |} u;
{ —1—e# — (k26L2/2)e* oF H il 0 (50)

Finding ¢ from this for a given value of %;37 actually constitutes a quadratic eigenvalue prob-
lem, easily solved in this simple case by expanding the determinant of the 2 x 2 coeffficient

matrix and equating it to zero. This yields

e — 21— K26L2/2)ek +1=0

which has the alternative form e — 2(1 - k361.2/2) + e = 0 . Evidently

coshy =1 - k3d8L2/2. (6a)

Now introduce the non-dimensional frequency Q = (®/cL) X unit length, which is numerically

equal to &.. Eq. (6a) then takes the form
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coshu =1-Q2N% (6b)

At low frequencies and wave numbers or with small values of oL, coshy lies between +1. u is
then purely imaginary. Denote it now by ig, s0 cose=1- k36L%/2. But cose= 1 -~sin’e, and
if ¢ is small enough, /1 -sin’¢ =~ 1—¢2/2. Under these conditions ¢2 ~ k3617 and e =~ k8L

to an increasing degree of accuracy as & decreases.

Now & represents the phase difference between the displacements (and the forces) at correspond-
ing ends of adjacent elements. When there are N (= 1/6L) elements per unit length of the bar, the
total phase change associated with the wave across the unit length is Mg = /8L ~ &, which, by
definition, is the correct wave number for longitudinal wave motion in the bar. It follows that the
accuracy of the approximate finite element calculation increases as &7 decreases, unless com-

puter rounding errors intervene..

If 4L or the frequency are large enough, coshA < -1, in which case p is complex of the form pe,
+1m and e represents the exponential decay or growth rate of the wave motion across a single
clement. Such evanescent waves cannot exist in the ideal uniform bar, but the finite element
model erroneously predicts them because the strain within each finite element is assumed to be
uniform and the bar mass is lumped at the discrete intervals of 8L. The whole finite element
model of the bar constitutes a periodic mass-spring system along which waves can only propag-
ate without decay at frequencies below the natural frequency of a single massless spring which
has half an element mass at cach of its ends. Above this frequency (which is the “cut-off fre-
quency’ of propagating wave motion in the periodic system) any motion decays exponentially
from element to element. Over the N; elements in the modelled bar of unit length, the wave

amplitude decays to exp(Nzu royy) times its initial value.

2.2 'WAVE NUMBERS CALCULATED BY THE FE-PS METHOD

Calculated values of the complex wave number for a FE model with one element per unit length

are shown plotted against the non-dimensional € on Figure 2 (N = 1/6L. = 1). For clarity, the
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real and imaginary parts of p are plotted in the positive and negative domains respectively, so the

decay index is presented in the positive domain.

The calculated values are within 1% of the correct values at frequencies below Q = 0.48 and the
error decreases below this as Q decreases. The decay index emerges from zero at the ND fre-
quency £2 = 2 which is the wave cut-off frequency for the simple mass-spring periodic system.
Above this frequency the FE-computed wave number remains constant at +1 whereas the correct

value increases, being numerically equal to Q.

Similarities between the curve for Nz = 1 and those for higher values of Mg are seen in Figure 3.
All the curves have the same general shape but their actual values and the frequencies at which
they occur have all increased. It can be formally proved that the curves for any value of Mg can

be found by multiplying those for M = 1 (both the real and imaginary parts) and the frequency by

MNE.

The curves for Mz = 1000 are indistinguishable from those of the exact values for the ideal bar.

However, at the higher end of the wide frequency range covered, the assumptions break down on
which the elementary ‘exact’ theory are based. The presented values are therefore inapplicable
to real uniform bars except in the low frequency range. However, they do show that the FE-PS

(Finite Element- Periodic Structure) method of calculation yields results which are as close to the

correct ones as desired, and this is accomplished simply by making Ng large enough. Most impor-

tantly, the computation time is independent of the value of Nz

2.3 THE DYNAMIC STIFFNESS OF A SEMI-INFINITE UNIFORM BAR

Consider now the ideal semi-infinite bar in the positive x-domain. The exact theory for this bar
shows its dynamic stiffness (F/4) at its free end to be simply -ik;, E4. This corresponds to a sing-
le wave propagating freely along the bar in the positive x-direction. When a positive-going wave

travels through the FE model of the bar, the corresponding dynamic stiffness at the left hand end

of any element is F1/u; from Eq. (2) with g set equal to eu. . This yields



FEPSPaper Page 10 of 42 Monday, March 20, 2006

= —gf—{} —e“ —k}oL*/2} butsince 1-k}/2N% = coshu (Eq.(6b)) it simplifies to
% =FEA Ngsinhy or % = Nz sinhy (7

Figure 4 compares the values obtained from Eq. (7) for different values of Mg and frequency. At
low frequencies, the dynamic stiffness is imaginary for all values of Ng. These all drop sharply to
zero at the cut-off frequency appropriate to the particular value of Nt and above these frequen-
cies they all become real. The curve for Ng = 1000 is indistiguishable from the curve for the

exact values.

2.4 THE FREQUENCY RESPONSE OF A FINTTE BAR EXCITED AT ONE END

Expressions for this will be derived in two different ways. The first is the quickest for this par-
ticular simple uniform bar while the second is a matrix formulation which mtroduces the matrix

method required for more complicated structural systems,

The finite bar will be taken to be of unit length. At its left hand end it is excited by a harmonic
force which generates a positive-going wave which has the complex amplitude up at that end and
has the (complex) wave number Nzup. At the right hand end its complex amplitude becomes
upeNere Tt is reflected at that end and returns as a negative-going wave with the wave number
Neam. Denote its amplitude at the left hand end by un so its amplitude at the right hand end must
be uye#¥. Since the two waves constitute the pair of opposite-going waves, yy = —up. The
ND forces, /v, fi, acting on the bar corresponding to each of these waves are given by Eq. (7), so
at the left hand end they are upNp sinhyp and uyNgsinhuy . At the right hand end they are

upNge®#? sinhyp and uyNpe¥ sinhy .

The two waves combine at each end of the bar to satisfy the two boundary conditions. Suppose
the left hand end is excited by the external harmonic force of amplitude Feq= EAfoq while the
right hand end is free. The total force from the two waves at the free right hand end must be zero

S0 upeVr sinhpp + uyeN# sinhyy = 0. upNpeV#r. Since Uy =—up it follows that
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uy = upeNerr, (8)

The total force from the two waves at the forced left-hand end is equal to the applied force F.q,.

Its non-dimensional value, £, is therefore given by

. . . 2sinh N .
Jet = Ng(upsinhy p + uy sinhy) = Nzup(l - e*Nerrysinhy p = NEup'—?,E—ﬂf—ﬂi sinhup. (9)
_ e~ NVEnp

The total displacement at the left hand end is ui, =up+uy = up(l +e?¥r4#) so

w1 coshNgip 1
e~ Ng SinhNgdpsinhip — Nysinhip CONedr an

The exact expression for this (derived from the flexural wave équation) is (cothkr)k, . Eq. (11)

approaches this as Nz gets very large and u» becomes very small, because Nz p approaches k. .

