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ABSTRACT

The foundations of Statistical Energy Analysis (SEA) are based on the interaction of coupled
oscillators and coupled sets of oscillators. The sets of oscillators might be subsystems
modelled discretely, typically those produced by finite element analysis. This issue is
revisited here. Various assumptions inherent in previous work are removed or relaxed.

First, the SEA of two coupled oscillators is considered. The oscillator properties are assumed
to be random and ensemble averages found. Full account is taken of the correlation between
the coupling parameters for the oscillators and their energies. Various observations are made
about the gqualitative and quantitative features of the behaviour under broadband excitation,
some of which differ from those which are commonly assumed within SEA. It is seen that the
coupling power or coupling loss factor can be written in terms of the “strength of connection”
between the oscillators and a term involving their bandwidths and the separation of their
natural frequencies. Equipartition of energy does not occur as damping tends to zero, except
in the case where the uncoupled oscillators have identical natural frequencies.

Attention is focussed on spring-coupled oscillators, although other forms of conservative
coupling are considered. These include general, conservative coupling and spring-like
coupling which is characteristic of the form of coupling that arises from fixed interface
component mode synthesis.

These results are then extended to two coupled sets of oscillators (i.e. coupled multi-modal
subsystems). It is assumed that the interaction of each oscillator pair is not affected by the
presence of a third oscillator. A second assumption concerns the coupling power between
each pair. Two approaches are suggested: the first is that the coupling power between each
oscillator pair is proportional to their actual energies; the second is that the coupling power
between each oscillator pair is proportional to their “blocked” energies. Very similar, but
different, expressions for the ensemble averages of coupling power, energy response and
coupling loss factor (CLF) are found. The application of the coupled oscillator theory to
coupled continuous subsystems is discussed.

The behaviour is seen to depend on both the strength of coupling and the strength of
connection, and parameters describing the strength of coupling and the strength of connection
are found. The coupling loss factor depends on damping: it is proportional to damping at low
damping and is independent of damping in the high damping, weak coupling limit.

Applications and numerical examples are discussed. The examples of two spring-coupled rods
and two spring-coupled plates are considered. Comparisons are made with the results of
conventional SEA, an exact wave analysis for one-dimensional subsystems and numerical
Monte Carlo simulations using an energy distribution approach.
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1 INTRODUCTION

Statistical energy analysis (SEA) has become an established method for modelling the noise
and vibration behaviour of complex, built-up structures at higher frequencies [1]. The
response ‘is described in terms of the flow of energy through the structure. It is recognized
that the properties of the structure are uncertain, and hence a statistical description is required.
In principle at least, the structure is assumed to be drawn from an ensemble of similar
structures whose properties are random and estimates of the ensemble average response are
required.

The earliest approaches to SEA and derivations of the SEA equations concerned systems
comprising two coupled oscillators and two coupled sets of oscillators whose properties are
random. In [2] it was seen that for broadband excitation the energy flow between two,
conservatively coupled oscillators is proportional to the difference in their blocked energies,
i.e. the energies when the other oscillator is fixed. This result was then applied to the
coupling power between two specific modes of coupled, multi-modal subsystems, which can
be regarded as comprising sets of oscillators. In [3] the results were extended to the case of
coupled oscillator sets, various assumptions being made to show that the coupling power is
proportional to the difference in the mean blocked modal energies of the subsystems. The
coupling loss factor was introduced and estimated using wave approaches rather than from the
modal approach itself. A more formal approach was developed in [4], which adopted a
statistical description for the properties of the sets of oscillators, and ensemble averages of the
coupling power found. Finally in [5] it was shown that the coupling power between two
oscillators is also proportional to the difference in their actual energies. It is on this base that
SEA is founded. '

In this memorandum the SEA of coupled oscillators is revisited. The work departs somewhat
from that of [1-5], in that various assumptions are removed or relaxed, and consequently some
of the conclusions differ from those of [1-5].

Broadly, in what follows, the SEA of two coupled oscillators is considered first. The
oscillator properties are assumed to be random and ensemble averages found. These results
are then extended to two coupled sets of oscillators (i.e. coupled multi-modal subsystems).
Attention is focussed on spring-coupled sets, although other forms of conservative coupling
are considered. Results are compared with existing theories, including conventional SEA, and
numerical examples are presented.

There are two main motivations. The first is to re-examine the underlying physics of the
interaction of oscillator sets, since the conventional SEA approaches lead to conclusions -
which are contradictory to results found from wave and finite element analysis (FEA),
especially for stronger coupling. These conclusions relate to the strength of coupling, and
another factor, the strength of connection of the oscillators. The second motivation is to lay
the basis of a technique for estimating SEA parameters from discrete, FEA subsystem models,
without the need to solve the global eigenvalue problem. This work is on-going.

Regarding the underlying physics, in the analysis one major assumption is removed: full
account is taken of the correlation between the coupling parameters for the oscillators or
mode pairs and the specific energies of those modes. Various observations are made about
the qualitative and quantitative features of the behaviour under broadband excitation, some of
which differ from those which are commonly assumed within SEA. It is seen that the
coupling power or coupling loss factor can be written in terms of the “strength of connection”
between the oscillators and a term involving their bandwidths and the separation of their
natural frequencies. Equipartition of energy does not occur as damping tends to zero, except



in the case where the uncoupled oscillators have identical natural frequencies. The results are
then extended to coupled sets of oscillators and ensemble averages. The coupling loss factor
depends on damping: it is proportional to damping at low damping and is independent of
damping in the high damping, weak coupling limit. A parameter which describes the strength
of coupling is identified: this depends on both the damping and the strength of connection.

The subsequent aim is to be able to estimate SEA parameters from discrete, FEA subsystem
models. Each subsystem can be modelled using FEA and its uncoupled modes determined.
When two subsystems are joined these modal sets interact. Robust estimates of the coupling
loss factors (CLFs) (i.e. estimates which do not depend on the exact subsystem properties
chosen) can be determined by analytically ensemble-averaging along the lines described here.
practical applications of this approach are likely to be aimed at weak coupling cases (for
parameter estimation), as well as strong coupling cases. This work is on-going.

The work also forms the basis for estimating variability in the response of individual systems,
since this variability results depends on the modal properties of the system, including the
number of modes in the excitation band and the mode spacing statistics. This work is also on-
going.

The next section concerns the case of two spring-coupled oscillators. Various expressions for
powers and energies are derived and discussed. The oscillator properties are described
statistically and ensemble averages taken, leading to expressions for the CLFs. The
correlation of oscillator energies and coupling parameters is included: this is the cause of
behaviour contrary to that predicted by conventional SEA. Other forms of conservative
coupling are considered. These include general, conservative coupling and spring-like
coupling which is characteristic of the form of coupling that arises from fixed interface
component mode synthesis. These are described in Appendices C and D. The general
conclusions still hold for these cases of coupling, but the expressions become quite lengthy.

The results are then extended to the case of two spring-coupled sets of oscillators in section 3.
Ensemble averages are again taken, the ensembles being defined in terms of the statistics of
the natural frequencies of the oscillators in each set. Expressions for the ensemble averages
of coupling power, energy response and coupling loss factor (CLF) are derived in terms of the
interaction of oscillator pairs. To find these expressions further assumptions are required and
two are suggested: the first is that the coupling power between each oscillator pair is
proportional to their actual energies; the second is that the coupling power between each
oscillator pair is proportional to their *“blocked” energies. Two similar but different
expressions for CLF result. These are identical in the weak coupling limit. Parameters
describing the strength of coupling and the strength of connection are found.

In section 4 applications and numerical examples are discussed. The application of the
coupled oscillator theory to coupled continuous subsystems is discussed. The examples of two
spring-coupled rods and two spring-coupled plates are considered. Comparisons are made
with the results of conventional SEA, an exact wave analysis for one-dimensional subsystems
and numerical Monte Carlo simulations using an energy distribution approach.



2 TWO SPRING-COUPLED OSCILLATORS

Consider the system comprising two spring-coupled oscillators shown in Figure 2.1, m, ,, k&,
and ¢, being the mass, stiffness and damping of the oscillators, respectively, and k the

stiffness of the coupling spring.
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Figure 2.1 Two spring-coupled oscillators.

Suppose two time-harmonic forces f;(1)=Fe™ and f,(¢)= Fe’ act on the oscillators.

The response and the coupling power are derived in Appendix A, the expressions being
somewhat cumbersome. This section concerns the average behaviour, being either frequency
averages or ensemble averages taken over a distribution of properties of the system. In
subsequent sections these results are applied to coupled sets of oscillators. Results are given
elsewhere for more general cases of conservative coupling.

2.1 Broadband excitations
Now assume that the forces f, (¢} and. £, (¢} are random, stationary, statistically independent,

broadband white noise, with spectral densities S, and §, over some frequency band B. B is

wide enough to contain both natural frequencies of the system.

The total input power, energy of each oscillator and coupling power between the two
oscillators in the frequency band B are given by

R, = R, (w)do @1
P, = [R(0)do, (22)
E, = [2K,(0)do 2.3)

Here the discrete frequency kinetic encrgies K] (@), K, (). input powers F/(o), B (o)
and coupling power P(») are given in equations (A17-18), (A21-22) and (A29),

respectively or equations (A39) to (A43) in terms of the excitation spectral densities. Note
that in equation (2.3) the energy of each oscillator is taken to be twice the kinetic energy



(there are no significant consequences of this). This is because the strain energy in the
coupling spring cannot be unambiguously ascribed to one or other oscillator. Furthermore,
the dissipated power is proportional to the kinetic energy. For other forms of conservative
coupling there is similar but inconsequential ambiguity.

Since f, and f, are assumed to be uncorrelated and white, the integrals can be evaluated
(making use of results from [1]} and equations (2.1)-(2.3) lead to

IS p 7S
b= , B= (2.4), (2.5)
m, m,
A +ANE (7S, #S
P, :( ! 2) Ao i (2.6)
mm,Q mA, mA,
wS, k(A +A)Y =S, A8
EI . Ao ( 1 2) ho_ 1 (2.7)
ma,  mm,QA Umd, mA,
v A _kz(Al+A2) zS, wﬂrSfl 2.8
PomA, o mmQA, L myA,  mA

where A, , is the damping bandwidth of each oscillator and Q) is a coupling parameter given
by
(B, +4,) &

0=(ay —‘f)zz)z (A +4, ) (018, 078, )+ i, A A,

(2.9
Here w,, = (kl‘z +k) /mL2 , are the ‘blocked’ natural frequencies of the oscillators, i.e., the

natural frequency of one oscillator when the other is held stationary. Note that the input
powers (equations (2.4)-(2.5)) are independent of the natural frequencies @, and @,. The

transmitted power (from equations (2.6) and (2.9)), however, strongly depends on @, and w,,
and in particular the difference between them,

From equations (2.4)-(2.8), it follows that

E+PF =AE +AE (2.10)
The above equation indicates that the time average power input to the system is equal to the
power dissipated within the system, as is expected from conservation of encrgy.

The difference between the oscillators energies is found from equations (2.7)-(2.8) to be

2
. (0] —@]) +(A+4,) (@78, +0A,) xS, #8, 211
b o ma, A, '
This finally gives
' Py = B{E - E,) (2.12)

where the term /3 is given by



ﬁ:( k* ] (A, +4,) 2.13)
mmy ) (@? —02) +(8,+A,) (034, + 074,

Equation (2.13) is the familiar statement of coupling power proportionality, applied here to
two, spring-coupled oscillators under broadband, random excitation. The term £ is

determined by the coupling stiffness %k and the properties of the oscillators (my,
ma,w,,@,,A,A, efc) and is a constant, regardless of the oscillator energies. Note that f
depends strongly on the difference of the subsystem uncoupled natural frequencies through

the term (.co,2 - co;) :

Equation (2.13) was derived in [2] using a slightly different approach and formed the basis for
the subsequent development of SEA. Similar analyses hold for other types of couplings, such
as two oscillators connected via general, conservative coupling elements, or via an interface
degree of freedom. Details are given in Appendices C and D. The expressions are somewhat
complicated due to the number of parameters involved but the underlying physics is the same,
especially the dependence of the coupling term on a group of parameters related to the

coupling mechanism (here the term(kl/mlmz)) and a term depending on the oscillator
propetties which involves the difference of the natural frequencies.

