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Abstract

This paper describes the results of applying acoustic localisation methods to data from a free
ranging sperm whale (Phyester macrocephalus) recorded using an array of five bottom-mounted
hydrophones. The data analysed were supplied as part of the 2nd International Workshop on Detec-
tion and Localisation of Marine Mammals, Monaco, 2005. The localisation technique employed is
based on a weighted least squares optimisation procedure applied to estimated delays. The method
by which these delays are estimated in a robust manner is detailed. Three analytic acoustic models
for the environment are explored and the effects of noise and model mismatch are considered.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Passive acoustics provides a powerful non-invasive tool with which to localise vocalis-
ing marine mammals in the oceanic environment. The ability to track such mammals has
clear benefits to marine biologists seeking to study the behaviour of these animals but also
has growing application as a monitoring tool to help control the exposure of marine mam-
mals to anthropogenic noise. Localisation of an acoustic source can be regarded as a par-
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ticular example of an acoustic inversion problem, and has been studied in the military con-
text for some considerable time [1,2]. There is a growing trend to adapt these principles to
the localisation and tracking of marine mammals [3–6]. Particular attention has been paid
to the localisation of odondocetes, with the majority of work concentrating on the local-
isation of sperm whales (Phyester macrocephalus), a problem to which this paper is
addressed. The localisation of odontocetes benefits from the fact that their echo-location
clicks have, through the evolution of the species, become signals which, being broad-band
and of short duration [7–10], possess good range resolution [11]. Odontocetes exploit this
range resolution to allow them to accurately locate objects, such as prey.

Source localisation can be regarded as inverting an acoustic model, i.e. identifying the
location of a source, usually in 3-D space, based on a series of observed delays. The for-
ward acoustic model on which such an inversion is based can be expressed as

DðnÞ ¼MðsðnÞ; HÞ þ wðnÞ; ð1Þ
where MðsðnÞ; HÞ is a complete model of the acoustic environment relating the source
location, s(n), through the parameters, H, to the time delays observed between sensor pairs
and n represents a discrete time index. The observed delays D(n) are corrupted by the addi-
tive noise, w(n). For this discussion the model, M, is an abstract concept because we are
assuming that it completely captures the acoustic properties of the environment and, as
such, requires an unrealistic level of knowledge of physical processes and parameters.
We regard practical models used in source location to be simplifications of MðsðnÞ; HÞ
in which the parameter space is constrained, i.e. H is restricted to a manifold within the
parameter space. As an illustration of this concept, one can regard an isospeed model
as a special case of a linear sound speed profile model in which the gradient of the sound
speed profile is constrained to be zero. In turn, a linear sound speed model may itself be
regarded as a simplification of a general range independent (or stratified) model. This can
be extended to construct a hierarchy of models, the most detailed and complete of which
we are denoting M.

The source localisation problem is solved by inverting the model, computing

ŝðnÞ ¼M�1ðD; H0Þ; ð2Þ
where ŝðnÞ is the estimated source location, H0 is the parameter space constrained to lie on
a manifold corresponding to one’s chosen simplification of the ideal model. The inverse
operator, M�1, is defined so that, the absence of noise and perfectly matched parameters,
the estimated source location will coincide with the actual source location, i.e. ŝðnÞ ¼ sðnÞ.
The reason for adopting the conceptual model (1) is to provide a common framework
within which to discuss the influence of two sources of imprecision (error) that occur when
estimating source location (or indeed conducting any form of inversion). The first errors
arise as a consequence of the inevitable introduction of the noise, w(n), during the mea-
surement of delays. The second source of error comes as a result of model mismatch;
caused by the fact that H0 6¼ H. It is unfeasible to measure the oceanic parameters with
sufficient spatial and temporal resolution in order to completely model its acoustic prop-
erties, so inevitably one adopts a simplified model.

