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Abstract
The Biot and the modified Biot–Attenborough (MBA) models have been found
useful to understand ultrasonic wave propagation in cancellous bone. However,
neither of the models, as previously applied to cancellous bone, allows for the
angular dependence of acoustic properties with direction. The present study
aims to account for the acoustic anisotropy in cancellous bone, by introducing
empirical angle-dependent input parameters, as defined for a highly oriented
structure, into the Biot and the MBA models. The anisotropy of the angle-
dependent Biot model is attributed to the variation in the elastic moduli of the
skeletal frame with respect to the trabecular alignment. The angle-dependent
MBA model employs a simple empirical way of using the parametric fit for
the fast and the slow wave speeds. The angle-dependent models were used to
predict both the fast and slow wave velocities as a function of propagation angle
with respect to the trabecular alignment of cancellous bone. The predictions
were compared with those of the Schoenberg model for anisotropy in cancellous
bone and in vitro experimental measurements from the literature. The angle-
dependent models successfully predicted the angular dependence of phase
velocity of the fast wave with direction. The root-mean-square errors of
the measured versus predicted fast wave velocities were 79.2 m s−1 (angle-
dependent Biot model) and 36.1 m s−1 (angle-dependent MBA model). They
also predicted the fact that the slow wave is nearly independent of propagation
angle for angles about 50◦, but consistently underestimated the slow wave
velocity with the root-mean-square errors of 187.2 m s−1 (angle-dependent Biot
model) and 240.8 m s−1 (angle-dependent MBA model). The study indicates
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that the angle-dependent models reasonably replicate the acoustic anisotropy
in cancellous bone.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, quantitative ultrasound (QUS) technologies have played a growing role in the
diagnosis of osteoporosis and are gradually becoming an integrated part of the clinical means
of bone fracture risk assessment. It is known that ultrasonic wave propagation is responsive to
several properties of bone such as density, material properties and microarchitecture (Chaffai
et al 2002, Nicholson et al 2001, Wear 2003, 2005). Most of the current clinical QUS
devices measure the speed of sound (SOS) and the broadband ultrasonic attenuation (BUA) at
peripheral skeletal sites which contain cancellous bone, such as the calcaneus and finger
phalanges (Njeh et al 1999). Cancellous bone is a highly porous, anisotropic medium
composed of a cellular network of calcified strands or plates called trabeculae, filled with
fatty bone marrow. Accordingly, the ultrasonic parameters are sensitive to the anisotropy
of cancellous bone, while the underlying physical mechanisms for this remain only partly
understood (Hosokawa and Otani 1998, Hughes et al 1999, Wear 2000).

The Biot model (1956a, 1956b, 1962) has been applied to gain an insight into ultrasonic
wave propagation in cancellous bone, with varying degrees of success (Fellah et al 2004,
Haire and Langton 1999, Hosokawa 2005, Hosokawa and Otani 1997, 1998, Hughes et al
1999, 2003, Lee and Yoon 2006, McKelvie and Palmer 1991, Mohamed et al 2003, Wear
et al 2005, Williams 1992). Recently, Wear et al (2005) have successfully applied the Biot
model to predict the dependence of phase velocity on porosity in human calcaneus samples.
The Biot model was initially employed to interpret ultrasonic tests in porous rock samples.
In 1970, the model was taken by Stoll and Bryan (1970) in a form more suitable for water-
saturated sediments. It is now regarded as the theory which is most widely accepted for wave
propagation in fluid-saturated porous media. The Biot model predicts the existence of two
compressional waves, called fast and slow waves, and one shear wave. The fast wave is a bulk
wave where the fluid and the solid move in phase. The slow wave corresponds to a wave where
the fluid and the solid move out of phase. Potential shortcomings of the Biot model are that
it depends on a large number of input parameters which are not necessarily easily measured,
and it predicts absorption due to the viscous losses at internal interfaces only.

The Schoenberg model (Schoenberg 1984) is a much simpler, potential alternative to
the Biot model. This was first applied to the study of ultrasonic wave propagation in
cancellous bone by Hughes et al (1999). The Schoenberg model considers parallel solid–fluid
layers periodically alternating as shown in figure 1. In the Schoenberg model, the complex
architecture of cancellous bone is modelled as a simple layered structure of alternating parallel
bone-marrow plates. The model predicts two compressional waves which are equivalent to
the fast and the slow waves of the Biot model. An interesting feature of the Schoenberg
model, as opposed to the basic Biot model, is that it is essentially an anisotropic model.
Hughes et al (1999) have successfully employed the Schoenberg model to predict the angular
dependences of phase velocities for the fast and the slow waves in bovine cancellous bone.
Padilla and Laugier (2000) have interpreted the experimental observation of the slow wave in
cancellous bone as a function of propagation angle using the model. However, the Schoenberg
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Figure 1. Geometry of the Schoenberg model for acoustic wave propagation in periodically
alternating parallel solid–fluid layers.

model takes no account of the effect of viscous absorption of the interstitial fluid on wave
propagation.