It is worth noting that in the above derivations, the oscillator natural frequencies are taken as
the blocked natural frequencies. This is one manner in which the oscillators can be
uncoupled. The uncoupled system can equally be regarded as that in which the coupling

spring k=0, Le., @, are defined in terms of the free natural frequencies w,, = Jk/m and -

0, =k, /m, . The power-energy relation holds equally for both definitions, although there

are slight differences in the elements of the coupling term. In principle, therefore, it is not
relevant whether the uncoupled natural frequencies @,, are given by blocking (or clamping)

the interface or by cutting (or freeing) it.

2.2 Ensemble averages

In SEA the system properties are usually not known exactly, but are random. Some joint
probability density function p(m,,a)l,A};mz,wz,Az;k;Sfl,Sﬂ) defines the statistics of the
ensemble of two-oscillator systems. How p is defined in practice might be problematical.
Here it is asswmed that all parameters are known exactly except for the oscillator natural

frequencies, which are both random and distributed over some frequency band Q. If this
band of uncertainty is fairly small compared to the bandwidth of excitation B, then it can

equally be assumed that @, is known and that the natural frequency spacing & = (wl - mz) is

random and uniformly probable in some band Q. As a result, the ensemble of two, spring-
coupled oscillators is defined here by

1/ (-9/2<86<Q)2)

P

Under these circumstances, if Q is large compared to the half-power bandwidths but small
compared to @,,, the ensemble averages of the input powers and subsystem energies

. 2.14
otherwise ( )

(equations (2.4) and (2.7)) are given by



LTy (2.15)
m
7. 7S 2kA L[1](7S, 7S, (2.16)
1 mlAl m1mzA1 Q miAi n22A2 ’

where both the expectation E[] and + represent the ensemble average. Defining

A=(A,+4,)}/2, equation (2.9) gives

[l}_ijﬂ_ _# 1 ! @2.17)
0] Qa0 407 Q [arix?(a/aA,)
where @ is the centre frequency of band Q and where
kZ
K= - (2.18)
1,1, 0

is a measure of the strength of connection between the oscillators.

Substituting equation (2.17) into equation (2.16), the ensemble average energy is given by

E :ﬁIL_L z x [A][i‘g&_&} (2.19)
1 : .
mh, Q2 \/AZ +x (AZ/AIAZ) A\ md A,

2.2.1 Coupling loss factors

From equations (2.15)-(2.19) the ensemble- and frequency-averaged encrgies and input
powers are related by

E=AP, (2.20)

where the elements of the energy influence coefficient (EIC) matrix A are given by

A, =i[1——“—}, , :i[i——"“ﬁm} 2.21), (2.22)

Al AQ T AL A0
A, =4, = L @ (2.23)
POTEAA, Q '
where
T Kk , K
2 ,‘i_|_ 7/2 A|A2

The coupling loss factor (CLF) matrix L of the two-oscillator system can be obtained by
inverting the EIC matrix, 1.¢.

P_=1E, L=A" (2.25)

and where



L= a)li??l Tz M j; (2.26)
T Mty
From the above equations the coupling loss factors are found to be
afQ
1-2(a/Q){A/AA,)

Wiy = 07 = (2.27)

In the above, y is a parameter describing the strength of coupling while x describes the
strength of connection. The coupling loss factors in equation (2.27) thus relate the ensemble
average input powers and energies.

23 Discussion

The above analysis reveals some results which are in contrast to those normally drawn in
SEA: the coupling loss factor is a function of damping; there is a parameter » that describes

the strength of coupling between the two oscillators; equipartition does not occur in the limit
A — 0 [6]. These are discussed below,

2.3.1 Equipartition of energy

In the very special case, and only in this case, where the uncoupled natural frequencies of the
oscillators are -identical (@, =w,), then, in the limit A—0, B> and the oscillator

energies become equal: this is equipartition of energy. However, if @, # @, , then as A =0,
b KZA/ [2(@1 -, )1:[ and the energies are not equal. For example, if only oscillator 1 is
excited the energy ratio becomes

E K*
bt =
1

Thus we can conclude that equipartition of energy does not occur in the low-damping lmit,
except if the oscillator natural frequencies are identical: this is in contrast to what is
commonly stated in the SEA community, but is consistent with behaviour that has been
observed via wave [6] and system-mode approaches [8].

2.3.2 Coupling loss factors

Equation (2.27) indicates that @n,, depends on both the strength of coupling (and hence on
damping) and the strength of connection. Furthermore, at low damping #,, is proportional to
77, while for high damping it asymptotes to the constant w7, = 7x” / 2Q). Such behaviour has

been noted before in terms of wave analysis [6], finite element analysis [13,14] and in terms
of the modes of the system as a whole [8], so it is not surprising that it-is also evident in the
behaviour of two coupled oscillators.

The reason why these observations differ from those of previous work [1-5] is that the
coupling loss factor was defined from the expected value of the coupling power, i.e.

B,=E[ B(E,— )] (2.29)

However, in the previous analyses, the further assumption was made that the terms on the
right of equation (2.29) are statistically independent, so that



P, ~E[B]E[E - E,] (2.30)

If the coupling loss factor is estimated, in this manner, by ensemble averaging £ then
(Appendix B) it becomes

2
TK
Wiy = OTfyy = 20 (2.31)

However, this is clearly an approximation: J and (E, —Ez) are strongly correlated; if J is

large then (E, - E,) is small, and vice versa.
24 Concluding remarks

In this section systems comprising two spring-coupled coupled oscillators were considered.
Various observations were made about the behaviour under broadband excitation, some of
which differ from those which are commonly assumed within SEA. It was seen that:

1. Equipartition of energy does not occur as damping tends to zero, except in the case
where the uncoupled oscillators have identical natural frequencics.

2. The coupling power and coupling loss factor can be written in terms of the “strength
of connection” between the oscillators and a term reflecting the “strength of
coupling”, these being two distinct parameters.

3. The strength of coupling, and hence the coupling loss factor, depends on damping,
decreasing as the level of damping increases.

4. The coupling loss factor is proportional to damping at low damping and 1s
independent of damping in the high damping, weak coupling limit.

The above analysis can be extended straightforwardly to two oscillators connected via
general, conservative coupling elements (Appendix C), or via an interface degree of freedom
(in Appendix D), except that the resulting expression are cumbersome.



3 TWO SETS OF SPRING-COUPLED OSCILLATORS

Consider now the case of two, spring-coupled subsystems a and b (Figure 3.1). As in
conventional SEA, each subsystem is regarded as being a set of oscillators and, when
coupled, each oscillator in one set shares energy with all the oscillators in the second set.

Here, oscillators j and k in sets a and b are coupled by the spring kj",f’ .

oscillator j oscillator &

1Y TY
T RE Y
EEEE,

Figure 3.1. Two sets of spring-coupled oscillators.
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In this section relations between the input powers, coupling powers and subsystem energics,
and their ensemble averages are found. In principle one might proceed along the lines
developed in section 2. The dynamic stiffness matrix of the system could be found in terms of
the oscillator masses, natural frequencies and bandwidths and the coupling stiffnesses. The
frequency rtesponse matrix H is the inverse of this dynamic stiffness mafrix. White,
uncorrelated excitation is then assumed to act on each oscillator and frequency integration
gives the energies and powers. Simplifying approximations can be made by ignoring all out-

of-band modes and extending the frequency range of integration to [0,00] for all in-band,

resonant modes. [Ensemble averages could in principle be developed by taking many
oscillators in cach set, defining the statistics of their properties in some way and evaluating
the multidimensional integral of the inverse of a large, random matrix. This approach is
intractable. Instead, in what follows, simplifying assumptions are made and results for the
two-oscillator case introduced.

In the next section the system power and energy relationships are stated. Following that,
some comments are made concerning the ensemble and ensemble averages. Expressions for
the input and dissipated powers are then found — this is fairly straightforward. The coupling
powers are more problematical, however, and various assumptions must be made. Two
different approximate approaches are developed, assuming different forms for the coupling
power: first, that the coupling power between two oscillators is proportional to their energy
difference, and secondly that it is proportional to the “blocked” encrgy difference. The latter
can predict negative values for oscillator energies in the strong coupling limit, but seems to
give more accurate predictions for moderate coupling strength. In any event, the two
approaches give the same results for weak coupling or, for weak or strong coupling, if the
strength of connection 1s weak.

3.1 Excitation, powers and energies: power balance relations



The subsystems are excited by white noise over some frequency band B, which contains ¥,
and N, resonant modes of subsystems a and b, respectively. The modal densities »,, are

such that the expected number of modes
E[N,,|=n,,B (3.1)

Out-of-band, nonresonant modes are ignored.

Power balance for oscillator j in set a gives

P(J P{I ) + Pﬂ

in,j = diss, j coup, j

3.2)

where the terms represent the input, dissipated and net coupling powers respectively. In
matrix form

P, =P; +P] (3.3)

coup

where the vectors P are now vectors of oscillator powers (throughout, similar expressions can
be written for subsystem b).

The net coupling power for oscillator j,

1] whr el
Pops= 2. P+ X Py G4
oscillators & oscillators 2
insubsystemb insubsystema

is here written explicitly as the sum of powers P}(jf’ exchanged between oscillators 7 and £ in

sets @ and b respectively and powers F,' exchanged between oscillators j and #, both of

which are in set a. This in-set contribution is unimportant, since it has zerc contribution to
the net coupling power between the subsystems, '

We assume that the total power input to each subsystem is simply the sum of the power input
to each oscillator, i.e.

Rm,a = Z B:,j H Bol,b = Z B:k (35)
J=LN, E=1LN,
where P, . is the power input to oscillator j in set a. In matrix form
P P!
P — [{) — UT in 3 6
tot {Bg,,b} {Rﬁ } ( )
where
1, 0,
U= "~ " (3.7)
0y, 1y,

and where 1, and 0, are N x1 vectors of 1’s and 0’s respectively. Hence U is an

(N, +N,)x2 matrix.
Similarly, the subsystem total energies are

Emfvﬂ = Z Ej“ ? E-'O-’,b = Z Eii} (38)

j=LN, k=1,N,

10



where E is the energy of oscillator j in seta. Again, in matrix form

E Ea
E_ =< ":=U" 39
tot {Em!,b} {Eb } ( )

In a similar manner, the subsystem dissipated powers and the net coupling power between the
subsystems can be written as the sums of oscillator terms as

rhss a Z ‘Pd'f:ss J ; (!lss b z ‘Pt}ll)'ss,k (3 10)
= k=¥,
P,=73 > P (.11
F=LN, k=1N,

3.2 The ensemble and ensemble averages

The properties of the two sets of oscillators are random and the ensembles from which they
are drawn defined by a joint probability distribution function p which depends on the
oscillator masses, resonant bandwidths and natural frequencies, the coupling spring stiffnesses
and the excitation spectral densities. Clearly the problem is extremely complicated, and
estimation of ensemble statistics requires the evaluation of an integral of very high dimension.

As in Section 2, assumptions will be made about the ensemble. The properties of the two sets
of oscillators, the coupling stiffnesses and the excitations are assumed statistically

independent (in practice, for continuous subsystems, kj‘f will depend on the mode shapes of

the respective modes which in turn may be correlated with the natural frequencies in some
manner). For simplicity, each oscillator in set a is assumed to have the same mass m,,
resonant bandwidth A and ensemble average spectral density S, 1.

