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Abstract

The frequency range over which a mount can isolate a mass from a vibrating base (or
vice versa) is often limited by the mount stiffness required to support the weight of the
mass. Thig compromise can be made more favourable by employing non-linear mounts
with a softening spring characteristic such that small excursions about the static equi-
librium position result in small dynamic spring forces and a correspondingly low natural
frequency. This report concerns the force-displacement characteristic of a so-called quasi-
zero-stiffness (QZS) mechanism which has an appreciable static stiffness but very small

(theoretically zero) dynamic stiffness.

The mechanism studied comprises a vertical spring acting in parallel with two further
springs which, when inclined at an appropriate angle, produce a cancelling negative stiff-
ness effect. Analysis of the system shows that a QZS characteristic can be obtained if the
system’s parameters (angle of inclination and ratio of spring stiffnesses) are opportunely
chosen. By introducing the additional criterion that the displacement of the system be
largest without exceeding a desired (low) value of stiffness an optimal set of parameter
values is derived. Under sufficiently large displacements the stiffness of the QZS mech-
anism can eventually exceed that of the simple mass-spring system and criteria for this
detrimental scenario to arise are presented. Finally, it is shown that, if the system’s stiff-
ness is small, the force-displacement characteristic of the system can be approximated by

a cubic equation without incurring too large an error.
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1. INTRODUCTION

Isolation of undesirable vibrations is a problem that affects most engineering structures.
Better isolation is generally achieved if an isolator with small stiffness is employed. There are
two reasons for this. First, since for a single degree of freedom isolation occurs at frequencies
greater than v/2 times the natural frequency, it is evident that a lower natural frequency results
in a wider isolation region. However, the drawback of such a configuration is an increase in the
static displacement of the mass. The trade-off between stiffness and static displacement was
highlighted in reference [1}, and in reference [2] a practical solution to the problem of vibration
isolation in sea vessels where the space is limited was discussed.

The aim of this report is to investigate the possibility of achieving a very low stiffness without
having the drawback of large static displacements. In particular, the analysis aims to maximise
the excursions of the isolated object without the system exceeding a desired (low) stiffness.

In the lterature, the isolating system studied herein is referred to as a quasi-zero-stiffness(QZS)

mechanism [3].

1.1. Background of Quasi-Zero-Stiffness Mechanisms

If a suspension system has extremely low natural frequency, i.e. very long periods of oscillation,
the frequency range of isolation becomes wider with the benefit of improved vibration isolation
performance. However, these systems are of interest also in other fields, for example in geody-
namics [4, 5. The precision of instruments such as seismographs or gravimeters requires very
long periods of oscillation. Probably the most well-known project was by Lacoste in the 1930’s.
The realisation of a spring with zero initial length, hence the name zero-length spring, was his
patent [6]. The principle behind this device is that the physical length of the spring (once the
load has been applied) is equal to its elongation. This is achieved in the manufacturing process
by applying a particular pre-stress proportional to the length of the spring. This is obtained
by twisting the wire of the springs as it is coiled. In practice it is found that the period of
osciliation is not greater than 900 seconds.

Further configurations of QZS mechanisms for the same purpose are described in reference [7].



1.2. Non-linear Stiffness

In general, it is often assumed that the relationship between the force applied on a spring and
its displacement is linear. However, in practice, either by design or physical limitations, a spring
always presents some degree of non-linearity. Therefore, its static stiffness differs from its local
stiffness about the equilibrium position.

Before discussing the details of an isolation system based on the principle of quasi-zero-stiffness,
the concept of stiffness and the difference between stafic and dynamic stiffness need to be
reviewed.

In this context of structural vibrations, the stiffness expresses the relationship of load and
deformation of an element (e.g. springs or mountings in vibration isolation). The force exerted
by a stiffness element depends on its displacement and balances the applied external force.
Thus, the stiffness is given by the slope of the force-displacement characteristic (first derivative
of the force with respect to the displacement}. Furthermore, this is a conservative mechanism
because no energy is dissipated.

The static stiffness represents the capability of an isolator to resist a static load. Conversely,
the dynamic (or also local) stiffness is related to the force produced by the mounting when
oscillations about one specific position occur. In a linear spring these two quantities are the
same. Fig.1 depicts a non-linear force-displacement characteristic (namely, a softening spring).
If a static load f, is applied, a displacement xp occurs (point A of the graph). The static
stiffness is given by the slope of the line OA. However, around the point A the slope of the
curve is almost zero, which implies that for small deviations from zy the local (dynamic) stiffness
is very small.