Roh and Yoon (2004) have proposed a modified Biot–Attenborough (MBA) model for
acoustic wave propagation in fluid-saturated porous media with circular cylindrical pores. Lee
et al (2003) have successfully applied the MBA model to predict the dependences of velocity
and attenuation on frequency and porosity in bovine cancellous bone. As previously applied
to cancellous bone (Lee et al 2003, Lee and Yoon 2006), the MBA model assumes that all
of the cylindrical pores in cancellous bone have identical orientation normal to the surface
and are parallel to the wave propagation direction. Moreover, consideration is restricted to
motion in a single dimension. The MBA model is based on separate treatments of the viscous
and the thermal effects of the fluid according to Attenborough (1982, 1983). The Biot model
has the merit of including the viscous effect of the interstitial fluid, but it does not take into
account the thermal effect. Although Attenborough’s theory considers both the viscous and
the thermal effects, it does not include the fast wave of the Biot model because it takes the pore
frame as a rigid material. In contrast, the MBA model includes the thermal effect specified
by an analytic solution and also allows for an elastic solid and fluid medium by means of a
parametric fit. Thus, the model is an empirically mixed approach combining the merits of the
two approaches of Biot and Attenborough. One drawback of the MBA model is that it relies
on the empirical parameters determined from experimental data.

Despite the fact that the Biot and the MBA models have been successfully used in the
study of cancellous bone whose trabecular structures are in general anisotropic, they have
both been limited by the assumption of isotropy. In contrast, the Schoenberg model is very
simple compared with these two models, but it is capable of modelling anisotropic structures.
The present study builds on the success of modelling anisotropy with the Schoenberg model,
aiming at modifying the Biot and the MBA models in order to account for anisotropic structures
of cancellous bone. The modifications were made by introducing empirical angle-dependent
input parameters, as defined for a highly oriented structure, into the two models. The angle-
dependent models were then used to predict both the fast and the slow wave velocities as a
function of propagation angle with respect to the trabecular alignment of anisotropic cancellous
bone. The predictions were compared with those of the Schoenberg model and in vitro
experimental measurements from the literature.
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2. Empirical angle-dependent input parameters

2.1. Empirical angle-dependent input parameter of the Biot model

Gibson (1985) has shown that the exponent of the power law for the elastic moduli, n in
equation (A.14), varies from 1 to 3, depending on the nature of the skeletal frame and the
direction of testing. Testing along the direction of trabecular alignment results in a value of
n close to 1. When the structure is more random, i.e., the trabeculae are not aligned in any
direction, or when the material is tested in a direction other than that of the major alignment
of the trabeculae, n increases to between 2 and 3. The value of n can be determined by curve
fitting to the measured phase velocity data as a function of porosity. Williams (1992) has
obtained a value of n = 1.23 for bovine tibial cancellous bone with an oriented columnar
structure (i.e., for propagation parallel to the dominant structural orientation), and a value of
n = 2.35 for bovine femoral cancellous bone with a random structure (i.e., for propagation
perpendicular to the dominant structural orientation). It is conceivable that, making the
exponent n be a function of angle (i.e., through the angle-dependent Young’s, bulk, and shear
moduli of the skeletal frame), the Biot model may have an anisotropic response which models
the anisotropic characteristics of ultrasonic wave propagation in cancellous bone. As a first
stage in this process, provided that the exponent n is found for a highly oriented structure as
a function of propagation angle θ , the Biot model may be modified such that it can model the
angle-dependent characteristic of wave propagation through such a structure. If we assume
that the exponent n varies with propagation angle θ as n(θ) = n1 sin2(θ) + n2 cos2(θ), then
taking n1 = 1.23 and n2 = 2.35 from the work of Williams (1992) gives

n(θ) = 1.23 sin2(θ) + 2.35 cos2(θ), (1)

where 0◦ (n = 2.35) and 90◦ (n = 1.23) correspond to the directions of wave propagation
perpendicular and parallel to the dominant structural orientation, respectively, as in the
Schoenberg model. Equation (1) may enable the Biot model to predict the dependence
of phase velocity on the direction of propagation in cancellous bone.