Figures 5a,b shows the the direct receptance of the bar (the response amplitude per unit exciting
force at the forced end) as calculated from Eq. (11) for different values of Mg over two ND fre-
quency ranges, €2=0-10 and 90 - 100. The figures demonstrate the well-known fact that
increasing the number of elements per unit length improves the accuracy of calculation. In the
(unreasonably) high frequency range of 90 to 100, 50 elements per unit length yield unacceptable
values, while the results from 1000 elements are almost indistinguishable from the exact values.
Once again, it must emphasised that it takes no longer by the FE-PS method to calculate for 1000

elements (or for 102 elements, for that matter!) than it does for 1, 2 or 50 elements.

The alternative matrix formulation for the response calculation proceeds as follows. The total

end displacements 2, and uz of the finite bar are related to the two wave amplitudes, up and wy,

by
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-1
Uy 1 1 Up Up 1 1 Uy,
{ uR }:[ eNedr  oNEdy J{ Uy } Sy { Uy }=[ eNedp pNgdy J { ur } (12)

The forces associated with each wave at the left and right hand ends are, respectively,

nh 0
{J]g: } =NE[ s1 OJ-P b H Z;; } (from Eq.(7)) (13a)
L
and
P _ sinh Ap Q eVelr up
{fN }R""NE{ 0 Sl.nhﬂuN J[ 0 eNEllN }{ Uy } (131))

The total forces acting at cach end are given by

§i _N 1 1 sinhugp, 0 Up
o |7 E| eNmr oNauw 0 sinhuy || uy

-1
1 1 Siﬂhﬂp 0 1 1 Ur
:NE[ eVer oNepn H 0 SiﬂhﬂN H eNutip Neey J { Ug } (14)

Now put uy = -up = u . The non-dimensional dynamic stiffness matrix of the whole finite sys-

tem of Mg elements is then seen to be
11 inhu 0 1 1
_ sinh
DSye = NE[ eler o—Nen H 0 —sinhy H elen g~Neu } (15)
The displacements at the two ends of the system are therefore given by

w | 1] 1 1 Ysinhg o to1 T4 y
Up T Ne|l eNen e~ Nt 0 —Sinhp eNen  o~Npp _ﬁ{ ( )

Expanding this matrix product leads (as it should) to the same expressions for the displacements

as derived by the first method. In more complicated structural systems than the uniform bar, the
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matrices are of higher order (perhaps of much higher order) and such expansion is impracticable.

However, computer calculations based on them present no undue problem.
3. DEVELOPMENT OF THE METHOD FOR MULTI-COUPLED SYSTEMS

3.1 THE GENERAL APPROACH

Consider the rectangular array of finite elements of Figure 6(a) which has V; elements in each
stack across the array (i.e. in the transverse y-direction) which need not be identical. There are
N, identical stacks per unit length along the array in the longitudinal x-direction. These are
joined identically, side-by-side through nc coupling co-ordinates and e coupling forces or
moments. The whole system is therefore periodic in the longitudinal direction, Tt is required to
find the dynamic stiffness and receptance matrices relating the displacements at any stack loca-
tion to the externally applied forces on the system or to the internal forces acting between any
other stack location. These locations may be separated by very many stacks, the feature which
can lead to very long calculations by the normal finite element method. The methods of periodic
structure analysis reduce the calculation dramatically, because the two matrices can be found by

analysing just one stack of N7 elements.

It has long been known [1,4] that any harmonic motion through a periodic structure with
n. coupling co-ordinates can be decomposed into 2#c (= J) harmonic waves, each of which has a
characteristic propagation constant and a spatially non-sinusoidal wave-form. The 2a¢ propaga-
tion constants occur in equal and oppesite pairs which, in an undamped system, may be purely
real, generally complex or purely imaginary. The purely imaginary values are associated with
energy-propagating wave motions whose amplitudes do not change with distance from the
source. Both the real and generally complex values are associated with evanescent wave motions
which decay or grow with distance from the source but are not associated with energy

fransmission.

All of these propagation constants and wave motions are determined by the methods of
periodic structure theory from an analysis of a single stack of Ny elements. An imaginary propa-

gation constant represents the change of phase of a wave over the x-wise length of the element,
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while the real or generally-complex constant represents the exponential decay index of the wave
over that length. Multiplying these propagation constants by the number of element-stacks per

unit length of the system yields the actual wave number or decay index of the wave.

Each wave is associated with a umique vector of cross-sectional distortion. This is found,
together with the propagation constants, from an analysis of the dynamic stiffness matrix of Jjust
one complete stack of Ny elements. The dynamic stiffness or receptance matrices of both infinite

and finite lengthwise arrays of such elements are then derived from all of these quantities.
3.2 THE RELATIONSHIP BETWEEN THE WAVE NUMBERS AND THE STACK DYNAMIC STIFFNESS MATRIX

Consider the ‘reference’ stack (identified as stack 1) and its nodal displacements and forces as
shown in Figure 6(b). Denote the displacements along its lefi-hand side by the column matrix
{g:}1 and those along its right-hand side by {gx}1. The forces acting at these co-ordinates are

{F1}1 and {F3}, . Define the complete displacement and force vectors for stack 1 by

_i lah _ 1 {Fh
{q}l—{ (gn}1 } and {F}l_{ (Fad, } (17a,b)

Standard finite element methods yield the dynamic stiffiiess matrix [D] which relates these two
vectors for many different structural systems (e.g. beams, plates, frameworks etc.). Since each
stack of elements in the system is the same, D requires no subscript as it applies to every stack in

the whole system.

It is convenient to partition I in the following manner;

{ (Fu}, }_[ Dy Dig H {qi} } (18)
{Fr}1 | | Dr De || {ga}:

Counsider now the wave which propagates with propagation constant 2 The displacement and
force vectors along the left-hand side of the next stack of elements (stack 2) are given simply by

the Floquet relationship
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{gr}2={qr}1e* and {Fr},={F;}e" (19a,b)

Continuity of displacement and equilibrium of forces between stacks 1 and 2 require that {gz},

={q.}>and {Fr};=-{F.}2. Hence

{gr}1=1{q1}1e" and {Fr}1=—{F1} e* (20a,b)
Substitute these into Eq. s (17) to obtain the two equations

{Fi1}1=[Dr+Dire*1{q1}1 (21a)
and —{Fy}1e# = [Dp.+Dree*1{q1}1 ot {Fr}1=~[Drre™®+Drpl{qs} (21b)
Equating the first and last of these three leads to

