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1. Introduction 

Inside the large field of structural dynamic and vibroacoustic predictive methodologies, the 

Energy Influence Coefficient (EIC) and the Energy Distribution Approach (EDA) represent 

theoretical and numerical tools which have appeared in recent times, ref.[1÷3]. In fact, by using the 

global modes of the system under investigation, it was possible to define all the relevant energies 

and powers as used in standard energy methods. Among these, the most popular is Statistical 

Energy Analysis (SEA), ref.[4]. 

EDA is a theoretical frame in which it is possible to find a link between the deterministic 

modal methods and the energy ones. Further, it is well known that the validity of some SEA 

approximations and assumptions are not known a priori, while adopting EDA and EIC, it is 

possible to check the conditions in which a proper SEA model could be assembled, ref.[3,5]. 

In SEA, for example, the coupling loss factors are strictly positive, and further they are zero 

for indirectly coupled subsystems. By using EDA, it was demonstrated that the indirect coupling 

loss factors can exist and they can be negative. Clearly, in this condition the system cannot be 

modelled with standard SEA approach, ref.[6].  

At the same time, a novel approach was studying the possibility to use finite element 

approach (FEA) for getting the high frequency response (the response of a given system at high 

values of the modal overlap factors), ref.[6÷9]. A scaling procedure was tailored in order to get the 

same energy representation by using a reduced modal base.  

This can be done (i) to reduce the computational costs for given prediction at a given 

frequency range, or (ii) for increasing the frequency range for which the model is valid for the same 

computational cost. It is not worth noting that the cost of the FEA is associated with the ratio of the 

wavelength to the dimensions of the structure. 

An acceptable justification of the scaling procedure was found by using SEA approach, but 

only with EDA (and EIC) it was possible to properly frame all the relevant parameters, ref.[10]. 

The results obtained for several assemblies demonstrated that the scaling procedure, named 

Asymptotical Scaled Modal Analysis (ASMA), was able to predict the response in an SEA sense 

by using a scaled model with standard Finite Element Approach (FEA) and model, ref.[11]. 

The contents of this report concerns various applications of ASMA in the context of 

EDA/EIC and they are closely related to ref.[5], in which the analysis was focused on estimating the 

coupling loss factors from FEA in a robust approach. 

The results herein presented and discussed, have demonstrated that ASMA is able to furnish 

the coupling loss factors at reduced computational cost when compared with the standard analysis. 
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2. Energy Distribution Approach, Energy Influence Coefficients and Asymptotic 

Scaled Modal Analysis 

2.1 Review of Energy Distribution Approach 

Full details can be found in ref.[1, 2 and 3]. In summary, the structure is analyzed using FEA, 

for example, and the modes found. The discrete frequency response at a point can be found for 

point force excitation by summing contributions from the modes in a conventional manner. This 

response is then measured to find relations between the input power and the energies. 

First, the mean square velocity response (which is proportional to the kinetic energy) in a 

subsystem is found by integrating the point response over the region occupied by the subsystem. 

Next, rain-on-the-roof excitation is assumed: this is spatially delta-correlated. By averaging 

the energy response for all possible excitation points in a given subsystem, the total response energy 

is found. This can then be frequency averaged. Next, the subsystem input power is found by 

integrating the real part of input velocity response to point force excitation over the region occupied 

by the excited subsystem and over frequency. Finally, the energy influence coefficients (EIC) are 

found: these are simply the subsystem energies per unit input power. 

 Then, EDA involves post-processing the results of a modal analysis typically performed 

using FEA of the whole structure. This poses the problems at high frequencies of the large 

computational costs that might be associated with the FEA.  

This report describes how ASMA might be used to scale the structure, perform the FEA on 

the scaled structure at low cost, and have estimate of the EICs. It is necessary, therefore, that the 

modes of the scaled systems, when suitably averaged, resemble the same average of the modes of 

the original system. 

2.2 Justification of the Asymptotic Scaled Modal Analysis by using Energy Distribution 

Approach 

This paragraph has been extracted from ref.[10] and added here for sake of completeness. 