2.2. Empirical angle-dependent input parameter of the MBA model

The phase velocity parameter s2 in equations (B.7) and (B.9) depends on the direction of
loading and varies from 0 to 2 (Lee et al 2003, Lee and Yoon 2006). The parameter s2 has a
value close to 0 when the material is loaded along the direction of trabecular alignment and
has a value between 1 and 2 in the transverse direction. Thus, in predicting the phase velocity
in cancellous bone, it may be regarded that s2 plays a role equivalent to that of the exponent n

of the Biot model. In the same way for determining the exponent n in the Biot model, s2 can be
optimized by curve fitting to the measured phase velocity data as a function of porosity (Lee
et al 2003). Recently, Lee and Yoon (2006) have obtained a value of s2 = 0.8 for propagation
in the direction parallel to the trabeculae of bovine cancellous bone, and a value of s2 = 1.6
in the perpendicular direction. A similar approach that resulted in equation (1) can be taken
to obtain an angle-dependent phase velocity parameter s2(θ) in the form of

s2(θ) = 0.5 sin2(θ) + 1.7 cos2(θ), (2)

where 0◦ (s2 = 1.7) and 90◦ (s2 = 0.5) correspond to the directions of wave propagation
perpendicular and parallel to the dominant structural orientation, respectively. The upper and
the lower limits of s2(θ) at 0◦ and 90◦ were determined by curve fitting to the experimental
data of phase velocity as a function of propagation angle measured by Hughes et al (1999).
Making s2 be a function of propagation angle θ (as given by equation (2)) enables the MBA
model to be used for predicting the anisotropic phase velocity in cancellous bone.



Empirical angle-dependent Biot and MBA models 63

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

Slow wave

Fast wave

  Angle-dependent Biot model
  Angle-dependent MBA model
  Schoenberg model
  Bovine tibia (Hughes et al 1999)

P
ha

se
 V

el
oc

ity
 a

t 
1 

M
H

z 
[m

/s
]

Propagation Angle [degrees]

Figure 2. Phase velocities at 1 MHz of the fast and the slow waves as a function of propagation
angle predicted by the angle-dependent models and the Schoenberg model for a porosity of 0.65.
Experimental measurements at 920 kHz made on one sample of bovine cancellous bone by Hughes
et al (1999) are also plotted.

3. Results

Figure 2 shows the phase velocities at 1 MHz of the fast and the slow waves as a function of
propagation angle predicted by the angle-dependent Biot and MBA models for a porosity of
0.65. The predictions are compared with those of the Schoenberg model for the consistent
input parameters. The input parameters of the Biot, the MBA and the Schoenberg models
for cancellous bone are summarized in table 1. In the figure, the propagation angle 0◦

corresponds to the direction perpendicular to the dominant structural orientation, and 90◦

represents the parallel direction. The solid and the dashed curves stand for the predictions made
by the angle-dependent Biot and MBA models, respectively, while the dotted curves represent
the Schoenberg model. As seen in the figure, the phase velocity of the slow wave remains
almost unchanged. However, the fast wave velocity varies relatively significantly with the
angle and has its maximum value at 90◦, i.e., for a propagation direction parallel to the dominant
structural orientation. For both the fast and the slow waves, the angle-dependent models are
monotonically increasing and converge as the angle increases. They are almost in agreement
for the fast wave when the angle is higher than 60◦. In contrast, the Schoenberg model has
a local maximum at about 30◦ (critical angle) and shows a substantially different behaviour,
with the slow wave velocity decreasing to 0 m s−1 as the angle is reduced to 0◦. It may be
worth noting that Padilla and Laugier (2000) have shown that the slow wave would disappear
at high angles of incidence to the trabeculae. For the angles larger than the critical angle,
the Schoenberg model converges with the angle-dependent models as the angle increases in
different ways for the fast and the slow waves; the slow wave velocity data remain higher than
the angle-dependent models, while the fast wave velocity data lie under the angle-dependent
models.

As figure 2 shows, the three models are also compared with the experimental
measurements at 920 kHz made on one sample of bovine cancellous bone by Hughes et al
(1999), this being the same data as that used to fit the angle-dependent models. It should be
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Table 1. Input parameters of the Biot, the MBA and the Schoenberg models for cancellous bone.

