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ABSTRACT 
 
This report presents the results of a theoretical study of active sound transmission 
control through a double panel. The double panel material and geometrical properties 
have been chosen so as to emulate section of an aircraft fuselage, or bodywork of a 
vehicle. It consists of two plates: an aluminium plate simply supported along all the 
edges and a honeycomb plate with all the edges free. The two plates, having the same 
length and width, are connected using elastic mounts, so that a double panel with a thin 
rectangular cavity between the plates is formed. Since the two plates are linked by the 
mounting system, and since the air is confined in the cavity between them, they form a 
structurally and acoustically coupled system. The sound transmission properties of the 
system are studied in such a way that the aluminium plate (“source panel”) is excited 
using a plane acoustic wave, while the honeycomb plate (“radiating panel”) radiates 
sound into free field.  
The aim of the active control is to reduce the sound transmitted in a broad frequency 
band, but with a particular focus on the reduction of the sound transmission at lower 
frequencies of the band. Decentralised velocity feedback control systems (applying 
active damping) are implemented, with purpose of reducing sound transmission at 
resonance frequencies. Control sensors and actuators are embedded into the double 
plate system as a regular array, so that a smart double panel is created. The theoretical 
study includes analysis of the passive sound transmission in terms of a parametric 
study, implementation of the active control using skyhook velocity sensors and skyhook 
force actuators, and the performance/stability analysis in case when reactive actuators 
and skyhook velocity sensors are used. In the latter case the actuating force is obtained 
using actuators located in the air cavity which can react off the two plates. 
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1 INTRODUCTION 
 