In ASMA a scaled model of the original system is analysed. The given original model is 

geometrically scaled by multiplying the side dimensions of the original model by the factor σ<1, so 

that a FE model becomes correspondingly smaller and the modal density decreases.   

In particular the natural frequencies of the model scale as (for plates): 

j
2

j ωσ=ω −   (1) 

where the overbar denotes a scaled quantity. The model is also scaled dynamically, to retain similar 

modal characteristics.  For example, the damping loss factor is increased by the factor ε (ε<1) so 

that: 
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j
1

j ηε=η −   (2) 

At this stage, we also assume that the forcing function is the same for both the original and 

scaled structures. In the EDA approach, the energy response is defined in terms of the following 

parameters which depend on the modal properties of the system ref.[1].   

First, the original and the scaled parameters  

dx)x()x()x(              dx)x()x()x( q
rx

p
)r(

pqk
rx

j
)r(

jk φφρ=ψφφρ=ψ ∫∫
∈∈

  (3) 

depend on the global mode shapes within the original, r, and scaled, r  ,subsystems. Specifically, the 

subscripts j and k refer to the global mode shapes of the original model and the subscripts p and q 

refer to the global mode shapes of the scaled one. If properly scaled the statistics of  can be 

approximated by the scaled modes, that is 

)r(
jkψ

)r(
pq

)r(
jk ψ≅ψ . The coordinate x is the position vector in a 

one, two or three-dimensional structure and ρ(x) is the mass density.  

Secondly the auto and cross-modal frequency response operators, ref.[1], for the original and 

scaled systems are as follows:  

jj
2

2

jjjj
jj

jj
jj 8

1
8

1                 ;
8

1
Γεσ=

σ
ω

ε
η

π
Ω

=
ωη

π
Ω

=Γ
ωη

π
Ω

=Γ  (4) 

The original cross modal frequency response operators are: 

( ) (
( ) (

)
)22

kk
2
jj

22
k

2
j

kkjj

2

kj
jk 16 ωη+ωη+ω−ω

ωη+ωηω+ω
Ω

π
=Γ   (5-a) 

The scaled cross modal frequency response operators are: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )22

kk
2
jj

22
k

2
j

2

kkjj

2

kj
2

28

22
kk

2
jj

8

22
k

2
j

kkjj

2

kj

2422
kk

2
jj

22
k

2
j

kkjj

2

kj
jk

16
     

1616

ωη+ωη+ω−ωε

ωη+ωηω+ω
Ω

εσπ
=

εσ
ωη+ωη

+
σ

ω−ω

ωη+ωηω+ω
εσσΩ

π
=

ωη+ωη+ω−ω

ωη+ωηω+ω
Ω

π
=Γ

 (5-b) 

The term Ω represents a generic frequency band over which excitation is applied. The cross 

modal terms are not yet scaled since the quantities involved are different functions of σ and ε. Thus 

it is mandatory to work with approximations for these terms.  

For large terms, which broadly represent the interaction of two overlapping modes, one gets: 

( ) ( ) ( )
eargljk

2

1

2

22
kk

2
jjkkjj

2

kj
2

eargljk 16
Γεσ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ε
ωη+ωη

ε
ωη+ωηω+ω

Ω
πσ

≅Γ

−

. (6) 

It should be noted that the scaled large terms are ruled by ε and σ2 as the terms jjΓ , Eq.(4).  
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For small terms (broadly, modes which do not overlap) one gets: 

( ) ( )
( )[ ]

( ) ( )
( )[ ] smalljk

2

222
k

2
j

kkjj

2

kj
2

22
k

2
j

kkjj

2

kj

smalljk 1616
Γ

ε
σ

=
εω−ω

ωη+ωηω+ω
Ω

πεσ
=

ω−ω

ωη+ωηω+ω
Ω

π
≅Γ .  (7) 

This is the central point of the scaling procedure.  

The small coupling terms are the only ones that do not follow the scaling rule of σ2ε. The 

scaling coefficients are both less than unity, the circumstances under which the approximation for 

σ2 ε−1 can be a good estimate of σ2ε have to be borne in mind. It can be shown that the best 

approximation is obtained when selecting ε = σ. In this case the small terms for the coupling are an 

acceptable first order approximation around unity.  

