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Abstract

The isolation of sensitive equipment from the vibration of a base structure to which it
is attached, is required in many application areas. Such isolation is usually achieved
using resilient mount. A conventional passive isolation system consists of a compliant
mount positioned between the base structure and the equipment to be isolated.
However, such passive systems suffer from a trade-off between low- and high-
frequency isolation performances, depending on the damping of the mount. This

compromise can be avoided using active isolation solutions.

In this report, vibration isolation systems with a lumped parameter isolator and the use
of velocity feedback control on such systems have been summarized and presented
based on previous work. Two different velocity feedback control methods have been

applied and compared. The control performance and stability have been investigated.

In practice, it would be more accurate to treat the isolator as a continuous system,
especially at relatively high frequencies, when the resonances due to the isolator
might affect the isolation performance, or even destabilize the control system.
Therefore, vibration isolation systems containing a distributed parameter mount have
been analyzed under two different control methods. In this report, the distributed
parameter isolator represented by an elastic rod, which itself has distributed mass and
stiffness. The control -performances of such systems have been investigated and

compared. The stability has also been discussed.
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1. Introduction

For delicate equipment attached to a vibrating host base structure, there is a need for
vibration isolation. This is often achieved using passive isolators such as rubber
mountings. A conventional passive isolation system consists of a compliant mount
positioned between the base structure and the equipment to be isolated, and this can
provide good isolation at high frequencies well above the resonance caused by the
mass of the equipment and the stiffness of the mount [1]. However, conventional
passive isolation systems suffer from a trade-off in the choice of their damping [2-4].
If the passive isolator damping is too small, the equipment vibration is anipliﬁed
compared with the base vibration close to the mounted natural frequency. If the
passive isolator damping is too large, the vibration transmissibility is increased at
frequencies well above the mounted natural frequency compared to the case of low
damping and also the rate of reduction with frequency is less. This trade-off is
illustrated and introduced in section 2.2.1. Also, in space, rubber mounts have limited
application because of their temperature dependence [5]. Consequently passive
metallic vibration isolators have to be used, but these have inherently light damping
that causes vibration amplification at some frequencies. The compromises inherent in
using a passive system can be avoided using active vibration isolation system with
feedback control [6]. This active method of controlling the response at the resonance
frequency is to use a feedback controller to generate a secondary force which is
proportional to the absolute velocity of the equipment. It is sometimes referred to as

skyhook damping if it reacts off the base structure [7].

In the conventional analysis of the dynamics of vibration isolation, the passive
comphant mount, which is usually modelled as the combination of an elastic spring
and a viscous damper, is assumed to behave as a lumped parameter system. Much
previous research work has been done in reducing vibration transmission from a
vibrating base to a mounted equipment structure with a lumped parameter isolator,
under feedback control, in which cases, the active mount is modelled as a single-axis
force actuator in parallel with the passive isolator [7, 8]. The feedback sensor
measures either the absolute velocity of the equipment to be isolated at one end of the

mount, or the integral of the transmitted force through the mount. The plant response,




from force actuator input to sensor output, is derived in terms of the mechanical
mobilities of the two structures connected by the active mount. The stability and
performance of the analytic models with the lumped parameter isolator has been
analyzed and the experiment of multi-channel direct velocity feedback control has
been performed with both reactive and inertial actuators. The effect of equipment and
base flexibility on these systems and the global effect of local controllers in such
systems have also been analyzed. In the absence of actuator and sensor dynamics, the
integrated force feedback system is unconditionally stable. The stability of the
absolute velocity feedback system is, however, threatened if the vibrating base
structure becomes very mobile, with a small effective mass, at the same frequency
where the equipment structure becomes dynamically very stiff [8, 9]. However, it
would be more accurate to treat the mount as a continuous system, especially at
relatively high frequencies, when the resonances due to the mount might affect the

stability of the control systém.

This report describes analytical and numerical modelling of active isolation systems
containing either a lumped parameter isolator or a distributed parameter mount

together with controller design and stability analysis.

In section 2, the review work on vibration isolation systems with a lumped parameter
isolator reducing vibration transmission from a vibrating base to a mounted equipment
structure are presented and summarized. Control performance and the stability of
these systems under absolute velocity feedback control and relatively velocity

feedback control are investigated and compared.

In section 3, the analytical models with a distributed parameter isolator are then
introduced and analyzed. Also, control performance and the stability of the systems
under absolute velocity feedback control and relatively velocity feedback control are

investigated and compared.

Overall conclusions are presented in section 4.



2. Vibration isolation systems with a lumped

parameter isolator

2.1 Introduction

Vibration isolation systems with a lumped parameter isolator have been investigated
by many researchers. Serrand [8] and Eiliott et al [9] have analyzed such dynamic
systems using mobility approach. The stability for such systems under absolute
velocity feedback control has also been discussed by looking at their plant responses
[7, 9]. In this section, previous work on vibration isolation systems with a lumped
parameter isolator has been summarized and presented. Furthermore, relative velocity
feedback control is applied to such systems. The stability is investigated and control

performance is analyzed and compared with absolute velocity feedback control.

2.2 A vibration isolation system with a lumped parameter

isolator undergoing harmonic base motion

Vibrating systems with a lumped parameter isolator undergoing harmonic base
motion-are analyzed in this section. The frequency response of the passive system is

investigated and two different control strategies are applied.

2.2.1 Passive system

A vibrating system with a lumped parameter isolator, which is modelled as an elastic
spring and a viscous damper in parallel, undergoing harmonic base motion is
modelled as in Figure 2.1. The equations of motion in terms of mobility/impedance
are given by

v =Y.(f+ 1)

fo=—f (2.1a,b,c)

l_f; _ Zm _Zm v.b
PN




where ¥, is the input mobility of the unconnected equipment at the location of the
mount connection, Z,, is the impedance of the mount which characterises the mount

propertiesand Z_ =k, / jo+c,.

The velocity of the equipment is given by

Y, Y.z
= - + v 22
vz rz @2)

Without the external force f, exciting on the equipment, the transmissibility can be

written as
N 2.3)
v, 1+YZ,

In Figure 2.1, if the equipment is modelled as a mass, so that ¥, =1/ jom, , the

transmissibility can be written in terms of non-dimensional parameters as

k, + joc, 1+ 28 Q)
k —o'm, + joc, 1-Q%+j2¢,Q,

T= (2.4)
where Q, = w/w, and ®, = \/k, /m, is the natural frequency of the equipment mass
on the stiffness. &

m

=c, /2.Jk,m, is the viscous damping ratio.

Figure 2.2 shows the transmissibility with different values of damping ratio £, . If the
damping ratio is very small (& <<1), at relatively high frequency well above the

mounted natural frequency, the transmissibility reduces at 40 dB/decade before it
eventually rollé off at 20 dB/decade. Otherwise, if the damping ratio is relatively
large, at high frequency the transmissibility reduces at 20 dB/decade, although the
isolation performance is much better around the resonance frequency than when the

damping ratio is small.