The construction of a transportation vehicle such as an aircraft, helicopter, ship or train, 
typically involves a considerable number of thin-walled structural elements. From the 
vibroacoustic point of view, such a structure is naturally characterised by relatively low 
levels of structural damping, and in such cases the noise and vibration issues become 
increasingly important. In general, aircraft/helicopter fuselage skins or land vehicle 
bodyworks are in the form of thin plates and are often made from metallic materials. 
This makes them excellent vibration transmission paths and effective noise sources as 
well. The majority of noise related problems is then caused by the flexural vibrations of 
the plates, which efficiently radiate noise because of their weakly damped resonant 
response.  
These problems are traditionally solved by passive means. For example, the resonance 
effect can be reduced by increasing the damping using dissipative treatments. 
Alternatively, the response of the structure can be influenced by changing mass and 
stiffness properties of the structures in order to avoid excitation of the most efficient 
radiating modes [1]. Finally, special designs can be used, such as double panel 
construction. For example, a typical passenger compartment of a civil transport aircraft 
is equipped with an additional inner shell of non-metallic, lightweight material. Thus a 
thin air cavity is formed between the inner and the outer skin. The cavity is suitable for 
placing of high density fibreglass blankets, for the improvement of both acoustical and 
thermal insulation. In contrast to a single skin vibroacoustic system, the sound power 
transmission ratio of such a double panel decreases steeply above the mass-air-mass 
resonant frequency where the sound transmission is governed by mass law [2]. If the 
dissipating material is placed in the cavity, it can increase the damping levels of the 
system, and it is successful for high frequency noise attenuation. However, in passenger 
transport vehicles noise sources tend to be effective in a broad frequency band. Thus 
they excite the structure at low frequencies below the cut off where the mass law starts 
governing the transmission of sound and below the frequencies at which the dissipating 
material treatments are effective. For example, the source which mainly contributes to 
the interior noise of a jet aircraft during the cruising regime is the turbulent boundary 
layer (TBL). Under typical cruise conditions, the excitation spectrum generated by TBL 
pressure fluctuations is significant between 100 Hz and 2000 Hz [3]. Since the 
dissipating material (high density fibreglass blankets) is only effective at higher 
frequencies, the sound at lower frequencies is efficiently transmitted through the double 
fuselage skin and causes the noise in the cabin [3]. 
A possible solution to the low frequency noise transmission problem is active structural 
acoustic control (ASAC) [4]. This study is focused on the application of ASAC in order 
to reduce the low frequency noise transmission through a typical double skin of 
transportation vehicles. Active control could reduce the sound transmission in the lower 
frequency range, whilst higher frequency passive sound transmission loss is enhanced 
by the mass-law that governs the response of the double panel.  
Active structural acoustic control systems can be divided into two groups: feed-forward 
and feedback control systems. In the feed-forward control approach there is a basic 
requirement: a reference signal correlated to the primary disturbance should be known 
far enough in advance that a causal control filter can be designed [5,6]. Normally, this is 
possible for tonal disturbances, while it is rather difficult for random disturbances. In 
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particular it is very difficult to implement when disturbances have both time and space 
random distribution (for example, diffuse sound fields or turbulent boundary layer 
excitation). In such a case, feedback control systems should be used. The control of 
broadband random disturbances acting on distributed systems requires Multiple Input 
Multiple Output (MIMO) feedback control. Fully coupled (centralised) MIMO systems 
require a reliable model of the response functions between all control sensors and 
actuators [7,8], and thus are difficult to implement in practice. However, Petitjean and 
Legrain have shown that, considering a thin panel with a 5x3 array of piezoelectric 
patch sensor-actuator pairs, a decentralised MIMO control gives results surprisingly 
similar to those of a fully coupled MIMO control system [9]. Furthermore, using direct 
velocity feedback loops in a decentralised MIMO system, active damping [10] can be 
generated; a feature that improves passive damping in the low frequency range [11]. 
Thereby the low frequency resonant response of thin panels can be successfully reduced 
[11,12]. Provided that control gains are optimally adjusted (too high gains tend to pin 
the plate at the control position [12,13]), both vibratory kinetic energy and sound 
radiation can be reduced [11,12]. A decentralised MIMO velocity feedback system is 
unconditionally stable if sensors and actuators are dual and collocated [14,15], as for 
example with collocated ideal point force actuator and ideal velocity sensor pair [12]. 
The problem is, however, that the force actuators cannot act without reacting on another 
body. For that reason, other types of actuators, such as strain actuators or proof mass 
inertial actuators, are often used in decentralised MIMO control systems, although they 
do not guarantee the collocation and duality properties [16,18-20]. 
This study analyses a double panel system, which could represent a section of a typical 
aircraft fuselage. The double panel consists of two plates: a thin aluminium plate simply 
supported along all the edges and a honeycomb plate with all the edges free. The two 
plates, having the same length and width, are connected using four elastic mounts, so 
that a double panel with a thin cavity between the plates is formed. Since the two plates 
are linked by the mounting system, and since the air is confined in the cavity between 
them, they form a structurally and acoustically coupled system. The sound transmission 
properties of the system are studied in such a way that the aluminium plate is excited 
using a plane acoustic wave, while the honeycomb plate radiates sound into free field. 
With respect to this approach term “source panel” is used for the aluminium plate, while 
the term “radiating panel” refers to the honeycomb plate. Decentralised active control 
systems are applied for the reduction of sound transmission at lower frequencies, below 
and at the mass-air-mass resonance. For implementation of the decentralised feedback 
control loops, an array of point force actuators with collocated velocity sensors is used.  
The report is divided into three major parts. In part one, a description of the model 
problem is given, providing information such as the smart panel physical properties. 
Also a detailed description of the mathematical model (mobility matrix model) is given, 
which has been used in this study to simulate the smart double panel sound 
transmissibility. Part two presents results of a parametric study of passive sound 
transmission. Effects of the mass and stiffness properties of the radiating panel, stiffness 
of the mounting system, and the air cavity depth on the passive sound transmission are 
considered. Part three is dedicated to the effects of decentralised direct velocity 
feedback control. First, ideal skyhook actuators are used with collocated velocity 
sensors on the source panel, creating the active damping effect on the source plate. 
Second, ideal skyhook actuators are considered which implement active damping on the 
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radiating plate. Third, skyhook actuators which implement active damping on the source 
and radiating panels are used. Finally, force actuators located in the air cavity between 
the two panels, which can react off the two panels, are used. The sensors are collocated 
at the actuator junctions on both ends (on both panels). In this case, relative velocities 
between the source and the radiating panel at control locations are fed back to the force 
actuators. A case when two velocity signals are collected from either panel and 
combined using different weighting factors to form the error signal is also analysed. 
Then a detailed stability investigation of the reactive actuating scheme is presented, 
focusing particularly on the error signal configuration that provides unconditional 
stability of the feedback loops. A parametric study of the stability and the control 
performance follows. This study is mostly concerned with a critical weighting factor of 
the source and the radiating panel velocities that form an error signal which guarantees 
unconditional stability. 
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2 MODEL PROBLEM 
 