Al=4A,, mj=m, S{=5} (3.12)

o ! a?

Similar assumptions are also made for set b, The joint probability density function that
defines the ensemble then becomes

« a o 4 b ab fab ab ab
Pa, (wlawzr"aw!\fa)pmb (wlaa)z’"'sw ) (kll ak;z ’kzw kNNb)

Strictly, the discrete frequency problem should be solved, frequency averaged and then the
results ensemble averaged. This is intractable. Instead, various approximations and
assumptions are made, recalling results from section 2.

Subsequently it is assumed that each oscillator pair satisfies the assumptions made in section
2 which concerned two coupled oscillators, i.e. (a;j‘ - o] ) is random and uniformly probable

within the band of excitation B, and statistically independent of the coupling stiffness.
3.3. Ensemble and frequency average input and dissipated powers
3.3.1. Input powers '

The input power for oscillator j is taken to be (c.f. eq 2.4)
A A
pt ==L (3.13)

J fid

1



The oscillator input power vector then becomes

a8t

I
P: m
nl=Uy e (3.14)
P[0 | as?
mb

and hence the total power input to subsystem a is

i
7S v

Pora =Ny—= (3.15)
m{l
In matrix form
erji N FZ'S;
P-" m a m
P =US "=UUs "= ’ (3.16)
P, jrSj’r 78y
- N,
mb m!;

Thus every oscillator in each set is assumed to be excited equally: this is “rain-on-the-roof”
excitation.

Strictly, perhaps, ensemble averages should be found by taking the expectation of the sum of
the individual oscillator input powers, i.e.

N,
P;=E{ZB:J} (3.17)
i=l

However, given the definition of the ensemble and the fact that broadband frequency averages
are taken, there is no difference with regard to the input powers.

3.3.2. Dissipated powers
The dissipated power for oscillator j is taken to be
P = AGE] = A E] (3.18)

The vector of oscillator dissipated powers is thus related to the oscillator energies by

P diag{A 0 ‘
{ ‘ﬁ,‘“}= () HE,,} (3.19)
P 0 diag(A,) || E
The total subsystem dissipated powers are therefore
P 85,0 Pﬂ' A O Elol a
P{.’iss tof = . = UT 5;:55 = ‘ , (3 20)
| BJI.\'.\' b PJ[; 5 0 Ab E tot,b

Again, strictly the ensemble average dissipated power for subsystem a should be taken as the
expectation of the frequency average oscillator dissipated powers, i.e. for broadband
frequency averages

Ny
P, =E{ZA3‘.E}'} (3.21)
j=1

12



However, given that all oscillator bandwidths are assumed equal there is no difference.
3.3.3. Power balance equations

To summarise, the power balance equations for individual oscillators (equations (3.2) or (3.3)

) are, in matrix form
P,ﬂ P(I P(f
{ *Z}z{ fj;“}Jr{ “;"f’} (3.22)
Pin Pdiss Pcou,n
with the input and dissipated powers being given by equations (3.14) and (3.19).
Premultiplying by U’ leads to (equations (3.16) and (3.20))

{})rof.a} |:Aa 0 j|{Erof.d} UT P:O!lf) (3 23)
= + N
Rol b 0 Ab E-’o-’ b Prf)oup
Finally, the last term becomes
P P
ol ] o2
coup uh

w= 2 2 B (3.25)

Note that the in-set coupling powers do not contribute to the net coupling power: they sum to
Zero.

where

The problem thus remains of determining the coupling powers between the oscillator pairs
and hence forming the SEA equations. Two possible approaches, in which results from
section 2 are recalled, are described in the next two sections.

3.4. Coupling power proportional to difference of oscillator energies

Suppose that the inter-modal coupling power is assumed to be proportional to the difference
in the actual oscillator energies. The result for the two oscillator case is given in equation
(2.12) with the constant of proportionality /3 being given in equation (2.13). For the case of
two sets of oscillators these equations become

by = B3 (B - E);

(k2 (A, +4,) (3.26)

abh
ﬁjk B m_ i 2 52\ s? 2
T (a) — ! ) +(A“+Ab)(a)k A, + o /_\b)
Thus
By= Y Y Br(E-E) (327)
F=LN, k=N,

It is now assumed that there are so many oscillators in each set that the mean value of the
terms in this sum approximates the ensemble average. Under these circumstances

P,=NN,po(E ~E}) (3.28)

bl 4
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The analysis in section 2.2.1 is assumed to hold (i.e. the relations between ensemble average
powers and energies leading to equation (2.27)), hence

13!;1_ = ajna!’? Eror.r: - a}nbn Elal‘b (329)
where
ET _ E{ar,(( . E . Eror.b (3 30)
a N{r , - Nb .

and where the coupling loss factors are

onn® =onn® =an_n,;
Hn{lb b?]ba - a'h?

(3.31)

a

Note that the conclusions made for the two-oscillator casc hold here, and in particular that
there is a measure y of the strength of coupling, a measure « of the strength of connection and
the coupling loss factor depends on the damping and y.

3.4.1. Conventional SFA

As discussed in section 2.2., in conventional SEA the average of the product is assumed to
equal the product of the averages, ie.

Pub :N(JNhﬁj:} (Ejl —E:) (3.32)
These ensemble averages are
. —
—_m o (&)
Jgjk =_— k' = 5
20 M, 17,0 (3.33)
E[-: — Elol‘ﬂ : E{{I)_ — EIOIJ)
! Na Nb

The SEA equations, found by substituting equations (3.32) and (3.33) in (3.23), and putting

n,=N,[Q,are
Pmr u A, +0 —o Eza: a
f — [ « nub Tha :l E (3 3 4)
Ror,b _mnub Ab + Dy, El(ﬂ,b

where the coupling loss factors are

2
e B
a)nanz(:b) = wnb??,‘(m) = _jzc_nanb (3 35)

Note that the first of equations (3.31) can be written as
amb?;ré:) (3.36)

on1ly) = ——=

1+y
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3.4.2. Comments

Both analyses (leading to equations (3.31) and (3.35)) imply that the ensemble average
oscillator encrgies are equal. They differ in the fact that, in the first analysis, the correlation
between the constants ,Bf: and the oscillator energy differences is included, as least as an
approximation. Thus these constants are not identical over the ensemble, Note also that the
analysis leading to equation (3.31) is approximate, in that strictly the energies themselves

depend on the coupling powers so that the equations should be solved-then-averaged. Finally,
the expressions for the coupling loss factors are equal in the weak coupling limit, y > 0.

3.5. Coupling power proportional to difference of “blocked” oscillator energies

An alternative approach is to note from equation (2.6) that, for two oscillators, the coupling
power is also proportional to the difference of the “blocked” oscillator energics

(B/A,~P/A,), ie. the energies that each oscillator would have if the excitation remained

the same but the other oscillator were held fixed. If this result is assumed to hold for two
oscillators of the coupled sets then the coupling power between two such oscillators is

(8,+8) (K1) (1 7S, 1 78]
Pfrb - a b ¥ . ! —_— S (337)

kT b
mamb Q AH mu Ab mb

1

where, from equation (2.12)

(ke )2 (A, +4,)

mrf}nbAuAb

9 2
0 = (a) -w,fz) +(4, +Ab)(wf2Au . mjzab)Jr (3.38)

g

The net coupling power P, is again found by summing the coupling powers between each

ab
oscillator pair. Again, if there are assumed to be so many modes that the sum can be
approximated by the ensemble average, then

L — Sﬂ b ’
TN 1 (AG+A,,)(LE f__l_;rsf} 5.59)

ah al
Jk nzamb Au HI“ Ab mb

Replacing the ensemble averages with the expressions from equation (2.17) and (3.31), noting
that P, =N, xS, /m, and putting n, = N, /€ once again leads to

tol o

@ tol it A ot b
o b

E’:a(Z—bP “Lp J (3.40)

where a, yand x are as defined in equation (3.31). Substituting the coupling power into the
power balance equation (3.23) then gives

me_ng
‘Pm{ ] Aa 0 E!al ] Au Ab ‘Pfo! o
“h - aly : (3.41)
Roz.b 0 Ab Erat,b _ M M JD.ra-hb
Arr Ab

Hence the matrix of energy influence coefficients, which relates the ensemble averages of the
input powers and energies is '
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1{, nmo no
A A A A,

o«

A= (3.42)
n,c 1 [l
AHAb Ab Ab
By inverting this matrix, the coupling loss factors are found to be
a
on ) = onagly) = T (3.43)
H, n
1-| 2+t i
Ab Au
This can be written as
amury(b) = AL (3.44)

wbh ( 1 l ]
1-| —+— |ann,
Juu ﬂf;

where ,, =n,,A,, is the modal overlap based on the half-power bandwidth. This can be

wb"ub

alternatively expressed in terms of the conventional SEA estimate as

0 : o) (3.45)

a)”ﬂnﬂ -
N el (U (¢)
1+ = —+— |on,1,,
Jua JUIJ

3.6 Variability

The response of a specific system excited over a finite frequency band will differ from the
ensemble averages given above. This arises partly from the fact that only a finite sampling of

kj: i / 0, ) are taken and partly from the fact that

the number of modes in the band is a random variable. Furthermore, natural frequency
spacing statistics will affect the variance.

oscillator pairs (and hence terms involving

For a selected pair of oscillators &, = @ — ] is typically a uniformly distributed random

variable. However, for the case of coupled sets of oscillators, although (a)f - a),f’) might be

uniformly probable, (w“ —a;f ) depends also on the natural frequency spacing statistics of

J+

subsystem @, which define the probability density function for (a};’+l — o} ) . In other words,

(a);’H —o! ) = (a)f ~w? ) + (a)j.’H - ) , and while (cuf - a)f) may be uniformly probable,

(a);.’+I - mj‘) usually is not. The variance thus depends on these spacing statistics. Common

spacing statistics include a Poisson distribution, which implies that a)f and o},

are
statistically independent. This situation is characteristic of uniform, regular two- or three-
dimensional subsystems (i.e., rectangular, or other shapes with a separable geometry).
Examples include rectangular plates. Another distribution is GOE spacing slatistics, which
are held to be typical of subsystems with sufficiently large amounts of randomness. The
natural frequency spacing is then Rayleigh distributed, but there are also statistics relating

second-nearest neighbours, etc. Issues concerning variance are considered elsewhere.

16



3.7  Concluding remarks

To summarise, in the above, the power balance equations were written for each oscillator and
oscillator set. Mild assumptions were made concerning the input and dissipated powers
leading to (equations (3.23) to (3.25))

> 2B
Faa| _| 80 O [ Boal | e (3.46)
Foti 0 A, B - Z Pa'f’ib

J=LN, k=LN,

Solution to the full set of equations is intractable so assumptions were made concerning the
coupling powers. In particular, if the coupling power is assumed to be proportional to the
actual oscillator energy difference (equation (3.27)) then

wn 7 = wn 7 =an n,; (3.47)
w'fah b fha a' b

while if it assumed to be proportional to the blocked energy difference (equation (3.37)) then

on i) = ongll) = — (3.48)
na nfl
1| —*+—la
[ Ah Ar: ]
In the above, the strength of connection is
2
K
K= () : (3.49)
mﬂmba)
while the strength of coupling is
2
2 K
= 3.50
y AaAh ( )
and
2
K
o 7 e (3.51)
2J1+5°
Finally, conventional SEA gives (equation (3.35))
ongil) =onnl) = Z=nn, (6.52)
The coupling loss factors can also be written in the following forms:
a 1 c
77:(:&) = > ’ﬂEb) {3.53)
1+y
1 .
77;(;:) = W;Eb) ' (3.54)

\/1 +yt - (y;l + 1 ) on )

The 3 expressions for the coupling loss factor are identical in the weak coupling limit y — 0
(and hence g, — ). The conventional expression ignores afl correlation between oscillator
energy and the constant in the coupling power proportionality relation, overestimating the
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coupling powers (especially between oscillators with natural frequencies which are nearly
identical) and hence overestimating the coupling loss factors when the coupling is strong.
The two other expressions become proportional to damping as the damping is reduced. The
“blocked” expressions, equation (3.48), can diverge, with the denominator becoming zero or
negative, implying non-physical negative subsystem energies. This happens if « is large
enough, and the modal densities are large enough, such that (if A = A,)

(n, +nb)%521 (3.55)

In effect this means that each oscillator interacts sufficiently strongly with so many other
oscillators that the “blocked” energies are reduced substantially by the energies lost to the
other oscillators, and the assumption in equation (3.37) breaks down. It may be thought then
that the actual and blocked assumptions give approximate lower and upper bounds for the
ensemble average coupling loss factors.