[Drre™ + Dz + Drr+ Dige*1{qr}1 =0 or [Dg +([Du +Dpr)e* + Dige*1{g1}1=0 (22)

which is recognised as a quadratic eigenvalue equation for ¢* 2N; different eigenvalues are
obtained and occur in reciprocal pairs. The corresponding values of x therefore occur in positive

and negative pairs,

Now x represents the phase change or exponential decay index of a wave motion across a single

stack. As there are . stacks in a unit length of the whole system, it follows that
Wave number = N, u (23)

Symmetry of the D matrix means that Dy, = Dyz" and this can be used to re-express Eq. (22)in

terms of sinhy and coshy. Thompson [10] has shown how it can be reduced to a simpler linear

eigenvalue equation in coshy.
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3.3 DISPLACEMENTS AND FORCES AT DIFFERENT POINTS IN A STACK ARRAY

A general free harmonic motion in the array of Ny stacks consists of all the waves with the above
wave numbers. Associated with the Jth eigenvalue 4 is the eigenvector {q.}; to be denoted (in its
normalised form) by 6, Corresponding to this is the normalised force vector ¢ , which from Eq.

(18) is seen to be given by
103 =[Dp + Direti1{8;}. (24}

Let the generalised co-ordinate of wave vector & at the left hand side of the first (i.e. the refer-
ence) stack be ;| so the actual displacements and forces along this left hand side corresponding
to this are {g;}: = {6}y, and {F131= {b:}w. respectively. The total displacements and forces on

the left-hand side of the stack when all J waves are present in the total motion are given by
J J .
lerhr=26y;,  and {F1},= P - (25a,b)

AllJ waves will be present in a general motion so the positive and negative wave of each wave

pair must be included.

Along the left-hand side of the next stack of elements in the system (i.e. to the right, stack 2) the
amplitude of each of these terms is multiplied by e# . For continuity and equilibrium at the Jjunc-
tion of stacks 1 and 2, the displacements and forces along the right-hand side of stack 1 must be

given by

J J
larb1={qr}a=2 ey, and (Fr} =-{F), =~ 2 etigiy; (26a,b)
=1 =1

Note the negative sign in front of {£}},. It now follows that the displacements and forces along

the right-hand side of stack &, in the whole peniodic array are given by

J J
(rin, = R e by, and {Friy, =~% gy, (272,b)
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These summations can all be expressed in the following matrix forms.

-

[ Ov1 O21 . . Oy w1
7 91,2 92,2 .. 9J,2 Y»
ach=x0w= . . .. . § . (=[01¥} (28a)

.0]’_]92,_]..HJ,}J\;UJ.J

[ Gi1 d . . ds1 || wi

; 12 22 . . Pu2 || w2
{Fr} =J.=El dw;=| . . . =[O} (28b)
LGy bag - bug I W
[ 011 621 . . 81, I eber g 00 0 ( 78] ‘
s 91,2 92,2 L. 9.],2 0 eMz 0 0 )
{g1}w, = ;] eNI“”jngj = 0 0 0 < e
d S 0 0 .. 0 .
L 81 bar . . G,y It 0 0 00 gl | wr |
=[O £}V { ¥} (28c)

] P11 P21 . . P NTe¥un 9 00 0 ] ¥
J G2 22 . . a2 0 €200 0 W2
{FR}M=—j§ ety =~ 0 0 .. 0 |
o .. 0

. e 0 .
L by bas . b O 0 00 eV | W

=[O (¥} (289)
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et 0 00 0
60 e2 00 0
where [EFl=7 ¢ 0 . . 0 (29)
0 0 .. 0
0 0 00 e~ |

[©] and [®] are matrices of the displacement vectors and corresponding force vectors respec-
tively, of order n¢ x 25, . {¥} is a column matrix of the 25, y;’s. The above matrix equations

will now be used to investigate specific cases of forced response of both infinite and finite arrays.
4. THE RESPONSE OF PERIODIC STACK ARRAYS T O APPLIED HARMONIC FORCES

4.1 THE SEMI-INFINITE SYSTEM EXCITED AT THE FINITE END

Consider the system extending indefinitely to the right and excited at the lefi-hand end of stack 1
by the known set of forces/moments {fL}1 . The displacements {g;}, are unspecified, no other
displacements or forces being specified elsewhere in the system. In the absence of a termination
or any discontinuity to the right of stack 1 there are no backward reflected waves towards the
source of excitation so the only admissible wave motions in the system are those which
propagate or decay away from the source. The displacement(s) at any other point in the system
can be found when the values of the y’s have been determined which pertain to the positive-
going waves, i.e. those with p's with negative real parts or negative purely imaginary parts.
There are only . of these with their corresponding wave vectors {8} and {¢}. Their y’s satisfy
the known set of forces at the source constituted by the given 7, values {F:.},. Hence, from Eq.

(24b) one obtains
{¥} =@} YF.}, (30)
where [®] is now an invertible square matrix of positive-going wave vectors of order 7, xn, .

The displacements and forces in the system at junction VN are given as in Eq. {27¢) by
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{gr}y = [OIEF)Y (¥} = [ONE-1[@]{F, }, (3D
and
Urw =—[ONEFIY W} = ~[@I[E*1V[@]{F. }, (32)

Now consider the semi-infinite system which extends indefinitely to the left (i.e. to —0). The
only waves participating in the total motion are those which propagate or decay in the negative
direction away from the source, so the W’s 10 be found are those associated with values of u with
positive real parts or positive purely imaginary parts. To distinguish these quantities from those

of the ‘right-hand’ semi-infinite system, a minus sign will be added to their symbols as a prefixed

index, i.e. "W, w0 ey, O, —O.
The displacement vector at the right-hand (excited) end of the system is { gz}, and the total
displacements and acting forces at that end are

Cambi=% 0, v =FONY}  and  (Fahi=-% = (01®} ()

The ~6,’s and ~¢,’s to be used in these would be determined in the same eigenvalue calculation
used to find the values required for the right-hand semi-infinite system. As the finite end of the

left-hand semi- inifinite system is at the right-hand side of a stack, the negative sign must appear

in the expression for {~Fz} ..
[~®] is an invertible square matrix so
T} =[0I {Fehr (34)

With J specified values of the F’s , the J values of ¥, can now be determined. At the junction
N stacks to the left of stack 1 the displacements and forces at Junction ¥ are now given by Eq.
(27¢,d) (as for the right-hand semi-infinite system). Hence
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Canbv=PONE (¥} and  (“Fp}y=—[OIE#V (-9}, (352,b)
4.2 THE DOUBLY-INFINITE SYSTEM EXCITED AT A SINGLE JUNCTION
The system now extends to N £ =t oo on either side of the loaded junction. On either side of the
junction the system may be regarded as semi-infinite. At their Junction, the total displacements in
each system must be identical and the tota] force from each system at corresponding co-ordinates
must equal the local externally applied force. Some of the displacements may be found to be
zero, but we cannot say a priori which ones these will be. Expressions from the previous section

for the semi-infinite systems will be used to set up the equations for this infinite system.