This reveals an important issue in vibration isolation. Conventional passive systems
for the isolation of equipment from base vibration involve an inherent compromise
between good high frequency isolation, which requires small values of isolator
damping, and low vibration amplitudes at frequencies close to the mounted natural

frequency, which requires large values of isolator damping [2-4].



2.2.2 The system under Absolute Velocity Feedback control

Figure 2.3 shows the system under absolute velocity feedback (AVF) control. A
control actuator, which is in parallel with the passive isolator, reacts between the
equipment and the base.

¢ Control performance

Substituting the control force, f, for the external force, f,, equation (2.2) can be

rewritten as

Y.Z,
for e, (2.5)

v, = £
1+Y, 2,
The control force f, which is proportional to the velocity of the suspended mass is

fed back to the system with a gain -k, which is a constant, so that

[, =—hv, (2.6)

Substituting equation (2.6) into (2.5), the transmissibility under AVF control is given

by

= #ﬁf: (2.7)

If the equipment is modelled as a mass, the equation (2.7) can be written in terms of
non-dimensional parameters as

7 k,+ joc, _ 1+ 724 Q.
kn—o’m, + jo(c,+h) 1-Q1+2Q,(¢,+¢,)

(2.8)

where ¢, = h/2,/k,,m, 1s the damping ratio due to the feedback control.

The feedback adds a damping term to the denominator and leaves the numerator
unchanged. The action of absolute velocity feedback is the same as a passive viscous
damper acting between the payload and a fixed motionless base as illustrated by

Figure 2.4, which is known as ‘skyhook damping’ [7].

Figure 2.5 shows the transmissibility for the system with a fixed passive damping
ratio ¢, and different values of active damping ratio s, . It can be noted that the
resonance peak is significantly suppressed with an increase in the active damping
ratio while the performances at relatively high frequencies above the natural

frequency of the mounted equipment is not affected. Hence, active vibration isolation



with an active controller using the absolute velocity response of the mounted
equipment offers a way of overcoming the inherent compromise in the choice of
damping in the conventional passive systems.
o Stability analysis

The Nyquist criterion states that for a stable open-loop system the closed-loop system
is also stable provided the Nyquist contour does not enclose the unstable point (-1, j0)
[10-12]. In this study, the controller is a simple constant gain % so that the Nyquist
analysis of the open-loop frequency response can be reduced to the consideration of

the plant response considering a unitary control gain (4=1).

For the vibrating system with a lumped parameter isolator under AVF control shown
in Figure 2.3, the plant response from actuator force to absolute equipment velocity is

given by

S AN (2.9)
1+Y 2, Z +Z,

where Z, is the input impedance of the unconnected equipment at the location of the

mount connection.

The stability can be analyzed by examining the reciprocal of the plant response, which
is
G'=Z+2Z, (2.10)
Z, s an input impedance, so that its phase is between -90° and 90°. The phase of Z,
will be -90° if the mount is dominated by its stiffness, reducing to 0° if it is dominated
by its damping. Therefore the overall phase of G could range between -90° and 90°.
The phase limitations on the plant response G from actuator force to absolute
equipment velocity are thus given by
90° < £G < 90° (2.11)
The absolute value of the phase of the plant response is never greater than 7 so that

the Nyquist plot of the plant response never crosses the negative real axis. Therefore,

based on the Nyquist criterion, the system is unconditionally stable.



2.2.3 The system under Relatively Velocity Feedback control

Figure 2.6 shows the system under relative velocity feedback (RVF) control. A
control actuator, which is in parallel with the passive isolator, reacts between the
equipment and the base.

¢ Control performance

The control force f, which is proportional to the difference between absolute

equipment velocity and absolute base velocity is fed back to the system with a gain -4,

so that
fo==h(v.~v,) (2.12)
Substituting the equation (2.12) into (2.5), the transmissibility under RVF control is
given by
Y
_ Lyt (2.13)
1+Y.Z, +hY,
If the equipment has a mass-like mobility, equation (2.13) can be written as
k. +Jj +h I+ 72Q +
T — m ja) (Cm ) _ -] e (é’m é’a) (2' 14)

Tk, —o'm+ jol(c, +h) 1-Q2+j2Q,(¢, +<,)

The feedback adds a damping term both to the denominator and the numerator. The
action-of relative velocity feedback is equivalent to a passive viscous damper acting
between the equipment and the base as illustrated by Figure 2.7. Therefore, the system
under RVF control still involves an inherent compromise between good high
frequency isolation and low resonance peak at the mounted natural frequency, as

shown in Figure 2.8.

The comparison of the control performance between the system under RVF and AVF
control can be realized by looking at their change in mean square response compared
to the original passive system. The relationship between the power spectral densities

of the base disturbance and equipment response can be written as
S, =T S, (2.15)
where S, and S, are the power spectral densities of the base disturbance and

equipment response, respectively. 7' is the transmissibility discussed in former

sections.



The mean square response of the equipment is thus given by
vi= [8,d0, = [|I] 5,42, (2.16)

For the systems without and with AVF and RVF control, substituting the
corresponding transmissibility, the change in the mean square response for the system
under AVF and RVF control compared to the original passive system can be

calculated.

Figure 2.9 depicts the change in mean square velocity compared to the original
passive system. At high active damping ratios, the AVF control provides increasing
reduction in the mean square response. The performance of the RVF control system is
always worse than the performance of the AVF control system and does not produce
monotonically reducing mean square response for an increase in active damping ratio.
s Stability analysis

For the vibrating system with a lumped parameter isolator under RVF control shown
in Figure 2.6, the plant response from actuator force to the difference between
absolute equipment velocity and absolute base velocity is given by

__r 1 (2.17)
\+YZ Z,+Z,

Tt is the same as the plant response for such a system under AVF control. Therefore,

its phase ranges between -90° and 90° so that the system is unconditionally stable.
2.2.4 Conclusions

The action of absolute velocity feedback on a system with a lumped parameter
isolator undergoing harmonic base motion is the same as a skyhook damper, which
offers a way of overcoming the inherent compromise in the choice of damping in the

conventional passive systems. Moreover, the system is unconditionally stable.

The action of relative velocity feedback on such a system is the same as a passive
viscous damper acting between the equipment and the base, which is also
unconditionally stable. However, its control performance is worse than that of the

system under AVF control, especially at high damping ratios due to the control.



2.3 A vibration isolation system with a lumped parameter

isolator on a flexible base

A vibrating system with a lumped parameter isolator on a flexible base is analyzed in
this section. The frequency response of the system is studied and two different control

strategies are applied and compared.

2.3.1 Passive system

A vibrating system with a lumped parameter isolator on a flexible base is modelled as

in Figure 2.10. The equations of motion are given by

ve = Ye (f;: +fm2)
v, =G, (fy + 1) (2.18a,b,c)

fm2 f; _Zm Zm ve
where Y, is the input mobility of the unconnected base at the location of the mount

connection.