Expanding around σ=1 gives: 

( ) ( )

σ=
ε

σ

−σ=−σσ+≅σ =σ

2

1
23

 : termssmall for the

      ;23131  : termslarge for the
. (8) 

It is trivial to note that for ε=σ=1 one gets the original system. Furthermore, for the response 

of a single subsystem and/or the directly excited subsystem drawn from a generic assembly, any 

choice for σ could be used. It is useful to underline again that approximations for the small modal 

coupling terms are solely responsible for ASMA not being an exact translation of the energy 

content at high frequencies.  

2.3 Summary of Asymptotic Scaled Modal Analysis 

The application of the scaling procedure leads to the analysis of the auto and cross modal 

frequency response operators.  

The auto modal frequency operators, Γjj, result in a scaling as εσ2, Eq.(4).  

The cross modal ones, Γjk, result in a complicated dependence on σ and ε, Eq.(5), which can 

be treated only by invoking some approximations, Eq.(6) and Eq.(7). The large cross modal terms 

follow the εσ2 scaling law, Eq.(6), while the small ones are scaled with ε−1σ2. The best scaling is 

obtained by selecting ε=σ; in this case, the small cross modal terms can be used as an acceptable 

approximation.  

The auto modal frequency operators, Γjj,  are the parameters that govern the input power, that 

is the amount of energy entering the given subsystem and, therefore, it is expected that ASMA 

might always work well for such system components.  

It is also expected that the energy exchange between the remaining subsystems (not directly 

excited) will be well approximated, these being dominated by the largest cross modal frequency 

operators, Γjk, since they result from those modes that overlap.  
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The results presented in the next paragraph will confirm these statements based on theoretical 

considerations.  

The parameters required are as follows. The original and scaled power input in the s-th 

subsystem are: 

( )( ) )s(
IN

j

)s(
jjjj

2
2

jj
f

j

)s(
jjjjjjf

)s(
IN

j

)s(
jjjjjjf

)s(
IN

P2S22S2P

2S2P

=ψΓεσ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

η
=ψΓωη=

ψΓωη=

∑∑

∑
 (9) 

It has to be noted that the spatial distribution of the excitation acting in a frequency band has 

to be considered; in ref.[1], the loading was assumed to be proportional to mass density with a zero 

cross-spectral density and an auto-spectral density, Sf.  

The original and scaled kinetic energies for the r-th subsystem are: 

( )( )( ) )r(3)r(2

j k

)r(
jk

)s(
jkjk

2
f

)r(

j k

)r(
jk

)s(
jkjkf

)r(

TTS2T

S2T

σ=εσ=ψψΓεσ≅

ψψΓ=

∑∑

∑∑
 (10) 

The original and scaled energy coefficients are: 

3
rs

2
rsrs

j

)s(
jjjjjj

j k

)r(
jk

)s(
jkjk

rs AAA      ;A σ=εσ=
ψΓωη

ψψΓ
=

∑
∑∑

 (11) 

while the original and scaled mean square velocities become:  

2
)r(

2

)r(2)r(
2

)r(
2 v

m
T

m
T

m
T

v                     ;
m

T
v σ=ε=

σ

εσ
===  (12) 

The Ars coefficients form a matrix A that under some condition is the inverse of the SEA 

predictive one (the matrix formed by the direct and coupling loss factors), ref.[1]. The mean square 

excitation in a band δω can be generically written as follows, ( ) ( )δωρω= xSF
2
1

f
2 .  

For the configurations herein introduced and analyzed in the next sections, the same loading 

function has been assumed for both the original and scaled assembly expansions. This leads to an 

auto spectral density, σ-2 Sf(ω) in the scaled system.  

The Eqs.(9 to 13) can be summarised as: 

⎪
⎪
⎪

⎩
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⎪

⎨

⎧

σ
=⇒σ=

σ
=

σ
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2
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2

3
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m
T

m
T

m
T

v
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TT

PP

SS  (13-a) 
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3. A Simple Plate in Bending 

The model under analysis is a simple flexural plate. The material plate is homogenous, 

isotropic and the side lengths are Lx and Ly; the thickness is denoted by h. The plate is simply 

supported along the edges (zero displacements and moments and allowed rotations). The scaling 

procedure is applied to the analytical solution, by reducing the side dimension by the factor σ (σ<1) 

and keeping the original thickness. The material is aluminium and has a normal modulus of 

elasticity, E, and mass density, ρ. These are the values in the scaled model, too. 