Identify the quantities relating to the right-hand system by a positive prefixed index, i.e. by
¥, *w;, 6, ", etc. Equate the displacements at the junctions of the lefi-hand and right-hand
systems, using Eq. s (33a, 35a) to yield

Uary 1 =["O1{"¥} = {~q1}1 = ["©){~¥}

o [*O]{*¥}~[" O} ¥}=0 (36)

Equate the sum of the forces in the two systems at the junction to the externally applied forces,

using Eq. s (33b, 35b). This yields
UFubi+ TFrh = PO W - [ ¥} = (Frxr} 37

Now combine these two Eq. s (36, 37) into the single equation for {*¥} and {"¥}:

Raeg RSN .

-1
Wy -6 0
N {“P}""[@—«D} {Fm} >
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From the "¥ and "% values obtained from this and by using Eq. s (33 ) and (35) one can now

find the displacements and forces at any point in either part of the infinite system.
4.3 THE FINITE SYSTEM OF N, STACKS EXCITED AT ITS ENDS

The matrix equations for {g.} and {gz}, {F1} and F} for the finite stack can be stacked to relate

the whole set of end-displacements and end-forces to {¥}. Inthis way, we get

{g:}y _,{ [©] } {FLh _{ [®] }
{{qfe}m } *| oy (1 and {{FR}NL }‘ oy |YE @0aD)

in which the matrices containing [@] and [®] are square and invertible, so

_1 .
= | oo fgr, { [©] J {1},
{¥}= [ [O][Fr}: J { {gr b, } and {¥}= ~[®][EF]M: {Fr}y, (41a,b)

Altogether these constitute 4V, equations for the 2N, values of . To start with, the only usable
ones are those 2N, which specify known displacements or forces at the extreme ends, i.e. they
express the boundary conditions. However, they constitute sufficient equations to allow {¥} to
be determined. From the remaining 2NV, equations, all the unknown displacements or forces at

the extreme ends can be found.

Consider now the system which is excited by known forces at the left-hand and/or the right-hand

end, but the end displacements are not otherwise constrained. {Fp}, and {Fp} w, are therefore

known, but {g;}1 and {gr}x, are all unknown. Hence

-1
B [®] {Fp}
m‘[—[@]wﬂ]ﬂ&} {{FR}AL} and “2)

-1
{ath || © | @ [@] {Fr}h
{ (ar}, }“{ O 1* J{‘P} ‘[@[E#]NL H —[O[E*]": J { {Fr}y, } 43
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The overall receptance matrix for the whole system is therefore

) _[ ® o ] s
W= eEe || —[o)fE )

Computational difficulties arise with this when the terms in £ with positive exponents are raised

to a large enough power of N, to cause computer overflow. This must be circumvented by
splitting ‘¥ into its positive and negative-going components, ¥y and ¥, , with P’ representing
magnitudes at the right-hand end of the waves with positive #’s while W; still represents
magnitudes at the left-hand end of the waves with negative 4’s. The total motion at the two ends

1S oW
{g1} =0,V +O@_e™*¥_  and {gp}=0.eVFY, +O_V_ (45a,b)

Only the N, positive values of 1 are are now used!. Altogether, the end displacements are given

by

qr | _ ®, G_gMu ||y,
(ihlotw s e} 2
The total forces at the ends associated with this motion are expressed in similar form by
FL _ (D+ (D_e;NL# LI’+
{ FR }_ [ __(D+e_NL.p —P_ ]{ O (47)
SO
vl [ o oem][F )
w_o | —<D+e‘NL-F‘ & Fr

! In effect, this formulation considers the waves with positive [1’s to be initiated at the right hand end of the

system whereas those with negative |1°s are initiated at the left hand end.
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Hence

qL _ ®+ G_E—NL# (D+ (I)_e—NL.}J - FL 9
qR B @-ye—NL# @- —®+8_NL'F _®‘ FR (4 )

4.4 THE SYSTEM WITH ONE END FULLY CONSTRAINED

Consider next the system whose right hand end is rigidly fixed, while a known set of forces acts

at the left hand end. {gz}, is now zero so

-1
{FL}, [®] _ [D] {Fi},
{ {gr}y, =0 }=[ [O][E+]": J{‘P} and {¥} “[ [@][ £+ J { 0 } (50a,b)

The unknown boundary displacements and forces are now given by

-1
{ah 1 [ e [ e [®] } {Fi},
{ Fa}ay }‘[ @B J{‘P}" [ [|[E] H [©][E#]M: { 0 51)

Once {'¥'} has been evaluated, the displacements or forces at any other point within the whole
periodic system can be found. In particular, the displacement co-ordinate # at the left hand end
of stack N, is given by

quin, =L O1x Oop . . O 112308 9! (52a)

and the force acting at the same co-ordinate is

Frliw =L die box . . dup [E1V (9} (52b)
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4.5 THE FINITE SYSTEM EXCITED AT A SINGLE INTERMEDIATE JUNCTION

From the excited junction to the lefi- and right-hand ends there are Ny, and Nz stacks respec-
tively, so the total number of stacks in the whole system is N, = Ny + N . There are therefore
J (= 2n.) different waves of unknown amplitude to the left of the excited junction and another
(different) set of ./ waves to the right of the excited Junction, i.e. there are 2.7 unknowns alto-
gether. The computational problem, however, may be solved by a method (using some of the
above equations) which involves only ./ unknowns at a time. The method has often been used in

solving uniform-beam vibration problems by utilizing known flexural wave motions.

The total motion in the finite periodic system can be regarded as the superposition of the motion
generated by the given exciting forces when they act on a (doubly) infinite system (the ‘infinite
system motion’) together with the motions reflected back into the system from the finite ends
when this infinite system motion impinges on the ends. Denote the magnitude of the infinite
system motion by the vector {"Winr} . Due to this alone, the corresponding displacements and

forces at the right hand end of the finite system are (from Eq. s (40a,b))
(R} v = [ONE# P ("W} and UTR i = —[POJE# PV { ). (53a,b)

The corresponding displacements and forces at the left hand end of the finite system due to

{_"Pinf} are
ULl v =[OIE# PV~ P10} and {TFR v = [TOUE ATV {~Wied. (54a,b)

The motion reflected from the left-hand end is that associated with forces acting at the left-hand
end of a semi-infinite system as analyzed in Section 4.1 . It will be quantified here by the vector

{"¥ren} of positive-going waves, the corresponding displacements and forces at the left hand

end being

U1} tena = [O1{ "W o} and (P} s tena =[O W en} (552,b)
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At the right hand end of the whole finite system they are

