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1. INTRODUCTION

The micromechanical behaviour of the cochlea is an important part of any
physiologically-plausible model of hearing. Figure 1 shows the main components of
the organ of Corti, at one position at the edge of the basilar membrane. The tunnel of
Corti is widely believed to pivot about the bottom left hand corner so that this part of
the basilar membrane (BM) rotates as a more or less rigid body about this point.
Similarly, the tectorial membrane (TM) is believed to rotate about the point of
attachment on the left hand side of Figure 1, but may also undergo other forms of
motion. The TM is separated from the organ of Corti by the cilia, also called the

stereocilia, of the outer hair cells (OHC).

In this report, various lumped-parameter models of the structures shown in Figure 1
will be considered. Initially, the TM will be assumed only to rotate with the same
angular motion as the BM, so that the mechanical system has only one degree of
freedom. The relationship is derived, after Allen (1980), between the transverse
motion of the BM and the shearing motion experienced by the OHC cilia due to the

geometry of the structure,

The TM is then also allowed to move radially, and the equations of motion of this two
degree of freedom mechanical system are derived directly, rather than employing the
electrical analogy used by Allen (1980). This allows the assumptions and
approximations in the model to be clearly expressed, and also provides the motivation
to convert this physically-based two degree of freedom system into an equivalent two
degree of freedom system that only involves single-axis motion, and is thus easier to

visualise.

The active force generated by the OHC body is then incorporated into the model, as in
the model of Neely and Kim (1986), although it is difficult to physically justify what
structure this force on the BM reacts off. An alternative active model is then
discussed, in which the force is assumed to act across a very stiff organ of Corti,

resulting in an active displacement, as in the model of Neely (1993).




We next allow the OHC cilia to have a finite transverse stiffness, so that the BM and
TM can have independent transverse displacements. It is shown that this leads to a

three degree of freedom model, into which an active force due to the OHC cilia can be

readily incorporated.




2. One degree of freedom models

If the transverse stiffness of the OHC cilia is high enough that both the basilar
membrane (BM) and the tectorial membrane (TM) always move parallel to each other
and neither have any radial motion, their geometry can be represented as in F igure 2.
The BM and TM are modelled as rigid structures, of length /, rotating about two
pivots that are a distance /4 apart. They are assumed to undergo a transverse motion of
w at their ends. If the cilia of an outer hair cell at the end of the rotating BM is
assumed to be firmly attached fo the rotating end of the TM, then as these structures

rotate, the cilia will experience a shearing displacement of A.

This geometry was analysed by Allen (1980), who pointed out that the two right hand

triangles in Figure 2 are similar and so, if @ is the angle of rotation, then
sinf=w/l and sinf@=A/h. (2.1,2.2)

Thus the “shear gain”, g, which is a real number defined to be the ratio of the shear

displacement of the cilia to the transverse displacement of the BM is equal to
Alw=g=hll (2.3)

If the masses of the BM and TM are assumed to be concentrated at their ends and to
be equal to My and Mj, and the transverse stiffness of the BM is assumed to be K,
then the transverse response to an external force fau, is governed by the complex-

frequency domain expression
fom = (Kg + 5" Mg + s Mpw, (2.4)

where s is equal to jo for a stable system, and Kz may be complex to include

damping.

The BM mechanical impedance, Zgm, for the one degree of freedom model is thus

equal to




K
Zpy = “2 = B+ o(Mp + M), (2.5)
hy

where Vpm = SW.




3. Two degree of freedom model

A very influential model of the cochlea micromechanics, which has two degrees of
freedom, is described by Allen (1980). Although the physical insight in this paper is
remarkable, some of the assumptions and implications of the model are not

immediately clear and so are worth spelling out.

The model again assumes that the transverse stiffness of the cilia is sufficiently large
that the BM and TM move with the same transverse motion. This is the first degree
of freedom. The TM is, in addition, now allowed to move radially, which is the
second degree of freedom. Figure 3 shows the lumped element representation of this
model, in which My, M7 and Kp again refer to the masses of the BM and TM, and the
transverse stiffness of the BM. Figure 3 also shows the radial stiffness of the TM as
Kt and the radial stiffness opposing the shear motion between the BM and TM, due to
the cilia, as K¢. The roller connection shown in Figure 3 between the BM and TM is
supposed to reflect the fact that their separation is kept constant by a rigid connection,

but that they can slide past each other.