The aim of this Section is to give an overall picture and a detailed description of the 
problem at hand, as well as the description of the mathematical model used to determine 
the double panel response and sound transmission. The introduction to this report has 
provided some basic facts about the properties of the sound transmission of metallic 
partitions and in particular the potential of the active vibroacoustic control as a possible 
solution for low frequency noise transmission of double plate structures. In order to 
perform a realistic study it is necessary to define one model problem which is able to 
reflect basic features of the double panels in transportation vehicles. Also it is necessary 
to derive a simple mathematical model which can capture the principal features of the 
response and the sound radiation of the panel. Therefore, this section is dedicated to the 
model problem and to the mathematical model which are used for the theoretical 
analysis which follows. 

2.1 Double panel with decentralised control units 
 
The double panel considered in this study consists of two plates, which are structurally 
and acoustically coupled respectively via elastic mounts and the air in the cavity 
between the plates (Figure 1). 

 
Figure 1:  Smart double panel with an array of decentralised control units 

 
The “source” panel is excited by an acoustic plane wave, while the “radiating” panel 
radiates sound into free-field. The source panel is assumed to be simply supported along 
all the edges. It is modelled as a 414x314x1 mm aluminium panel, which represents a 
section of an outer skin of a typical transportation vehicle. In order to excite all the 
vibratory modes of the source panel, the acoustic plane wave excitation has azimuthal 
and elevation angles of 45º and 45º. The radiating panel is modelled as a plate with free 
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boundary conditions along the four edges, structurally connected to the source panel by 
means of four rubber mounts. The radiating panel has the same x and y dimensions as 
the source panel, but it is made of a honeycomb polymer material with 3 mm thickness. 
These properties have been chosen so as to emulate a typical trim panel of a vehicle. As 
shown in Figure 1 both source and radiating panels are equipped with a 4x4 array of 
collocated ideal point force actuators and velocity sensors which can be used to generate 
direct velocity feedback loops on either panels or relative velocity feedback between the 
two panels. The array of decentralised control system elements have been equally 
spaced along the x and y directions in such a way that the distances between actuators 
(sensors) are equal to double the distance between the edge of the plate and a perimeter 
actuator (sensor). 
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2.2 Mathematical model 
 
2.2.1 The mobility matrix model 
 
The mobility matrix model assumes that the system is divided into three elements: the 
source panel, the radiating panel and the structure-borne and airborne transmission 
paths. The structure-borne transmission path arises due to the sound transmission via the 
elastic mounts, while the airborne path occurs due the sound transmission via the air 
confined between the radiating and the source panel. Each of these elements is modelled 
using point and transfer mobility or impedance functions. The airborne transmission 
path is modelled using transfer impedances between a finite number of cavity elements 
that are adjacent to the surfaces of the panels. The excitation of the source panel by the 
incident acoustic wave and the radiated sound power from the radiating panel are also 
calculated by assuming that the two panels are divided into the same number of 
elements. This number is obtained by choosing element dimensions to be lx,e=lx/(4M) 
and ly,e=ly/(4N)  where M and N are higher modal orders used in calculations. The 
mobility model scheme is given in Figure 2. 
 