Parameter Biot MBA Schoenberg

Density of solid (ρs ) 1960 kg m−3 1960 kg m−3 1960 kg m−3

Compressional speed of solid (cs ) 3800 m s−1 3800 m s−1

Shear speed of solid (csh) 1800 m s−1

Young’s modulus of solid (Es ) 20 GPa
Poisson’s ratio of solid (νs ) 0.32
Poisson’s ratio of frame (νb) 0.32
Density of fluid (ρf ) 1000 kg m−3 1000 kg m−3 1000 kg m−3

Compressional speed of fluid (cf ) 1483 m s−1 1483 m s−1

Bulk modulus of fluid (Kf ) 2.2 GPa
Viscosity of fluid (η) 0.001 Pa s
Kinematic viscosity of fluid (ν) 1×10−6 m2 s−1

Specific heat ratio of fluid (γ ) 1.004
Prandtl number of fluid (NPr) 7
Permeability (k) 5×10−9 m2

Variable (r) 0.25
Porosity (β) 0.65 0.65 0.65
Pore radius (a) Equation (A.5) 0.5 mm
Tortuosity (α) Equation (A.12) 1
Exponent (n) Equation (1)
Boundary condition parameter (s1) 1.5
Phase velocity parameter (s2) Equation (2)

noted that the comparison of the phase velocities at the two different frequencies would not
be problematic owing to the relatively nondispersive nature in bovine cancellous bone from
0.5 to 1 MHz (Hosokawa and Otani 1997, Lee et al 2003). As may be expected, the fast
wave velocities of the angle-dependent models are in a good agreement with the experimental
measurements, even if the measured data are only available for a limited range of angles.
The root-mean-square errors of the measured versus predicted fast wave velocities were
79.2 m s−1 (angle-dependent Biot model), 36.1 m s−1 (angle-dependent MBA model) and 247.2
(Schoenberg model). In contrast, the predicted velocities for the slow wave were found to be
underestimated compared to the measurement with the root-mean-square errors of 187.2 m s−1

(angle-dependent Biot model), 240.8 m s−1 (angle-dependent MBA model) and 79.6
(Schoenberg model).

Plotted in figure 3 are the phase velocities at 1 MHz of the fast and the slow waves as a
function of porosity predicted by the angle-dependent models and the Schoenberg model for
propagation parallel to the dominant structural orientation (propagation angle of 90◦). The
general trends predicted by all the models are that the phase velocity decreases with porosity
for the fast wave, while it increases with porosity for the slow wave. The angle-dependent
models are in a good agreement with each other for both the fast and the slow waves. In
the fast wave, the angle-dependent models predict the velocity decreased significantly from
3800 to 1483 m s−1 with increasing porosity, while the Schoenberg model predicts an almost
constant value over a wide range of porosities. In contrast, the dependence of the slow wave
velocity on porosity is quite similar for all the three models over a wide range of porosities.
It is remarkable that, unlike the other two models, the angle-dependent Biot model predicts a
rapid decrease in velocity to 0 m s−1 for the porosities higher than about 0.99.

Experimental verification was made by comparing the predictions of the models with
measurements made in the direction parallel to the trabeculae of bovine cancellous bone
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Figure 3. Phase velocities at 1 MHz of the fast and the slow waves as a function of porosity
predicted by the angle-dependent models and the Schoenberg model for propagation parallel to
the dominant structural orientation (propagation angle of 90◦). Experimental measurements made
in the direction parallel to the trabeculae of bovine cancellous bone (Hosokawa and Otani 1997,
Williams 1992) are also plotted.

(Hosokawa and Otani 1997, Williams 1992). There is a limitation on these data, as
measurements are only available for a narrow range of porosities near to physiological
porosities. The 32 squares in figure 3 correspond to the bovine tibia samples taken from
Williams (1992) and the 8 circles the bovine femur samples from Hosokawa and Otani (1997).
The root-mean-square errors of the measured versus predicted fast wave velocities were
234.1 m s−1 (angle-dependent Biot model), 231.9 m s−1 (angle-dependent MBA model) and
407.6 (Schoenberg model). The fast wave velocities of the angle-dependent models show
a reasonable agreement with the experimental data obtained by Williams (1992). However,
they are substantially higher than the experimental measurements reported by Hosokawa and
Otani (1997). This may be attributed to the fact that the trabecular structure of the bovine
femoral samples used by Hosokawa and Otani (1997) was more heterogeneous, with less of
an oriented or layered structure as assumed in the models. As mentioned in section 2.1, the
value of the exponent n of the Biot model depends on the direction of loading or the direction
of propagation, varying from 1 to 3. In fact, Hosokawa and Otani (1997) have obtained
n = 1.46 in the direction parallel to the trabeculae of bovine femur, while Williams (1992)
has found n = 1.23 in bovine tibia with an oriented columnar structure. As shown in figure 3,
all the three models successfully predicted the porosity dependence of phase velocity of the
slow wave with the root-mean-square errors of 90.1 m s−1 (angle-dependent Biot model),
85.7 m s−1 (angle-dependent MBA model) and 36.5 (Schoenberg model).