Since the BM and TM have the same transverse motion, as in the one degree of
freedom model shown in Figure 2, the shear displacement of the BM, Agy, due to the

change in geometry caused by its transverse motion, wpy, is again given by

ApMm = gWBM , (3.1

where g is the shear gain, given by the ratio of the height between the pivots, A, and
the length of the rotating structure, /, so that

g=hl. (3.2)

Assuming, for the time being, that there is no additional shear motion of the TM, so
that Aty is Zero, that Kp is zero, and that a static force fpy is used to move the BM by

a transverse displacement wgy, then the shear displacement experienced by K¢ is Agm.




This shear displacement creates a radial force of for on K¢ and the energy stored in
this spring, which is for Apm, must be equal to the work done by the BM, which is
Jfevwem, where the static force fy in this case is equal to the opposing transverse
force due to the stretching of K¢, which is denoted for. Using eqution (3.1) this

transverse force must thus be related to the radial force by

Jor = gfew, (3.3)
where g is again given by equation (3.2).

The transverse motion of the BM and TM to an external force fay is thus governed by

the equation
Som =Kpwem + 5 (Mz + Mr) wam + fer, (3.9)

and the radial motion of the TM due to the radial cilia force foy is governed by the

equation
fer = Kt Amw + 5° MyAqy, (3.5)
where Ary is the radial displacement of the TM.

Note that Mr governs the inertia of the TM in both the transverse and radial
directions. The radial force between the BM and TM is determined by their relative

radial motion and the cilia stiffness, K¢, so that

Jor = Kc(Apm — Awm). (3.6)

Setting equation (3.6) equal to equation (3.5) allows the radial displacement of the
TM to be expressed in terms of that of the BM as

K A (3.7)

A= >
KT+Kc+S MT

The total shear displacement experienced by the cilia A¢ is thus equal to




K, +5*M,
Ki+K.+5'M,

AC = Apm — ATM = ABM . (38)

and so, using equation (3.1), the complex “shear transfer function”, Tspear, relating the
shear displacement of the cilia to the transverse displacement of the BM for this two

degree of freedom model is

AC _ . KT +,5'2MT
= fshear = &

s (3.9)
WBM KT +KC + 8 MT

as derived by Allen (1980).

This shear transfer function is referred to as the “transduction filter” by Allen (1980),
and has also been described as the “second filter”. It provides additional dynamics in
the response between the transverse BM motion and the shearing motion between the
BM and TM. This shearing motion is often assumed to generate the neural excitation

of the inner hair cells via the fluid motion in the sub-tectorial space. Note that the

shear transfer function has a zero at the frequency /K. /M, and a pole at the

higher frequency of \/(KT + K )/ M, .

Also, using equations (3.3) and (3.6), the equation governing the transverse motion of

the BM, equation (3.4), can be written as
fam = Kewpm + 8(Mp + Miwsm + gKcAc, (3.10)

where A_is given as a function of w ,, by equation (3.9). Thus, the overall

mechanical impedance of the two degree of freedom modet is, in agreement with

Allen (1980), equal to

Ko (Kp +5°My)

, (3.11)
s(K7 + K¢ + 52 M)

Zpm =&+S(MB +M7)+
s

where Zy,, is again defined to be fq, / sWgy -

Note that the zero in Z,,,, equation (3.11), does not correspond to the zero in Zpear,

equation (3.9), but that Z,, has a pole at the same frequency as Tipear, at




\/ (K; + K.)/ M. Inpractice, it is often the mobility of the BM that is measured,

which is equal to Zy,,, and so the zero in this measured response, due to the TM

acting as a tuned mass damper, would be at the frequency of the pole in Z,,,.




4. Transformation to single axis motion

The relationship between the radial and transverse motion of the BM in equation (3.1)
can be used to transform the rather complicated lumped element model of Figure 3

into one which has entirely transverse motion, as in Figure 4(a).