There is a clear route for determining the influence of noise on the estimated source
locations, neglecting the effects of model mismatch [12]. This requires one to make
assumptions regarding the statistical distribution of the errors and normally entails mak-
ing a local linearisation of the model. The effects of model mismatch are generally less
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easily quantified. For a given model, the effect of small errors in a single model parameter,
h, can be approximated using:

dŝðnÞ ¼ oM�1ðD; H0Þ
oh

dh; ð3Þ

where dŝðnÞ is the change in the estimated source location, dh is the perturbation to the
model parameter, which represents one form of model mismatch, and oM�1ðD; H0Þ=oh
is the model sensitivity. Typically, the sensitivity depends on the true source location, sen-
sor location, as well as the acoustic model. As an example consider a planar array of sen-
sors arranged in a rectangular geometry, and a stratified propagation model. If the source
is located at the centre of this array, then the sensitivity of the algorithm, in the plane of
the sensors, is zero. This is because there are no differences in the propagation times from
the source to each of the sensors, regardless of the acoustic model used, or any of its
parameters. More broadly, it is true that models are less sensitive when the source is lo-
cated toward the centre of the array. Part of the goal of this paper is to assess the relative
importance of model mismatch and noise for the given data set.

2. Methods

Most source localisation algorithms can be regarded as consisting of two distinct pro-
cesses. The first element is the computation of the delays between sensor pairs, D, and the
second aspect is the inversion of these delay estimates in order to infer the source location,
s(n). The following subsections detail the approaches used here to solve these two tasks.

2.1. Time delay estimation

The estimation of the time delay between two sensors is most commonly accomplished
through the use of some form of cross-correlation based analysis [13]. There are two main
reasons why direct application of cross-correlation to raw acoustic data is prone to poor
performance in this application. Firstly, the fact that a sequence of sperm whale clicks has
a regular, although not exactly periodic, structure results in a correlation function that has
multiple peaks. Robustly determining which of these peaks corresponds to the true delay
can represent a challenge. Secondly, the directional character of the sperm whale echolo-
cation clicks [7–10] means that recordings on sensors at different orientations to the animal
receive waveforms that maybe quite different in structure, so that the signals on the two
sensors may be relatively poorly correlated.

To avoid the second of the problems, it is natural to perform cross-correlation on some
form of signal envelope, as opposed to using the raw acoustic data. The processing scheme
adopted here employs an optimal detection statistic [14] for detecting transients. This opti-
mal detection statistic represents the energy of the signal after the background noise has
been whitened. The detection statistic is smoothed using a 1024 Hanning window, corre-
sponding to a support of 21 ms at 48 kHz. The choice of 21 ms reflects the typical duration
of a sperm whale click. An example of this detection statistic computed for a 10 s section
of data containing a sequence of sperm whale clicks is shown in Fig. 1.

Cross-correlation of this detection statistic between sensor pairs results in a correlation
function which still exhibits multiple peaks and hence may generate erroneous delay esti-
mates. These spurious peaks arise, not only because the clicks occur at near-regular inter-



Fig. 1. Example of detection statistic for 10 s of data.
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vals, but also because each click is commonly recorded via more than one propagation
path. In this particular data set a single secondary arrival from the sea surface is observed
throughout the recordings. The fact that the delay between the direct arrivals and the
multi-path signal is fixed, at least over modest time-scales, results in additional large peaks
appearing in the correlation function. It is these multi-path peaks that are most commonly
responsible for generating spurious delay estimates.

In order to generate robust estimates of delay we avoid relying completely on correla-
tion based techniques. Instead we first detect each click on a channel and seek to discrim-
inate between direct path and reflected arrivals. Since the multi-path arrivals pass through
the surface layer and are reflected from the sea–air interface, they are subject to significant
surface reverberation. This causes an elongation of the measured detection statistic (which
is evident in Fig. 1). Consequently, the rates of decay of the detection statistics from direct
and reflected paths are significantly different. A relatively crude clustering algorithm
allows one to distinguish the majority of reflected signals from the direct arrivals. There
is no demand for highly accurate discrimination; the subsequent delay estimation algo-
rithm performs well as long as the majority of events surviving discrimination correspond
to direct arrivals.