Figure 4 displays the phase velocities at 1 MHz of the fast and the slow waves as a
function of porosity predicted by the angle-dependent models and the Schoenberg model for
propagation perpendicular to the dominant structural orientation (propagation angle of 0◦). As
seen in the case for the propagation angle of 90◦ (figure 3), although there are large differences
between the models, the general trends on the velocity against porosity are preserved, i.e., the
phase velocity decreases with porosity for the fast wave, while it increases with porosity for
the slow wave. As seen in figure 4, for the range of physiological porosities, the predictions of
the three models for the fast wave velocity converge as the porosity approaches 1. It is noted
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Figure 4. Phase velocities at 1 MHz of the fast and the slow waves as a function of porosity
predicted by the angle-dependent models and the Schoenberg model for propagation perpendicular
to the dominant structural orientation (propagation angle of 0◦). Experimental measurements made
in the direction perpendicular to the trabeculae of bovine (Hosokawa and Otani 1998, Lee et al
2003) and human (Wear et al 2005) cancellous bones are also plotted.

that the predicted values of the velocity are much lower than those for propagation parallel
to the dominant structural orientation (see figure 3). Regardless of the propagation angle,
the angle-dependent models are capable of predicting velocities of both compressional wave
types. However, the Schoenberg model predicts only the fast wave when the propagation
direction is perpendicular to the dominant structural orientation. More precisely, as indicated
in figure 2, the Schoenberg model yields the phase velocity of the slow wave to be 0 m s−1

at 0◦. Such directional dependence may be due to inertial coupling between the solid and
the fluid in Schoenberg’s layered structure, as previously described by Hughes et al (1999).
For propagation perpendicular to the dominant structural orientation, the inertial coupling is
large, and the motions of the solid and the fluid are fully locked together. Only the fast wave
propagates because the relative motion associated with the slow wave is impeded.

The predicted velocities of the fast wave are compared with several experimental
measurements made in the direction perpendicular to the trabeculae of bovine (Hosokawa
and Otani 1998, Lee et al 2003) and human (Wear et al 2005) cancellous bones. The 10
squares in figure 4 correspond to the bovine femur samples (with porosities from 0.69 to 0.93)
taken from Hosokawa and Otani (1998), the 12 circles the bovine tibia samples (from
0.67 to 0.92) from Lee et al (2003) and the 53 triangles the human calcaneus samples
(from 0.86 to 0.98) from Wear et al (2005). It is shown that the angle-dependent models
agree reasonably well with in vitro measurements for the physiological range of porosities.
The root-mean-square errors of the measured versus predicted fast wave velocities were
61.8 m s−1 (angle-dependent Biot model), 78.1 m s−1 (angle-dependent MBA model) and 99.9
(Schoenberg model).

4. Discussion

In the present study, the parameter values of the Biot model for the solid bone were taken from
the work of Williams (1992) because n(θ) of equation (1) were determined from the values of
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the exponent n optimized for the direction of propagation by Williams (1992). All parameter
values for the pore fluid are equal to those for water because the predictions are compared with
the experimental measurements for defatted, water-saturated bone samples from the literature.
The three models have consistent input parameters for a fair comparison between them, as
shown in table 1. One feature of this range of models has been the numerous parameters
used as input or as fitting parameters. For example, the Biot model requires 14 parameters
including frequency, of which around the four are not easy to estimate. The sensitivity of
each physical parameter of cancellous bone used in the Biot model has been reported by
Fellah et al (2004). Numerical simulations of transmitted waves in the time domain were
run by varying the parameters of cancellous bone and the variation applied to the governing
parameters was 20%. They showed the importance of the values of these parameters in fast
and slow wave arrival times (speeds) and attenuation, respectively. In contrast, the MBA
model uses commonly known input parameters, at the cost of introducing simplifications such
as an enforced tortuosity of unity (Lee et al 2003). Our future work is to gain an insight into
the sensitivity of the predictions of the fast and the slow wave velocities to the values of the
physical parameters that are input into the angle-dependent models.