  

 
Figure 2:  Mobility model scheme 

 
The model considers only out of plane displacements/velocities and forces at the various 
types of junctions and at the centres of the plates and cavity elements. The time 
harmonic displacement or force are given by ( ) ( ){ }tjewtw ωωRe=  
or ( ) ( ){ }tjeftf ωωRe= , where ω  is the circular frequency in [ ]srad . Thus  and ( )tw
( )tf  are time-harmonic displacement and force functions while ( )ωw  and ( )ωf  are the 
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com n or  simpplex frequency-dependent displacement and force phasors. I der to lify the 
formulation used in this report, the time harmonic dependence is implicitly assumed in 
the mathematical expressions which are therefore formulated in terms of the frequency-
dependent phasors. Also, the first and second derivative of the time-harmonic functions, 
for example the linear out of plane velocity, ( ) ( ){ }tjewjtw ωωωRe=&  or linear out of 
plane acceleration ( ) ( ){ }tjewtw ωωω 2Re −=&&  are r  and acceleration 
frequency dependen

epresented by velocity
t phasors ( ) ( )ωωω wjw =&  and ( ) ( ) ( )ωωωωω wjww &&& =−= 2 . 

The transmission path via the elastic mounts is modelled as an 

city and force phasors at mount locations are grouped in the following column 

, (1) 

zqzqzjzzm NNNNN ,,,..., 121 −≡f , 

 
here  is the complex amplitude of the linear velocity along the z axis, and is the 

, (3) 

 
he double panel is also characterised by an acoustical transmission path, which occurs 

elastic out of plane force, 
so that point impedances can be used to model this coupling at the mount locations. 
This path consists of q=4 distributed elastic mounts. The mounts connect the two panels 
at four locations close to the corners of the plates, as it is usually the case with aircraft 
trim panel mounting systems. At each mount junction the motion and the forces 
transmitted are characterised by one complex parameter that corresponds to the out of 
plane (z) translational degree of freedom. Other vibration degrees of freedom, such as, 
for example, in plane displacements or out of plane rotations, are neglected in this 
model.  
The velo
vectors: 
 

{ }Tqqjm wwwww &&&&& ,,...,..., 121 −≡v

{ }T (2) 

w  jw& zjN
complex amplitude of the force in the z direction, at the j-th elastic mount. The two 
panels are also excited by means of p control forces. The velocity and control force 
phasors at the control positions in the source and radiation panels are grouped in the 
following two column vectors: 
 

{ }Tppjc wwwww &&&&& ,,...,..., 121 −≡v

{ }Tzpzpzjzzc NNNNN ,,,..., 121 −≡f . (4) 

T
via the air in the cavity between the two plates. As shown in Fig. 2, the surface 
boundaries that the cavity shares with the source and the radiating plate are modelled 
using a finite number of elements k, whose dimensions are considerably smaller than the 
shortest acoustic wavelength in the cavity. The lateral surfaces of the air cavity are 
assumed to be rigid walls. Each of the top and bottom surface elements can only vibrate 
in the direction normal to the surfaces themselves and their velocities and forces are 
defined at the geometrical centre of the element.  
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The velocity and force phasors at the centres of the elements are grouped in the 
following two column vectors: 
 

{ }Tkkje wwwww &&&&& ,,...,..., 121 −≡v , (5)

{ }Tzkzkzjzze NNNNN ,,,..., 121 −≡f . (6)

 
With reference to the notation shown in Figure 2, these junction vectors are grouped 
together to form four combined vector pairs. These four groups are: the source velocity 
vector  and the source force vector ; the radiating velocity vector  and the 
radiating force vector ; the transmission system velocity vector  and the 
transmission system force vector ; and finally, the control velocity vector  and the 
control force vector . The four groups of vectors are given by: 
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where: 

•  , and ,  represent the complex velocities and forces at the source 
junction for the j-th mount and for the j-th acoustic element,  

smjv smjf sejv sejf

• , and ,  represent the complex velocities and forces at the 
radiating junction for the j-th mount and for the j-th acoustic element,  

rmjv rmjf rejv rejf

• , and ,  represent the complex velocities and forces for the j-th 
mount and for the j-th acoustic element on the source panel, 

jtmv 1 jtmf 1 jtev 1 jtef 1

• , and ,  represent the complex velocities and forces for the j-
th mount and for the j-th acoustic element on the radiating panel, 

jtmv 2 jtmf 2 jtev 2 jtef 2

• , and ,  represent the control system complex velocities and forces 
for the j-th control force at the j-th control point either on the source or radiating 
panels. 