(g} ritens = ["ONE#T (*Wren}  and  {*Fr}rarona = ~[*OI[E “ 1Y { ¥, 01} (56a,b)
The motion reflected from the right-hand end is that associated with forces acting at the
right-hand end of a semi-infinite system as analyzed in Section 4.1. It will be quantified here by

the vector { ¥4} of negative-going reflected waves. At the right-hand end of the whole system

the corresponding displacements and forces are

{7qR} Ritend = [TO]{ ¥ e} and  {"Fr}ruena = TP Y} (57a,b)
At the left hand end they are

(4R} ttena = CONE “1{"Vrepy and  {"Fr} sstens = [ DNE #1V: {~Wrep} (58a,b)
The total motion due to the two sets of reflected waves and the infinite system motion must

satisfy the boundary conditions at the two ends of the finite system. In the special case when

both ends of the whole system are free and unconstrained, the total force vectors at each end

must be zero so

{UTFLY ttena + {*F1} tttena + { Friat} g =0  at the left-hand end (59a)
and
{"FR} Ritena + {*FR} Rttend + { " Fiur} retena =0 at the right hand end (60a)

In terms of the ¥’s, ®’s and ©’s these are
HOUEHPE LW 1} + [P O} + ["BNE #1¥7 (Wi} = 0 (61a)

and
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PN W} + [MOUE I { "W o} + [*OIE ]V {*F e} = 0 (61b)

Rearrange these into the single matrix equation

{ [RUE#"  [*0] J { W } . { [“OI[E #]77 [~} } (62)
o] o || ve,, [ OIE ]V (P}
SO
{ Wy } _ _[ [ONEA o) r { [OI[E 1 (e} } (62b)
P, (@] [OUEF | | [OIE R

These constitute 25 equations for the n- unknown "W’s and the nc unknown “y’s. From the
values so obtained one can find the displacement and force at any co-ordinate in the whole

System.
5 APPLICATION TO IN-PLANE VIBRATIONS OF THIN FLAT PLATES

5.1 THE MODEL STUDIED

The validity of the method proposed above has been investigated in a study of the simplest of
Systems - pure m-plane motion of a paraliel strip of thin isotropic flat plate. Use has been made
of the stmplest possible in-plane thin rectangular finite element with four corner nodes, two
degrees of freedom per node and all displacements varying linearly over the element. Appendix
A gives details of the element stiffness and mass matrices used. The number Nr of elements in
a stack was varied from one to six, and the number M, of stacks per unit length was varied from
one to more than 1000. A value of N, = 10 could have been used with equal facility and with

no increase in computing time.

Wave-numbers of the different models have been computed for a wide ND frequency
range and are compared with those of the Euler-Bernoulli theory, the Timoshenko beam theory
and the simplest longitudinal wave theory. Further comparisons are made with results from the

exact elasticity solution for wave propagation in thin plates of finite width. The ND frequency
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used is >h?/(£/p) where b is the width of the plate and is taken as unity. The wave numbers and

decay factors are N, times the appropriate propagation constant across a single stack of elements.

Some forced vibration results are also presented for single-point excited plates of finite
width and infinite length and also of plates (equivalent to thin beams) of finite length.
Comparisons are made with results from the Euler-Bernoulli and Timoshenko beam theories.
These actually do little more than demonstrate the limited frequency ranges over which these

comparator theories are valid.

5.2 WAVE NUMBERS CALCULATED BY THE FINITE ELEMENT- PERIODIC STRUCTURE THEORY

Figure 7 shows the wave numbers computed for one element across the width of the plate (N7 =
1) and one per unit length (M =1). The decay index and the wave number are plotted (as before)
in the positive and negative domains respectively. In this particular case they are actually
1dentical to the propagation constants across the periodic element. Values calculated from the
elementary Euler-Bernoulli and Timoshenko beam theories are also shown, together with those

from the simpiest longitudinal wave theory.

Below the ND frequency of about 1.6 , the FE-PS and E-B wave numbers are in quite
close agreement, more so as the frequency decreases, whereas the FE-PS wave numbers and the
Timoshenko values are significantly different over this range. On the other hand, the decay
indices from FE-PS and Timoshenko are very close. Indeed, the cut-off frequencies at Q =2
(which pertain to ‘through-the-thickness’ shear wave motion) are the same for both theories,

provided the Timoshenko shear factor is taken to be 1.0.

The third FE-PS wave number curve (with a cut-off frequency at Q = 3.6) pertains to
symmetric waves which involve mainly tranverse through-the-thickness motion, stretching and
compressing the width of the plate. Over the same frequency range the existence of evanescent
waves with complex-conjugate wave numbers is suggested. These are ‘phantom’ waves which

belong only to the particular FE model. They do not appear in more realistic models.
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It must be emphasized that the Euler-Bernoulli and Timoshenko values which are
indicated are not the exact values for in-plane transverse flexural motion of the plate, They are
only derived from approximate ‘engineering’ theories, but the Timoshenko theory is ‘exact’
within its assumption of a linear x-wise displacement variation across the plate. The FE-PS
theory makes the same assumption for its individual elements, so when there is only one element
across the depth of the plate ( Ny = 1), its decay indices approximate closely to those of

Timoshenko. As Ny increases, closer agreement is found.

With M. =1and Nr=1, the FE-PS wavenumbers cannot extend beyond +x, the value at
which all the wave number curves level out. This exposes the deficiency of the FE-PS method
for M, = 1 and imposes a severe restriction on the highest frequency at which M, =1 can yield

even reasonably accurate values.

Successive increases in ML , however, extend this range, as seen in Figures 8 a,b which
show values computed for Ny =1, Ny = 10 and 1000, Much closer agreement now exists
between the FE-PS and Timoshenko values. Indeed, for M, =100 they are indistinguishable. The
decay index curves between Q = 0 and 2 retain their close agreement whilst the continuous decay
index curve descending from 5.6 to 0 has replaced the the curve with the infinite peak for M, = 1.
Furthermore, the ‘phantom’ complex-conjugate wave number curves which appeared for M, = 1

have now disappeared.

The effect of increasing the number of elements in a stack is seen in Figures 9 which
have been computed for N, = 1024 and Ny = 2,4, 6. Figures for smaller values values of &,

have not been presented as they serve no further useful purpose.

As Ny increases, the number of possible wave motions at each frequency increases and the wave

nuymber curves in particular assume an increasingly confused appearance. At very low
frequencies, however, there are never any more than two genuine propagating waves (the simple

longitudinal and flexural waves) but as Nt increases there is an increasing number of waves with

complex conjugate wave numbers. This leads to the evident increase in number of decay index
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curves and the growing apparent confusion in the wave number curves. These curves for
complex conjugate waves eventually attach themselves to genuine propagating wave number
curves which bulge out negatively to meet them. This is clearly seen on the curves for NT =6,
NE = 1024 at the ND frequency Q2 = 6.2. The wave number curve coming down from (approx)
Q= 6.4 to = 6.2 pertains to a genuine propagating wave. At Q = 6.4 it meets the complex
conjugate wave number (coming from the left). As Q increases from this point, it ‘reverses’ and
increases negatively as a genuine propagating wave. At any frequency between Q = 6.2 and 6.4
(the feft hand part of the bulge) the propagating wave can have two different wave numbers, one

of which has phase and group velocities of opposite sign.