We first define an “equivalent transverse motion” due to the shear displacement of the

TM, wi,, , by analogy with equation (3.1), to be

Wiy =Arv /g (4.1)

Now using equation (3.3) for the transverse force acting on the TM, the equation of

motion of the TM, equation (3.5), can be transformed into

Jor = & Kywiy +57g* Mywiy. “2)
which can be written as

for = Kiwiy +s*Miwhy, (4.3)
where X, is equal to gzKT and M is equal to gzMT.

Similarly, the equation describing the radial stiffness of the cilia, equation (3.6) can be

transformed into transverse motion to give

fer = 8 Ke(wp —win) (4.4)
or

fer = K& (way = win) » (4.5)
where K CE = g*Ke.
The equation for the transverse motion of the BM remains, as in equation (3.4), as

Jm =KBWBM+S2(MB+MT)WBM+fCT (4.6)




so that these three equations now define the dynamics of the equivalent two degree of
freedom system shown in Figure 4(a), which only vibrates in the transverse direction.
Note that the shear gain and BM impedance, equations (3.9) and (3.1 1), are
unaffected by this change of viewpoint.

Alternatively, the muiti-axis motion in Figure 3 can be transformed into an equivalent
system which vibrates only radially, as assumed by Neely and Kim (1986). For this

transformation, we need to define an “equivalent radial motion” for the BM as

Ajm =g WEM » (4.7

which is actually equal to the true radial BM motion, as defined in equation (3.1), and

a corresponding equivalent radial force to be

foum = fam/ & (4.8)

The equation of motion for the transverse motion of the BM and TM, equation (3.4),

can then be written, using equation (3.3), as

Joi = KpAhn/ % + 2 (Mp + M1)ARy /8% + fon .9)
or

So = K5 &gy +5% (Mp + M1)" Ay + fox (4.10)
where K is equal to K/ g and (M, +M;)® isequalto (My + M7)/ g2

The equation for the radial motion of the TM and the cilia, equations (3.5) and (3.6),
remain the same in this model and equation (4.10) combined with these two equations
describe a two degree of freedom system vibrating entirely in the radial direction, as

shown in Figure 4(b).

It is this equivalent block diagram that is used by Neely and Kim (1986), although,
rather confusingly, their Figure 3 shows the two degree of freedom system apparently

moving in the transverse direction.

10



5. Active two degree of freedom models

In this section we consider the effect on the two degree of freedom micromechanical
model of having an active force introduced by the body of the outer hair cells, as
considered by Neely and Kim (1986). Note that we are not accounting for any force
generated by the cilia of the outer hair cells, which in this model would act between
the BM and TM, whose relative transverse positions are fixed in Figure 3, so that this

force would generate no additional motion.

In Figure 5(a), the active force is assumed to react across the transverse BM stiffness.
Physically this transverse stiffness is due to the BM bending stiffness, and so it is not
obvious from Figure 1 how this force, which is described as being generated “within
the OHC” by Neely and Kim (1986), can react off the inertial ground shown in Figure
5(a). Nevertheless, this assumption does lead to the model used by Neely and Kim.

The equation of motion of the BM, equation (3.4) is now modified to be of the form
fBM=KBWBM+S2(MB+MT)WBM+fCT_fA' (5.1)

Since the cilia stiffness and the independent TM motion are assumed to be entirely
radial, however, the active transverse force, f, , has no effect on the equations of

motion for these parts of the model, and equations (3.5) and (3.6) remain the same for
this active model. Thus, the shear transfer function, defined by equation (3.9), is

unaffected by the active force in this model.

Similarly, the BM impedanée defined by equation (3.11), which is here written as

Zpass, can be used to express the equation of motion of the BM as
fBM :ZpassSwBM “fA' (52)

In the active model of Neely and Kim (1986), the active force is assumed to be

proportional to the shear displacement of the cilia, A, viaa gain ¥ and a frequency-

dependent OHC response, which has the dimensions of a stiffness and is written

as K o - Using the expression for the shear transfer function in equation (3.9), the

active force can thus be written as

11



Sa == KoucTshearWBM - (5.3)

This active force can be written as
Ja ==V Zyx5WpM > (5.4)

where Z,, is equal to Koy Tgpear /5 » 50 that, referring back to equation (5.2), the

overall impedance of the BM can now be expressed as

Z8M = Lpass T 7 Lot (5.5)
This result is equivalent to equation (12) in Neely and Kim (1986) only if their Z; is
defined as Kp/s + (Mg + M7)s. Although Z; is defined ambiguously below equation
(9) in Neely and Kim (1986), with an undefined mass, this has generally been taken as
a typographical error and it has been assumed to be M. Note, however, that the
definition of the mass in Z; does not affect the active part of the BM impedance in this
model and so the model can be made to have the correct physical interpretation by a

minor redefinition of the mass in Z;.