It is useful to report each part of the original and scaled plates. The scaled items are denoted 

by an overbar. The dimensions are 

hh  ;LL  ;LL yyxx =σ=σ=    (14) 

The natural frequencies in rad/sec are: 

2
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 ; (15) 

and the associated mode shapes: 
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The integers jx and jy indicate the number of half wavelengths on each axis. The modes are 

both mass normalised, in fact the non zero terms of the diagonal mass matrix are the following: 

( )

( ) 1dydx 
L

yj
sin

L
xjsin
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 (17) 

It is of interest to see the distribution of the original and scaled natural frequencies. This is 

shown of the Fig.1, in which it is evident the shift due to the scaling coefficient by the factor σ. 
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Figure 1: Original and Scaled (σ=0.45) Natural Frequencies [Hz] 
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By using an increase of the original damping: 

21 −− ησ=ηε=η   (18) 

it is straightforward to get the results in Fig.2 and 3, where the Classical Modal Analysis 

(CMA) and Asymptotic Scaled Modal Analysis have been applied in order to get the original and 

scaled responses, respectively, ref.[10].  

The results are expressed in terms of mean square velocity averaged over the acquisition and 

excitation locations. Further, in those figures, the frequency at which the modal overlap reaches the 

unit value is also shown. 
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Figure 2: Original and Scaled Responses with σ=0.45 
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Figure 3: Original and Scaled Responses with σ=0.35 
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Now, the parameters of the Energy Distribution Approach (EDA) are introduced and 

discussed. Having selected the normalization of the eigenvectors to give a unit modal mass, the 

mode shape parameters, ψjj, become: 
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 (19) 

These are interesting results since the terms ψjj represent the fractional modal density: in this 

case, they are unity in both the original and scaled models, as expected, and only their distribution 

along the frequency axis is modified, Fig.4. 

Figure 4: The Original and Scaled (σ=0.45) Terms ψjj (Original Modes=198, Scaled Modes=40) 
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In fact in this simple case, ref.[1]: 

1n/n][E TOTss
)s(

jj ==ν=ψ    (20) 

The modal densities: 
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The modal overlap factors: 

ωωωωωω =σ
σ
η

ω=ηω=ωη= mnnm   ;nm 2
2

  (22) 

If the damping is small, ref.[1] and previous paragraph, the frequency functions can be 

approximated as 
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The terms related to the coupling, Γjk, are not important for a single system, since the ψjk=0.  

The power input and the kinetic energy can be written by using the previous relationships and 

assuming a given spectrum for the excitation, Sf : 
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For getting finally the mean square velocity: 
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The simplest choice for the scaling coefficient ε is to consider it equal to σ2. Summarizing: 
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Obviously, the choice of ε is not uniquely determined, and infinite combinations of σ and ε 

could be pursued, but by selecting ε=σ2, one gets that the scaled mean square velocity is equal to 

the original one and further, the modal overlap factor is kept; generalizing: 

( ) ( ) ( ) ( ) ( ) ( )ω=σ
σ
ωη

ω=ωηω=ωωηω=ω ωωωωωω mn   n  m               ;n  m 2
2

 (28) 
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4. Estimating the Coupling Loss Factors 

4.1 Two In-Line Rods  

The scaling procedure in terms of the absolute responses was analyzed earlier while here an 

analysis is presented for determining the coupling loss factors for a given configuration.  

All the relevant details for getting the EIC can be found in ref.[5]. 

The selected structure was composed of two in-line rods (only longitudinal waves are allowed 

to travel) and the original and scaled responses were assembled by using the standard FEA. At both 

the ends the structure is clamped. 