The processing proceeds by computing the time difference between all pairs of detected
direct path clicks on the two data channels, within a time window (30 s being used here). A
histogram of these time differences is then computed and the peak value in the histogram is
taken to represent the correct delay. The final time delay estimate is computed by taking
the mean of the time differences falling within the histogram bin corresponding to the
peak. If the pruning of the reflected path signals is only partially successful, then a second-
ary peak in this histogram will appear, although it will be smaller than the direct path
peak. An example of one such histogram, using a bin size of 8 ms, is shown in Fig. 2.

2.2. Source location

As discussed in Section 1, the problem of source location can be regarded as an example
of acoustic inversion, and as such requires one to assume a forward model on which to
base the inversion. There are various levels of complexity for the forward modelling that



Fig. 2. Delay histogram.
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have previously been considered [15–17]. These correspond to different choices for a man-
ifold in H-space. In general, as the complexity of the forward model increases, the compu-
tational demands of the inversion method also increase. We consider three distinct models
for which analytical expressions for the time delays can be obtained, so avoiding the need
to employ numerical propagation models. These methods all generate results based on
exactly the same delay estimates, obtained by the method described in Section 2.1. Hence
by studying the different behaviours of the three algorithms, some insight on the influence
of modelling errors can be obtained for this real data set. Although in the absence of
ground truth with regards to the animal’s location, one cannot be confident as to which
model achieves the best absolute performance.

The three models are based on: (1) an isospeed anechoic assumption, (2) an isospeed
model that includes surface reflections and (3) an anechoic environment with a linear
sound speed variation. In all three cases the propagation times can be expressed in closed
analytic form. Consequently, all three models avoid the need to implement a numerical
acoustic propagation model and hence they are all extremely efficient to implement.

For each model the same algorithm is used to perform the inversion. It is based on a
weighted least squares scheme. Assuming that there is no model mismatch and that the
noise on the delay estimates is Gaussian and uncorrelated between sensors, then the max-
imum likelihood estimator is obtained by the minimisation of the weighted least squares
cost function

WðsðnÞÞ ¼
XN

k¼2

ðD1kðnÞ �M1kðsðnÞ; H0ÞÞ2

r2
1k

; ð4Þ

where D1k(n) is the measured delay between sensor 1 (which is assumed to be the reference
sensor), and sensor k, M1k is the corresponding modelled delay. The term r2

1k represents
the variance of the errors on the delay estimates D1k(n). The variance of the noise on
the delays has to be estimated from the data itself. This can be achieved by spectral anal-
ysis of D1k(n). The low frequency components of D1k(n) correspond of the changes in delay
resulting from the motion of the animal, whilst the high frequency components relate to
the noise. Assuming that the noise on the delay estimates is uncorrelated from sample
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to sample, one can estimate the noise variance by computing the energy in the high fre-
quency range. This can be implemented via a finite impulse response filter. Herein we
use the energy present in the upper 85% of the frequency band to estimate the variance
of the noise over the full band. The weighted least squares cost function in (3) serves to
emphasise delay estimates which are contaminated by relatively low levels of noise whilst
suppressing the influence of the noisy delay estimates. This use of such an optimisation
based method also provides a flexible framework, allowing one to employ any number
of sensors (above the minimum necessary for localisation [18]) and to incorporate infor-
mation from any number of available sensor pairs.

The optimisation of the cost function (3) is achieved using a Nelder–Meade optimisa-
tion algorithm [19]. Such optimisation schemes are not immune to convergence to a local
(rather than global) optimum, but the cost function in this example exhibits a relatively
simply topology. There are various alternatives for overcoming the general problem of
locating global rather than local minima [19–21]. Such methods generally involve an
increase in the number of function evaluations required, and in practice require consider-
able effort to ensure that they converge to the correct minimum. The optimisation algo-
rithm is run multiple times using different randomly selected initialisations (herein 10
points are used) centred on the previously estimated source location. The final estimate
is taken as the source location which yields the lowest cost function. The cost function
exhibits a local minimum at a depth below the sea floor, this is a partial alias and is a con-
sequence of near planar geometry of the array. This local minimum can be automatically
avoided by augmenting the cost function with a quadratic barrier penalty term [22].