The Biot and the MBA models for acoustic wave propagation in porous media have
been found useful to predict wave properties in cancellous bone (Fellah et al 2004, Haire
and Langton 1999, Hosokawa 2005, Hosokawa and Otani 1997, 1998, Hughes et al 1999,
2003, Lee et al 2003, Lee and Yoon 2006, McKelvie and Palmer 1991, Mohamed et al 2003,
Wear et al 2005, Williams 1992). However, neither of the models, as previously applied to
cancellous bone, allows for the angular dependence of acoustic properties with direction. In
the present study, these two models have been modified in an attempt to predict the anisotropic
phase velocity as a function of propagation angle with respect to the trabecular alignment
of cancellous bone. The anisotropy of the angle-dependent Biot model is attributed to the
variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment.
The angle-dependent MBA model employs a simple empirical way of using the parametric fit
for the fast and the slow wave speeds.

Significant differences can be observed between the angle-dependent models and the
Schoenberg model for the fast wave velocity as a function of porosity for propagation parallel
(figure 3) and perpendicular (figure 4) to the dominant structural orientation. This discrepancy
may be attributable to the fact that they were derived from fundamentally different perspectives.
Although the Schoenberg model has been relatively successful in predicting the anisotropic
nature of the fast and the slow wave velocities, it clearly gives an oversimplification of the
structure of cancellous bone, which lends itself to the modifications of the Biot and the MBA
models. Bone consisting of solid, parallel plates exists in very few skeletal sites over areas
of less than a few centimetres, and is more usually found having arching plates filled with
perforations. Furthermore, the omission of fluid viscosity by Schoenberg’s approach prevents
it from accounting for viscous effects; similarly thermal effects are neglected. By contrast,
the Biot-based models discussed here provide a comprehensive and more realistic description
of the porous structure and fluid dynamics, but which is perhaps too detailed to be of practical
use. Those different features described may result in substantial discrepancy between the
angle-dependent models and the Schoenberg model. However, the models help to provide
a greater insight into the nature of propagation in cancellous bone, which can be built on in
future research.

Analysis of the angle-dependent Biot model reveals that the angular dependence of wave
properties may be attributed to the mechanical anisotropy of the skeletal frame which is based
on Gibson’s cellular solid model (Gibson and Ashby 1997). Indeed, the introduction of the
angle-dependent mechanical properties of the skeletal frame, equations (A.14)–(A.16), leads
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to the prediction of an anisotropic response of cancellous bone. This empirical approach
essentially assumes the elastic isotropy of cancellous bone, whereas cancellous bone is highly
anisotropic and inhomogeneous due to the varying composition of its constituents. Recently, an
interesting method of data analysis for a set of elastic constant measurements has been reported,
dealing with variable composition anisotropic elastic materials, such as cancellous bone,
hardwood and softwood, whose elastic coefficients depend upon the particular composition of
the material (Cowin and Yang 1997, Yang et al 1999). This model permits the identification
of the type of elastic symmetry to be accomplished independent of the examination of the
variable composition of the material. This method of analysis is a valid approach to the
construction of anisotropic stress–strain relations for other anisotropic and compositionally
variable materials. In this regard, a truer model of ultrasonic wave propagation in cancellous
bone should consider the compositional dependence of the elastic constants.

The following discussion concerns the usefulness of the models and their relevance to
clinical analysis in vivo. A useful theoretical model may be defined as one having parameters
that may be adequately determined, and from which information about bone status may be
extracted via ultrasonic measurements. The anisotropy of a porous matrix originates from
two elements: the compressibility of the skeletal frame and the motion of the pore fluid.
Both elements would be affected by the erosion of the structure. In healthy bone, the two-
dimensional structure of the trabecular network is highly anisotropic, forming oriented plates.
These gradually erode to a rod-like morphology as the trabeculae disintegrate and the pore
spacing increases. Hence, Young’s moduli in the orthogonal direction will have significantly
different values in healthy bone. The erosion model suggests that their values will become
closer as the cancellous structure approaches isotropy in osteoporotic bone. This geometric
transition may be incorporated into the structural definition of propagation models to predict
wave property variations with pathological changes. This mechanism may assist understanding
of the ways in which changes in the cancellous structure of bone with the onset of osteoporosis
may affect the wave properties.