Since the equations describing the cilia and TM motion are unaffected by the active
force, the transformation of the shear motion of these elements into their “equivalent”
transverse form, described in Section 4, is not affected by the introduction of this
force. Also, the transformed model with only equivalent radial motion, in Figure 4(b),
is only modified by the equivalent active force £, equal to fa/g, acting on the BM,
as shown in Figure 5(b), in which the radial motion is now indicated as acting
vertically so that this figure can be compared more readily to Figure 3 in Neely and

Kim (1986).

It is still difficult with this model to visualise where the active force, generated in the
OHC body by somatic motility, would react off. Another, more physically plausible,
model of somatic motility would involve the organ of Corti in Figure 1 flexing
internally as the OHCs expand and contract. This would, in general, require the
inclusion of an additional mass and stiffness in our lumped-parameter model, and thus

lead to a three degree of freedom system.

12




If, however, we assume that the internal stiffness of the organ of Corti, Kope, which
the active OHC forces act across, is significantly larger than all the other stiffhesses in

our model, then the active force f4 will generate an active displacement of

wa = fa/Kouc , (5.6)

which is substantially independent of the dynamics of the BM and TM, as in the
model of Neely (1993), for example.

Figure 6(a) shows this active displacement incorporated into the two degree of
freedom model of Figure 3, where the active displacement acts between the BM and
OHC cilia. This model assumes that the BM mass is still associated mostly with the
structure under the OHCs in Figure 1, and that the mass of the reticular lamina, which
is now flexing independently of the motion of the BM, is negligible. These
assumptions allow a two degree of freedom model to be retained, since the
introduction of the active displacement does not introduce any additional resonances

into the system.
The equation of motion for the BM, equation (3.4), is now modified to be
Jom = Kewam + s*Maway + *Mr(wem + wa) + for. (5.7)

The analysis in Section 3 relating the relative shear motion experienced by the cilia,
Ac, to the transverse displacement of the BM must now be modified so that Ac is

related to the transverse displacement of the reticular lamina, wgy, so that
Ac = TspearWrLs (5.8)

where wgy, is the sum of the transverse BM displacement and the active transverse

displacement, so that
Ac = Tarear{wnm + Wa). (5.9)

We now assume that the active displacement, wy, is proportional to the shear
displacement of the cilia, Ac, via the frequency-dependent response Topc and the gain

¥, so that

wa =¥ Touc Ac, (5.10)

13



Using equation (5.9) for Ac, then equation (5.10) becomes

wa = ¥ ToucTshear(WBMm + Wa),

$0 that

r_.T

OHC" shear

Wa =12 WRM - (5.11)
[1 7 %ch;hcarjl

Also, for may be written from Section 3 as

Jer = gKc Ac, (5.12)
and using (5.9) again,

Jor = gKeTnea(Wam + Wa). (5.13)
The equation of motion for the BM, equation (5.7), can thus be written as
Som = (Ks + 5°(Ma + Mo))way + S Mrwa + Ko Tspear(Wan + Wa), (5.14)

so that using equation (5.11) for w,, fam can be written as a function only of wpp,

2 }/T T.
Sfam = {Ks +5° (Mp +M 1)+ 8K Typeny + —— oS0 _( 201 +gKCTshear)]WBM'
1- yTOHCTshear

(5.15)

Thus, the overall BM impedance in this case becomes

ToueT.
+ Y LoHC shear Zadd (516)

ZBM = Z
1";VTOHCTshear

pass

where Zps is the same as for the previous model, equation (3.11), and now Z,4q is

equal to (sMt + gKcTpear /) which becomes active when multiplied by the factor

¥ TorcTanear /(0= ¥ Torc Tanear )-

14



Instead of the active part of the BM impedance being directly proportional to the
feedback gain y in the Neely and Kim (1986) model, the active part is now only
directly proportional to y for low gains, and becomes infinite as the model tends to

instability as y approaches (Tonc?: shea,)'l.