The velocity of the equipment can be written as
v, =V S+ Vel (2.19)
and

v (1+Y,Z,)

=_—er olm/ 2.20
e¢ 1+Zm(},;+17b) ( )

Y.Z
Y, =__,M (2.21)
1+Z, (Y, +1,)
where Y is the input mobility of the equipment when coupled to the rest of the
system and Y, is the transfer mobility from the force on the base, f, to the

equipment velocity, v, when the system is coupled [7, 8].

If the system is only excited by the external force on the base, f, = /', i.c. external

force f, =0, the velocity of the equipment can be written as




v, Yy,
___-,:Y;b -_— e m
f 1+Z, (¥, +7,)

(2.22)
If the equipment has a mass-like mobility and the base structure is modelled as a mass
m, on a complex spring, i.e. k, =k,(1+ jn,), where 7, is the loss factor, the non-

dimensional amplitude ratio can be written as

X 1+J2§mge

5T e 2
R F¥e, Q—;—l—[ﬁl]“]‘f}%n%ﬂﬁf m(1-90)+ 22,2, IH(HLH%
Fb Hy rb “ Fb

(2.23)

where x is the displacement of the equipment, &, = f/k, is the static deflection of the
base, @, = \(k, / m, is the natural frequency of the base, I', =@, /@, =1/, 44, is the
natural frequency ratio, u, =k, /k, is the stiffness ratio, 4, =m, /m,is the mass

ratio of the supporting base structure to the mounted equipment.

Figure 2.11 shows the amplitude ratio of the system with different values of the
passive damping ratio ¢ and loss factor7,. It can be seen that the damping in the
base structure is only beneficial to the reduction of the peak broadly due to the base
dynamics, which is the second peak in Figure 2.11. The damping in the lumped
parameter isolator is effective in reducing both resonance peaks; however, the

amplitude ratio is amplified at high frequencies above the base dominated resonance.
2.3.2 The system under Absolute Velocity Feedback control

Figure 2.12 shows the system configuration under absolute veloeity feedback control.
* Control performance
Referring to the description in section 2.2.1, the external force and control forces

acting on the base and equipment respectively are given by

f.=1 (2.24)
h=r-1 (2.25)

Substituting them into Equation (2.19), the equipment velocity can be written as
ve=(Yu Yo ) [+ 1of @29

Substituting equation (2.6) into (2.26), the equipment velocity under AVF control is
given by

10



v_= Kb — Ier;Zm
F T h(E, T,) 1+Z, (VAR A,

(2.27)

If the equipment has a mass-like mobility and the base structure is modelled as a mass
on a complex spring, the amplitude ratio of the system under AVF control can be

written as

x 1+ j2§’ Q,
st Q 1
1+Qz|: - T} 2(§m+§a)ﬂbge
b

it @ﬂm{ {d -

The feedback adds a damping term to the denominator and lecaves the numerator

(2.28)

unchanged. Figure 2.13 shows the amplitude ratio for the system with different values

of damping ratio ¢, due to feedback control. The equipment and base resonance

peaks are both attenuated with an increase in the active damping ratio, while the
performance at high frequencies well above the natural frequencies is unaltered.

e Stability analysis
For the vibrating system on a flexible base under AVF control shown in Figure 2.12
the plant response from actuator force to absolute equipment velocity can be written
as [9]

Y,
G=Y,~Vy=—F— 2.29
“1+Z,(¥ +1,) (229

The phase limits of the plant response are thus given by

-180° < £G <270° (2.30)

Therefore, the system with a constant gain feedback loop is only conditionally stable.
The stability conditions for such a system have previously been discussed by Elliott et
al [9]. A feedback system from absolute equipment velocity to actuator force will be
unconditionaily stable unless every one of the following conditions is simultaneously
satisfied at some frequency:

(1) The equipment dynamics are stiffness-dominated, so that ¥,(jw)=jo/k,
andk, >0,

11




(2) The base dynamics are mass-dominated, so that ¥, (jw) =1/ jom, andm, >0,
(3) The stability parameter is greater than unity; £,/ o’m, >1 , where

k, =k, k, Ik, +k,).

Figure 2.14 shows a system with a lumped parameter isolator on a flexible base which
can be unstable at some frequencies. If appropriate parameters for the addition
mass, m, , and stiffness, &, , attached to the equipment are chosen so that these three
conditions are satisfied, then the system becomes unstable [9]. Figures 2.15 and 2.16
show the frequency response and Nyquist plot of the plant response & of an unstable

case for the system shown in Figure 2.14. The parameters chosen are m, =3.5 kg,
m, =11 kg, m, =1.1 kg, k, =k, =12,000 N/m and ¢, =33 Ns/m. In the complex

plane there is a loop on the Ieft half of the complex plane. With an increase in the
control gain, this will eventually enclose the point (-1, f0) and this corresponds to the
system becoming unstable. Figure 2.17 shows the open and closed-loop response from
a force on the base structure to the equipment velocity for the system. It can be
observed that some attenuation at the mount resonance is achieved, but this is

accompanied by enhancement of the velocity at the equipment resonance.
2.3.3 The system under Relative Velocity Feedback control

Figure 2.18 shows the system with a lumped parameter isolator on a flexible base
under relative velocity feedback control.
s Control performance

Substituting equation (2.12) into (2.26), and because
v, =(Y —Y) fo t s f (2.31)

The equipment velocity under RVF control is given by
v, Yy +h{LY,~1i)

e 2.32
f 1+h(Yee+Ybb_2'y;b) ( )

where 7,,, which is the input mobility of the base when coupled to the rest of the

system, is given as
__h(+%z,)

= 2.33
® 142, (% +7,) (239

12



Therefore, equation (2.32) can be rewritten as
v YY,Z,+hY,

e

7 14Z, (V+1)+h(L,+1,)

(2.34)

If the equipment has a mass-like mobility and the base structure is modelled as a mass
on a complex spring, the amplitude ratio of the system under RVF control can be

written as
x 1+12(gm +§a) €
O 1 2 £2e 1= 1+ —1=1-2 +é Q
+! !e |:———- [ ) 2] (gm a)nb e

2
b b b

(2.35)

m+j{77b(l-£2§)+2(§m +§H)Qe[1u[l+-1—ﬂ ?j}

Hy b

The feedback adds a damping term both to the denominator and the numerator. Figure
2.19 shows the amplitude ratio for the system with different values of damping ratio
due to feedback control. The resonance peaks are attenuated at high active damping
ratios while the amplitude ratio is amplified between two resonance peaks and at high
frequencies well above the mounted natural frequencies. Therefore its control
performance is worse than that of the system under AVF control, especially at high

active damping ratios.