3.7.1 Other forms of conservative coupling

The above analysis can be extended straightforwardly to other cases of conservative coupling,
and in particular those considered in Appendices C and D. In all such cases the energies and
coupling power for two coupled oscillators contain a term in whose denominator the
difference in the oscillator natural frequencies occurs. Other terms appear in the numerator
and denominator and these depends on the oscillator and coupling parameters.

In particular, comparing the results of section 2 with those derived in Appendices C and D, it
is quite straightforward to apply the above equations to cases where two sets of oscillators are
coupled either by general, conservative coupling elements or by a fixed spring at their
interface, the strength of connection parameter (equation (3.49)) being modified accordingly.
In the case of general, conservative coupling (Appendix C), the jth and the kth oscillators of
ah

. ' h .
sets ¢ and b are connected by a spring £}, a mass m,, and a gyroscopic constant S -

From Appendix C, the strength of connection becomes

< =E ﬂ(&r (g_)ff +A, (a)‘,')4 +A A, ((a),f )-2 A, + (a);’)z A,,))

(A, +4,)@’ /
, (3.56)
b )2 ab ~ab ((w}f )2 At (a)‘? )2 Ab) (]ej:)h
+((}/ﬂ‘) +2#ﬂ‘xﬂ‘) (A, +A,) e e
@ (]
In the above equations
ab
b U /4
b - (3.57)
Hir \/(ma +mj'f/4)(mb + m:f: /4)
~al gjf
i (3.58)
& \/(ma + mj,f’ /4)(”% +mfb/4)
tth
Ry = K (3.59)

Jk

\/(ma +m;'f/4)(mb +mjff/4)
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Assuming m; <<m,, and Q<<a, equation (3.56) simplifics to

2 ab 2 ab\? ah ab (kj'zf)2
=gl (2 ) (" e 0o (65 2 (mt )02+
(3.60)
kah 2 A2 a2
:m [( /4)w+—] +8,0, (m [4) +(g5)

Assuming the statistical independence of m¢ , ki and g7 , equation (3.60) further reduces to

ab [ 4\? ab ab
¥~ M(a)zﬂk Ab) +E @ +E Eﬂ)—— (3.61)

Usually, A, , << @, and equation (3.61) finally reduces to

R Y P (3.62)
where
= |y
K= 1A (3.63)
mamb
ah 27
7*=E (i) (3.64)
m{rmb
— | (my/ 4)2
y =g ——— (3.65)
m{tmb

Equation (3.62) indicates that the strength of connection mainly depends on the coupling mass
terms at high frequencies and on the coupling stiffness terms at low frequencies.

Similarly, in the case of fixed-interface spring coupling (i.c., the jth and the th
oscillators of sets @ and b are connected by a spring of stiffness kj"f ) from Appendix D, and

assuming A, ~ A, the strength of connection is given by

o = E{,uj I "Mf_z} (3.66)
?Tl”?nbﬂ)
where
4= —-]f-;mﬁ (3.67)
kY +k kG
P (3.68)

= a h ab
kS + k) + kg
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Here k; and k! are respectively the stiffnesses of the jth and the kth oscillators of sets a
and b . Equations (3.66)-(3.68) then yield

e\
KZ:(‘“)z (3.69)
m“mba)
where
r 7
ab 2 1
(&ﬁ)=E 5 (3.70)
1,1, K
e e
L\NP T TR

Physically, £, is the coupling stiffness between the jth and the kth oscillators of sets a

¢, jk
and b and 1s given by
ouh 1
Icw.k =——w~——1 1 kff (3.71)
FVEEy S
K k, kjkk

It is seen, therefore, for flexible coupling springs such that ke << (k_;’,k,f ),
ith - 1

¢,k i h
VR 1k

internal stiffnesses of the oscillators. The two sets of oscillators are usually strongly

gk

_in which case the coupling stiffness terms are mainly determined by the

connected. For stiff coupling springs such that kj; >> (kj.’,k,f), however, k%, — ‘;{ L. Tor
ik

the special case when k;f — o, k —0, which corresponds to the case when the oscillators

¢, fk

are uncoupled. In general, the coupling strength decreases as k;'k” MCreases.

20



4 EXAMPLES AND APPLICATIONS

In this section two examples are considered, namely two spring-coupled rods (as shown in
Figure 4.1) and two spring-coupled plates (Figure 4.2). Various analytical expressions and
numerical predictions are found using the present, coupled-oscillator theory and compared to
those of conventional SEA [1] and other energy-based approaches.

Roda

PR

Rod &
Figure 4.1 Two spring-coupled rods

Fe

v
X5 xf Plate a

Spring K

Fy
| i
/ l« T / Plate b

Figure 4.2 Two spring-coupled plates

In section 4.1 some results from the coupled oscillator theory are reviewed and expressions
for the coupling loss factors for these systems given. In section 4.2 results of conventional
SEA are developed. These are seen to be identical to those of the coupled oscillator theory -
for the case of weak coupling and weak connection. Section 4.3 presents various exact
analyses, while section 4.4 describes an alternative approximate theory based on modal
analysis. Finally in section 4.5 some numerical results are given, comparing the various
estimates.

4.1 Coupling loss factors from the coupled osciliator theory

Section 3 concerned the power/energy relations for two spring-coupled sets of oscillators.
Various assumptions and approximations were made, resulting in two different expressions
for the coupling loss factor. In particular, if the coupling power is assumed to be proportional
to the actual oscillator energy difference then

(a) (e

— ) _ .
a)na nﬁb - m”b’?ba - ana nf; 2 (4' 1)

while if it assumed to be proportional to the blocked energy difference then

21



onl) = onll) = — 2 (4.2)
na nb
- =%+ |
(Ab Aa J
In the above, the strength of connection is
k)
K = (£5) ; (4.3)
", i, @
while the strength of coupling is
2
, K
= 4.4
4 AHAIJ ( )
and
2
o = (4.5)

2144

In the above equations, the term k}',f is the coupling stiffness between the jth oscillator (in the

context of this section the jth mode) of subsystem a and the ith oscillator (i.e. mode) of
subsystem 5 .

In terms of the conventional SEA expressions, the coupling loss factors can also be written as

@__ 1
77({ - ?7(( (4'6)
ole
1 .
o = 7t (4.7)

e (e Yon

where u , are the modal overlap factors of subsystems @ and b. The 3 expressions for the

b

coupling loss factor are identical in the weak coupling limit y — 0.

4.1.1. Coupled continuous subsystems

In Appendix I is considered the case of two continuous subsystems connected by a spring.
The intermodal coupling stiffness between modes j and & in subsystems « and b, coupled at

points ' and x", is

kG = kg (x40 () (4.8)

where géj(.“) and gﬁb) are the jth and kth mode shapes of the subsystems in the absence of the
coupling spring. The mode shapes are such that modal mass of the jth mode is given by

= [ m ()47 (x) o 49

where ' (x) is the mass density. Hence the strength of connection x between the mode
pair is such that
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2

LK ()a ()

& a), (b
i I e

(4.10)

This is the relevant value for x? if the connection points are known (e.g. for end-coupled
rods).

Now consider the case where, in the ensembie of oscillator sets, the coupling points are
randomly located over the subsystems (with probability density functions proportional to the
mass density). The strength of connection, averaged over all possible interface points in each
subsystem, then becomes

— K’

Ve 1D
where

M = i )m(“) {x)dx (4.12)

is the total mass of subsystem a.

4.1.2. Two rods coupled at randomly selected points

The modal density of a rod is given by n=L/z \[p/E =L/(cr), where p, E and c= JE/p

are respectively the mass density, elastic modulus and wave speed of the rod material. If the
rods are connected at randomly-selected points then the strength of connection is given in
equation (4.11). The coupling loss factors, based on the assumption that the coupling power
is proportional to the actual encrgy difference (equation (4.1)) then becomes

" @ _ 1 K3 1 4.13
&}n“n”h wnbnb“ [W \1[ 273‘[02 (pﬂA(ICﬂ ) (pbAbcb )} ( - )

where A is the cross-sectional area of the rod. (If the coupling power is assumed to be
proportional to the blocked energy difference, the coupling loss factors are given by equation
(4.2), with & being given by equation (4.5).) In the limit of weak coupling (i.e. ¥y = 0),
equation (4.13) becomes

on n((.) = N n{c‘) = K’Z ’ 1
«'lab b ba 271-(92 ()OaAaCa)(phAhcb)

(4.14)

4.1.3. Two end-coupled rods
If, on the other hand, the two rods are end-coupled, then, at the ends of the rods, the squared
mode shapes in equation (4.10) are equal to Zmﬁ_b) / M) The appropriate value for the

strength of connection 1s now

- 4K*
Ky = ———-—M CIVOpE (4.15)

and the coupling loss factors become

© _ @ o| L | 2K 1 4.16
mnnnah a)nhnba (W][ﬂwz (paAaCa)(pbAbcb) ( | )
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In the limit of weak coupling

2
@ = o @) = 2K 1
wn =on = 4,17
anﬂh b?]ba ﬁa)z (paAaca)(pbAbcb) ( )
4.1.4. Two spring-coupled plates
The modal density of a plate is
A m
n=—,— 4,18
4z \ B ( )

where 4, m and B are respectively the area, mass per unit area and bending stiffness of the
plate. Consider the system comprising two spring-coupled plates shown in Figure 4.2, From
equations (4.11) and (4.18), together with equations (4.1) to (4.5), it follows that

{#) _ () _ I K* 1
wn = wn = 4.19
unab hnlm { ’E + }/2 ]( 32?2_ z \/ (a) (a) ‘\/ (b) (b) ( )

and in the weak coupling limit

W K 1

wn = " = 4.20
= O e = e? S DB e ple) (4.20)
42  Conventional SEA
In Ref. [1], the coupling loss factor for two point-connected subsystems is given by
C’ma’?};;) = ‘-1_ Tab o (421)
2z
where 7, 1s infinite system power transmission coefficient, given by
4R{r mRb o0
Tﬂ!),m = ‘ ; 2 (422)
Zu,oc + Z!J,ncl

where Z,  and Z,  are the input impedance of the two subsystems, assuming that they

o

extend uniformly to infinity, and R, and R, are the real parts of these impedances.

4.2.1. Two rods coupled at randomly selected points

For an infinite rod Z_ =R =2pAc. By defining subsystem « as the combination of rod «
and the spring, the input impedance of subsystem a then becomes

Z,=(~iR,, Kjo)/(R,,~iK/o) (4.23)
while that of subsystem b is Z, =Z, , =2p,c,4,. In the case of weak connection, such that

(Kfw) <<{

Ra,m

: ,IR 1@’2} , equation (4.22) yields

. ~4(K2/a)2)_1<_2 1 (424)
“e TR R, @ (pdc)p4c,)

1o [ w-da

Substituting equation (4.24) into (4.21), equation (4.14) is recovered.
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4.2.2. End-coupled rods

In a similar way, the input impedance of a semi-infinite rod excited at it end is given by
Z_ =R, = pcA. The power transmission coefficient is

4z 7 2
— a0 hw ~ 4K 1 (425)

Fap.o (Za’m )2 + (a)Z Zb,:o /K + 1)2 ’ (Pﬂ AHC}, ) (pI,Abe)

&,

The coupling loss factor given by the conventional SEA approach is then given by equation
(4.17) and is, again, 4 times the value for rods coupled at internal points (equation (4.14)).