Such a spring, however, is not suitable for isolation purposes. Above a certain displacement
(mainly dictated by the amount of available space) it is desirable to have a steep rise in stiffness
(e.g., this is achieved, for example, by bump-stops in a car suspension system), as shown in

Fig.2. In so doing, the excursion range is limited even if a large force is applied.

1.3. Isolators with QZS

The force-displacement characteristic shown in Fig.2 has some desirable features. The proper-

ties of a mounting with such a load-deflection response can be exploited for isolation purposes
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Fig. I: Force-displacement characteristic of a spring. The curve shows a non linear stiffness charac-
teristic (softening spring). If a static load fs is applied a displacement Tg occurs. The static stiffness

at the point A is given by the slope of the line OA; the dynamic stiffness (for small oscillations about

xp) 1S zero

if the system designed to oscillate about zo. As can be seen, the force, i.e. the disturbance
transmitted to/from the base, is constant for small oscillations about zo. If the oscillations be-
comes large the increase in stiffness has the beneficial effect of preventing too large excursions
from occurring. Systems that present this kind of behaviour are ideal for vibration isolation
purposes [3].

Applications of mechanisms with a quasi-zero-stiffness characteristic range from space research
(e.g. to simulate zero gravity, [8]) to isolation of high precision machinery 19].

A passive isolator based on a mechanism that yields quasi-zero-stiffness is commercialised by
Minus K Technology. Platus has described the principles behind this isolator [10]. However
the description lacks rigorous analysis of the system. Zhang ef al [11] provided experimental
support for an analytical model of a similar mechanism. In particular, the analysis was based
on two parameters: the prestress of the correction springs (which provide negative stiffness)
and the length of the connection between these springs and the suspended mass. The variables

chosen do not offer an in-depth view of the mechanism and no optimisation analysis is pre-
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Fig. 2: Force-displacement characteristic of an isolator with softening, quasi-zero and hardening stiff-
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sented. However, their experimental results prove the effectiveness of such a mechanism.
As far as the authors are aware, no attempt has been made to find an optimum configuration
of a QZS isolator with the aim of maximising the oscillation range over which the system has

an almost-zero stiffness. Therefore, this report focusses on this issue.

A passive isolator that has a QZS characteristic, in its simplest form, is composed of a set
of two oblique linear springs (henceforth referred to as correction springs) connected in parallel
to a third vertical resilient element (also called supporting spring) [3, 12] as shown in Fig.3.

If this system is subject to a force f, the force-displacement characteristic is non-linear
and similar to that depicted in Fig.2. In particular, three regions can be defined: softening,
quasi-zero and hardening.

In this report it is shown that there exists one optimal geometrical disposition of the springs
and their coefficients that allows the largest displacement to be achieved without the system
reaching a stiffness greater than a small desired value.

In the first instance, the separate effects of the two sets of springs (corrective and supportive)

are studied and then combined. Since the supporting spring (vertical mount) produces a linear
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Fig. 3: Schemaotic representation of the simplest system with quasi-zero stiffness mechanism

positive stiffness, its behaviour does not need further discussion. Conversely, one section fo-
cusses on the force-displacement characteristic of a system with two oblique springs of identical
stiffness for an in-depth analysis of the non-linear characteristic and negative stiffness. In sec-
tion 3 the system with three springs is discussed together with an optimisation analysis based
on two variables: the geometry and ratio of the supporting spring’s coefficient to the coefficient

of the corrective springs. Finally, conclusions are drawn.



2. FORCE-DISPLACEMENT CHARACTERISTIC OF A SYSTEM WITH
TWO OBLIQUE SPRINGS

The system in Fig.4 has two linear springs with identical stiffness &, and initial length Lp. A
force f is applied as shown in the figure. The springs are hinged at M and V. The point P
(application point of the force) is a horizontal distance a from M and N and initially at height

he from the horizontal line. The springs are at an angle 8y from the horizontal.