Similar to the description in section 2.2.3, the relationship between the power spectral

densities of the base disturbance and equipment response can be written as

2

a (2.36)

)

st

S =

€

where x/4,, 1s the amplitude ratio discussed in former sections.

The mean square response of the equipment is thus given by

. 2
218,40, (2.37)

¢

x_2=+ifSedQ =

st
Figare 2.20 depicts the change in mean square displacement compared to the original

passive system. Although the behaviour is very similar to the case when the base is

13



rigid, the additional mode due the dynamics of the base has a negative contribution to
the reduction of the mean square responses.
o Stability analysis

For the system under RVF control, the plant response is given by

G=Y, +¥%,~2Y, =—e e __ (2:38)
I+Z, (Y, +1,)
The reciprocal of the plant response is thus
G'=Z,+(+1,)" (2.39)

Y, and Y, are both input mobilities, thus have phase between -90° and 90°, so that the

phase of (¥, +7,)”" is also between -90° and 90° . The phase shift of Z, will be -90°
if the mount i1s dominated by ifs stiffness, reducing to 0° if it is dominated by its
damping. Therefore the overall phase of G™' could range between -90° and 90°. The
phase limitations on the plant response G are thus given by

-90° < G < 90° (2.40)

Therefore, based on the Nyquist criterion, the system is unconditionally stable.
2.3.4 Conclusions

The action of absolute velocity feedback on a system with a lumped parameter
isolator on a flexible base is similar to a skyhook damper. The resonance peaks are
attenuated with an increase of the active damping ratio while the performances at
relatively high frequencies above the natural frequencies are unchanged. However,

such a control system is only conditionally stable.

The action of relative velocity feedback on such a system is the same as a passive
viscous damper, which is unconditionally stable. The resonance peaks are attenuated
at high active damping ratios while the amplitude ratio is amplified at high
frequencies. Therefore, although such a system is unconditionally stable, the penalty
is that its control performance is worse than that of the system under AVF control,

especially at high active damping ratios.
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Figure 2.1 Block diagram for a vibrating systern with a lumped parameter isolator undergoing
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Figure 2.2 Transmissibility of the system with a lumped parameter isolator undergoing harmonic base
motion for different values of passive viscous damping in the mount ¢ =0.001(solid line), 0.01(dashed

line}, 0.1(dotted line) respectively

15



Figure 2.3 Block diagram for the vibrating system with a lamped parameter isolator excited by

harmonic base motion under AVF control
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Figure 2.4 Mechanical representation of the absolute velocity feedback control effect as a skyhook

damper &
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Figure 2.5 Transmissibility of the system with a Iumped parameter isolator excited by harmonic base

motion under AVE control for a fixed passive damping ratio £, = 0.01 and different values of active

damping ratio £, =0 (solid line), £, = 0.1 (dashed line) and ¢, =0.5 (dotted line)

Figure 2.6 Block diagram for the vibrating system with a lumped parameter isolator excited by a base

motion under RVF control
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Figure 2.7 Mechanical representation of the relative velocity feedback control effect as an equivalent

passive viscous damper A
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Figure 2.8 Transmissibility of the system with a lumped parameter isolator excited by harmonic base

motion under RVF control for a fixed passive damping ratio ¢ . =0.01 and different values of active

damping ratio &, =0 (solid line}, £, = 0.1 (dashed line) and &, = 0.5 (dotted line)
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Figure 2.9 Normalised change in mean square displacements for the system with & lumped parameter

isolator undergoing harmonic base motion for different control strategies compared to the original

passive system when the viscous damping ratio of the mount ¢, =0.01
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Figure 2.10 Block diagram for the vibrating system with a lumped parameter isolator on a flexible base
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Figure 2.11 Amplitude ratio of the system with a lumped parameter isolator on a flexible base when

1, =035, 4, =0.1and £, =77, =0.01 (s0lid line), &, = 0.1, 77, = 0.01 (dashed line),

¢, =0.01, 5, =0.1 (dotted line) respectively

Yr

Figure 2.12 Block diagram for the vibrating system witha lumped parameter isolator on a flexible base

under AVF control
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Figure 2.13 Amplitude ratio of the system with a lumped parameter isolator on a flexible base under

AVF control when g, = 0.5, ¢, =0.1, £ =7, =0.01 and &, =0 (solid line), &, =0.1

(dashed line) and £, =1 (dotted line).
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Figure 2.14 An unstable example of the system with a lumped parameter isolator on a flexible base

under AVF control
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Figure 2.15 Frequency response of the plant response for the unstable case of the system shown in
Figure 2.14
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Figure 2.16 Nyquist plot of the plant response for the unstable case of the system shown in Figure 2.14
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Figure 2.17 Open and closed response from a force on the base structure to the equipment velocity for

the unstable case of the systern shown in Figure 2.14

Figure 2.18 Block diagram for the vibrating system with a lumped parameter isolator on a flexible base

under RVF control
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Figure 2.19 Amplitude ratio of the system with a lumped parameter isolator on a flexible base under

RVF control when 4, =0.5, 1, =0.1, £, =1, =0.01 and ¢, =0 (solid line), £, = 0.1

(dashed line) and &, =1 (dotted line).
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Figure 2.20 Normalised change in mean square displacements for the system with a lumped pa.raineter

isolator on a flexible base for different contro! strategies compared to the original passive system when
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3. Vibration isolation systems with a distributed

parameter isolator

3.1 Introduction

Vibration isolation systems with a distributed parameter isolator are investigated in
this section. The distributed parameter mount is represented by a elastic rod. Absolute
velocity feedback control and relative velocity feedback control are applied to such
systems. The stability is investigated and control performance is analyzed and

compared.

3.2 A vibration isolation system with a distributed

parameter mount undergoing harmonic base motion

A vibrating system with a distributed parameter mount undergoing harmonic base
motion is analyzed in this section. The mount could be represented by an elastic rod,
for example, which itself has distributed mass and stiffness. The frequency response

of the system is studied and two different control strategies are applied.

3.2.1 Passive system

A vibrating system with a distributed parameter mount undergoing harmonic base
motion is modelled as in Figure 3.1. For convenience the mount is modelled as an
clastic rod. For a finite free-free rod, the impedance matrix is given by [13, 14]:

s\TpeEn  SNER

sin(k, L)

Z — |ile Zl2i| - (3 1)
"1z, Z o '
v JNEP e [F otk L)
sin{k, L) i

where L, S E, p are the length, cross-sectional arca, Young’s modulus and density of
the rod, respectively; to account for damping in the rod, the Young’s modulus is

assumed to be complex, ie. E =E(1+jn,) ., where 1, is the loss factor;
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k, ~k(1-jn,/2) is the longitudinal wave number, where k, =+/p/E® is the

wavenumber in the undamped rod, and @ is angular frequency.

The equations of motion are

v, =Y. (f.+ 1)
Ju=—1 (3.2a,b,c)

ALz 2L
1z Ve Zy Zyp V.