It should be noted that in the original derivation of Neely (1993), the transverse
inertial force due to the mass of the TM, s*Mr(wpm + wa) in equation (5.7), appears to
have been ignored. If this term is set to zero in equation (5.7), the modified

expression for the BM impedance becomes

gKCTshear (517)

K
Zhy = ~B +sMp + .
5 s(-7 ToucTshear )

. K
In the notation of Neely (1993), we can define Z, = —2 + sMp,
s

K K
Z ZTT+sMT, z, =TC, g=8, and H, =~y Tonc

so that

e, 2
Tihear = =2~ ié : (5.18)
t [}

and equation (5.17) can be written as

(5.19)

in agreement with the reciprocal of the Neely (1993) expression for the admittance of
the cochlear partition, in his equations (18) and (19).

The equivalent transverse system for this two degree of freedom system is shown in
Figure 6(b) and can be deduced from equation (5.7) and the equivalent system
interpretation of fer in equations (4.3) and (4.5) except that now wgy; must be used
instead of wgy in (4.5). The most important additional element comes from the term

s*Mr(wgm + wa) in equation (5.7), since this is the transverse inertial force due to a

mass of My positioned above the RL and so appears in addition to the element A/ % ,

which is due to the radial inertia of M7t in the new equivalent mechanical system.

15



A slightly modified form of this two degree of freedom system, as shown in Figure
7(a), is also worth mentioning, which is consistent with the recent measurements of
the relative motions of the TM, RL and BM (Gummer et af., 1996; Hemmert ef al.,
2000; Nowotny and Gummer, 2006). In this model the reticular lamina (RL) is
represented as a rigid beam of negligible mass that is pivoted about the top of the
tunnel of Corti. For small rotations the relationship between the cilia shear
displacement and the transverse RL displacement, given by equation (5.9) is
unaffected by this rotation, provided the shear displacement is defined to be above the
point of application of the active displacement, where the distance between the RL
and TM is kept constant by the rolling junction. This point is assumed to be at one of
the OHC positions. Although the TM and/or RL would have to be allowed to bend a
little if the action of all three OHCs were to be taken into account this way, such a
modification would not affect the underlying dynamics. The significant difference
now comes at the inner hair cell (IHC) positions, on the left of the RL pivot, which
now moves out of phase with the motion at the OHCs, as observed by Nowotny and
Gummer (2006). This modification does not, however, affect the motion of the BM,
RL and TM at the OHC positions, which is required to deduce the BM impedance
above. The relationship between the fluid motion in the sub-tectorial gap and the cilia

motion of the IHC is significantly affected by the rocking of the RL, however.

The active feedback loop driving the displacement w4 can also be re-interpreted in the
equivalent uni-directional system shown in Figure 7(b). This displacement is
assumed to be proportional to the OHC shear cilia displacement, Ac, in equation
(5.10). Note that equivalent transverse force acting on the RL, equation (5.12), can be

written as
KE
fer= ———gc Ac (5.20)

so that the shear OHC cilia displacement is equal to

16



g

AC =0
K¢

fer- (5.21)

Combining this equation with (5.10) gives a new expression for the active

displacement as
wa = yHfcT, (5.22)

where H = gToye /Kg‘ . The active displacement can thus be thought of as being

generated by the equivalent transverse force acting on the TM through Kg , as shown

in Figure 7(b).

17



6. Three degree of freedom model

A more complete model of the dynamics would allow independent transverse motion
of the TM, as well as shear motion. This would be possible if the OHC cilia were
allowed to have a finite transverse stiffness, K¢, as shown in Figure 8(a). The finite
transverse stiffness of the TM, Krr, could then also be accounted for, in addition to its
shear stiffness, Krr. as shown in Figure 8(a). Although the transverse and shear
motion of the BM are still proportional to one another, since the tunnel of Corti is
assumed rigid, and so this motion only constitutes a single degree of freedom, the
transverse and shear motion of the TM are two additional degrees of freedom in this

model, which thus constitutes a three degree of freedom system overall.