scjv scjf rcjv rcjf

 
The dynamics of the source and radiating panels are modelled using a mobility matrix 
formulation, so that velocity and force vectors can be expressed in the form: 
 

cspssss fYfYfYv 321 ++=  crfrrrr fYfYfYv 321 ++= , (15,16)

 

where , ,  and , ,  are mobility matrices of the source and the 
radiating panel, and , ,  are the primary excitation vector, control force vector 
and flanking excitation vector, respectively. The details of the mobility matrices used in 
Equations (15,16) and also of the mobility and impedance matrices introduced in the 
forthcoming part of the formulation are defined in Appendix A.  

1sY 2sY 3sY 1rY 2rY 3rY

pf cf ff
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The primary and flanking excitation vector are given by: 
 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≡

pk

p

p

p

f

f
f

M
2

1

f  

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≡

fk

f

f

f

f

f
f

M
2

1

f , (17,18)

 
The flanking excitation vector  acting on the radiating panel could be caused by a 
subsystem connected to it or by an additional flanking path connecting the source panel 
to the radiating panel. Although the flanking excitation may be needed for future 
studies, it is not considered throughout the study covered by this report, so that the 
flanking excitation vector is assumed to be a vector with all the elements equal to zero. 
The primary excitation vector is however different from zero, and if the source plate is 
excited by a plane acoustic wave then the components of the primary excitation vector 
are determined by pressure field generated by the plane wave over the surface of the 
source panel: 

ff

 

( )jyjx ykxkjyx
jjpj Pe

k
ll

yxf +−=),,( ω  (19) 

 
where P  is the amplitude of the plane wave which has a wave number in the x direction 
given by ( ) ( )φθ cossinkkx =  and a wave number in the y direction given by 

( ) ( )φθ sinsinkk y = , where k is the wave number, θ  and φ  are azimuthal and elevation 
angles, while  and  are coordinates of the geometrical centre of corresponding 

element of the source panel. The term 
jx jy

( )jyjx ykxkjPe +−  in Equation (19) is the pressure at 

the geometrical centre of an element while the term 
k
ll yx  is the area of the element. 

Therefore the excitation is modelled by assuming that the pressure field over the surface 
of the element can be approximated by the pressure at the centre of the element. 
The dynamics of the transmission system is expressed using the following impedance 
matrix expression: 
 

ttt vZf = , (20) 

 

where  is an impedance matrix of the transmission system (Appendix A). The 
components in the  matrix, which are due to mounting system stiffness are diagonal, 
while the components in the  matrix due to acoustical coupling are fully populated, 
because a velocity at one element will generate a force, which is caused by pressure 
fluctuations at the centres of all the other elements, on both source and radiating plates. 

tZ

tZ

tZ
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The source and radiating panel Equations (15) and (16) can be grouped together in one 
equation: 
 

csrpfsrsrsrsr fYfYfYv 321 ++= , (21) 

 
where the mobility matrices and the excitation vector have the form: 
  

⎥
⎦

⎤
⎢
⎣

⎡
=

1

1
1

r

s
sr Y0

0Y
Y  ⎥

⎦

⎤
⎢
⎣

⎡
=

2

2
2

r

s
sr Y0

0Y
Y  ⎥

⎦

⎤
⎢
⎣

⎡
=

3

3
3

r

s
sr Y

Y
Y , (22,23,24)

⎭
⎬
⎫

⎩
⎨
⎧

=
0
f

f p
pf , (25)

 
and the junction velocity and force vectors are given by: 
 

⎭
⎬
⎫

⎩
⎨
⎧

≡
r

s
sr v

v
v  

⎭
⎬
⎫

⎩
⎨
⎧

≡
r

s
sr f

f
f , (26,27)

 
where  and are respectively the source-radiating velocity vector and the source-
radiating force vector. The source-radiating vectors are related to the corresponding 
coupling system vectors so as to satisfy the continuity (for the velocity vectors) and 
equilibrium (for the force vectors) principles at each junction: 

srv srf

 

srt vv =  srt ff −= . (28,29)