The velocity of the equipment can be written as

v, = i f= Y2y v, (3.3)
vz, 141z,

Without the external force f, exciting on the equipment, the transmissibility can be

written as
_ Yz,
1+YZ,

(3.4)

If the equipment is modelled as a mass, and the appropriate impedances in equation
(3.1) are substituted into equation (3.4), the non-dimensional transmissibility can be
written as a function of three parameters namely Q, (non-dimensional frequency
ratio), g, (mass ratio) and 7, (loss factor)

T= _ ! (3.5)

AR G AR A

where Q, =w/w,, w, = .Jk,/m, and k, =ES/L; pu, = pSL/m,is the ratio of the

mass of the mount to the mass of the equipment.

Figure 3.2 shows the frequency response of the transmissibility with different loss
factors in the isolator. The dashed lines are through the peaks in the transmissibility

for different loss factors. These peaks occur due to resonances in the mount, which

can be determined by setting sin( M Qe) =() and assuming 77, <<1 in equation (3.5)

to give as
1

T = aan
1 . o
COS( Hm QE)COS(J’z Hm UerJ_]'s“l( Hm Qe)sm [.]2 Ho aneJ
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(3.6)

7
9, [pj%"}[sin( meE)cos(j-;— ,umanL,J+cos( ﬂer)Sln(fE pmr]erH

T

Becauser;, <<1, 4/u,7,Q,/2 <<1 at reasonable frequency region, so that

(1 1
Sln(]a Ky nmge) ~ .]5 ﬂmﬂmge

1 (3.7a,b)
cos(jaﬂ/,umr]mQEJ =1
Substituting them into equation (3.6), the maximum line can be given as
7| = 2 - (3.8)
max ﬂer

which is a function of the loss factor in the mount and decreases by 40 dB/decade.

The dotted line in Figure 3.2 is the minimum (bottom) line of the transmissibility
across the rod. When cos[\/,um (1—jﬂm/2)erl=0 , ie. the term including

Q, /. p, dominates in equation (3.5), the minimum line can be determined to give

~ Vi (3.9)

| |mi11 (@)

e

which decreases by 20 dB/decade

The dash-dot line in Figure 3.2 is the transmissibility of the system if the rod is very
light compared to the equipment mass, i.e. 12, <<1, and is given by

1

—_— 3.10
e (3.10)

'T|1'1'ghfmd =

The point circled is when equations (3.9) and (3.10) are equal and is given by

Q =1/, ,

T| ~ u,, . It is only a function of the mass ratio and corresponds to the

frequency at which the characteristics of a system with a massless mount and a system

with a distributed parameter mount start to deviate.
Thus it can be seen that if the mass of the distributed parameter mount is negligible,

the transmissibility tends to roll-off at 40 dB/decade at high frequencies. Due to the

effect of the resonances inherent in the mount, the transmissibility at high frequency is
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increased compared to the case of the light mount. The lines through the resonance
peaks reduce by 40 dB/decade. However, the line through the minima reduces by 20
dB/decade.

3.2.2 The system under Absolute Velocity Feedback control

Figure 3.3 shows the system under absolute velocity feedback control.
s Control performance

Substituting £, for f,, the equation (3.3) can be rewritten as

v, = L f, - YZy v, (3.11)
1+},€ZZZ 1+}IEZZZ

Substituting equation (2.6) into (3.11), the transmissibility under AVF control is given

by
"“Zzl

7=—i (3.12)
Z,+Z,+h

If the equipment is modelled as a mass, the transmissibility of the system under AVF

control can be written as

1
ol (1 o [ Sl e o

(3.13)

T =

where ¢, =h/2.Jkm, isthe damping ratio due to the feedback control.

It can be seen in equation (3.13) that the feedback adds a damping term to the
denominator and leaves the numerator unchanged. The action of absolute velocity
feedback for such a system 1s the same as a skyhook damper. Figure 3.4(a) shows the
mechanical representation of absolute velocity feedback control on the system with a
distributed parameter mount excited by base motion. Figure 3.4(b) depicts the system
in terms of a mobility diagram where it is clear that the skyhook damper is effectively
in parallel with the equipment mass so that the combined impedance is

Z,=c, + jom,. Thus, the damping term dominates at low frequencies while the mass

term dominates at high frequencies. This explains why in Figure 3.5, which shows the
transmissibility for different values of active damping ratio, the resonance peak at

fundamental natural frequency of the mounted equipment is suppressed for a high

28



active damping ratio without amplification at high frequencies. However, there is very
little reduction in the resonance peaks due to the distributed parameter mount,
especially at frequencies well above the fundamental natural frequency. In the case of
a small equipment mass, the AVF control will have better control performance at
relatively high resonance frequencies compared to the case of a large equipment mass.
¢ Stability analysis

For the vibrating system with a distributed parameter mount under AVF control
shown in Figure 3.3, the plant response from actuator force to absolute equipment
velocity is given by

G= Y, = L (3.14)
1+Y7,, Z,+Z,

Because Z, and Z,, arc both point impedances, their phase is between -90° and 90°.

Therefore the phase of the plant response G is given by-90° < ZG <90°, so based

on the Nyquist criterion, the system is unconditionally stable.
3.2.3 The system under Relative Velocity Feedback control

Figure 3.6 shows the system under relative velocity feedback control.

e Control performance
Substituting (2.12) into equation (3.11), the equipment velocity under RVF control is
given by

—Z, +h

=——2_ 3.15
Z,+Zy+h G-13)

If the equipment has a mass-like mobility, the non-dimensional transmissibility under

RVF control can be written as

(e
T e (]

(3.16)

T=

It can be seen in equation (3.16) that a damping term is added to both the denominator
and the numerator. The action of relative velocity feedback is the same as a passive

viscous damper acting between the equipment and the base. Figure 3.7 shows the



transmissibility of the system under RVF control for different values of active
damping ratio. The resonance peak at the fundamental natural frequency of the
mounted equipment and also some resonance peaks due to the distributed parameter
mount are attenuated with high active damping ratios, which may not be seen clearly
in Figure 3.7 because the attenuation is very small. This is a marginal advantage of
RVF compared to AVF. However, the transmissibility away from resonances is
amplified at high frequencies so that the overall control performance is worse than
that under AVF control. The same to the description in section 2.2.3, Figure 3.8
depicts the change in the mean square velocity compared to the original passive case.
At high active damping ratios, the AVF control provides increasing reduction in the
mean square response. The performance of the RVF control system is always worse
than the performance of the AVF control system and does not produce monotonically
reducing mean square response for an increase in active damping ratio.
s Stability analysis
The plant response of the system is given by

1

- 3.17
Z,+Z,, (3.17)
which is the same as that for a system under AVF. Therefore, its phase shift ranges

between -90° and 90° so that the system is unconditionally stable.
3.2.4 Conclusions

The action of absolute velocity feedback on a system with a distributed parameter
mount undergoing harmonic base motion is the same as a skyhook damper, which is
unconditionally stable. However the resonance peaks inherent in the mount are
suppressed much less than the reduction of the resonance peak at the fundamental
natural frequency of the mounted equipment with an increase in the active damping

ratio, which is due to the effect of equipment mass.