With no active force present, the equation of transverse motion for the BM is now

Fam = Kawpm + 52 Mgwgy + fort + fora s 6.1y

where f.;, is again given by equation (3.3) and £, is the transverse force generated

by the transverse stiffness of the cilia, Kcr, so that
Jer, = Ker(wem — wm). (6.2)
The transverse motion of the TM is now governed by the additional equation
Jorn = Krrwmm + s*Mrwrm , (6.3)

where Kyr is the transverse stiffness of the TM,

The shear force acting on the TM, equation (3.6), and its equation of shear motion,
equation (3.5), are not influenced by this additional degree of freedom. The

transformation of the shear TM motion, Ay, into “equivalent” transverse TM motion,
w'TEM, is thus unaffected by the physical transverse displacement of the TM, wry, and
the two displacements wty and wk,, are independent. The equivalent single-axis
model for the three degree of freedom model variables, in the transverse direction, is
thus shown in Figure 8(b), where Kg 18 how gZKCR and Kf is now gzKTR, and M f

is again g’ Mr.

18



It is now possible to model the active force generated by the OHC cilia, via the
“bundle motility”, instead of that generated by the “somatic motility” of the OHC
body. This active force acts between the BM and TM, across the stiffness Kct in
Figures 8(a) and 8(b).

Considering now the active force, fa, in the equivalent single-axis model of Figure

8(b), the equation of motion for the BM can be written as
Sou =KBWBM+SZMBWBM+fCT1+fCT2 + S (6.4)

Jen 18 the transverse force on the BM due to the shear motion of the TM and is thus

equal to

Jern = Ke (W = Wiy, (6.5)
and

Jer = (KT + 5> M7)Wiy, (6.6)
so that

fen = Ké{ P }WBM - 67)

Jca 1s the transverse force on the BM due to the transverse motion of the TM and is

equal to

Jer2 =Ky (Wgpg =Wy )» (6.8)
and

Jern =Ko + MWy + 1, (6.9)
so that
Je = KC{KWK:}J: ?:QTMT }WBM Ko+ Iii TS (6.10)

19



Thus the BM equation of motion (6.4), becomes

Tomt = Zagy Warg + Tpren S (6.11)
where
E
imee _ Kp M. e KT +s*M; + Ker Kpp +52Mp
pass — sy + E E 23 rE 2 4
s s | K+ K7 +5"M; S | Kpp +Kep +5° Mo
(6.12)
and
K. +2K. +sM
Tiree= — 222175 Hn (6.13)

Ky +Kep +8°M;
We now assume that the active force is proportional to the shear cilia displacement,

Ja =y KaiiaAc (6.14)

where Kejji is now the frequency-dependent cilia response, with the same dimensions
as a stiffness, and y is a gain. The shear displacement of the cilia, Ac, is still related to
wpM Via the shear transfer function, Tipear, since the transverse active force again does

not affect the radial TM motion, so that
Ja=y KeitiaTshear Wy - (6.15)

Substituting this expression for f4 into equation (6.11), the overall BM impedance can

again be written as the linear sum of an active and passive impedance

o= Zgty Z0 (6.16)

pass act

where Z™ is given by equation (6.12) and

pass

Z0e = K itiaT shear Litree/ . (6.17)

act

In this section the cilia force is assumed to act in a transverse direction and thus not
influence the radial motion of the TM. Similarly, the active force or active

displacement generated by the OHC body in the previous section was purely

20



transverse. In all of these cases the active components do not affect the linear
relationship between the shear displacement of the cilia and the transverse BM
motion, given by equation (3.9). Thus the additional transverse force on the BM is
linearly proportional to transverse BM motion in all cases, so that the overall
impedance is the sum of a passive component and an active component proportional
to the active gain y. Although the interpretation of the passive and active impedances

varies depending on the model being used, this useful structure of Zpy is retained.