It can seen that increasing Nt does not improve the agreement between the FE-PS values

and those from the Timoshenko or longitudinal wave theories. This is not unexpected as all of

these theories are approximate, and agreement between FE-PS and Timoshenko is only possible

when Nt =1,

As Nt increases, the FE-PS theory becomes ‘less’ approximate and the only satisfactory
benchmark values against which to compare its predictions are those from the exact solution to
the thin-plate wave equation. The theory for the exact values is presented in Appendix B. The
associated computational process is essentially iterative and involves an initial guess at an x-wise
wave number, from which an approximate y-wise wave-number is found. These are then refined
until they satisfy a transcendental frequency equation representing the edge boundary conditions.
The detailed process will not be described here. Suffice it to say that the process is accelerated if
the motions which are symmetric or anti-symmetric about the longitudinal plate centre line are
studied separately. Accordingly, Figure 10 shows separate comparisons between the FE-PS and

exact wave-numbers and decay indices for wave motions which are symmetric or anti-symmetric.

The FE-PS wave numbers are very close to the exact values in the ND frequencies range up to
about 4, above which they still follow quite closely the general trend of the exact curves. The low
order FE-PS decay indices are also close to the correct values over the same ranges. In particular
the lowest order anti-symmetric curve is almost indistinguishable (even on a diagram of much

larger scale) from the exact curve, but the decay indices of the higher order evanescent waves



FEPSPaper Page 30 of 30 Monday, March 20, 2006

differ considerably from the exact values. The stack of six elements can only predict a finite

number of evanescent waves, so even the number of FE-PS decay-index curves differs from those

of the exact motion which has an infinite number of such curves. It is not surprising then that the

actual values of the higher order FE-PS decay indices differ greatly from those of the exact the-
ory.

5.3 THE RESPONSE TO IN-PLANE FORCES OF A FINITE PLATE CALCULATED BY THE FE-PS METHOD

The theory presented in Section 4.5 has next been used to calculate the in-plane response of a
finite plate with six stacked elements (Nr = 6) and with 1024 elements per unit length (N, =
1024). The overall length of the plate has been taken as ten times ifs width, so the plate motion
is that of a short beam represented by 6 x 1024 x 10 = 61440 elements. The external in-plane
harmonic excitation was by two equal vertical forces at one end of the plate acting at the two ele-
ment nodes closest to the plate centre line (i.e. at the co-ordinates numbered 6 and 8 on F igure
11). These forces constitute an anti-symmetric loading system and can only excite the anti-
symmetric modes of the plate (i.e. the flexural modes). Responses were calculated at each of the
nodes at the ends of the whole system over the ND frequency range 2 =0102.0 (i.e. at co-
ordinates 6 or 8 on the left hand end element, and at co-ordinates 20 or 22 on the night hand end

element,

Figures 12 (a), (b) show the direct and transfer receptances so obtained. The direct recep-
tance in this case is the response at one of the forcing locations to the total force applied at that
end. The transfer receptance is the response at the corresponding location at the other end of the
system. These receptances are compared on the figures with two curves calculated from the
Timoshenko beam theory, one with a Timoshenko shear factor of 1.0 and the other with a shear

factor of 0.8332.

The figures show close agreement between the FE-PS values and those of the Timosh-

enko theory at low frequencies. The frequencies of the FE-PS resonance peaks over the whole

? Ideally, the comparison should be with values obtained from the exact theory of Appendix B,

extended to deal with forced harmonic vibration.
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frequency range are roughly mid-way between those of the corresponding pair of Timoshenko
peaks and, as expected, the Timoshenko peaks for the shear factor of 0.833 are always the lower
of each pair. The range of the ND frequency considered in the figures (Q=0to 2.0)is well
beyond the range of normal engineering significance as the half wavelength of the motion at ) =
2 is of the order of the plate width. As the system being considered for Figure 12 is undamped,
the height of each peak should be infinite. That they are not is due to the finite frequency resolu-

tion used in the calculations..

5.4 THE NUMBER OF WAVES TO BE INCLUDED IN THE CALCULATION OF THE TOTAL RESPONSE

An FE array of stacks with Ny elements per stack allows 2(Nt + 1) free waves to travel in each
direction, leéding to 4(N7+1) allowable waves altogether. In the matrix calculations performed
for Figure 12 (for N1 =6) all 28 allowable waves were included in the matrix summation for the
response. In larger stacks, it may be questioned whether some of these waves could be ignored in

order to reduce computing times.

Now the contribution to the response at a given point in the system from any wave or
positive-negative pair of waves depends on the frequency, the cross-sectional modes of wave-
displacement, the locations and directions of the exciting force and on the response which is
required. The determining principle involved in assessing Whether a particular wave can be
ignored or not is the same as that which leads to the inclusion or omission of a particular mode in

a conventional multi-modal forced response calculation for a general dynamic system. The
modal characteristics (displacement modse and resonance frequencies) must be known and these,
of course, are the eigen-vectors and eigen-values determined in the preliminary eigen-value
analysis. The computation time can only be reduced by reducing the degrees of freedom of the
system (by reducing the number of elements in the above plate model) which means the use of a

less accurate model.

An FE array of stacks with Nr elements per stack allows 2(N: + 1) free waves to travel in
each direction, leading to 4(N+1) allowable waves altogether. In the matrix calculations per-

formed for Figure 10 (for Ny = 6) all 28 allowable waves were included in the matrix summation
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for the response. In larger stacks, it may be questioned whether some of these waves could be

ignored in order to reduce computing times.

Now the contribution to the response at a given point in the system from any wave or
positive-negative pair of waves depends on the frequency, the cross-sectional modes of wave-
displacement and on the locations and directions of the exciting force and the response which is
required. The determining principle involved in assessing whether a particular wave can be
ignored or not is the same as that which leads one to include or ignore a particular mode in a con-
ventional forced response calculation for a general dynamic system. The modal characteristics
(displacement mode and resonance frequency) must be known and these, of course, are the
eigen-vectors and eigen-values determined in the whole eigen-value calculation. The
computation time can only be reduced by reducing the degrees of freedom of the system (by
reducing the number of elements in the above plate model) which means the use of a less

accurate model.