The fact that minimising (4) can be shown to be a maximum likelihood estimator means
that we can ascribe to it the well understood properties of such estimators [23]. Specifi-
cally, we know that the variance of the estimates induced by the presence of noise is
approximately described by the Cramer–Rao lower bound, and that the performance is
asymptotically optimal with regards to the presence of that noise. These properties do
not include the errors introduced through model mismatch. As we shall see in this data
set (and as is the case in most scenarios of interest), such mismatches are a significant
source of error.
2.2.1. Computation of travel times

The source location algorithms require one to use a model that predicts the delay
observed between sensors based on different propagation models. This section presents
the details of the models used here. The goal is to predict the travel time from a source
located at s(n) to a receiver located at rk = (rx, ry, rz). For an isospeed model, where the
sound speed is assumed to be c, it is trivial to show that the travel time, sk, is

sk ¼ krk � sðnÞk=c; ð5Þ
where i i denotes the Euclidean norm. The position of a virtual receiver, associated with a
surface reflection, is given by (rx, ry,�rz). The delays required by the acoustic model can be
expressed as

D1k ¼ s1 � sk: ð6Þ
The problem of obtaining analytic expressions for the travel times for a linear sound

speed environment is significantly more involved. It is well known that the ray paths in
a medium with linear sound speed profile are arcs of circles and further the radius of



Fig. 3. Geometry for a source and receiver in a linear sound speed profile.
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the circle can be computed [24]. The parameter g is the gradient of the sound speed profile,
which has the form c(z) = c0 + gz and c0 is the sound speed at z = 0. Fig. 3 illustrates the
appropriate geometry. cs is the sound speed at the source and hs is the launch angle of
the ray at the source, measured relative to the horizontal. Note one seeks to determine
the launch angle of the ray (hs) which will pass through the receiver located at (xr,zr).
From the geometry shown in Fig. 3, the centre of the circle, (xc,zc), along which the ray
path is an arc, can be shown to be

ðxc; zcÞ ¼
xs þ xr

2
þ ðzs � zrÞ

2ðxs � xrÞ
ðzr � zs þ 2cs=gÞ; zs �

cs

g

� �
: ð7Þ

The standard expression for the travel time of a ray travelling in a medium with a sound
speed profile c(z) is [24]

s ¼
Z z1

z0

cðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cðzÞ2 cosðhsÞ2

c2
s

s0
@

1
A
�1

dz: ð8Þ

For a linear sound speed profile this integral can be evaluated to yield

s ¼ 1

g
log

zc � zs

zc � zr

� �
� log

Rþ xc � xs

Rþ xc � xr

� �� �
: ð9Þ

Using Eqs. (7)–(9) allows one to compute the propagation time from the source to any
receiver and hence allows one to compute the predicted delays.

3. Results

The methods discussed in Section 2 are applied to recordings supplied as data set 2 for
the 2nd International Workshop on Detection and Localisation of Marine Mammals,
Monaco, 2005. These data consist of the vocalisations from a single sperm whale recorded
at the AUTEC range located at the Tongue of the Ocean, close to Andros Island in the
Bahamas. Recordings from five bottom-mounted hydrophones, placed at depths ranging



Fig. 4. Delay estimates using channel 1 as a reference.
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from 1361 to 1556 m. The recordings were made at close to 11.00, local time, on 30th
March 2002. Each recording encompasses a total period of 25 min for each channel,
and for each channel these data were provided in the form of five 5 min files sampled at
48 kHz.