Fig. 4: Schematic representation of an isolator with two oblique springs. The springs oppose the applied

load f, and the geometry gives rise to a non-linear force-displacement characteristic

Following the application of the force f after a vertical displacement z the length of the

springs becomes L. The force exerted by each of the springs is therefore
fo=ko(L — L) (1)

However, only the vertical component resists the applied force f. Hence
f=2k,(Lo— L)sinf {2)

where sinfl = Q—“’L;c‘")



Thus, the force-displacement relationship can be written as
L
=kl =) (22 1) )
From Fig.4 it can also be seen that

Lo =1/ +a (4a)

and

L =+/(ho— )2+ a? (4b)

Combining Eqn.(3) with Eqns.(4) gives

V hi 4 a? 1) 5)

v/ (he —z)* +a? -
This expression can be non-dimensionalised by dividing the displacement z by Lo and the force

f by k,Lp . Thus, Eqn.(5) can be written as

f= / —2(\/1_—7—5:){[:&2—2 1_72§:+1]_1/2—1} (6)

koLo

f = Zko(hl) - I) (

where # = z/Ly is the non-dimensional displacement and

a
= I = cos by (7)

is a geometrical parameter. When v = 0 the springs are initially vertical and wheny = 1 the
springs, initially, lie horizontally.

Fig.5 shows the non-dimensional force plotted against the non-dimensional displacement for
different values of .

Tt can be seen that the system shows a highly non-linear characteristic and regions with
negative stiffness, From Fig.5 it can also be observed that each curve has a maximum and a
minimum. The peak represents a point of unstable equilibrium. After the peak the stiffness
of the system becomes negative. If too large a force is applied the system snaps through the
static equilibrium position until a new equilibrium position is reached. The maximum non-
dimensional force that the system can accept before it snaps through can be expressed as &

function of the geometrical parameter v and is given by
. 1/3]3/2 7
fmang[lw(l—vl_'ﬁ) ] (8)

10
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Fig. 5: Force-deflection characteristic of the system represented in Fig.4. When v = 0 the springs are

vertical and when v = 1 they are horizontal. After the mazimum the curves have a region with negative

stiffness

which occurs at

Tmaz = \/1 - 72 - 7\/7_2/3 -1 (9)
Finally, the stiffness of this system can be calculated by differentiating the force with respect

to the displacement, and is given by

(fay=2{1- - s (10)
(a2 =% +1)

K =

SIS

Following the application of the load f the springs deform. The curves in the plot represent the
restoring force as the springs deform. When the springs lie in the horizontal position (z = ho,
that is 2 = \/T'y—?) the restoring force is zero and this is due to the fact that there is not
a vertical component of the spring force able to resist the applied load f. At this point, any
perturbation (e.g. a small displacement) would bring the system to a different position of
equilibrium, thus the horizontal position is a position of unstable equilibrium.

The instability described makes this system unsuitable for isolation purposes. However, the

geometric non-linearity and negative stiffness of this system can be exploited in order to obtain

11



a system that has a region with quasi-zero-stiffness {QZS).

In Fig.6 the stiffness K is plotted against the displacement Z, for v = 0.8,

stiffness characteristic
of the two oblique springs

linear spring

Fig. 6: Representation of the non-dimensional stiffness of the stiffness of a system with two oblique

springs against the non-dimensional displacement; the dashed lines is the constant stiffness of a linear

SpTing

The dotted curve represents the non-dimensional stiffness of the system depicted in Fig.4

as a function of non-dimensional displacement. It is positive for small values of Z, goes through
2610 then reaches a minimum before increasing and becoming positive again. In the same figure
the dashed line represents the stiffness characteristic of a linear spring with non-dimensionalised
stiffness K = 0.5.
The two characteristics can be combined so that the stiffness becomes zero but never negative.
If carefully designed it is possible to have a very small stiffness for a relatively wide range
of displacements, with beneficial consequences for the isolation performance. In [12] several
systems with QZS are presented and discussed. Of particular interest to the authors is the
system shown in Fig.7. It represents a parallel combination of two oblique (correcting) springs
and a vertical (supporting} spring.

Unlike the system with only oblique springs, there is always a force that opposes the applied

load f. When the correcting springs lie horizontal the supporting spring resists the force f. In

12
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Fig. 7: Schematic representation of an isolator which has quasi-zero stiffness

practice, the vertical component of the correct.ing springs’ force acts in parallel with the force
of the vertical spring. By choosing the stiffness of the vertical mounting (positive) to be equal
to the minimum stiffness of the oblique springs (negative) the system can have zero stiffness at
one particular displacement. The stiffness of such a system is plotted in Fig.8 as function of

the displacement.