4.2.3. Two spring-coupled plates

For an infinite plate Z_ = R, =8J/mB . Now define subsystem a as the combination of plate
a and the spring. The input impedance of subsystem « is then given in equation (4.23).
With R, :Re{Zﬂ}, R

h,0

(K/a))2 << {(Ra‘m )2 , (Rb,m)z} ), equation (4.22) gives

=Z,,=8 m® B | and assuming weak connection (i.e.

k) e
e TR Ry, 1607 (@ gy g0

Substituting equation (4.26) into (4.21), results in the expression for the coupling loss factor
given in equation (4.20).

(4.26)

In summary, conventional SEA estimates based on wave transmission are identical to the
estimates of the coupled oscillator theory in the weak coupling limit.

4.3 Exact wave solution for one-dimensional subsystems: application to two rods

Ref. [6] contains a wave analysis for the response of two, one-dimensional subsystems
coupled at their ends. Ensemble averages are taken by assuming that the total phase change a
wave experiences as it propagates through the system, when taken mod(27), is random and
uniformly probable. The ensemble average subsystem energies, input power (for rain-on-the-
roof) and coupling power were found. In this section these results for two, end-coupled rods
are quoted and compared with the results of the coupled oscillator theory.

The coupling loss factor by this wave approach is given by

o T o
o) = wnpl) =—— 4.27)

2 \/(1+V§b)(1+5§b) —%‘f(ﬂf +4")

(note that in [6] the modal overlaps were defined in terms of the noise bandwidth rather than
the half-power bandwidth) where

, _cosh’ (7 (1, - 1)/2)

= 4,28
@ ginh (mu, )sinh (7, ) ab.eo (4.28)
) _Sinhz(ﬁ(#a—‘ub)/Z) 429)
ah — - . ab,o '
sinh (772, }sinh (Jr,ub)

For two rods spring-coupled at an end, the transmission coefficient 7, is given by
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2
2 = i 1 = 27{(0”(:?7({1;)

b wz (puAaCa)(pbAbcb)

In terms of the conventional SEA estimate the coupling loss factor predicted by the wave
approach is

(4.30)

() _ ! (e)
TLu’J - . nab (4'31)
JOE2) (1 82) - (i + 1 Y on )
Both the exact wave analysis and the coupled oscillator theory give the same expression for
the coupling loss factor for the case of weak coupling (i.e. the conventional SEA estimate
77([;;) ). Otherwise they differ in some respects.

First, there are two coupling parameters rather than one () in the coupled oscillator results.
Secondly, the functional dependence is different for large values of x,, (due to the

hyperbolic functions in equations(4.28) and (4.29)). The form of the exact wave result is more
similar to the “blocked energy difference” expression of equation (4.7) than to the “actual
energy difference” expression of equation (4.6).

If the difference in the modal overlaps is small then & =0. If, furthermore, the modal
overlaps are small then

yab ~ 2 awh,w (432)
73 /"{a 2]
Noting that for this case
LA
luﬂ :rt(lAﬂ = ‘ : (4'33)
7c,
and that 7, and x* are given by equations (4.30) and (4.15), it follows that
K 2
Yar ® y? (4.34)

AaAb )
where y is the strength of coupling arising from the coupled oscillator theory, as given in
equation (4.4).

In summary, for weak coupling both coupled oscillator expressions are identical to the result
from the exact wave analysis. For strong coupling, if the modal overlaps are small enough
then the coupling strength parameter becomes equal to that of the exact wave analysis. The
“blocked energy difference”™ expression of equation (4.7) then asymptotes to that of the wave
analysis. Otherwise there are differences in the coupling parameters, although there 1s the
same general dependency of coupling loss factor on modal overlap.

4,4  Numerical estimates from energy distribution models: application to two plates

Apparent coupling loss factors (i.e. numerical estimates of the ensemble average CLFs) can
be calculated from energy distribution (ED) models based on modal analysis of a specific
realisation of the system. The ED models can be built up either in terms of the global modes
of the whole system as described in {8], or in terms of the frequency and space averaged
Green functions of the whole system as suggested in [12]. However, either approach can be
computationally very expensive, especially for complex built-up systems. Finding analytical
expressions for the ensemble statistics is intractable. Thus, while an “exact” numerical
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solution for a specific system can be found, the resulting ensemble averages are often inferred
in an approximate manner, typically by Monte Carlo Simulation (MCS).

Consider two subsystems connected at a point and subjected to rain-on-the-roof excitation
with constant power spectral densities §, and S,. The time-averaged input powers and

energies, after frequency-, space- and ensemble-averaging, (i.e. averages over a broad
frequency band, over all possible excitation positions and interface positions, and over an
ensemble of subsystem properties), are related by

B =

(5] ) D) 2l s wso
BYRLRT () s ()|

In the above equations, () denotes space- and frequency-averages, while « represents

ensemble averages. Note that the latter are found numerically and are hence approximations.
M,, are the masses of subsystems @ and b, and ¥ mobility. From equations (4.35) and

j b

Races)

} (4.37)

o

(4.36), an ED model of the coupled system can be formed, 1.e.
}: (Re{t, ) (Re{t,})
R <|Y,,,,J )
By inverting this matrix, the apparent CLF can be estimated using this mobility approach as
) _ (1 JRe %)

M) Ml
(Reft ) (Refti,}) |
A PR R e

(4.38)

)

ﬂﬂ'

Alternatively,

) (Re{L,.})

R =2 < - (4.39)
) - Jr )

If only subsystem a is excited, the coupling loss factor can be simply estimated as

_ 2
an n(m) - ok, _ a)?]be<|Y;a| >
o Ea/na_Eb/nb :.714'_“< 2>_%< 2>
aa nb
The above approach might involve approximations and assumptions in determining the
mobilities, but otherwise the analysis for a single specific system requires only the assumption

(4.40)

¥,

ba

an
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of rain-on-the-roof excitation. Such one-off analyses are then averaged, and there are
underlying assumptions that the frequency averages for single, specific cases, and numerical
averages for a range of systems with specific properties, do indeed converge to the ensemble
averages at the centre frequency. Thus, while estimates using this approach can in principle
provide accurate numerical estimates, it must be borne in mind that these are, indeed, only
numerical estimates. Finally, taking averages over a large sample of specific systems can be
very expensive computationally.

4.4.1 A special case: two spring-coupled subsystems

For two specific, spring-coupled subsystems, the mobilities of the system can be expressed in
terms of those of the uncoupled subsystems as

D LR /1 — @.41)
TV Y viojK
byrb
D (R 1/ (4.42)
Vi +YE+iw/K
RVl
R /1 (.43)
Ve + ¥ +io/K
hyrea
A L S (4.44)

) .
“YEH Y +iwfK

where s and r represent the source and response locations and / the interface location. In
cquations (4.41)-(4.44), the terms on the left-had side (i.e. without the superscripts & or b)
correspond to the mobilities when the two subsystems are connected, while those with a
superscripts @ or b represent mobilities of each subsystem when uncoupled. For weak
coupling and if there are many modes of each subsystem, these expressions can be frequency-
, space- and ensemble-averaged asymptotically to give

TN AN

(Re{7,,}) }) (Re{thD 211/;,, (4.45)
w ey P e T 4.46
<\ ! > 2??‘! M2 <t !:-'JI > ZUhC')M; ( )
2 2

<|Yab!2> - < Yba 2) ~ K Z/QE ( z ][ z Jnunb (447)

MM\ 2n,0 ) 2ne
Substituting equations (4.45)-(4.47) into equations (4.38)-(4.40), and assuming that

{Y;.-u ’Kbbl}>>{jlab|’yba}=gives .

a)na??((:;] = a)nbn.g:) = g‘rznr:nb (448)

The asymptotic result given in equations (4.48) reduces to equation (3.31), which then leads
to equations (4.14) and (4.20), respectively, for two spring-coupled rods and two spnng-
coupled plates.

28



4.5  Numerical examples

4.5.1 Two end-coupled rods

The parameters of the two rods in Figure 4.1 are assumed to be p, A, =p4, =1,

EA=EA =1, L = :'r(l —\/%/8), L= :rr\/%/& " Consequently, the characteristic
=1Nm/s, n,=0.3626rad™

and n, =1-n,= 0.6374rad™". The centre frequency remains constant at @ =100rad /s and

impedances and modal densities of the two rods are Z,, =Z,

bm

the various estimates of coupling loss factor are shown as functions of damping loss factor 7.

Various values of the coupling spring stiffness are chosen, giving a range of different
connection strengths.

Figure 4.3 shows the strength of coupling parameter »* for different spring stiffness as a
function of damping. It is seen that the coupling strength decreases as damping increases.
The strong and weak coupling regions correspond to result of ¥* >1 and y* <1 respectively.

Strength of coupling paramater

47
10 - ——— - .k
10" 10° 10* 10
Damping loss factor

Figure 4.3 Coupling strength parameter of two spring-coupled rods for various K :
.......... K =10; K=20, - - = K=40.

Figure 4.4 shows the various estimates of coupling los factor, namely the conventional
estimate 7%, the exact wave solution 7%} and the two coupled oscillator results %) and
77[{,:). The conventional estimate is of course independent of damping, the other estimates

increasing with increasing damping when the coupling is strong (i.e. for low 7), and
asymptoting to the conventional estimate for weak coupling (i.e. as 7 —»c0). For this case

17((1:) is very close to (but is greater than) the exact wave estimate, while 77{(12) is significantly

smaller than 77((1:) when the coupling is not sufficiently weak.
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Figure 4.4 Coupling loss factors of two spring-coupled rods, X = 10, 20, 40 N/m:

=== e g < ) ny.

4.5.2  Two spring-coupled plates

Numerical results for the system comprising two coupled plates are shown in Figures 4.5 and
4.6. The material properties of both plates are p,, =10'kg/m*®, E, , =10°N/m* and
Poisson’s ratio v = 0.38, while the plate dimensions are 0.560x0.405m and 0.665x0.475m,
respectively, both with a thickness of 0.001 m. These parameters correspond to plate modal
densities  n,=0.18#ad” and  n,=025rad™ and characteristic  impedances
Zy0=2,,=079N/mls. The edges of the plates are simply supported and the modes are
found from well-known analytical expressions.

In the numerical results the centre frequency remains constant and the various estimates of
coupling loss factor are shown as functions of damping loss factor 77, both plates having the

same loss factor. The centre frequency is taken as @ =1000rad /5. Various values for the
coupling spring stiffness are chosen, giving a range of different connection strengths

(rr2 ~0.035, 0.14, 0.56) , weak coupling holding if x*/w’ <<7,7,.

Figure 4.5 shows 240 different numerical estimates of ACLFs, each with different interface
locations. (12 points on plate 1 and 20 points on plate 2 were randomly chosen, avoiding the
regions close to the plate edges.) The frequency averages are taken over a band of width
100 rad /s, which contains approximately 18 modes of plate ¢ and 25 modes of plate 5. The
computational cost for getting such a solution, of course, is very high. Clearly, from Figure
4.5, there is significant variability in ACLF estimates which reduces as the damping increases.