The estimates of source location are all constructed based on a common set of delay
estimates, obtained using the methods described in Section 2.1. The delay estimates are
computed based on 30 s blocks of data. These blocks are overlapped by 75%, so that a
new delay estimate is computed for each 7.5 s of data. Thus for each 5 min recording there
are a total of 37 delay estimates, resulting in a total of 185 estimates for each channel of
data. The estimated delays1 for each channel relative to channel 1 are plotted in Fig. 4. It is
clear that in the majority of cases the delay estimates are consistent, in that the delays
evolve in a smooth fashion. Towards the end of the recording the delay estimates between
channels 1 and 3 are subject to large errors.2 There are a total of 11 samples from this
sequence that are clearly outliers. Analysis of the data during the portion of the recordings
which gives rise to the outliers indicates that it is the low signal to noise ratio (SNR) of
channel 3 during this period of the dataset which causes these problems. Analysis of the
localisation results presented later shows that the outliers occur when the animal is at
1 A correction of 2.3395 s to account for synchronisation errors in channels 2 and 3 has been applied.
2 Such outliers can be readily removed from the final track estimate, either at the delay estimation stage or after

the source location has been estimated.



Fig. 5. Three dimension view of estimated locations.

1082 P.R. White et al. / Applied Acoustics 67 (2006) 1074–1090
its furthest from sensor 3 at the end of the recording, consistent with the low SNR
observed in the data.

The three localisation schemes based on the three propagation models have been imple-
mented. For the linear sound speed model we assume a gradient for the profile, g, of
0.017 s�1, the value which reflects a constant temperature, constant salinity medium, in
which the only factor affecting the sound speed is hydrostatic pressure. Such characteris-
tics certainly are frequently assumed for the layer in the ocean commonly called the deep
isothermal layer [11,24]. Sperm whales are commonly reported vocalising at depths of up
to 1000 m [4,17,25], so the vocalisations from such animals recorded on bottom-mounted
sensors will spend a significant proportion of their time propagating through the deep iso-
thermal layer. Thus the linear sound speed model, which accurately reflects propagation in
that layer, should be well suited to this application.

Fig. 5 shows a three-dimensional plot of the result of applying the localisation method
based on a linear sound speed profile to the 25 min of data comprising of the second of the
Workshop datasets.3 This plot aims to provide an overview of the full set of estimated
source locations, the 174 position estimates are marked as individual points (the 11 outly-
ing samples are not included). An animation showing the full 3D characteristic is available
at an associated web page [http://www.isvr.soton.ac.uk/FDAG/uaua/Whale_local.HTM].
In Fig. 6 the same data are shown in plan view and on a larger scale to allow the reader to
see the track in relation to the sensor positions which are marked by the symbols ‘¯’. The
co-ordinate system used in this plot is that supplied with the dataset.

The weighting factors for the least squares cost function (4) are shown in Table 1. These
weighing factors are normalised, such that the largest value is unity.
3 Note that for the purposes of plotting only the vertical scale is (z-direction) is reversed so that negative values
represent points below the sea surface.

http://www.isvr.soton.ac.uk/FDAG/uaua/Whale_local.HTM


Fig. 6. Large scale plot of estimated whale locations.

Table 1
Normalised weighting least squares factors

Sensor
number

Standard
deviation (ms)

Normalised weighting
factor on direct path

Normalised weighting
factor on reflected path

1 – – 0.0721
2 6.7 0.5692 0.0021
3 8.1 0.3846 0.0688
4 5.8 0.7475 0.0064
5 5.0 1.0000 0.0710
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3.1. The effect of noise on delay estimates

The effect of noise on the estimated delays is evaluated using Monte-Carlo techniques.
A set of realisations of the delays are created by adding, Gaussian white noise to the delay
estimates shown in Fig. 4. The standard deviation of the noise is selected to match the val-
ues shown in Table 1. Source location estimates are then computed for each of the reali-
sations and the variance of source locations is computed by averaging the results across
the realisations. These results are shown in Figs. 7 and 8, in plan and side view forms,
wherein the ellipses surrounding each point represent the 95% confidence intervals. In
summary the mean values of the confidence intervals in the x-, y- and z-planes are 8, 10
and 71 m, respectively.