The mechanism depicted in Fig.7 allows a very low stiffness to be realised for a range of

displacements and has zero stiffness when

t=y1-2=1 (11)

Tf the system oscillates with a small amplitude about this point, the stiffness will be very
small (quasi-zero). Herein the point Z. is referred to as the static equilibrium position.

This is the nature of a quasi-zero-stiffness ((ZS} mechanism.

In the following sections a QZS system is investigated to determine the displacement range over

which there is a very small stiffness.

13



Fig. 8 Stiffness of the QZS mechanism depicted in Fig.7 with v = 0.8 as function of displacement.

The stiffness reaches zero at one point and is low over a displacement range

14



3. A MECHANISM WITH QZS

One of the simplest system with a QZS characteristic is depicted in Fig.7. This system has a
third vertical linear spring added to the two oblique springs studied in the previous section.
The three springs act as if connected in parallel, thus the restoring force of the system is the
sum of the stiffness of the vertical mounting and the vertical component of the restoring force
exerted by the two oblique springs. If k, denotes the spring coeflicient of the vertical element,

the restoring force is given by ®:
—1/2
f=1Ly {m + 2%k (/1 72— &) {(az‘? —o/T— A%+ 1) - 1} } (12)

where again v = a/Lg.

By introducing the ratio of spring coeflicients a = %, Eqn.(12) can be re-written in non-

dimensional form as

j= =£+2a(m—£){{i2—2\/_1——_’)/23’:—%1]_1/2—1} (13)

kyLg

The non-dimensional force as a function of the non-dimensional displacement is plotted in Fig.9
for several values of v when o = 1. As aforementioned, a system with a QZS characteristic has
a force-displacement curve that has quasi-zero slope about the equilibrium point (flat region in
the curve). As can be seen in Fig.9 this occurs only at a one particular value of the geometrical
parameter, denoted in the figure as yopu. This will be discussed in detail later.

A physical explanation for the QZS mechanism has been provided at the end of the previous
section: the stiffness of the supporting spring has to be equal and opposite to the effective
stiffniess of the correction springs when these are in the horizontal position.

There exists a unique relationship between the geometrical parameter v = a/ Ly and the spring
coefficient Tatio o = ko/k, that yields the desired characteristic. The stiffness of the system

can be found by differentiating Eqn.(13) with respect to the displacement

~ d R 72
K== (f(#) =142 |1~ 73 (14)
(:32_2 1—725;+1)

IThe sign of the restoring force is upwards: thus, according to the notation in Fig.4 it is a negative force

15



Fig. 9: Force-displacement characteristic of a QZS mechanism when o = 1: the solid line presents the

flat region that define the quasi-zero stiffness

If this is evaluated at the static equilibrium position £, = 1/1 -~ 2, set to zero and solved for

=, the optimum value is found to be

200
= 15
Yopt Y +1 ( a‘)
or equivalently
y X
(15b)

Oopt = =
721 -)
In Fig.10 the non-dimensional stiffness is plotted as function of the non-dimensional displace-

ment for different values of v when the spring coefficient ratio is o = 1.

When v # e the stiffness is either always positive or becomes negative. However, when
¥ = 7o the stiffness does not become negative (stable system) and becomes zero at the
equilibrium position Z, = m
By designing the isolator so that the oscillations occur around this point only a small force is
transmitted through the springs, which is beneficial for vibration isolation.

The variables that govern the behaviour of the QZS region have been identified. An investigation

is now conducted on how to optimise these parameters to achieve the maximum displacement

16



Fig. 10: Non-dimensional stiffness of o QZS mechanism when o = 1: the solid line is representative
of a stable system (always positive stiffness) with zero stiffness at the static equilibrium position. The

stiffness is very small (quasi-zero) for a small deviation from this position

from the operative static equilibrium position without the system exceeding a specified low

stiffness value.

3.1. Optimisation of the QZS mechanism

In the previous section it was shown that in order to obtain a system with a QZS characteristic
the geometrical parameter, v, and the spring coefficient ratio, «, have to satisfy Eqn.{15).
Since there is an infinite number of possible combinations of the aforementioned parameters it
is pertinent to question the existence of an ‘optimum’ combination.

A suitable criterion is that the displacement about the static equilibrium position is maximised
without the system exceeding a very low specified stiffness. The goal set here is to determine a
particular combination of 4 and o that results in the largest oscillation with very low stiffness
in this displacement range.