The action of relative velocity feedback on such a system is the same as a passive
viscous damper acting between the equipment and the base, which is also
unconditionally stable. The resonance peak at the fundamental natural frequency of
the mounted equipment and also some resonance peaks inherent in the mount are

attenuated at high active damping ratio, which is the advantage of RVF compared to
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AVF. However, the transmissibility is amplified at high frequencies so that the overall

control performance is worse than that under AVF control.

3.3 A vibration isolation system with a distributed

parameter mount on a flexible base

A vibrating system with a distributed parameter mount on a flexible base is analyzed
in this section. The frequency response of the system is studied and two different

control strategies are applied.
3.3.1 Passive system

A vibrating system with a distributed parameter mount on a flexible base is modelled
as in Figure 3.9. The equations of motion are given by
v, =Y (f,+ 1)
v, =Y, (fy + fur) (3.17a,b,c)
A 2
foa 5 Z, Z,|iv.

The velocity of the equipment can be written as

Ve = Y;ej;e + Yebf:ﬁ (319)
where
Y(1+Y Z
Y, = (412, (3.20)
(1 + Y;Zzz)(l + Y;Zn ) - YeYquZz[
_Y;Y;JZZE (321)

Y, =
’ (1 + Yezzz )(1 + YbZl[)_ Y;Y;Zizzzl
If the system is only excited by the external force on the base, f, = f, i.e. external

force f, =0, the velocity of the equipment is given by

Ve y. - -Y.Y.Z,
! * (1+Y;Zzz)(l"'ﬂzn)_yenzuzzl

(3.22)

If the equipment has a mass-like mobility, and the base structure is modelled as a
mass m, on a complex spring, ie.k, =k,(1+ jn,), where 7, is the loss factor, the

non-dimensional amplitude ratio can be written as
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T,
(3.23)
where ', =w, /@, =1/ Jp, 11, is the natural frequency ratio, u, =k /k, is the

stiffness ratio.

Figure 3.10 shows the amplitude ratio of the system with different values of the
passive loss factors. It can be seen that the damping in the base structure is only
beneficial to the reduction of the peak due to the base dynamics, which is the second
peak in Figure 3.10. However, the damping in the distributed parameter mount is

effective in reducing all the other resonance peaks.

Figure 3.11 shows the amplitude ratio of the system with different values of natural

frequency ratioI’, . It can be observed that, with the increase of the natural frequency
ratioT’, , the reduction rate of the amplitude ratio is increased at high frequencies.

When I, tends to be infinity, i.e. the base is fixed, and providing 77, <<1, the

amplitude ratio of the system can be written as

1

ool -]

This equation is identical with the transmissibility of the system with a distributed

T

(3.24)

parameter mount undergoing harmonic base motion (equation 3.5).
3.3.2 The system under Absolute Velocity Feedback control

Figure 3.12 shows the system under absolute velocity feedback control.

e Control performance
Referring to the description in section 2.2.1, the external force and active forces acting

on the base and equipment respectively are given as
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f.=f (3.25)

fo=1-1 (3.26)
Substituting them into equation (3.19),
v, =(Y, =L} o+ T f (3.27)

Substituting equation (2.6) into (3.27), the equipment velocity under AVF control can

be written as

v Y,
e —_  teb 3.28
f 1+h(}};e—yeb) ( )

where ¥ and ¥, arc defined in equation (3.20) and (3.21).

If the equipment has a mass-like mobility, and the base structure is modelled as a
mass m, on a complex spring, the amplitude ratio of the system under AVF control is
given by

x 1
st |:(1+j7]b)—{1+ﬂib]%:|cos|:\/}z[l_j%]gei|'--

Q

Cler : 2 |si ' |
+[F; —(1+J’?b)"/~"kﬂm(1+Jnm):|‘[;;7[]—']?JSIH[E(I_J%&JQEJ

b

ot ol iz (1122 o J o (12 1o o 1= ). )

(3.29)

The feedback adds a damping term to the denominator and leaves the numerator

unchanged. Figure 3.13 shows the amplitude ratio for the system under AVF control

with different values of the active damping ratio £, . The resonance peak at the

fundamental natural frequency of the mounted equipment is attenuated with an
increase in the damping ratio. The resonance peak at the natural frequency of the base,
which is the second peak in Figure 3.13, is also attenuated for high damping ratios.
However, the resonance peaks due to the mount are reduced much less, especially at
relatively high frequencies above the fundamental natural frequency as discussed in

section 3.1.2. Also it should be noted that some resonance peaks inherent in the
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distributed parameter mount, such as the third peak in Figure 3.13, are amplified
under AVF control which might cause instability.
¢ Stability analysis
The plant response from actuator force to absolute equipment velocity for this system
under AVF control is given by
G=Y,-¥, (3:30)

where Y, is the response of the equipment per unit actuator force applied directly on
the equipment and Y, is the response of the equipment per unit actuator force applied
on the base. Because Y, is a point mobility, it has a phase between -90° and 90°. It is
a stable part because it is only in the right half in the complex plane. However, ¥, is

a transfer mobility, which could be in either left or right half in the complex plane. So
it is a potential threat to instability of the control system. Morcover, if the control
system is unstable, there is at least one loop in the left half in the Nyquist plot of the
plant response which encloses the unstable point (-1, 0j). For the system analyzed here,
only at resonance frequencies can phase of the plant response generate such loops,
and hence create an unstable system. So if at some resonance frequencies where the
transfer mobility is greater than the point mobility, the control system has the

potential to become unstable at high control gains.

For a multi-degree-of freedom system, the mobility can be written as [2]

o 0 B iV)]
oy A7 f ¢ (3.31)
fi HEK(1-Q+22,0)

where ¢! and ¢! are respectively the ;™ mode shape evaluated at the response
point » and excitation point s; K;,M ;and £, are modal stiffness, modal mass and

modal damping ratio of the ;™ mode with corresponding natural frequency

=yK,/M, ; Q, =e/w, is the non-dimensional frequency.

At a resonance frequency, in a lightly damped system, when only one mode
dominates the response, the point and transfer mobility for the system can be written

as
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Yoot (3.32)
J2K,6€;
INPOPO

Y, = ﬂfﬁf_) (3.33)
J2K,6

So that the plant response is given by

) ()
jol 4] [“;ﬁf}

J2K £ Q,

G=¥, -7, ~ (3.34)

where ¢ and ¢¢” are the ;™ mode shape evaluated at the equipment and base

respectively.

Based on the Nyquist criterion, for instability, one requires at a resonant frequency

(i)
ooy (3.35)
¢(1)

ie. |¢1§f }} > |¢§f )l and mode shapes of the system evaluated at the equipment and base

need to have the same sign.