Figure 5:  Configuration of the two rods 

First Rod Second RodFirst Rod Second Rod

 
 

Both the rods are made of the same material: modulus of elasticity, E = 39.476 Pa, mass 

density, ρ =1 kg m-3, longitudinal wave speed, cL = (E/ρ)½ = 6.283 m s-1. The differences between 

the two rods are in their lengths and cross-section areas: L1= π/3 m, L2 = 2π/3 m, A1 = 1 m2, A2 = 

0.4 m2. By using these parameters, a unit global modal density is obtained; in fact: nf1 = 0.333 Hz-1, 

nf2 = 0.666 Hz-1. The odd choice of parameters allows creating a system with a unit total modal 

density.  

The finite element models were built by using as a parameter the number of solution points 

for each wavelength, NEWL: later this variation will be discussed.  

Further, the scaled finite element model has been built by multiplying each coordinate by σ, 

the scaling factor, and by imposing an artificial augmented damping, ση=η / . This means than the 

scaled model will have only a fraction of the original degrees of freedom. Generally, the same 

original mesh could be also kept for the scaled model, but this point will not be addressed here, 

ref.[6]. Before discussing the results presented in the next pages, it is useful to underline the 

behaviour of the parameters, µjk, that rule the Γjj and Γjk approximations. They are defined as 
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Here Mjk is the modal overlap between the jth and the kth modes. The scaled ones in the 

present case are 
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As expected, for σ=1, the scaled system is identical to the original one, while the lower the σ, 

the higher the differences in terms of frequency distribution1. This difference will be reduced by 

refining the spatial distribution that is by reducing the error of the natural frequencies, and/or 

enlarging the modal base. In any case, the limiting values for µjk are kept; in fact, by considering the 

modal overlap factor Mjk as a continuous variable, Fig.6. 

Figure 6:  Analysis of the Eq.(31) - µjk vs Mjk – for several values of the scaling coefficient 
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It is evident that 0 ,lim jkjk0M jk
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→

 and 1 ,lim jkjkM jk
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∞→

. Therefore, it is expected that at both 

very low and very high modal overlap factors, the scaled model will produce the same results as the 

original model. The main differences are expected in the intermediate region (moderate model 

overlap), and they will be magnified by the scaling coefficient.  

It is useful to remember that in standard SEA, the following relationship hold for a generic 

coupling between the j-th and k-th subsystem: 

π
τ

=ωη
2

n jk
jjk    (31) 

                                                 
1 It has to be noted that for plate assemblies, the same result is obtained (σ=ε, 2

jj
−σω=ω , 

), ref.[10]. 1
jj

−εη=η
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where ηjk is the coupling loss factor, nj is the radian modal density, ω is the radian excitation 

frequency, and τjk is the transmission coefficient.  

From here and for the remaining part of this document, the transmission coefficient will be 

referred to as the quantity τjk /(2π). 

 Figures 7 to 10 contain the results for the present assembly, and they contain: (a) the statistics 

(mean and variance) of the ψjj terms for each rod;(b) the original transmission coefficients; (c) the 

scaled transmission coefficients; (d) the original, scaled and standard coupling loss factors η21;(e) 

the original, scaled and standard coupling loss factors η12; further, the maximum frequency (fmax), 

the retained number of original modes (NOM), the retained number of scaled modes (NSM), the 

number of element for wavelength (NEWL) and the scaling coefficient (σ) are also indicated, 

respectively. The x-axis in the figures (b÷e) is the global modal overlap factor. 

Figure 7:  fmax=50 Hz, NEWL=5 and σ=0.5; (a) statistics on original and scaled ψjj; (b) the original 
transmission coefficients;  (c) the scaled transmission coefficients; (d) original and scaled coupling loss 

factors – η21; (e) original and scaled coupling loss factors - η12.  