Figure 4.6 shows the CLF estimated from the coupled oscillator theory (both blocked and
actual energy difference expressions being shown) together with the conventional SEA
estimate and the estimate found by averaging the powers and energies found from the Mente

Carlo simulations (MCS). While the conventional SEA estimate 175,;) is of course independent
of frequency, both the numerical and analytical expressions increase with damping for low

30



damping, then asymptote to the conventional estimate (or close to it} as the damping increases
sufficiently so that the coupling becomes weak. The CLF increases as K increases {and hence,
of course, as 7,,, increases). The agreement between the coupled oscillator estimates and the

MCS results is better for weaker connection. The computational cost of the analytical
estimates is of course trivial. For this case 77{{,;') agrees better with the results of the MCS than

does ngi)

wn 1}

ah

Figure 4.5 Apparent coupling loss factors from numerical estimates and average
of 240 samples: K=50 N/m; = = = K=100 N/m, +erreeeee K=200N/m.
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Figure 4.6 Coupling loss factors of two spring-coupled plates, K = 50, 100, 200 N/m:
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4.6 Concluding remarks

In this section coupled oscillator result were compared with conventional SEA estimates, an
exact wave result and numerical (Monte Carlo) results, with both analytical and numerical
comparisons being made. Conventional SEA estimates based on wave transmission are
identical to the estimates of the coupled oscillator theory in the weak coupling limit. For weak
coupling both coupled oscillator expressions are identical to the result from the exact wave
analysis. For strong coupling, if the modal overlaps and/or system damping loss factors are
small enough then the coupling strength parameter becomes equal to that of the exact wave
analysis. The “blocked energy difference” expression of equation (4.7) then asymptotes to
that of the wave analysis. Otherwise there are differences in the coupling parameters, although
there is the same general dependency of coupling loss factor on modal overlap/damping loss
factor. These conclusions were illustrated with numerical examples for the cases of two
coupled rods and two coupled plates. The coupled oscillator expressions are seen to give good
accuracy if the connection strength is weak enough, or if the coupling strength is weak.
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5 CONCLUDING REMARKS

This memorandum concemed the SEA of coupled oscillators and coupled sets of oscillators.
The properties of the oscillators are uncertain, and a statistical description is required, the
system being drawn from an ensemble of similar systems whose properties are random.
Consequently estimates of the ensemble average behaviour are required.

While the earliest studies in SEA concerned coupled oscillators, this work departs somewhat
from these studies in that various assumptions are removed or relaxed. Consequently some of
the results, conclusions and observation differ from those of conventional SEA.

First, the SEA of two coupled oscillators were considered. The oscillator properties were
assumed to be random and ensemble averages found. These results were then extended to two
coupled sets of oscillators (i.e. coupled multi-modal subsystems). While attention was
focussed on spring-coupled sets, other forms of conservative coupling were considered: the
conclusions are the same, the interaction of two oscillators depending on the separation of
their natural frequencies and a term that determines the strength by which they are connected.
The other cases considered were general, conservative coupling and spring-like coupling
which is characteristic of the form of coupling that arises from fixed interface component
mode synthesis. The application of the coupled oscillator theory to coupled continuous
subsystems was described.

In the analysis one major assumption was removed: full account was taken of the correlation
between the coupling parameters for an oscillator pair and their specific energies. For sets of
oscillators, it was also assumed that the interaction of each oscillator pair is not affected by
the presence of a third oscillator. Another assumption concemed the coupling power between
each oscillator pair. Two approaches were suggested: the first is that the coupling power
between each oscillator pair is proportional to their actual energies; the second 1s that the
coupling power between each oscillator pair is proportional to their “blocked” energies. Very
similar, but different, expressions for the ensemble averages of coupling power, energy
response and coupling loss factor (CLF) are found. These become identical in the weak
coupling limit.

Various conclusions were drawn about the qualitative and quantifative. features of the
behaviour under broadband excitation, some of which differ from those which are commonly
assumed within SEA. Tt was seen that, for two oscillators, the coupling power or coupling
loss factor can be written in terms of the “strength of connection” between the oscillators and
a term involving their bandwidths and the separation of their natural frequencies.
Equipartition of energy does not occur as damping tends to zero, except in the case where the
uncoupled oscillators have identical natural frequencies. For coupled sets of oscillators the
coupling loss factor depends on damping: it is proportional to damping at low damping and is
independent of damping in the high damping, weak coupling limit. A parameter which
describes the strength of coupling is identified: this depends on both the damping and a
further parameter which describes the strength of connection.

Finally, applications and numerical examples were discussed. The examples of two spring-
coupled rods and two spring-coupled plates were considered. Comparisons were made with
the results of conventional SEA, an exact wave analysis for one-dimensional subsystems and
numerical Monte Carlo simulations using an energy distribution approach. It was seen that
conventional SEA estimates based on wave transmission are identical to the estimates of the
coupled oscillator theory in the weak coupling limit. It was also seen that both coupled
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oscillator expressions are identical to the result from the exact wave analysis for weak
coupling. For strong coupling, if the modal overlaps are small enough then the coupling
strength parameter becomes equal to that of the exact wave analysis. The “blocked energy
difference” expression then asymptotes to that of the wave analysis. Otherwise there are
differences in the coupling parameters, although there is the same general dependency of
coupling loss factor on modal overlap. Numerical examples showed good agreement between
the coupled oscillator theory and Monte Carlo simulations for weak coupling or for weak
connection: the computational cost of the former is of course negligible.

In summary, the coupled oscillator theory would seem to give accurate estimates of the
coupling loss factors for either weak coupling or weak connection.

There were two motivations that prompted this work. The first was to re-examine the
underlying physics of the interaction of oscillator sets, since the conventional SEA
approaches lead to conclusions which are contradictory to results found from wave and finite
element analysis (FEA), especially for stronger coupling. There was thus the desire to
reconcile these different observations of the same system. The resulting conclusions relate to
the strength of coupling, and a second factor, the strength of connection.

The second motivation was to lay the basis of a technique for estimating SEA parameters
from discrete, FEA subsystern models, without the need to solve the global eigenvalue
problem. Each subsystem can be modelled using FEA and its uncoupled modes determined.
When two subsystems are joined these modal sets interact. Robust estimates of the coupling
loss factors (CLFs) (i.e. estimates which are insensitive to the exact subsystem properties
chosen) can be determined by analytically ensemble-averaging along the lines described here.
practical applications of this approach are likely to be aimed at weak coupling cases (for
parameter estimation), as well as strong coupling cases. This work is on-going, as is work to
extend the results to estimate variability in the response of individual systems.

Does strong coupling matter? The opinion of the first author, at least, is that, yes, it is
important in developing an understanding of the underlying physical phenomena that govern
the interaction of uncertain dynamic systems. But does it matter in practical engineering
applications? Probably no — if the coupling is strong, the difference between the actual
energy, which is the quantity of interest in practice, and the energy predicted under an
(erroneous) assumption of weak coupling is likely to be small. Indeed, assuming
(erroneocusly) that the coupling is weak may well serve to make the model of the system better
conditioned. Thus the second motivation, that of providing a systematic, FE-based approach
to developing SEA-like models of complex systems without the need for solving the global
eigenvalue problem — especially in the weak coupling limit — is perhaps the more valuable in
a practical sense.
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APPENDIX A TWO SPRING-COUPLED OSCILLATORS UNDER
HARMONIC EXCITATION

Consider the two-oscillator system shown in Figure 2.1. The equations of motion of the two
oscillators are

mx +cx +kx = f +k(xl—xl) (A1)
my¥%, +¢,%, +kyx, = £ +k(x —x;) (A2)
Suppose that the oscillators are subjected to harmonic forces f(i}=Fe™ and

/> (t) = F,e™ . Assuming time-harmonic response of the form X, ™ and suppressing the
time dependence ¢/, we find

(—o’m, + joc,+ k) X, = F+k(X, - X,) (A3)
(~’m, + jwc, +k,) X, = F, +k (X, - X,) (Ad)
Solving equations (A3) and (A4) gives
K=t 0 % B g (A5)
mym, D (a)) m, m,
PSRRI S Py T LR R (AB)
misz(a)) m, m, B
where
D(w)=(jo) +(jo) (i+c—2]+(jw)2 (k' AL AL J
m m, m; m i,
(AT)
+(jo) (k +k)c, +(k, +K)c, .\ kk, +k(k+k,)
m, i, nm,
Let
f:kf‘Lk,mzZ:sz“k (A8), (A9)
m, m,
A=t A =52 (A10), (A11)
m ",

Here o, are the "blocked | natural frequencies, i.e. the natural frequencies when one
oscillator is fixed, while A, are the half-power bandwidths. Equations (AS)-(A7) can be re-

written as
X E
{f-me)

where the frequency response matrix
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1 m, (a)z"‘ -’ +ja)/_\2) k
H(w) = . (A13)
mym,D (@) k ml(w, —-@ +]CDA1)

and
D(w)=(jo) +(jo) (A +,)+(jo) (0 +0] +A8,)
4 ] (A14)

e,

L (Jw)(@2h, + a?,ZAZ)-l—(ana); _
The time-averaged kinetic energies of the oscillators are
K= %mlaf X (A15)
Ky = ;o | (A16)
Substituting equations (A12) and (A14) into (A15) and (A16) gives

2 2 2
K= 1 _ﬁfﬂ__z{;n; |:(a)2 _a); )- +A§a}2:l|}:‘l|_ +k2|Fz|2

(A17)
~2km, (m2 - wzz)Re{FlF;}— A,» Re{jFlF;}]}
: __i_ mza)z 2 2 2)? 2 2 2 2] 12
= 4 mim? D(a;)r {ml [(a) w]) rAe }!th g (A18)

k(o - 0 )Re{ R} -A oRe JEF | )

The last terms in these expressions depend on the relative phase between the two forces.

Note that some of the potential energy is stored in the coupling spring: consequently this
energy cannot be unambiguously attributed to onc or other oscillator, so that the oscillator
potential and total energies cannot be uniquely defined.

The time-averaged input powers can be written as
! 1 * .
P =—?:Re{Fl (joX,)} (A19)
, 1 Vo
P =§Re{F2 (ja)Xz)} (A20)

and, using (A12) and (A14), these become

2 ) 2
P’——ﬁw———urll A zcozli(cuz—a)j)"+a>2A§+ Ak }

b 2m, |D(w) Aymymy (A21)
+m[ﬁ Re{EtF‘Z} +7,1Im {JFI‘F?.}]
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2 2
}’2’——-—-—|Fz| 4, a)z[(mz—wf)2+a)2Af+—A‘k }

- 2m, D(a))r A,mym,
% [y RelE'E m{FF
ool

where

¥ = kw[(a)fAl +@fd, ) -t (A + Az)}

2
yz:—!{a}ﬁ‘—wz(wf+m§+AlA2)+[wfa)§— k H

mlm2
The force in the coupling spring is
F=k (Xl - Xz)

Therefore the net energy flow through the coupling element is

P, =%R6{F(J‘0Xz)*} =%Re{‘f'XIX2'}

B, =%Re{—F (jox,)'}= '%”Re{ﬁXzX.*}

It can be seen that

Pr _“Pl

12 21

(A22)

(A23)

(A24)

(A25)

(A26)

(AZ7)

(A28)

This of course is expected because no power is lost in the coupling element. In terms of the

applied forces the transmitted power is

, kza)l 1 1 1
P]ﬁm;bmzﬂzwz‘gmﬁliﬂ }
! 2| (a))
kw

Re{o FF, + o, B F |

+mﬁ
i, |D((J)

where ¢, and &, are given by

e :mm[(mz-—a);)Al +(? —aalz)Az]

e [(w2 —wf)(a)z —m§)+AlAza)2}

(A29)

(A30)

(A31)

(A32)
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X, = 5 (A33)
m, (aﬁ -t +ja)A2)

2

2
F,
F'=4E = A, “ | ,1|g R (A34)
2m, !:(a)z —a}l‘) + w‘Ai]
2 F 2
P =AE =4, il 2212 . (A35)
2m, [(a)z - @] ) + mZAZ}
B,=F,=0 (A36)
where
w? = ﬁ_, wl= LY (A37), (A38)
il n

Equations (A32)-(A38) correspond to the cases where the two oscillators are physically
uncoupled from each.