Fig.11 depicts the non-dimensional force as a function of the non-dimensional displacement
when Eqn.{15a) or (15b) holds. In this case the force is only dependent on the variables v and
z.

17
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Fig. 11: Plot of non-dimensional force for different values of geometrical parameter and stiffness o

determined according to the relationship given in Eqn.(15b )

In Fig.11 all the curves have a quasi-zero-stiffness characteristic (a flat fegion can be ob-
served). However, the flat region of the curves narrow as ¥y — 0 or v — 1. It is apparent
that the optimum value of v that maximises the displacement range over which the stiffness is

almost zero lies in between 0.6 and 0.8.

By substituting the relationship between 7 and a given by Eqn.(15b) into Eqn.(14), the

optimum non-dimensional stiffness as a function & is given by

2
. Y ¥
K=1+—— |1~ - (16)
= 2
(1= (5:2_2 T+ 1)

In Fig.12 the non-dimensional stifiness as function of the non-dimensional displacement is plot-

ted for several values of .

Examining Fig.12 it can be seen that at the static equilibrium position Z. the stiffness is zero
and the largest displacement range over which there is & small stiffness it appears to happen
at a value of v in between 0.6 and 0.8.

In the design of such a isolator is of primary interest to estimate the displacement range over

18



Fig. 18: Plot of non-dimensional stiffness for different values of geometrical parameter y and o deter-

mined according to the relationship given in Eqn.(15b)

which the system has a stiffness less than some desirable value Ky < 1. A value of Ky=1
means that the system has the same stiffness as if it had only the vertical spring. Since the
purpose of the corrective springs is to reduce the stiffness compared to the classic mass-spring
system, the range of interest is 0 < Ko< 1.

The displacement over which the stiffness is less than a desired value K, can be found by setting

K = Ky and solving for £, which yields

F=1/1-72%7~ (17)

2/3
- _1
1—- Ko(1—v)

Note that the second term of the RHS represents the deviation of the system from the static
equilibrium position.
The geometry that yields the maximum excursion for a desired low stiffness over this range is

now determined.

Let d be the second term of the RHS of Eqn.(17) so that

2/3 -
d=1 {_——1*} 1 (18)
1— Kp(l—")

19




Of great significance is the maximum value of d (for a given K;) as v varies from 0 to 1.
Although a numerical solution can be readily found, a closed form expression can be also
sought. To evaluate the maximum, Eqn.(18) is differentiated with respect to -, set to zero and
solved for . However, this leads to a very complicated result. To derive a simpler relationship
it is necessary to make the simplifying assumption that K, < 1. Using & binomial expansion,
Eqn.{18) approximates to

. 2 .
d~ 3y 551 =) (19)

The exact and the approximate expressions for d are shown in Fig.13. It can be seen that as

K, becomes smaller the two curves become very similar,

0.4 T T T T 7 T T T
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Fig. 18: Non-dimensional displacement from the static equilibrium position as function of y: the solid

line is the ezact solution given by Egqn.(18); the dashed line is the approzimate solution given by

Egn.(19)

Provided Ko < 1, the displacement from the static equilibrium position can be expressed

by Eqn.(19) and the maximum displacement is obtained by solving

d o V6K (2-3y)
a(d) - 6 m =0 (20)

It can be seen that the value of 4 that yields the largest deviation from the static equilibrium

20



position at the desired low stiffness Ko is

2 -
Vdpor =30 Ko< (21)
From Eqn.(15) follows that the optimum value of the spring coefficient ratio is omer = 1, i.e.
when all the springs have the same stiffness.

By substituting the value of v given by Eqn.(21) it is possible to determine the maximum

excursion (from the static equilibrium) without exceeding the desired stiffness Ky:

" 2 ~
d ) = —1/2K, 22
( maz Rocl 9 0 ( )

In the previous chapter it was shown that if only the oblique springs were acting there are
two position at which the system has zero stiffness. These can be seen in Fig.5 where the
maximum and minimum of the force correspond to zero stiffness. An expression of the position
at which this occurs is also provided by Eqn.(9). In between these two positions the stiffness is
negative. When connected in parallel with a vertical mount {which has positive stiffness) the
addition of the negative and positive contributions generate the sought softening effect, with
the possibility to achieve zero stiffness at one particular point (QZS mechanism). Therefore
the range of displacement over which the system represented in Fig.7 has almost-zero stiffness
can be found by looking at the distance between the maximum and the minimum in the force-
displacement characteristic of the oblique springs. This can be found by differentiating Eqn.(9)
setting it to zero and solving for . It is found that the largest distance between a maximum
and a minimum occurs for v = (2/3)¥%. Furthermore, since at the two points in which the
oblique springs have zero stiffness the system has the same stiffness of the vertical spring, 1.e.