The Biot model, without doubt, is known to be a useful tool to enable us to gain an
insight into the characteristic features of wave propagation in cancellous bone. However,
it requires a great number of input parameters that are not known with high certainty. In
addition, the Biot model predicts absorption due to the viscous losses at internal interfaces
only, so it consistently underestimates attenuation by several orders of magnitude (Hosokawa
and Otani 1997), as it neglects signal losses such as reflection from the flat surfaces of samples,
scattering, absorption of fluid and matrix. Furthermore, the attenuation of the fast wave at
high porosities is much higher than that of the slow wave in spite of the opposite prediction
obtained by the Biot model (Hosokawa and Otani 1997). These differences are indicative
of non-Biot dissipative mechanisms. The pore fluid of the Schoenberg model is assumed to
be inviscid, and so viscous absorption is not predicted. This makes it difficult to do a direct
comparison on attenuation between the angle-dependent models and the Schoenberg model.
Therefore, further studies on the influence of structural anisotropy on attenuation in cancellous
bone using the angle-dependent models may prove to be enlightening. Furthermore, a future
work will also investigate anisotropy in structural parameters, such as the tortuosity in the Biot
model, in more depth.

5. Conclusions

In the present study, modifications were made on the Biot and the MBA models in order to
account for acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent
input parameters, as defined for a highly oriented structure, into the two models. The
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angle-dependent models were used to predict both the fast and slow wave velocities as a
function of propagation angle with respect to the trabecular alignment of cancellous bone. The
predictions were compared with those of the Schoenberg model for anisotropy in cancellous
bone and in vitro experimental measurements from the literature. The angle-dependent models
successfully predicted the angular dependence of phase velocity of the fast wave with direction.
They also predicted the fact that the slow wave is nearly independent of propagation angle for
angles about 50◦, but consistently underestimated the slow wave velocity. The study indicates
that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous
bone.
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Appendix A. Biot model

The characteristic frequency equation of the Biot model is given by (Stoll and Bryan 1970)∣∣∣∣∣Hl2 − ρω2 ρf ω2 − Cl2

Cl2 − ρf ω2 (m − iFη/kω)ω2 − Ml2

∣∣∣∣∣ = 0 (A.1)

with l = lr + ili , where ω is the angular frequency of the wave, ρ is the total (effective) density
of the medium, ρf is the density of the pore fluid, m is a parameter equal to αρf /β with the
tortuosity α and the porosity β which is the ratio of the volume of the pores to the total volume
of the medium, η is the viscosity of the fluid, and k is the permeability coefficient. The factor
F(κ) is

F(κ) = Fr(κ) + iFi(κ) = 1

4

[
κT (κ)

1 − 2T (κ)/iκ

]
, (A.2)

where

T (κ) = (−√−i)J1(κ
√−i)

J0(κ
√−i)

, (A.3)

κ = a(ωρf /η)1/2 (A.4)

and

a = (8αk/β)1/2. (A.5)

The functions J0 and J1 are cylindrical Bessel functions of the zeroth and first order, and a is
a parameter depending on the sizes and the shapes of the pores and having the dimension of
length. In equation (A.1), the coefficients H , C and M are given by

H = (Ks − Kb)
2

D − Kb

+ Kb +
4

3
µb, (A.6)

C = Ks(Ks − Kb)

D − Kb

(A.7)
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and

M = K2
s

D − Kb

, (A.8)

where

D = Ks

[
1 + β

(
Ks

Kf

− 1

)]
. (A.9)

In equations (A.6)–(A.9), Kf is the bulk modulus of the fluid, Ks is the bulk modulus of the
solid material comprising the skeletal frame, Kb is the complex bulk modulus of the skeletal
frame and µb is the complex shear modulus of the skeletal frame. The dispersion relation of
equation (A.1) yields the wavenumbers, lfast and lslow, for the fast and the slow compressional
waves in a porous medium which are expressed as

lfast

ω
=

{
(Hm′ + Mρ − 2Cρf )− [

(Hm′ + Mρ − 2Cρf )2 − 4(HM − C2)
(
ρm′ − ρ2

f

)]1/2

2(HM − C2)

}1/2

(A.10)

and

lslow

ω
=

{
(Hm′ + Mρ − 2Cρf ) +

[
(Hm′ + Mρ − 2Cρf )2 − 4(HM − C2)

(
ρm′ − ρ2

f

)]1/2

2(HM − C2)

}1/2

,

(A.11)

where m′ is equal to m − iFη/kω. From equations (A.10) and (A.11), the phase velocities of
the fast and the slow waves can be found from ω/lr as a function of frequency. The tortuosity
α is defined as the ratio of the length of the true path of flow for the pore fluid to the shortest
distance between the inflow and the outflow and is determined by (Berryman 1980)