In much of the analysis, interest concerns the case where the excitations are random,
broadband and uncorrelated. In such a situation the excitations are specified by their power

spectral  denmsities S, (@) and S, (), while the cross-spectral densities
AP (a))=S Iy (a)):O. The spectral densities of the kinetic energies, put powers and
coupling power are then from the above equations

5, ()= lm%T{m; [(o-02) 820 |3, (0)+ ', (a))} (A39)
4 mim: lD(a))I

1 No% 2 2
Sg, (@)= Zﬁﬂ;{kﬁﬂ (w)+m [(w“ —@12)2 + Alla;z}sz (a))} (A40)
{ e

1 A [ v , AK
S,,,‘ (a)):;—;}—lgim—)lza)z -(a) ma)j) +w A2+Al;lm2}sﬁ (a)) (A41)

1 A ] 22 , AR
S,,,2 (a))=5m—aﬂ _(a)z -, ) +g)2Al + Azf;lmz}Sfl (0)) (A42)

1 kl 2
r(@)=3 e fg(m)f2 8,5, (@) =S ()] (A43)
1 2
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APPENDIX B ENSEMBLE AVERAGE OF THE COUPLING TERM g

In equation (2.13), the coupling term fis given by
2
ﬁ:( k J (A +4,) (B1)

m i, (m]z _0)22)2 +(4, +A2)(a)22A, +w12A2)

In the original approaches to SEA [1-5] the coupling loss factor is found by ensemble
averaging A rather than, strictly correctly, ensemble averaging the powers and energies and
then finding the ratio of coupling power and energy difference. If the ensemble is defined as

in section 2.2 then the ensemble average of Sis

E[Al=55

where the strength of connection (sometimes erroneoudy referred to as the strength of
coupling)

(B2)

2
P (B3)
mm,o

and where @ is the centre frequency. This ensemble average is independent of damping. If
the coupling loss factor is found in terms of this average it is equal to the true coupling loss
factor in the weak coupling, high damping limit.

40



APPENDIX C GENERAL CONSERVATIVE COUPLING

In Ref, [5], the power balance and energy relations for two general, conservatively coupled
oscillators as shown in Figure C.1 were investigated. As before, m,,, ¢, and £, are the

mass, damping and stiffness of the corresponding oscillator, and m, k and g the mass,
stiffness and gyroscopic constant of the coupling ¢lement. In the following, expressions for
the power and energy responses are found along the lines followed in Appendix A for spring
coupling. The results are identical to those found in Ref. [5]. Further expressions are then
developed for the SEA power and energy relations.

k, G k,
m, koom,
— -
m
a = A — €
X x

Figure C.1. Two general, conservatively coupled oscillators

The equations of motion of the two-oscillator system, when subjected to forces f,, (1), canbe

written as
L . m . .
[m] +Z]x, +o% +(k1 -Hc)xl +—£1_x2 —gt, —kx, = f| (t) (ChH
[mz-kzsz+czx2+(kz+k)x2+-£x}+gxl—kxl = £, (?) (€2)
The instantaneous input and  transmitted powers arc  fi%, ff, and

k(X = x, )% — ghy %, + —]g(x; +3i,) %, tespectively. The total energy of each oscillator cannot

be defined unambiguously because of the energy associated with the coupling elements. The
energy may be defined in several reasonable ways, depending on how the energy in the
coupling element is taken into account, and there are no substantial consequences of the
definitions chosen. Here, the kinetic and potential encrgies of oscillator 1 are respectively
defined as

1 my.
T :5(’”' +;;jxf (C3)
and
1
|4 =5(ch +k)x12 (C4)
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Now the following parameters are defined:

k,+k
m, , +mj4

2

W, =

Cia

Al =2

my, +m/4

?;: g
\/(ml +mf4)(m, +m/4)

2o +m/4
m, + mf4

e mi4
\/(m, +m/4){m, +m/4)

. k
\/(ml +mf4)(m, +mi4)

Equations (C1)-(C2) then become

o . s 1 e A A 1

x,+A1xI+a),“xi+z(;¢x2—yx2-i<x2):mﬁ(t)
1

By + Ay, + 2%, - A+ g )=

%, + A%, +wsx, + A pE + PE - Kx) mz+m/4fz(t)

Joi

the responses X, &’ are

el

where the frequency response functions are

1 s + joA, + @y
H =
”(w) [m,+m/4}_ D(a))

For time-harmonic excitations 7 ,e

1 ~@" + joh, + o] |
D(w)

Hofo) =

m, +mj4

| i 0t P+ R
H -
2 (@) ,a,[m2+m,f4J[ D(w)

(C3)
(C6)
(C7)

(C8)
(€9)

(C10)

(C11)

(C12)

(C13)

(C14)
(C15)

(C16)
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B 1 o' u— joy Tk
Hzl(w)é{ml—!-m/ﬂj\i D(w) } ©n

2

D(w)=(jo) (1-;f)+(jm)3 (A, +8,)+(jo) (@f + 0} + A, +7° +2K) i)
+(jo) (a)zzAl + a)f/_\z)+ (a)fa)j - f22)

Now suppose that the forces f,, (t) are statistically independent, stationary and random with

constant spectral densities S, and S, over some excitation frequency band B. The spectral

densities of the kinetic and potential energies and input and coupling powers then follow in
the same manner as equations (A38) to (A42) in terms of the spectral densities of the forces
and the frequency responses. The total powers and energies, found by integrating over the
frequency band of excitation (c.f. section 2.1 for spring-coupled oscillators) are then finally

7S, 7Sy,
g (C19)
m, + mf4 m, +mj4
q 7S, LAY
P, = S : C20
* (l—yz)Q[(ml+m/4)A1 (m1+m/4)Aj (C20)
1 TS 78
T = h_p-—2L c21
' 2(1_};2)AIA2Q{m,+m/4p ml+m/4q} (2h
2 S S
= 0 gk (C22)
Z(mfa}z'—xz)A]AzQ m +mfd my+mfd
where
2 2 z 2 2 #2 2 2 2
Q:[(a)l ;) +(A,+8,)(07A, + o Al)}+KA—(a)2AI+a)I A,)
1 (2 ‘ 2)2 (C23)
N o] +4A,) .
+(7/2+2,ufc)[Kl+A—j(a)§Al+a)fAz)+——'A;:\zi—rc2
p={az[(w5—ms)%(a.mz)(wsa.+wfaz)}—y2[w;(a.+az)
(C24)
+(A§ —20)22)(@22,&] +a)i2A2)]+(;?2 +2#}2)(W§Al + a)fAl)+ £ (A, +A3)}
q :{#z [Alw; +A26014 +AA, (a)zzAl +a)l2A2)} €25)

(77 +2uf) (@}, + 08, )+ R (A, +A,)]
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5= {Aza)zz [(wf —w} )2 +(4, +A2)(a)§A, + a)fAz):F+yza)§ (mjA, + anAZ)
(C26)
H7P 2ur) ol (A, +8,) -2 (8, +,)(8] 200 )+ (0l +wfaz)]}

t= {,uza)fa)f (@28, +0}8,) +(;72 +2,uf€)cofm22 (A +4,)
C27
e [A]/_\z (A +4,)+ (a4, +m;A2)]} ()

These equations are analogous to equations (2.4) to (2.9) for the spring-coupled case but are
substantially more complicated. The time-averaged energy responses 7, and V, of oscillator 2

can be determined by replacing the subscript 1 to 2 in equations (C21)-(C22).

These results were derived in Ref. [5]. However, they are not very convenient for subsequent
analysis of power and energy relations for the two oscillators. Alternatively, it is more
convenient perhaps to write the power transmission and energy responses in equations (C20)-
(C22) into forms similar to those given in Appendix A, i.e., in terms of the input powers.
These are described below.

Define the parameter v* = £*/w’@; . The coupling power and energies can be simply re-

written as
Pl AL (C28)
(1"/»'5 )Q A A,

T = i _ 9 g I[iwﬁzu} (C29)

2(1-p2)a, 2(1-47)A QA 4,

P t 11 E PR
V= ] o el b B2 C30
L 2(1-v)4, 2(1-1/2)A1QL.I Aj (€30)

The differences in the time-average kinetic and potential energies of the two oscillators are
found to be equal, with

ot -at) + A+ A @A, + ol A
7;—T2=V1—V2=( i 2) ( : )( 280G 2)[&_&} (©31)
Q Al AZ

As a result, the coupling power is seen to be proportional to the oscillator energy difference
(or the kinetic or potential energy difference) such that

B, = BlE,-E]= B[2(%, -1} ] (C32)

where the coupling parameter 5 is given by
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ﬁz{ﬂ’ (o=t +( e &) el 40 {742 0 i)+ (4 48) (C33)
(1-;5)[(@’—ai)2+(A+Az)(afA1+cq2Azﬂ

Note that when m =0 and g =0, equation (C33) becomes

A= k? (A +A,) (C34)

m, i, (:1)12 *(022)2 +{A, +A1)(a}22AI + a)lez)

Equation (C34) is the power-flow energy-difference proportionality derived in Appendix A
when the two oscillators are connected via a spring. Finally note that the coupling parameter
B depends on a group of parameters related to the coupling mechanism, while the
denominator depends on the oscillator properties and, in particular, the difference in their
natural frequencies, in a similar (but far more complicated) form for spring-coupled
oscillators given in equation (2.13).
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APPENDIX D TWO OSCILLATORSCONNECTED BY A
FIXED SPRING

Consider the two-oscillator system shown in Figure D.1. This form of model can arise when
fixed interface (Craig-Bampton) component mode synthesis (CMS) methods are used to
model coupled subsystems. Oscillator 1 (m,, &, and ¢,) and oscillator 2 (m,, &, and c,)are

subjected to two harmonic forces £, (1) = Fe™ and f, ()= F,e’™ , respectively.

fit,

o
X, —>

Figure D.1 Two oscillators connected via a fixed spring.

The equations governing the motion of the masses are
m¥, +e +k(x—x)=f (D1)
my¥, + ek, +ky (x,—x.) =/, (D2)
The interface coordinate is such that
kx, vhyx, = (k +ky +k, )xc (D3)

Once again there is some ambiguity in the system energy, since there the potential energy
stored the interface spring &, cannot be unambiguously ascribed to one or other oscillator.

Define

kg, =0 (D4)
mz wm

k
o =(1- )5 0F =(1- )
1

where
ki kZ
= ; IUZ =
k +ky+k, k,+k, +k,

u (D5)

Hete o, (w,) given in equation (D4) is the natural frequency of oscillator 1 (2) when the
motion of mass 2 (1) is fixed. Specially, when k -0, which corresponds to a fixed
interface x, — 0, equations (D4) gives

, ks Kk

-
m,

(D6)
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For time harmonic excitations F, ,&’*, the displacements of the two oscillators X ,€™ canbe

determined from the frequency response functions of the system as

fm]

where
| @i+ jod,—© 1 of +jod —o
H =2 2 s =—=1 ] D8
“(a)) m D((l)) 22( ) mz D(a)) ( )
T ou o L o

H‘} = H - l 2 = 2 l Dg
2 (@) 21 (“’) m, - i, D(m) m, -y D(a)) (09

and where

D(w)= (j(0)4 + (ja))3 (A + Ay )+ (jm)2 ((ulz ol + AIAE)

- , ) ) Kk, {D10)
+(]a))(wl A, +a)2A1)+ i@y, — i
.,
The interface displacement X,e™ is
X, =H (0)F+H,(0)F, (D11)

where

1y w; . )
H (0)=——F=| ——+jol,~o" |
(@) m. D(w){lwyz + joA, ~ @ } o

1 m o 2
H = | ——— A —
ZL‘(a)) m, D(a)){l—yl T IOA ~© }

For random, stationary, statistically independent, broadband excitation with spectral densities
S, and S, the powers and energy responses (twice the kinetic energy) are found to be

R="; B ="F (D13)
m, nt,
78 T8
lz:l(—i_“ﬂAJ (D14)
Q\ma,  mi,
S a8 7S
E1= 1— X H X h o £ (D15)
AQ JmA A mA, A,
where
kk,
¥ = pp, —2 (A +4,) (D16)
UL

kk, (A+4, )2

D17
mm,  AA, ( )

Qz(a)f«—wf)l +(A1+A2)(cafA2 +a)§A,)+ylp.2
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The difference in oscillator energies is then

xS, =#8 S zS
E-E = 1- £ RENR I AT W 1 Ll N L 1 (D18)
- LA A mA, mA, ) O\UmA A, myA, A,
Note, from the last term on the right-hand side of (D18), that the coupling power (equation
(D14)) is proportional to the energy difference only if A, = A,. The differences are likely to

be small, especially when the coupling or connection is weak. However, it should be noted
that the fixed-interface modes may not provide a basis for an accurate SEA model for coupled
sets of oscillators when the damping bandwidths of the two sets are very different.
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APPENDIX E ENSEMBLE AVERAGE ENERGY BY A
RANDOM POINT PROCESS TECHNIQUE

2
kil fon
was averaged using number variance theory {10]. The same result can be found by
using a so-called ‘random point processing’ technique Ref. {1 1] as described below.