1084 P.R. White et al. / Applied Acoustics 67 (2006) 1074–1090
These results confirm that the errors in the vertical plane are significantly greater than
those in other axes because of the small aperture in that direction (the maximum difference
in the sensor depths is approximately 200 m). With reference to Fig. 6, the animal’s direc-
tion of motion is in a roughly southerly direction. Examining Figs. 7 and 8 one can see
that, as the animal moves towards the centre of the array, the errors in the vertical plane
increase, whereas the errors in the horizontal plane reduce; although this latter observation
requires close inspection of Fig. 7 since the errors in that plane are small. This observation
can be understood by once again considering a symmetric, planar rectangular array. In
that case, if the source is located at the centre of the array, then the estimated source loca-
tions achieve their maximum accuracy in the plane of the array, whereas it is impossible to
localise the source on the perpendicular axis: the relative delays between sensors are iden-
tically zero for any source positioned on the axis of symmetry of the array.

3.2. The effect of model mismatch

In this subsection, we shall explore the effects of altering model parameters on the esti-
mated source location. Such an analysis provides insight on the effect of disparities
between the assumed model and the actual acoustic environment. Firstly, we consider
Fig. 7. Plan view of estimated locations. Ellipses around each point define the 95% confidence intervals for the
source locations based on errors in the delay estimates.



Fig. 8. Side view of estimated locations. Ellipses around each point define the 95% confidence intervals for the
source locations based on errors in the delay estimates.
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the effect of perturbations of parameter within the same model and then briefly consider
the differences between results using different models.

Fig. 9 shows the sensitivity of the linear sound speed model to variations in c0. These
values are computed using a finite difference approach. Results are only shown for sensi-
tivity in two planes for clarity: the results for the y-direction are of a very similar magni-
tude to those in the x-direction. There are considerable changes in the sensitivity of the
model as the source moves within the array. As with the effect of noise, the model becomes
more prone to uncertainty in the vertical axis as the source moves towards the centre of the
array, whereas the sensitivity in the horizontal axis reduces. The mean sensitivities in these
two directions are 0.22 and 4.5 m in the x- and z-directions, respectively.

The model sensitivity and effects of noise can be compared. Herein we choose to achieve
this by comparing the mean 95% confidence intervals with the mean sensitivities. In the
x-direction the 95% confidence interval equates to a model mismatch of 36 m/s, that is
to say that to achieve a perturbation equivalent to the 95% confidence interval one would
need to alter the sound speed profile by 36 m/s. In the z-direction a similar analysis reveals
that the 95% confidence interval is equivalent to a 15 m/s change in the sound speed pro-
file. This analysis suggests that there is some robustness to the choice of model parameters
and that, in this case, the influence of noise on the delay estimates is probably comparable
to errors due to inaccurate sound speed estimates.

The above analysis explores the effects of perturbations of the parameters within a par-
ticular model. In order to explore the effect of errors between models of different forms we



Fig. 9. Model sensitivity in the vertical plane: ‘‘s’’ sensitivity in the x-direction, ‘‘d’’ sensitivity in the z-direction.
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compute the source locations using a model based on an isospeed assumption and com-
pare those to the source location computed using a linear sound speed model. The sound
speed used for the isospeed model corresponded to the depth-averaged sound speed of lin-
ear model used. The depth averaging was performed between 700 and 1500 m, which is the
range of depths which the rays spend the majority of their time. Fig. 10 illustrates the dif-
ferences between the estimated source locations between the two models; only errors in the
z-direction are shown. These errors are significantly larger than those seen for simple
parameter perturbations. This is unsurprising, because the local differences in the assumed
sound speed profiles are greater between the two models than they are in the preceding
discussion. Note that we have attempted to ensure that the global properties of the sound
speed profiles are in some way equivalent, so it is only the local variations that are contrib-
uting to the large errors observed.