  
If the Equations (28) and (29) are substituted into Equation (20) the source-radiating 
force vector and force radiating velocity vector can be related by: 
 

srtsr vZf −= . (30) 
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Substitution of Equation (30) into Equation (21) yields: 
 

csrpfsrsrtsrsr fYfYvZYv 321 ++−= , (31) 

( )csrpfsrtsrsr fYfYZYIv 32
1

1 )( ++= − , (32) 

csrtsrpfsrtsrsr fYZYIfYZYIv 3
1

12
1

1 )()( −− +++= , (33) 

ctcpftpsr fQfQv += , (34) 

 

where matrices and  are given by: tpQ tcQ

 

2
1

1 )( srtsrtp YZYIQ −+=  3
1

1 )( srtsrtc YZYIQ −+= . (35,36)

 
Using now Equation (30) with Equation (34) gives source-radiating force vectors: 
 

ctctpftptsr fQZfQZf −−=  (37) 

ctcpftpsr fRfRf += , (38) 

 

where  and  are given by: tpR tcR

 

tpttp QZR −=  tcttc QZR −= , (39,40)

 
Similar to Equation (21), the control velocity vector can also be expressed using the 
mobility method: 
 

ccpfcsrcc fYfYfYv 321 ++= , (41) 

 
where the mobility matrices have the form: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

1

1
1

cr

cs
c Y0

0Y
Y  ⎥

⎦

⎤
⎢
⎣

⎡
=

2

2
2

cr

cs
c Y0

0Y
Y  ⎥

⎦

⎤
⎢
⎣

⎡
=

3

3
3

cr

cs
c Y0

0Y
Y . (42,43,44)
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1csY , ,  and , ,  are mobility matrices of the source and the 
radiating panel, at the control locations. A detailed description of the elements of these 
matrices can be found in Appendix A. 

2csY 3csY 1crY 2crY 3crY

Substitution of Equation (38) into Equation (41) yields: 
 

ccpfcctccpftpcc fYfYfRYfRYv 3211 +++= , (45) 

( ) ( ) cctccpfctpcc fYRYfYRYv 3121 +++= , (46) 

cccpfcpc fTfTv += , (47) 

 

where  and  are given by: cpT ccT

 

21 ctpccp YRYT += , (48) 

31 ctcccc YRYT += . (49) 

 

If the control forces vector  is related to the control velocity vector  by means of an 
arbitrary matrix H:  

cf cv

 

cc Hvf −= , (50) 

 
 then the control velocities can be calculated using Equation (47) as follows: 
 

( )cccpfcpc HvTfTv −+= , 51) 

( ) pfcpccc fTHTIv 1−+= , (52) 

 
while the source and radiating panel forces are determined by Equation (38). Finally, 
the source and radiating velocities are then given by Equation (21). 
The sound power radiated by the radiating panel can then be evaluated using the 
velocities of the radiating elements [23] which are a subset of , Equation (8), as: srv

 

( ) re
H
reW Rvv=ω , (53) 

 

where R is the radiation resistance matrix [23] and ( )H  denotes the Hermitian 
transpose (the complex conjugate). 
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Kinetic energy of either source or radiating panel can be calculated using the following 
expressions [12]: 
 

( ) se
H
seyexesss llhE vvρω

4
1

= , 

( ) re
H
reyexerrr llhE vvρω

4
1

= , 
(54,55)

 

where rrss hh ,,, ρρ  are mass densities and thicknesses of the source and radiating panel, 
respectively. 
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3 PARAMETRIC STUDY OF PASSIVE SOUND TRANSMISSION 
 