Ko =1, it follows that

9 3/2 R
Ve = (g) ,  Ky=1 (23)

‘which when substituted in Eqn.(18) gives

R 9\ 3/2 7
(dmaw) o=l (5) {1 i [1 - (g)g,,Q]}z/s —1 (24)
So far it was shown that

o if R’D « 1 the largest displacement over which the stiffness is smaller than f(g oceurs

when vy = 2/3, Eqn.(21);

21



e conversely if Ko = 1 the value of v that yields the maximum displacement is y = (2/ 3)%/2,

Eqn.(23).

A general expression that relates v and K, with the maximum achievable displacement can

be sought by assuming, for example, a relationship of the type

9 e1Ko+ea
Ve = (g) (25)

The constants ¢; and ¢ can be found by combining Eqn.(25) with Eqns.(23) and (21). It is

found that .
Loy

2 2
. o= = 26
’Ydmaa: ( 3 ) ( )
By substituting Eqn.{26) into Eqn.(18) the relationship between the maximum displacement

and the desired stiffness is given by

%
!

Gz = (g) ! 1 (27)

0-4 T T T T T T T I
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Fig. 14: Numerical and analytical representation of the mazimum displacement range, Gmaz, over which

the system has a stiffness smaller than K.
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Fig.14 shows the largest excursion from the static equilibrium position that can be achieved

without the system having a stiffness bigger than Ky. The solid line has been obtained by
using the exact solution, Eqn.(18), and numerically evaluating the maximum displacement as
K, and ~ vary from 0 to 1 whereas the dotted curve depicts Eqn.(27).
From Fig.14 it is also possible to observe that, for f{o < 1 the curve resembles a square root
function. Using a binomial expansion Eqn.(27) simplifies to Eqn.(22). From a value of K,
of about 0.4 the curve suggests a linear relationship between dmae and Ko in this range. By
manipulating Eqn.(27) it is found that

. 1 . X
dmmmﬁ(l—{—Q\@K@) C 0dmEKy<1 (28)

Once that the maximum displacement for the desired stiffness has been estimated from
Fig.14 the relative geometry can be calculated with Eqn.(26) which is also depicted in Fig.15.
As K, goes from 0 to 1 the geometrical parameter varies between (2/3)%2 and 2/3. Because
of the definition of v as given in Eqn.(4) the angles at which the oblique springs have to be
placed are within the range 47° — 57°. Similarly according to Eqn.(15b) the stiffness ratio a is

constrained between 0.6 and 1.

09k . : ]

08F - : S - 8

0.1 1

Ll 1 1 L ] | 1 1] |
00 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0% . 1

Ky

Fig. 15: Geometrical parameter v versus system’s stiffness K. In order to obtain the mazimum

displacement for any Ko < 1 v has to be comprised between (2/ 3)3/ 2 and 2/3
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The analysis presented so far is based on the assumption that  and «a respect Eqns.(15),
that is the system parameters are optimised to achieve zero stiffness at the static equilibrium
position. In practice this means that for a given geometry (i.e. for a given y) the spring ratio
has to be equal to gy as in Eqn.(15b). However, it is possible that, due to manufacturing
errors for example, the actual value of « is different from the desired value. Therefore it is
important to predict how the system responds should 4 and o be detuned from their optimal
relationship.

Let ¢ be a fractional change in «, that is & = (1 £ €). Substituting this expression of a in
Eqn.(14} it becomes
2

5 i
K=1+2am(lEe) |1- 7 (29)
(82 -2 T— 7% +1)

which can be rearranged to give

. . 2
K = Koy £ 2¢00m |1 — i » (30)
(5:2—2 T— 7% +1)

where f(’opt is the stiffness when « and -~ optimised.
Eqn.(30) expresses the stiffness of the system when the geometrical and spring parameter are
not in the optimal ratio. Since oscillations occur about the static equilibrium position the
stiffness is evaluated at £ = . = M, when the parameters are detuned. By definition
K op = 0 at the equilibrium position, thus substituting . = m into Eqn. (30)it is found
that
(K)_ = —(%e) (31)
The physical meaning of Eqn.(31) is that the stiffness of the system is equal but of opposite
sign to the fraction change in the spring ratio. It has also to be noted that the stifiness is
independent of the geometrical parameter . Of particular interest is the fractional change in
stiffness compared to the optimum value (which incidentally is zero at the equilibrium position)
when the system is detuned. By differentiating the stiffness with respect to € it results
= (32)
Eqn.(32) shows the robustness of such a mechanism to non-optimal parameters: the system will