α = 1 − r(1 − 1/β), (A.12)

where r is a variable calculated from a microscopic model of a frame moving in the fluid. The
intrinsic bulk modulus Ks of the solid bone material comprising the skeletal frame is calculated
from Young’s modulus Es of the solid bone by assuming the material to be isotropic (Katz
and Meunier 1987, Lang 1969):

Ks = Es

3(1 − 2νs)
, (A.13)

where νs is Poisson’s ratio of the solid bone. Once the intrinsic material properties have been
measured or calculated, it is possible to calculate the parameter values for the skeletal frame
by using a power law relating Young’s modulus Eb (of the skeletal frame) to Es (of the solid
bone) through the volume fraction (1 − β) of bone (Ashman and Rho 1988, Gibson 1985,
Gibson and Ashby 1997):

Eb = Es(1 − β)n, (A.14)

Kb = Eb

3(1 − 2νb)
(A.15)

and

µb = Eb

2(1 + νb)
, (A.16)

where Kb and µb are the bulk and the shear moduli of the skeletal frame, respectively. The
power index n is a variable depending on the alignment of the structure (Gibson 1985), and
νb is Poisson’s ratio of the skeletal frame.
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Appendix B. MBA model

In the MBA model, for simplicity, acoustic wave propagation through a circular cylindrical
pore is assumed to be one-dimensional along the axis of the pore (Lee et al 2003, Roh and
Yoon 2004). Care is taken to treat the boundary condition at a nonrigid pore frame, which
should be different from that at a rigid frame. The continuity equation for a wave propagating
through a pore filled with fluid is given by

−ρf

∂〈v〉
∂x

= ∂ρ

∂t
, (B.1)

where ρf is the density of the fluid and 〈v〉 is the average particle velocity over the cross
section of the pore for propagation in the x direction of the central axis of the pore. The
equation of motion in terms of the complex (or frequency-dependent) density ρc(ω) of the
pore fluid is then expressed as

∂p

∂x
= ρc(ω)

∂〈v〉
∂t

, (B.2)

where p is the acoustic pressure and ω is the angular frequency of the wave. The complex
density ρc(ω) is written as

ρc(ω) = ρf [1 − 2(λ
√

i)−1T ′(λ
√

i)]−1, (B.3)

where

T ′(λ
√

i) = J1(λ
√

i)

J0(λ
√

i)
. (B.4)

The dimensionless parameter λ(ω) related to the thickness of the viscous boundary layer at
the pore wall is given by

λ(ω) = as1(ω/ν)1/2, (B.5)

where a is the radius of the circular cylindrical pore, ν is the kinematic viscosity of the pore
fluid and s1 is the boundary condition parameter representing the rigidity of the pore frame.
Assuming that the pore fluid is a nonviscous conducting fluid, the heat flow may only occur
in the transverse direction, and the acoustic pressure p will be uniform over the cross section
of the pore. The thermal equations in this case may be arranged so as to give the complex
compressibility Cc(ω) of the pore fluid:

Cc(ω) = 1

ρf

dρ

dp
= (

γρf c2
f

)−1[
1 + 2(γ − 1)

(
N

1/2
Pr λ

√
i
)−1

T ′(N1/2
Pr λ

√
i
)]

, (B.6)

where cf , γ and NPr are the equilibrium compressional speed, the specific heat ratio and the
Prandtl number of the pore fluid, respectively. The wavenumber lfast for the fast compressional
wave in a nonrigid porous medium with bulk cylindrical pores can then be expressed by using
the empirical formula

lfast = α

[
l2
c l

2
s

(1 − β)s2 l2
c + βs2 l2

s

]1/2

, (B.7)

where α is the tortuosity, β is the porosity, ls = ω/cs is the wavenumber of the pore frame
and s2 is the phase velocity parameter representing the form of the phase velocity curve as a
function of porosity. The complex wavenumber lc(ω) of the pore fluid is given by

lc(ω) = ω[Cc(ω)ρc(ω)]1/2. (B.8)

In a similar way, an empirical expression for the slow wave can be obtained using the value
of lc from the MBA model. For a low porosity material, the Biot model shows that the slow
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wave velocity tends to zero. Hence, the variation of the slow wave velocity can be fitted by an
equation of the form:

lslow = α

[
l2
c l

2
g

(1 − β)s2 l2
c + βs2 l2

g

]1/2

, (B.9)

where lslow is the wavenumber for the slow compressional wave and lg = ω/cg is the
wavenumber of a hypothetical fluid with a very low wave speed. The phase velocities of
the fast and the slow waves can then be obtained from the real components of lfast and lslow as
a function of frequency.
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