Unfortunately, seven parameters: five stiffnesses and two masses, are required to
specify the behaviour of this three degree of freedom model. (Note that M7 is equal

to g°Mr and thus does not need to be independently estimated.) These parameters
could, in principle, be deduced from dynamic measurements made on the BM and
TM, although some assumptions would still need to be made about how they varied

along the length of the cochlea.

Depending upon the natural frequencies of the two TM degrees of freedom in Figure
8, and that of the BM, it may be possible to approximate the effect of one of these by
an additional BM mass or stiffness. This would result in another two degree of
freedom model, but one that could be derived in a physiologically plausible way from

the behaviour of the cochlea with bundle motility.
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7. Summary and Conclusions

This report has considered various lumped-parameter models for cochlear micro-
mechanics. The shear gain, between transverse basilar membrane displacement and
the shear displacement of the outer hair cell cilia, is first derived using the one-
dimensional model of Allen (1980). The underlying assumptions of Allen’s two-
dimensional model are then examined, which includes independent shear motion as
well as transverse motion of the tectorial membrane. The equations of motion
describing this two-dimensional model can be re-formulated to give equivalent

mechanical systems that vibrate only in the transverse or only in the radial directions.

It is the latter interpretation of Allen’s (1980) two-dimensional model that is used by
Neely and Kim (1986) in their widely-used active micro-mechanical model. The
governing equations for this model are used to derive the overall mechanical
impedance of the basilar membrane, but the plausibility is questioned of having an
active force on the basilar membrane, without it apparently having any physical
structure 1o react off. An alternative active two degree of freedom model, in which the
outer hair cell body produces a specified displacement, as suggested by Neely (1993),
is then examined. The equivalent mechanical system vibrating only in the transverse
direction is derived for this model. It is seen that the transverse inertia of the tectorial
membrane appears to have been missed from the models of both Neely and Kim
(1986) and Neely (1993). Whereas in the former case this inertia only affects the
interpretation of the mass of one element, an additional mass has to be introduced into
Neely’s 1993 model to account for this inertia, which will significantly affect its

dynamics.

Finally, it is noted that independent transverse motion of the tectorial membrane and
basilar membrane, as required if the outer hair cell ¢ilia are assumed to generate the

active force, requires a three degree of freedom model.
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Tectorial membrane

Reticular lamina

Tunnel of Corti Basilar membrane

Figure 1. The main physiological parts of the organ of Corti, including one end of the
basilar membrane (BM) and the tectorial membrane (TM), which are separated by the
cilia of the outer hair cells (OHC).

Figure 2. One degree of freedom micromechanical model, in which the BM and T™M
are assumed to always move parallel to one another with no radial motion, and for
which the ratio of the shear displacement to the transverse displacement, the shear

gain g=A/w,isequalto »/1.
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Figure 3. Two degree of freedom micromechanical model, after Allen (1980). The
BM and TM are assumed to have the same transverse displacement, wgy, but in
addition the TM is allowed to have a radial displacement A1y, which combines with
the radial displacement of the BM due to the transverse motion, Apy, to give the total

shear displacement experienced by the cilia.
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Figure 4. Two degree of freedom micromechanical model of Figure 3 transformed so
all the motion is in the transverse direction (a), or so that all the motion is in the radial

direction (b).
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Figure 5. Two degree of freedom micromechanical model including an active force,
Jfa, acting on the BM: (a) in physical form, as Figure 3 and (b) so that the motion is all

transformed into equivalent radial motion, as in Figure 4(b), after Neely and Kim
(1986).
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Figure 6. Two degree of freedom micromechanical model including an active
displacement, wa, generated within the organ of Corti and acting between the BM and

OHC cilia in physical form (a) and when all the motion is transformed into equivalent

transverse motion (b).
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Figure 7. Modified form of the two degree of freedom model with active
displacement which accounts for the rotation of the reticular lamina about the tunnel
of Corti (a), and the system in which all motion is transformed into equivalent
transverse motion and the feedback loop is explicitly shown from cilia force,

proportional to cilia shear displacement, to the active displacement (b).
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Figure 8. A three degree of freedom model allowing independent transverse motion
of both the BM and TM (a) and an equivalent transformed system in which all the
motions are vertical (b). The active force generated by the OHC cilia can now be

modelled as acting between the BM and TM.
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