Figure 3.14 and 3.15 are respectively the freéluency response and Nyquist plot of the
plant response for a potentially unstable system. It is clear in Figure 3.14 that the
phase shift around 12.7 Hz generates a loop on the left half of the complex plane that
crosses the negative real axis, which causes the system to be potentially unstable at

high control gains.

An increase in the system damping is beneficial in stabilizing the conirol system by
reducing the phase around the resonance frequencies. Figure 3.16 shows the
frequency response of the plant response for a potentially unstable system with
different values of loss factor in the mount. It can be noted that the phase at the
resonance of 12.7 Hz is suppressed for a high loss factor so that the system becomes
stable. So the situation of having a lightly damped system, i.e. one mode dominating

the response at resonance frequencies, is the worst case for instability.
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Therefore, equation (3.35) provides a simple method to determine the stability of the

system in terms of the mode shapes of the system. According to the definition of
mode shapes ¢ and¢”, this instability condition means that the displacement of
the base is greater than the displacement of the equipment and these two

displacements are in phase at the 7" natural frequency.

Atthe /™ natural frequency, i.e.Q; =1, equation (3.34) can be rewritten as

#7045
G= : (3.36)
2JK;M,¢;

In case of ¢ /¢’ >1, i.e. the system has the potential to become unstable, with

constant control gain A, the open loop response is given by

nT 1_@}
hG:h[¢e :| ( ¢:J)
2,JK ;M ¢,

To guarantee stability, the quantity in equation (3.37) must be greater than -1, so that

(3.37)

the maximum gain /4__ that can be applied to the system is
2. /KM .C.
ho = : / (f’ (3.38)
)
] (ﬁ—l}

This instability condition in terms of the mode shapes can also be applied to the
system with a lumped parameter isolator on a flexible base. For the system shown in
Figure 2.14, when o, =23.7 Hz, the relative displacements in the mode shape
evaluated at the equipment and base is given by [¢, 4, ]T =[0.59 —O.57]T. The
instability condition given by equation (3.35) is not satisfied, so the system is stable.

When @,=12.6 Hz, the corresponding mode shape relative displacements is

6. o] :[().28 0.65] . The instability conditipn is satisfied so the system

becomes potentially unstable. The same result is achieved as seen in Figure 2.17 by

the three instability conditions generalized by Elliott et al [9].
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3.3.3 The system under Relative Velocity Feedback control

Figure 3.17 shows the system under relative velocity feedback control.
» Control performance

Substituting equation (2.12) into (3.27), and because
v, =V =Y ) o+ f (3.39)
The equipment velocity under RVF control is given by

Ve Yy + (Y — Y,

f oA, +Y,-2-Y,)

(3.40)

where Y,, is the input mobility of the base when coupled to the rest of the system, and

is given by

¥ = Y,(1+Y,Z),)
Y A+YZ )+ Y,Z,) -2, 7,

(3.41)

If the equipment has a mass-like mobility, and the base structure is modelled as a

mass on a complex spring, the amplitude ratio is given by

. 2 M | T
. 1+_]§H—E[l—_]—2—)ﬂﬂ|:\/};[l j 2 JQe]

8, . 1 )02 .
' {(Hmb)—{n}? r—;}cosl;/pm [1—}%"]96}
b b

T - . - _ . —
+[F§—(l+m5)—mum(1+mm) \/—‘—(I—J%ﬂ}sm[\/ﬂ[l—f%)ﬂe}

R R B SRS

In this case, the feedback system adds a damping term both to the denominator and
the numerator. Figure 3.18 shows the amplitude ratio for the system under RVF
control with different values of the active damping ratio ¢, . The resonance peak at the
fundamental natural frequency of the mounted equipment and some resonance peaks
due to the distributed parameter mount are attenuated with high damping ratiod,

while the amplitude ratio is amplified at high frequencies well above the fundamental

natural frequency. Therefore the overall control performance under RVF is worse than

37



that under AVE. The same to the description in section 2.3.3, Figure 3.19(a) depicts
the change in normalised mean square displacements compared to the original passive
system when the system under AVF confrol is stable. In contrast, Figure 3.19(b)
depicts the change in normalised mean square displacements when the system under
AVF control has potential to be unstable. Instability of the AVF control is seen to
occur when the active damping ratio is increased.
o Stability analysis

In this case the control law is designed such that energy can only be extracted from
the mechanical structure. The control system is thus unconditionally stable, and also

said to be dissipative [15].

The time averaged power generated by the control force for the system under RVE

control at any particular frequency can be written as [2]
1 a1 .
P, =§Re{ﬂ,-ve}+-2—Re{—ﬁ-vb} (3.43)
Substituting £, =—h(v, —v,) into the equation above so that

P = "%hh’e —V.5|2 (3.44)

Therefore, the power generated by the control force is always negative. That means
the control system only extracts energy from the mechanical system so that such a

system under RVF control is unconditionally stable.

The mode shape method can also be applied to this RVF control system. For the
system under RVF control, the plant response from the actuator force to the difference
between absolute equipment velocity and absolute base velocity is given by

G=Y,+Y,-2Y, (3.45)
At a resonance frequency, in a lightly damped system, when only one mode
dominates the response, the plant response can be written as

. . d
jco ¢e(J)_ é;)
G=Y82+Ybb”2sz I:ZK Q :I
J2K ¢ L,

(3.46)

e

which is always nonnegative. Therefore, the plant response under RVF control is
always in the right half in the complex plane and the system is therefore

unconditionally stable.
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3.3.4 Conclusions

The action of absolute velocity feedback on a system with a distributed parameter
mount on a flexible base is similar to a skyhook damper. The resonance peak at the
fundamenta! natural frequency of the mounted equipment is attenuated with an
increase in the active damping ratio. The resonance peak at the natural frequency of
the base is also attenuated at high damping ratios. However, the resonance peaks due
to the mount are reduced much less, especially at relatively high frequencies above
the fundamental natural frequency due to the effect of equipment mass. Also the

descending rate of the amplitude ratio of the system is affected by the natural

frequency ratio[’, . Moreover, such a control system is only conditionally stable. A

simple method to determine the stability of the system in terms of the mode shapes of
the system has been developed. The maximum control gain and the effect of damping

to the stability are also discussed.