Figures 13 (a), (c) and (e) show the the effect on the response of increasing the number of
wave-pairs included in the total, from just one term to the maximum of 14 for Ny = 6. Different
frequencies have been selected to demonstrate the frequency-dependence of the number of
significant waves. The terms have been selected in the order of decreasing decay rate (i.e. term 1
has the greatest decay rate), the decaying waves including those with complex conjugate wave
numbers. They are followed in order by the terms for the propagating (non- decaying) waves, in
the order of increasing wave number. Shown in Figures 13 (b), (d) and (f) are the moduli of the
contributions from each of the 14 wave-pairs. For each figure, the same FE-plate model has been
considered as for Figure 12. The ND frequencies (1.75 and 7.65) for Figures 13 (a)-(b) and
(e)-(f) are close to resonances whereas for (¢)-(d) it is close to an anti-resonance (Q = 1.79).
The relevant excitation forces, their locations and the response locations are indicated in the

figure caption.

Close to the anti-resonance at Q = 1.79 (Figures 13 (¢)-(d)) the flexural evanescent wave (term
12) contributes more to the total than the propagating wave (term 14) simply because the positive
and negative-going propagating waves do not ‘reinforce one another’ at anti-resonances. They

cancel out, rather than reinforce. Since they contribute so little to the total, the proportion
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contributed by other evanescent waves increases. This is clearly observed in Figure 13 (d).
Terms 4 and 5, which have significant and identical amplitudes, are evanescent with complex

conjugate wave numbers. They are, however, in counterphase so their total contribution vanishes.

Figures 13 (e) and (f) for the resonance at Q = 7.65 show (as expected) that more propagating
waves now participate, as well as their evanescent counterparts. Without Investigating in detail
the detailed nature of each wave (i.e. its cross-sectional distortion) one cannot state in advance
whether or not any one of them is likely to contribute significantly to the total response at a given
point. That being so, one cannot state with any certainty how many terms should be included if a

reasonzble approximation to the response is to be obtained.

Clearly, in the above problem which has symmetry about the longitudinal centre-line, no
symmetric wave can be generated when the external forcing is anti-symmetric and no anti-
synumetric waves can be generated when the external forcing is symmetric. However, if the
boundary conditions are asymmetric at the non-excited end, that boundary can generate
symmetric waves as it reflects an incident anti-symmetric wave. This further complicates an
assessment of how many wave terms need to be included in a response calculation. The quickest
computational procedure is probably to include them all as their eigen-vectors will all be found

in any case in the essential eigen-value calculation for the wave numbers.
5. CONCLUSIONS

Periodic structure theory may be conveniently employed in conjunction with the finite element
method to reduce computation times for wave numbers and harmonic responses of long uniform
beam-type structural components such as rails and uniform stiffeners. Cross sectional distortions
are readily taken into account. Very simple elements can be used, their approximate nature being
mitigated by making them extremely short in the component lengthwise direction, an indefinitely
large number of them being employed in that direction. The whole system is represented as a
periodic structure for which the propagation constants (and hence the structural wave numbers)
are computed straightforwardly by the methods of periodic structure theory. It has been shown
how the corresponding wave motions can be used to calculate forced harmonic responses in

infinite and finite systems.
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Computation times are independent of the number of elements used in the overall system
length, and depend only on the number employed in a single stack around the structural cross
section. This alone determines the number of independent free harmonic wave motions predicted

by the FE model.

The following conclusions have been drawn from detailed calculations of in-plane wave

motion and forced in-plane response of a simple flat plate of finite width:

Very simple flat plate elements can yield adequate accuracy of calculation, provided they
are very short in length and very numerous along the system length. Just six elements
across the plate width give accurate wave numbers for the propagating waves up to a
non-dimensional frequency of 3 or 4, when compared with values calculated from the
exact elasticity theory. The evanescent wave numbers is generally of lower accuracy,
except for the lowest order wave which corresponds to the Timoshenko evanescent wave,
The accuracy increases, as expected, as the number of elements around the Cross-section

i increased.

The number of waves which make significant contributions to the harmonic in-plane
forced response cannot readily be anticipated. It is probably as quick to include them all
in the response calculation as to try to determine in advance which of them is likely to
make a significant contribution. The high order evanescent waves contributed little to the
plate forced response, while the low order evanescent and propagating waves contributed

most.

Comparisons made between the calculated flat plate wave numbers and responses and
those calculated from the Timoshenko beam theory constitute more of an evaluation of
the Timoshenko theory than of the method presented in this paper. Comparisons with the
values found from the exact elasticity theory constitute a true evaluation of the present
method. The exact method should be extended to predict the exact forced responses as

the basis for a complete evaluation.
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APPENDIX A

THE STIFFNESS AND MASS MATRICES OF THE SIMPLE RECTANGULAR THIN PLATE FINITE ELEMENT

Figure Al shows the rectangular element and the numbering system used for the eight
displacement coordinates assigned to the four corners of the element. The whole displacement

vector is to be arranged in the order {u, vi, 1, V2, Us, V3, Ua, Va} T

V2 + V4
U, > U,
v Element AV ly
u‘l — Us
L Cx——

Figure Al Diagram showing the displacement coordinates and numbering system
for the rectangular thin-plate finite element.

The element is assumed to be thin enough for the plane-stress stress-strain relationships to apply.
By imposing linear variations of all displacements across the element and by using symbolic
computing to manipulate the appropriate matrix equations, the following stiffness and mass

matrices were obtained.

/
K.= {Kl(v)l—i:- +K2(v)5—; + K3(v)}-3—(i£_’lv2—) (A1)
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where K1(v), K2(v) and X3(v) are non-dimensional matrices defined below and are functions

only of the plate Poisson’s ratio v. Z is the plate Young’s modulus; # is its thickness.

1 1 0 172 0 -1 0 ~-172 0 ]
0 i 0 1’21/2 —H 0 —n;/2
1/2 0 1 0 -172 0 -1 0
_ 0 i’l]/Z 0 73 0 —ﬂ1/2 0 —~H
=0 " osin o 0 12 0 (A22)
0 —H 0 *'-1’2]/2 m 0 n1/2
-1/2 0 = 0 172 0 1 0
0 —n1/2 0 —nl 0 m/2 0 Fiy =
’- i 0 b /3| 0 n1/2 0 —n1/2 0]
0 i 0 -1 0 05 0 05
—F 0 n 0 —n1/2 0 I’l1/2 0
0 -1 0 1 0 -0.5 0 05
K2= n1/2 0 —n1/2 0 13| 0 —1 0 (Azb)
6 05 0 -05 1 0 -1
~n1/2 0 m/2 ¢ -m 0 n 0
0 0.5 0 05 —1 0 1 -
i 0 s 0 3 0 —H3 0 —H; ]
2 0 —13 0 A3 0 '/ %) 0
O-ny O-m 0 m 0 n
3 0 —H2 0 2 0 —H3 0
= A2
K3 0 3 0 12 0 —N2 0 ~H3 ( C)
—F3 0 1Y) 0 ' V] O 3 0
0 -2 0 &1 0 I X} 0 [£¥)
~ —h3 0 4% 0 —3 0 %] 0 -
Inthese m=15Y ;= 2a+v) = 2(1-3¥)