0 0.6 1.2 1.8 2.4 3
5

0

5

10

mean
variance
mean
variance

a) Percent Error (Original vs. Scaled)

Rod Number

%
 E

rr
or

fmax 50Hz=

NOM 50=

NSM 25=

NEWL 5=

σ 0.5≡

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

1st to 2nd
2nd to 1st
1st to 2nd
2nd to 1st

b)Two In-Line Rods: Original F.E. Model

Modal Overlap Factor

Tr
an

sm
is

si
on

 C
oe

ff
ic

ie
nt

 / 
(2

 p
i)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

1st to 2nd
2nd to 1st
1st to 2nd
2nd to 1st

c)Two In-Line Rods: Scaled F.E. Model

Modal Overlap Factor

Tr
an

sm
is

si
on

 C
oe

ff
ic

ie
nt

 / 
(2

 p
i)

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025
Original: 2nd to 1st
Scaled: 2nd to 1st
SEA

Original: 2nd to 1st
Scaled: 2nd to 1st
SEA

d)Two In-Line Rods

Modal Overlap Factor

C
ou

pl
in

g 
Lo

ss
 F

ac
to

r

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05
Original: 1st to 2nd
Scaled: 1st to 2nd
SEA

Original: 1st to 2nd
Scaled: 1st to 2nd
SEA

e)Two In-Line Rods

Modal Overlap Factor

C
ou

pl
in

g 
Lo

ss
 F

ac
to

r

 
 



Energy Distribution Approach, Energy Influence Coefficients and Asymptotic Scaled Modal Analysis Page 19 of 28 
 

 

The parameter that is varied is simply the damping, η.  The estimation of the coupling loss factor 

has been based on a band centred at fmax/2.   

Figure 8:  fmax=100 Hz, NEWL=5 and σ=0.5; (a) statistics on original and scaled ψjj; (b) the original 
transmission coefficients;  (c) the scaled transmission coefficients; (d) original and scaled coupling loss 

factors – η21; (e) original and scaled coupling loss factors - η12. 
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In all the figures, a good estimate of the coupling loss factor η12 and η21 has been obtained for 

very low and very high modal overlap, and the main differences are in the intermediate region, as 

expected, and some asymptotic values for increasing values of the modal overlap. 

Fig.10 and 11 present the effect of increasing the number of modes: the scaled models has 

σ=0.5 and such an increase improves the accuracy of the prediction of the scaled models. 

Fig.12 presents a reduction of the scaling coefficient and it is clear that this is associated with 

a small degradation of the predictive capabilities in the intermediate region. 

The simple doubling of the number of elements per wavelength (NEWL), produce better 

results since the spatial members, ψjk, are better simulated, Fig.13. 
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Figure 9:  fmax=100 Hz, NEWL=5 and σ=0.3; (a) statistics on original and scaled ψjj; (b) the original 
transmission coefficients;  (c) the scaled transmission coefficients; (d) original and scaled coupling loss 

factors – η21; (e) original and scaled coupling loss factors - η12. 
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The errors on mean values remain very small and are practically unchanged in all the figures; 

the analysis of the variances with the number of modes and the scaling coefficient is difficult, even 

if in general the lower they are the better will be the results.  
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Figure 10:  fmax=100 Hz, NEWL=10 and σ=0.3; (a) statistics on original and scaled ψjj; (b) the original 
transmission coefficients;  (c) the scaled transmission coefficients; (d) original and scaled coupling loss 

factors – η21; (e) original and scaled coupling loss factors - η12. 
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4.2 Four In-Line Rods  

4.2.1 First Assembly 

In this case, the assembly analysed in ref.[1] was used for testing the application of the scaling 

procedure. Again at both the ends the assembly is clamped and all the rods are made of the same 

material: modulus of elasticity, E = 39.476 Pa, mass density, ρ =1 kg m-3. The variations between 

the four rods are in their lengths and section areas: L1= 0.5171 m, L2 = 0.8885 m, L3 = 0.7072 m, L4 

= 1.0288 m; A1 = 1 m2, A2 = 0.4 m2
, A3 = 0.9 m2

, A4 = 0.6 m2
. By using these parameters, a unit 

global modal density is obtained; in fact: nf1 = 0.165 Hz-1 , nf2 = 0.283 Hz-1, nf3 = 0.225 Hz-1, nf4 = 

0.327 Hz-1. 

This configuration is a severe test-case for any energy methods, since it presents the problem 

of indirect coupling. ASMA was successfully applied to a very similar configuration (six in-line 

rods), ref.[6].   