experience a change in stiffness equal but opposite to the fractional change of optimal spring
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ratio oy Thus, for example, if the spring ratio is 1% smaller than oy the stifiness at the
equilibrium position, which should be zero in optimal conditions, will increase by 1%, becoming

positive. Likewise, an increase in « of €% will imply a decrease in stiffness by the same amount.

It has been shown that it is possible to design an isolation system with QZS characteristic
and maximise the displacement from the equilibrium position without exceeding a desired low
stiffness. However, there are some negative aspects of this mechanism that need to be discussed.
In the best case scenario that the system has optimally tuned parameters Fig.11 and 12 show
that outside the QZS region (flat part of the force-displacement curve), the stiffness rises sharply.
It is of interest to know how poorly the isolator performs should the amplitude of the oscillations
become very large, that is |(£ — £.)! = ho.

Fig.12 shows that for very large excursions from the static equilibrium position the stiffness
tends to an asymptotic value that depends on v: the greater -y the greater the stiffness becomes

for large displacements. In the limit the stiffness becomes

2
. y ¥ 1
lim 1+ 1 =— (33)

In order to exploit the whole displacement range over which the system has the desired low

value Ky, 7y is constrained between (2/3)%2 and 2/3. Thus, the cost of having an almost zero
stiffness is that the stiffness can become between two and three times higher than the vertical
spring with consequent degradation of isolation performance when compared to the simpler

mass-spring system.

3.2. Approximation to the Stiffness of the QZS Isolator

In the previous sections the force-displacement characteristic of QZS isolator has been studied.
Also its stiffness and an optimum configuration of the system have been discussed.

The relationship between force and the displacement is expressed by Eqn.(13) and is graphically
shown in Fig.9. It can be seen that the curves have a shape similar to that of a cubic function.
In this section a simplified cubic expression of the force is therefore sought and the error in the

approximation is investigated.
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Using a Taylor series expansion, a function can be expressed by a power series of order V. The

expansion is given by [13]

_ A AL C) P
flz) = floo) + Y — (@ = 20) (34)

n=1

where zg is the point at which the function is expanded and f* denotes the n-th derivative of
f.
Since the system is designed to oscillate about the static equilibrium position it is of interest to
expand the force characteristic around this point, i.e. x5 = Z.. By expanding Eqn.(13) using
Eqn.(34) an approximate expression for the force can be found. The approximate force is found
to be

Fupp() = % (2- v —72)34— 1— 2a(i~;i)] (2- VIZP)+V/I=7%  (39)
or, by introducing the variable § = & — /1 — 7*

ol = S5+ [1- 22822 g VT2 (36

Y

In particular if v and o are chosen according to one of Equs.(15), the force-displacement

relationship approximated by a third order polynomial is given by

fon(§) = | ——— | #® + /1 — 2 37
Fon) = [ 94 VI 7
By opportunely scaling the coordinate system Eqn.(37) can be rewritten as
- 1
Fun0) = |55 | 7 (38)
)= =)

where ﬁ’app = fapp — ﬂ i

Eqn.(38)is plotted in Fig.16. Also shown in the same figure are the curves relating to the fifth
and seventh order polynomials.

Since the stiffness of the system is of particular interest, it is necessary to evaluate the approx-
imate expression of the stiffness and the error between this and the exact expression.

An approximate expression for the stiffness can be obtained by differentiating Eqn.(36):

»

1 —
Ry = 337 + [1 P 7)} (39)
Yy ¥

In the case when the parameters o and v are optimally related the previous expression of the

stiffness simplifies to

N 3 1
K. =S~ . 4° 40
app 272(1_7)%{ ( )
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Fig. 16: Force-displacement characteristic. The solid line shows the plot of the ezact expression
Eqgn.(18) in the new coordinate system. The other lines are for the approzimate ezxpressions of third,

fifth and seventh order polynomials

If only if & and 7y are in their optimal ratio the stiffness, expressed by Eqn. (40), becomes zero
at 7= 0.