The mass matrix for the element is found in a similar way to be:
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1 012 012 014 0]
0 1 012 012 o014
2 06 1 014 012 o
012 0 1 014 012 phil,
2 014 0 1 012 0 9
012 014 0 1 012
/4 012 012 0 1 0
014 012 012 0 1

M= (A3)

The global matrices formed from these for the single stack of M, elements lead to the following

global equations relating the stack displacements and forces

Eh PRl 1] (u,v) "
[[Kglm‘wz[Mg]TiH @ } z{F“f; }

| . w?pld (u,v); Fr(3
ie [[Kg](l -y~ [Mg]%[ E yJH (u,v)z }:{ FlLi }EE

For a plate of width b, [, = &/N; . The unit plate length is also taken as b, so /. = 1/Nz. Hence

W’pldy (w?pb?Y 1 _ 21
E JT\TE JViNz NrNz

With & set equal to unity,  becomes the ND frequency used in this paper and the above matrix

equation can take the form
vy | _JFu |3
[D(Qs NTs NL! v]{ (u’ V)R - FR Eh
in which [D(Q, Nr, Ng,v]= [ [Kgl(1 -v¥)1 - Qz[Mg ]?ﬁij\TE] is the non-dimensional dynamic

stiffness matrix for the stack of NT elements and has been used for all the plate calculations of

this paper.
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APPENDIX B
EQUATIONS FOR THE EXACT WAVE NUMBERS OF IN-PLANE WAVE MOTION IN A THIN UNIFORM ISOTROPIC

PLATE OF FINITE WIDTH

In terms of the displacements u(x,y), v(x,y) in the x- and y-directions, the plane-stress equations

of harmonic motion of a thin plate of unit thickness are

E_ (& 1-vy 8%u E 14y 8%
(1—2) {55 + (5 it CUzP”*‘(lﬁvz) {( D) )ax;y} =0 (B1)
and

E 1+v~ 82u E 2y 1-v &%y
T st + v aim{gr + (%1 =0 (B2)

Admissible plane wave motions have the general form

u(x,y) = Uexp(Aux/b) exp(A,1b),  v(x,y) = Vexp(ix/b) exp(4,1/h) (B3)

Substituting these into equations B1, B2 yields the matrix equation

B+ Q1 - ) Bk vl _, B4
) 2+ a-vy ||V
2 Sxsy id 2 x
. _ w’gb?
i which the non-dimensional frequency Q= % (B5)
b 1s the plate width.

The determinant of the 2 x 2 matrix in Eqn (B4) must vanish, Expand 1t, equate it to zero and

solve the bi-quadratic equation for A, in terms of A, and Q to yield the following four solutions:
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Ay=% /-2 (1-vHQ?, A2y =% [-22-2(1+ )2, (B6a,b)
Corresponding to these are the /U relationships

AZ+ALZ(1-v)24Q2(1-v?) AF+A23(1-9)24Q%(1-v2)
V= = 21,2 and  (V/U)y= — A2, (192

which simplify to

. 5 Qz ) Qz
V1 =i [1+(1-v?) 55 and V=i ‘/1+2(I+v)—g (B7a,b)

Free wave motion along the infinite plate must satisty the boundary conditions along the top and

bottom edges aty = +5/2 . If these edges are stress-free, then

E o, v £ v, ou
DE=TR0at9)=0 Ty =ginG+E)= 0 a y=tm

For computational purposes it is convenient to consider wave motions which are either Sym-
metric or anti-symmetric about the plate longitudinal centre-line (¥ = 0). Satisfaction of the
boundary conditions at y = +5/2 then automatically satisfies the conditions at y = -5/2 so only

two boundary conditions need to be considered explicitly. The y-wise dependence of symmetric

and anti-symmetric motions can therefore be represented respectively by

) =4 coshAl,y+A4acoshA2,y  W(y) = B, sinh A1,y + By sinh A2,y (symmetric)

U(y) = 4y sinh A1,y + 4 sinh 22,y V() =By coshil,y+B;coshi2,y  (anti-symmetric)

The corresponding pairs of boundary conditions are then represented by the matrix equations:
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{ G101 + AL,)sinh 21,612 (A(VIU)2 + A2,) sinh 12,5/2 } { A

(V2x+ (VTUN ALY cosh A1,6/2 (vhe+ (VIU)242,) cosh A2, || A }=o (symm) — (B8a)

(4(V7U)1 +41,)cosh 21,612 Qu(VIU)2 +A2,)cosh 42,612 || 4y | .
[(le-i-(V/U);Aly)sinhilyb/E (Ve + (VIU)222,)sinh 12,672 |} A4, =0 (anti-symm) (B8b)

Equating the determinants of the two matrices to zero and expanding them leads to transcend-
ental equations from which the satisfying pairs of A.’s and A,’s can be found for any given
frequency. These A’s may be real, imaginary or complex and occur in positive/negative and

conjugate pairs.
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Figure 2 'Wave numbers of a uniform bar as calculated by the FE-PS method for Ng = 1
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Figure 4 The dynamic stiffness at the free end of a semi-infinite bar calculated by the FE-PS method.
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Figure 4 Receptances of a finite bar as calculated by the FE-PS method for different values of NE
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Figure 5 Direct receptance at the loaded end of an axially-excited uniform bar as calculated by the FE-PS
method.
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Figure 7 Decay index and wave number as calculated by the FE-PS method for Ny =1, Ny = 1. E-B,
values from the Euler-Bernoulli beam theory; L, values from the simplest longitudinal wave theory; T1

and T2, values from the Timoshenko beam theory.
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Figure 11 Coordinate numbering system for the stack of six finite elements representing part of the flat
plate
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Figure 12 Receptances of a thin finite plate to vertical forces at one end. Plate length = 10 x depth.
--------- , FE-PS results; - - - -, Timoshenko theory, shear factor = 1.0; ---—- ---—- ; Timoshenko
theory, shear factor = 0.833. Two equal external forces of 0.5 exist at co-ordinates 6 & 8. The
receptances relate to coordinate 8 at the end of the extreme LH element and to coordinate 22 at the end

of the extreme RH element. Np=6, Ny = 1024, Length of plate = 10 x width
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Figure 13 (a), (¢) & (e): Diagrams showing the effect of increasing the number of terms in the series
expression for the plate receptances at different frequencies. (b), (d) & (f): the contributions from each
term. (a) & (b) ND frequency = 1.75, equal forces of 0.5 at co-ordinates 6 & 8, response location at
coordinate 6; (c) & (d) ND frequency = 1.79, unit force at coordinate 10, response location at coordinate
1 (e) & (f): ND frequency = 7.65, unit force at coordinate 10, response location at coordinate 2. In each

case, NT =6, NE=1024, L = {0.
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Figure A1 Diagram showing the displacement coordinates and numbering system for the thin-plate

rectangular finite element.
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