The action of relative velocity feedback on such a system is the same as a passive
viscous damper, which is unconditionally stable. The resonance peak at the
fundamental natural frequency of the mounted equipment and some resonance peaks
due to the distributed parameter mount are attenuated with high active damping ratio

., while the amplitude ratio is amplified at high frequencies well above the

fundamental natural frequency. Therefore its control performance is worse than that

of the system under AVF control, especially at high active damping ratios.
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Figure 3.1 Block diagram for the vibrating system with a distributed parameter mount undergoing

harmonic base motion

[Transmissibility| (dB)
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Figure 3.2 Transmissibility of the system in Figure 3.1 when 2, = 0.1 the loss factor is 77, =0.01,

0.03, and 0.1 respectively. The dashed lines pass through the rod resonant peaks. The dotted line passes
through the minima of the transmissibility. The dash-dot line is for the light rod isolator. The point
cycled is the intersection of the transmissibility of the system with massless isolator and with

distributed parameter isolator.
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Figure 3.3 Block diagram for the vibrating system with a distributed parameter mount excited by

harmonic base motion under AVF control

(a) (b)

Figure 3.4 Mechanical representation of the absolute velocity feedback control on a system with

distributed parameter mount excited by harmonic base motion
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Figure 3.5 Transmissibility of the system with a distributed parameter mount excited by base motion

under absolute velocity feedback control with different values of active damping ratio £, = 0 (solid

line), &, =0.2 (dashed line) and £, =2 (dotted line); 4, =0.1, 77, =0.01

Figure 3.6 Block diagram for the vibrating system with a distributed parameter mount excited by a base

meotion under RVF control
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Figure 3.7 Transmissibility of the system with a distributed parameter mount excited by base motion

under relative velocity feedback control with different values of active damping ratio £, = 0 (solid

Change in mean square response (dB)

line), &, = 0.2 (dashed line) and &, =2 (dotted line); 4, = 0.1, n,=0.01

!

RVTF conirol

AVF confrol

Bt
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Figure 3.8 Normalised change in mean square displacements compared to the passive system subjected

to base excitation for different control strategies, 4, =0.1, 77, =0.01
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Figure 3.9 Block diagram for the vibrating system with a distributed parameter mount on a flexible

base
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Figure 3.10 Amplitude ratio of the system with a distributed parameter mount on a flexible base when

i, =01, =05, 4, =0.1and 5, =17, =0.01 (s0lid line), 77, = 0.1,77, = 0.01 (dashed

line), 77,, = 0.01,77, = 0.1 (dotted line), respectively
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Figure 3.11 Amplitude ratio of the system with a distributed parameter mount on a flexible base when
w, =01, 4,=05,n,=1=00ladl’, = 5 (solid line), I', = 20 (dashed line), [, =0

(dotted line}, respectively.
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Figure 3.12 Block diagram for the vibrating system with a distributed parameter mount on a flexible

base under AVF control
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Figure 3.13 Amplitude ratio of the system on a flexible base under AVF control when #, = 0.1,

4, =05,4,=0.1,7,=1,=001 and &, = 0(solid line), £, = 0.1 (dashed line), ¢, =1

(dotted line), respectively
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Figure 3.14 Frequency response of the plant response for the system on a flexible base when

p, =01, 4, =05, 4, =01and 7, =17, =0.01
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Figure 3.15 Nyquist plot of the plant response for the system on a flexible base when 2, = 0.1,

#,=0.5,4,=01and 7, =7, =0.01
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Figure 3.16 Plant frequency response for the system on a flexible base under AVF control when
i, =01, g, =05, 1, =0.1,7,=0.01 and 7, = 0.01 (dashed line), #,, =0.05 (solid line),

respectively

Figure 3.17 Block diagram for the vibrating system with a distributed parameter mount on a flexible

base under RVF control
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Figure 3.18 Amplitude ratio of the system on a flexible base under RVF control when, g, = 0.1,

M, =05,0=01,7,

g

77, =0.01 and £, = 0 (solid line), {, = 0.1 (dashed line), &, =1

(dotted line), respectively
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Figure 3.19 Normalised change in mean square displacements for the systemon a flexible base for

different control strategies when £z, = 0.1, g, =0.1, 17, =7, = 0.01 (a) stable case: 1, =1 (b)

unstable case: 1, = 0.5

4 Conclusions

Two different feedback control strategies have been applied to vibration isolation
systems consisting of either a lumped parameter isolator or a distributed parameter

mount, and the performance and stability of these systems have been investigated.

Undergoing harmonic base motion, the vibration isolation systems with a lumped
parameter isolator or a distributed parameter mount are always unconditionally stable
under either absolute velocity feedback control or relative velocity feedback control.
But the performance of the systems using absolute velocity feedback control is better
in that it suppresses the response at the fundamental resonance frequency of the

system without compromising passive high frequency isolation.

For the vibration isolation systems on a flexible base with a lumped parameter isolator
or a distributed parameter mount, the performance of the systems using absolute
velocity feedback control is betier also because it suppresses the response of the
fundamental resonance frequency of the system without compromising passive high
frequency isolation. However the systems need 1o be carefully designed, as in some
situations they are only conditionally stable. For the system with a lumped parameter
isolator, instability conditions have been generalized by Elliott et al [9]. In this report,
a simple method to determine the stability of the system with a distributed parameter
mount in terms of the mode shapes of the system has been proposed. This method can
also been applied to the system with a lumped parameter isolator. The maximum
control gain is studied in terms of modal damping and mode shapes. This is in
contrast to the systems using relative velocity feedback control where the response at
the fundamental resonance frequency is suppressed, but there is degradation in the
performance of the passive isolator at high frequencies. These systems, however, are

unconditionally stable.
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Appendix: experiment on a helical spring

To validate the assumption that the distributed parameter mount, whose mass should
be considered in practice, can be represented as a finite free-free rod, an experiment

on a helical spring has designed.

The mechanical arrangement is illustrated in Figure A.l. A brass cylinder as an

equipment, which has a mass, m,, of 193.1 g is mounted on a mild steel helical spring,
which has a density, p, of 7800 kg/m’ and Young’s modulus of elasticity, £, of
2x10" N/m?. The helical spring was excited by a shaker through a force transducer
with the connection of a washer, which has a mass, m, , 0of 29.2 g. Two accelerometers

were located on the equipment and washer, respectively, to measure the acceleration

so that the velocity information is aquired.

Therefore, the block diagram of the experiment rig can be represented in the Figure
A.2 using the mobility approach. If the helical spring is treated as finite free-free

mount, the equations of motion are given by

ve =Yefm2
Wy = y;;(f_l_.f;nl) (A.1)

Sz Sz "L Zy Zy ||V
where ¥, =1/ jom, is the input mobility of the unconnected equipment at location of
the mount connection, Y, =1/ jwm, is the input mobility of the unconnected mounted

washer at the location of the mount connection, Z, is the impedance matrix of the

finite free-free rod defined in equation (3.1).

Therefore, the transmissibility is given as

V. _ Y.z,

T =_t=—_"e72l A2
vb 1+Y;Z22 ( )
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Figure A.3 shows the measured and simulated transmissibility, which are well
matched, so that it is a good assumption that the distributed parameter mount can be

represented as a finite free-free rod.
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Figure A.! Physical arrangement of the experiment on a helical spring

Figure A2 block diagram for the experiment
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Figure A.3 Measured (solid line) and simulated (dashed line) transmissibility
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