3.3. The use of surface reflections

Historically many passive acoustic monitoring systems used in bioacoustics consist of
two sensors. Two sensors provide insufficient data to locate a source the three dimensions.
In this case surface reflections offer the opportunity to measure delays from a virtual pair
of sensors, effectively producing an array of four sensors with which localisation in three



Fig. 10. Vertical differences between source locations estimated using a linear sound speed profile and an isospeed
model.
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dimensions can be obtained [4]. There remains an inherent left-right ambiguity because of
the planar geometry of the four element array. It is to allow localisation of sources with a
two element array that has provided the primary motivation of previous work exploiting
surface reflections.

Herein the motivation for seeking to exploit surface reflections is rather different. It is
based on the observation that the accuracy of a localisation routine is enhanced by increas-
ing the number of sensors. Furthermore, the robustness of a localisation routine to mod-
elling errors improves if the source is located within the sensor field, i.e. the sensors
surround the source. In this application we have data from a set of sensors located on
the sea floor, in a geometry that is close to planar. When viewed in the x–y plane the
source is within the sensor field, so the results are robust to modelling mismatch, in that
plane, the results (Section 3.2) are consistent to illustrate this. But in the vertical plane the
source is located above all the sensors and so the solution becomes sensitive to modelling
errors in that plane. This argument suggests that using the virtual sensors one can provide
a set of sensors located above the source and thus create a situation in which the robust-
ness of the source locations is greatly increased and it is to exploit this robustness that we
seek to use surface reflections in this application.

In order to explore the use of surface reflections we revert to an isospeed model. Whilst
a linear model can be adapted to model surface reflection, the validity of the model is
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greatly reduced since the upward travelling rays pass through the upper ocean which is
more complex than the deep isothermal layer and is not suitable for modelling with a sin-
gle gradient. Evidently an isospeed model is an even cruder approximation, but the objec-
tive of the analysis in this section is to demonstrate the effectiveness of the technique,
rather than to provide accurate locations for this particular dataset.

Fig. 11 shows the sensitivity of the model, in depth, of the isospeed model with and
without including the surface reflections. Clearly the model in which the echo has been
included is more robust (less sensitive) to model mismatch, the mean sensitivities for these
models are 4.2 and 3.2 m for the cases without and with echoes, respectively. Towards the
centre of the array (at later times in the recording) the advantage of using the surface
reflections increases.

However, this potential offered by the use of surface reflections is limited because of the
high levels of variability associated with such delay estimates. This is not a result of the
increased path length associated with the reflected rays, because some of the direct paths
are longer than some of those for the reflected rays. We believed it to be a consequence of
the volatile nature of the acoustic environment in the near-surface region. Factors contrib-
uting to such observations include variations in the path lengths caused by ocean swells
Fig. 11. The depth sensitivity of isospeed models, ‘‘s’’ without using surface reflections, ‘‘d’’ with surface
reflections.
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and small scale variability in the local sound speed in the near surface region, partly caused
by the ambient bubble population and partly by the time-varying roughness of the sea sur-
face [25–29].

The increased variability of delay echoes should highlight the need for care in the use of
surface reflections in the two element array case. In such cases the real and virtual sensors
may be subject to very different uncertainties which should be accounted for in the algo-
rithm, for example by using a weighted least squares cost function.

4. Conclusions

The results of the preceding section suggest that one can localise sperm whales using
bottom-mounted sensors. In particular, the indications are that the location in the hori-
zontal plane is comparatively robust, especially if the animal is surrounded by sensors.
Indeed under such conditions the results are comparatively insensitive to both the propa-
gation model and the acoustic parameters used as input for the model. Conversely the
results in the vertical plane are strongly influenced by the chosen propagation model.
The errors due to model mismatch and noise on the delay estimate are both significant.
The robustness of the model in the vertical plane can be increased by the inclusion of data
collected at virtual sensors, i.e. measurements of delay along surface reflected paths.
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