In deriving the ensemble mean energy in equation (3.10), the term ZZ

Assume B << @, and also
o, = (0! +af) /2, A=(87+ A7) /2, (E1)

Combining these with the simplifications made in equation (3.8), equation (3.5)
reduces to

kel
b 2 a & z 2 Jk
Q% = 4a, (L'Uj —a)k) +1 A +m{,mb0)f (E2)
Equations (E1} and (E2) lead to
v, M |kt 1 Mo X pab|®
Jk ke
zz il z4 ZZZ a 5 2 5 (E3)
=Y W 4=t k=1 (a) —a;k) +(A' +,fc‘)
where
el |
e (E4)
mnmba)c

is the coupling strerigth parameter. Note that in equation (E3), the denominator has
Z
g s

2

been approximated by replacing \kj’,f’ \ with its mean value E[
approximation introduces errors because it ignores correlation between the terms
kﬂ'b

Jk
inverse of its average. Errors introduced by this approximation are particularly small

2 .

ke / Q% in equation (E3) may be

2 .
and 1/ Q;’f and because averaging the inverse of a quantity 1s not equal to the

if x* is small compared to A®. Each term
regarded as being like an impulse, which “sparks” whenever W] = a),f Consequently,

(a);’ - a)f) forms a set of random point processes.

Let 5, = (a;;‘ - a)f) . Equation (E3) can then be re-written as

2 abz

N, N
o -3 })’(

ZZ kj:

SE 0y 40l T (o) +(a )

1 N, =N,

(E3)

where 5((“) =&, . By using random point process theory ([11], equation (14)), the

e
ensemble mean of the quantity given in equation (E5) becomes
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N, : =
i 1 2 n
EDD =——1{E|[* } < ds, E6
=l 4@2{ [ﬁc _i(@)hr(mﬂu,{z) :} (E6)

ESS o3 S S (E7)
a - a'“h
7= k=1 Q_;I::b 4595 A+ K?

Combining equation (E7) with equations (3.10) and (3.19), the ensemble mean ¢ncrgy
of subsystem « is, finally

oS, 7 nnK’ ( xS, 7S, J
‘ maA(l a 2 Aa.\jl“‘ffl/(A]Az) m,A rnbAfJ

Equation (E8) is the same as equation (3.21). In the special case where A, = A, ¥ A,

(E8)

equation (E8) leads to
= xs ﬂnnb;c [ﬂS_:rSJ

a

£ n
T omA, " 2 A kP

(E9)

]’Hb b
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APPENDIX F INTERMODAL COUPLING STIFFNESS OF TWO
SPRING-COUPLED CONTINUOUS SUBSYSTEMS

The theory derived in Chapters 2 and 3 concerned the coupling of pairs of oscillators, In this
Appendix the theory is applied to two continuous, multi-modal subsystems joined by a spring.
The spring couples the modes of the subsystems, each mode being regarded as an oscillator.
The intermodal coupling stiffness and strength of connection are derived.

The motion in subsystem « can be written in terms of a modal sum as

@ (x(a) ) _ Zj: qf-”) ¢50) ( x(a)) (F1)

where qf.”) and ¢§“J are the jth modal amplitude and mode shape (x!) may be a vector if the

subsystem is 2- or 3-dimensional). The mode shapes are such that modal mass is given by

mﬁ") = L)m(”) (x)géj(.“)z (x) dx (F2)

where mﬁ.") is the modal mass of the jth mode and m'”’ (x) is the mass density.

Suppose the subsystems are coupled by a spring of stiffness K attached between the points
xﬁ"} and xfb) and which exerts a force F, on each plate. The jth modal amplitude thus

satisfies
O P+ N0 -0 [¢) = 117+ F () (F3)

J

where [ f“} is the modal force applied by the external excitations. The interface force F, is

F, = K[w(b) (xﬁb))m W) (x&")ﬂ (F4)

Combining this with equation (F1) and the equivalent equation for subsystem b gives
Tl -0 = 19| S (4)- Sl ()0 ) @9
n k

Note that the spring couples mode j in subsystem @ to the modes in subsystem b (and also to
the other modes in subsystem «). The intermodal coupling stiffness between modes j and & in
subsvstems « and b is

K = kg (5o (57) (F6)
Hence the strength of connection x between the mode pair is such that

o K2¢§u)2 (xga))gﬁéb)z (xgb))

g ay (b)) 2
OO

(F7)

Note that the coupling stiffness depends on the mode shapes.

Now consider the case where the coupling points are randomly located over the subsystems.

The average coupling term can be found by averaging over all possible locations xfaJ and
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xf”] . In particular, suppose that the probability density function of xf”] is proportional to the

mass density ') (x) The strength of connection, averaged over all interface points in each
subsystem, 1s then
(a ()2 (#) (k)2
g L)m )(x);ﬁj (x)dx _[b}m (x)g,” (x)dx

PO Tk D [ (s ¥

In view of the definition of modal mass (equation (F2)) this reduces to
- K’

K =@ 0 (F9)

where

m® (x ) (F10)

is the total mass of subsystem a.
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APPENDIX G: NUMERICAL CALCULATION OF APPARENT
COUPLING LOSS FACTORS FOR TWO SPRING-COUPLED PLATES

In Ref. [8], a procedure for calculating the apparent coupling loss factors of a built-up system
1s described. The procedure is based on an energy distribution (ED) model of the system.
The ED model is formed in terms of the global modes of the whole system, which can be
obtained from a finite element model of the system, for example. The results are
postprocessed to determine the energy influence coefficient matrix, which relates subsystem
energies and input powers for rain-on-the-roof excitation. This matrix is inverted to yield
numerical estimates of the coupling loss factors. Because these are estimates from a single
numerical model (or possibly from an average of a number of such models) and are not found
by an ensemble averaging procedure, the estimates are referred to as apparent coupling loss
factors (ACLFs) and generally differ from the CLFs which relate ensemble average powers
and energies.

In this Appendix this approach is used to produce estimates of ACLFs for two, spring-coupled
plates, using numerical FE models developed by Thite (personal communication). Results are
compared to those from the subsystem-FRF approach described in section 4.3.2. The system
parameters are listed in Table G1. The apparent coupling loss factors are shown in Figure G1.
There is good agreement between the two approaches. The subsystem-FRF based approach
does not however require solution of the global eigenvalue problem. These numerical
approaches are used elsewhere to estimate ACLTs for comparison with the coupled-oscillator
results.

Numerical investigations also revealed that for very low damping, the ACLF estimates are
very sensitive to the exact locations of the coupling spring. In this case, the system has a very
low modal overlap and the variance of the ACLFs becomes very large.

Table G1. System parameters and physical properties (SI units)

Elastic modulus (N/m”)  2x10™ Length of coupled edge (m)  L,;=L,,=0.9

Density (kg/m3) 8x10°  Plate arca (mz) §1=0.9, 5;=1.26
Poisson’s ratio 0.3 Modal density (/Hz) 1;=0.0297, n;=0.0416
Thickness (m) 0.01 System total modal density m+r=0.0714

Spring stiffness (N/m)  K=5x10°, 1x107, 2x107, 3x107
Connection points (m) (X1,Y1)=(0.7, 0.55), (X2,¥2)=(0.3, 0.55)

Centre frequency (Hz) 1500 Frequency band (Hz) 400
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Coupling loss factor
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-— Global mode approach i
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Damping loss factor

Figure G1. Apparent coupling loss factors for two, spring-coupled plates.
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APPENDIX H LIST OF SYMBOLS

Area.

Energy influence coefficient (EIC) matrix.
Excitation bandwidth.

Damping constant of oscillators 1 and 2.

Wave speed of subsystems a and & .

Total energy; elastic modulus.
The frequency averages of energies of oscillators j and £ in sets a

and b .
Forces.

Force amplitudes.
Frequency response function (FRF) matrix.
Stiffness, coupling stiffness between oscillators

Coupling stiffness between oscillators j and & tnsets @ and b.

Spring stiffness between subsystems « and & .
Discrete frequency kinetic energy.

Length
Coupling loss factor (CLF) matrix.
Masses of oscillators 1 and 2.

Modal mass of subsystems & and b .
Masses of oscillators j and & insets ¢ and 5.
Total masses of subsystems a and & .

Numbers of modes of subsystems « and & within a specific frequency

band.
Modal densities of subsystems ¢ and &.

Joint probability density function.

Discrete frequency input powers of oscillators 1 and 2.

Total input power

Ensemble average input power

The frequency averaged input powers of subsystems @ and 5.

The frequency averaged input powers of oscillators j and & insets a

and b.

Discrete frequency coupling power between oscillators 1 and 2.

Total coupling power between oscillators 1 and 2 in a frequency band
of force.

Ensemble average of £, in a frequency band of natural frequency
distribution.

Coupling power between oscillator sefs a and 5.

Frequency averaged coupling power between oscillators j and & in sets

a and b.
Coupling parameter between oscillators 1 and 2.
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AY, A
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Ua 2 nh
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K
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pﬁ 3 pf)
fub,nc
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o

w , @,
m{?

o!, v
Superscripts
Subscripts
a b

1, 2

Coupling parameter between oscillators 7 and & in sets a and 5.

Real parts of the characteristic impedances of systems a and 5.

Spectral densities of rain-on-the-roof forcing on subsystems « and &.

Spectral densities of forces on oscillators j and & in sets « and b.
Spectral densities of /() and f,(1).

Interface locations on subsystems ¢ and b.

Mobility

Impedance

Coupling term between oscillators 1 and 2.

Coupling term between oscillators j and & in sets ¢ and 5.

Bending stiffness.

Strength of coupling parameter.

Natural frequency spacing between oscillators 1 and 2.
Damping bandwidth.

The modal bandwidths of oscillators 1 and 2.

The modal bandwidths of subsystems a and b .

The modal bandwidths of oscillators j and k& in sets @ and b.

The amplitudes of time-harmonic response of oscillators 1 and 2.
Damping loss factors of oscillators 1 and 2.

Coupling loss factors between oscillators 1 and 2.

Damping loss factors of oscillator sets ¢ and b .

Coupling loss factors between subsystems « and b .

Strength of connection parameter.
Modal overlap (based on the half-power bandwidth)

Natural-frequency-distribution band.
Mass densities of rod @ and rod 5.

Transmission coefficient between two infinite system ¢ and 5.

Mode shape.
Frequency.
Natural frequencies of oscillators 1 and 2.

Centre frequency of a frequency band.

The natural frequencies of oscillators / and & in sets « and b.

Ensemble average

Subsystem
Oscillator number
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