The results are contained in Figs.(11÷14), where the estimates of the full set of direct and 

indirect loss factors are presented together with the means and variances of ψjj for the original and 

scaled systems. Specifically, the figures contain: (a) the statistics (mean and variance) of the ψjj 

terms for each rod; (b) the original direct transmission coefficients; (c) the scaled direct 

transmission coefficients; (d) the original indirect transmission coefficients; (e) the scaled indirect 

transmission coefficients.  
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Figure 11:  fmax=80 Hz, NEWL=5 and σ=0.5; (a) statistics on original and scaled ψjj; (b) original direct 
transmission coefficients;  (c) scaled direct transmission coefficients; (d) direct original transmission 

coefficients; (e) indirect scaled transmission coefficients.  
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Figures 12 and 13: fmax=100 Hz, NEWL=5 and σ=0.5 (top) and σ=0.35 (bottom); (a) statistics on original 
and scaled ψjj; (b) original direct transmission coefficients;  (c) scaled direct transmission coefficients; (d) 

direct original transmission coefficients; (e) indirect scaled transmission coefficients. 
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Figure 14: fmax=100 Hz, NEWL=5 and σ=0.2; (a) statistics on original and scaled ψjj; (b) original direct 
transmission coefficients;  (c) scaled direct transmission coefficients; (d) direct original transmission 

coefficients; (e) indirect scaled transmission coefficients. 
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A broad conclusion can be drawn from the present results: ASMA is able to predict the 

evolution of the full set of direct and indirect coupling loss factors with the modal overlap factors; 

this can be done according to the proper number of modes for representing the frequency band and 

the resolution of the spatial information. All the predictions are obtained with a drastic decrease in 

the computational costs due to both the reduction of the original mesh and the selection of a limited 

number of scaled modes. 

Further investigations are needed for controlling the error on estimating the coupling loss 

factors as a function of the scaling coefficient and the given number of modes, in order to better 

quantify an acceptable approximation level. 
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4.2.2 Second Assembly 

In this case, the analysed assembly was the same as used before; the only variation was in the 

cross-section areas: A1 = 0.6 m2, A2 = 1.0 m2
, A3 = 0.4 m2

, A4 = 0.9 m2
.  

The configuration was analysed and presented for the sake of completeness. Results are 

shown in Fig.15. 

Figure 15:  fmax=100 Hz, NEWL=5 and σ=0.5; (a) statistics on original and scaled ψjj; (b) original direct 
transmission coefficients;  (c) scaled direct transmission coefficients; (d) direct original transmission 

coefficients; (e) indirect scaled transmission coefficients. 
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5. Concluding Remarks 

Some advances have been herein presented concerning the scaling procedure when aimed to 

the estimation of the coupling loss factors. The possibility of using ASMA (Asymptotical Scaled 

Modal Analysis) to predict EICs (Energy Influence Coefficients) and coupling loss factors at 

various values of the modal overlap factor were analysed. Numerical results were presented and 

they are quite satisfactory even if more work is required.  

The Energy Distribution Approach, EDA, furnished a theoretical frame for the overall scaling 

procedure. The results presented herein have again shown the versatility and computational 

convenience of ASMA, and it can be directly applied using any finite element solver.  

Some points need to be addressed in the future, for gaining more confidence in using ASMA 

and EIC:  

1) Analysis of the error in estimating the coupling loss factors.  
2) Analysis of the scaling procedure for the plate assemblies RR, DD and PP, ref.[5].  
3) Analysis of the approximations included in ref.[5] when working with the scaling procedure 

aimed at the estimation of the coupling loss factors. 
4) Evaluation of the scaled responses and estimation of coupling loss factors for the 

configurations where different forms of modal densities are involved (plate + beam, plate + 
acoustic volume, etc.). 

5) Evaluation of the scaled responses and estimation of coupling loss factors for the 
configurations in which a physical coupling element has to modelled. 

 

In summary, EDA represents a well posed technique aimed at the evaluation of the energy 

influence coefficients (EIC) that, when appropriately ensemble averaged, can be used to estimate 

the coupling loss factors used in SEA. It allows the assembling of predictive models at increasing 

excitation frequency by using a generic modal base. It was herein demonstrated that ASMA can be 

adopted for such an estimation of the coupling loss factors by using low-cost FEA predictions. 
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