The approximate expression leads inevitably to an error; although this can be reduced by
expanding the function as polynomial of higher order, an estimation of this error is thus needed
to understand to which extent an approximate function can be used without introducing too
large an error in the static analysis of this system.

There are different ways to estimate the error when approximating a function with a finite power
series, as opposed to an infinite power series. Some analytical expressions for the reminder have
been provided by Lagrange and Cauchy [13]. However, here a numerical estimation of the error

is calculated by

_ Kapp

~

x 100 (41)

err(%) = |1

ex

where f(ﬂpp is the approximate value of the function and K., is the exact one.
A large difference between the exact and approximate solution is expected only when large

displacements from the equilibrium position occur. This is a direct consequence of having ex-

27



panded the function about the static equilibrium point. Focussing the interest on the maximum

displacement range that allows the stiffness to be smaller than one, that is Ko < 1, the biggest

-

error will occur at ¥ = dnas.

Should the excursion become as large as d . the error made in using the approximate rather
than the exact expression of the stiffness can be estimated, for any value of desired stiflness
Ky, as follow. For any given K, the maximum excursion from the equilibrium position Aonae 18
calculated using Eqn.(27). Then both exact and approximate expressions of the stiffness are
evaluated at cfmm. The error is thus determined by means of Eqn.{(41). The result is shown in
Fig.17. A large error is observed if the desired stiffness is high (f(g ~z 1). However, for values

of K < 0.3 the approximation error is less than 10%.

70 T ¥ T ¥ T T T T
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Ervor (%) at dpmgs
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Fig. 17: Approzimation error evaluated at the mazimum distance achievable from the static equilibrium

position for o given Ky
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4. CONCLUSIONS

The performance of an isolation system with quasi zero stiffness mechanism has been discussed.
“The main feature of these mechanisms is the possibility of achieving a very low stifiness without
paying the price of having a large static deflection. This is accomplished by combining the neg-
ative stiffness provided by two linear springs with a certain geometry and a vertical mounting
with a positive linear stiffness.

The analysis had been carried out with non-dimensional parameters. In particular two param-
eters are of major importance: the system’s stiffness, which has been non-dimensionalised with
respect to the stiffness of the vertical spring, and the angle at which the oblique springs are
inclined.

Tt has been found that in order to obtain a QZS characteristic there is a direct relationship
between the geometrical parameter (namely, the initial angle at which the correction spring
are set) and the coeflicients of the springs that constitute the system. Furthermore, an opti-
misation analysis has been carried out with the aim of maximising the deviation from static
equilibrium position that results in a desired low stiffness. It was found that the largest dis-
placement achievable is a function of the desired stiffness. A closed form expression has been
determined. It has also been found that the oblique spring have to be inclined at an angle that
varies between approximately 47° and 57°.

Because of manufacturing tolerances, in practice the stiffness of a spring differs from the claimed
value. It was therefore of interest to measure the robustness of the system should the geometry
and the springs’ ratio be different from the design values. The stiffness has been calculated
if the spring ratio « is changed by a quantity e. It was shown that the fractional change in
stiffness at the equilibrium position is equal (but with opposite sign) to the fractional change
in stiffness. Thus, and increase of springs’ ratio of €% correspond to a decrease of €% of the
system’s stiffness.

For sake of completeness, the drawbacks of this mechanism were also discussed. The cost of
having an almost zero stiffness for small oscillations about the static equilibrium position, is an
abrupt increase in stiffness should the oscillations become large. An expression that estimates
the stiffness in the limit of an infinitely large displacement has been proposed. The increase in

stiffness is a function of the geometry and the smaller the angle the worse (in terms of stiffening)
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the system behaves for large displacements.

Finally, the exact function that describes the force-displacement relationship has been sim-
plified to a simpler cubic function. In order to avoid the introduction of large errors in the
analysis of the system a study of the approximation error has been carried out. The cubic
expression derives from a series expansion about the equilibrium position. Therefore in the
proximity of the equilibrium point the exact and approximate functions do not differ. However,
the further away from this position the largest the difference become. The analysis has been
focussed at the maximum deviation from the equilibrium that allows the desired stiffness. It
has been shown that if the desired stiffness is small so is the error in using the approximate

expression.

Future studies of this system will look into the dynamic response. The expression of the

stiffness leads to an equation of motion that is the same as the Duffing’s oscillator which has

been extensively covered in the literature.
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