The double panel model problem has been chosen in order to reflect the vibroacoustic 
properties of double panels in transportation vehicles. The primary aim of this section is 
twofold. First, is to investigate how the vibroacoustic response varies when parameters 
of the components of the model are changed. This type of study facilitates the 
interpretation of the physical phenomena for the airborne and structure-borne sound 
transmission through the panel. Second, is to validate the model by comparing the 
simulations with other results obtained from well established analytical models [2]. 
It is known that for double partitions, important parameters can be the material 
properties of the panels, their dimensions, the distance between them, and the stiffness 
of elastic mounts which structurally connect the two panels. In order to perform a 
realistic study, the variation of these properties is selected with reference to materials 
and dimensions representative of a transportation vehicle skin. Normally the material 
properties and construction geometry of the bodywork of transportation vehicles are 
chosen by designers to meet functionality and safety requirements. In contrast, trim 
panels are designed for noise reduction and other constraints such as functionality, style, 
thermal insulation etc. Therefore, for the purpose of the parametric study the thickness 
and material of the radiating panel have been varied, whereas the source panel 
properties have been held fixed. 
Three different radiating panels have been investigated: 1) light and stiff polymer 
honeycomb plate, 2) heavier but less stiff aluminium plate, and 3) heavy steel plate with 
low stiffness. The bending stiffness of a rectangular isotropic plate is given by [21]: 
 

12

3hEB = , (56)

 
where h is thickness of the plate, and E is Young modulus, while the surface density of 
the plate (mass of the plate per unit area) is given by [21]: 
 

hm ρ= , (57)

 
where ρ is mass density of the plate material. Thus, for a given material, the bending 
stiffness and surface density are linked by the following law: 
 

mEB 3ρ
= , (58)

 
 
which is plotted in Figure 3 for the three materials considered in this study.  
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Figure 3:  Surface density and bending stiffness curves for (a) polymer honeycomb, (b) aluminium and 

(c) steel radiating panels 

 
Designs (a), (b) and (c) represent three materials with constant bending stiffness and 
surface density between 0.765 kg/m2 and 9.75 kg/m2. Also the effect of different 
bending stiffness of the radiating panel have been investigated, while keeping the 
surface density constant, as indicated by sets (a), (d) and (e) in Figure 3. The remaining 
parameters that have been varied are the air gap thickness and the stiffness of the four 
elastic mounts. All variations considered are summarised in Table 1. The column which 
contains the parameters related to the reference case is highlighted. 
 

Table 1 Values of the varied parameters 

 design (a) (b) (c) (d) (e) (f) (g) (h) (i) 

M
ou

nt
 

st
iff

ne
ss

 

mk (N/m) 5891 5891 5891 5891 5891 5891 5891 0 58910 

C
av

ity
  

de
pt

h 

zl (m) 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.03 0.03 

rm (kg/m2) 0.765 4.81 9.75 0.765 0.765 0.765 0.765 0.765 0.765 

rB (Nm) 33.6 33.6 33.6 6.72 168 33.6 33.6 33.6 33.6 

rE (Pa) 15·109 71·109 210·109 - - 15·109 15·109 15·109 15·109

rρ (kg/m3) 255 2720 7800 - - 255 255 255 255 

R
ad

ia
tin

g 
pa

ne
l 

rh (m) 0.003 0.00177 0.00125 - - 0.003 0.003 0.003 0.003 
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Table 2 gives the parameters that have been kept constant in all simulations. 
 

Table 2 Double panel material properties (not varied) 

Radiating 

panel 
Air properties Source panel 

Elastic 

mounts 

rη  airρ  

(kg/m3) 

0c  

(m/s) 
airη  sm  

(kg/m2) 

sB  

(Nm) 

sE  

(Pa) 

sρ  

(kg/m3) 

sh  

(m) 
sη  mη  

0.03 1.19 343 0.1 2.72 5.9167 71·109 2720 0.001 0.02 0.05 

 
 

3.1 Effects of the radiating panel surface density 
 
The effects of the radiating panel surface density are analysed considering the designs 
(a), (b) and (c) indicated in Figure 3. The three designs have the same radiating panel 
stiffness, but different surface densities as listed in Table 1. The cavity depth for all the 
simulations was 30 mm. The source panel kinetic energy and the radiating panel kinetic 
energy per unit amplitude of the incident wave (Equations (54,55)), and the sound 
transmission ratio are shown in Figure 4 against the frequency. The sound transmission 
ratio is calculated as the ratio of radiated sound power to incident sound power so that: 
 

i

r

W
WT = , (59)

 

 where ( )ωrW  is the radiating sound power, determined according to Equation (58). The 
sound power of the incident plane wave can be calculated using following expression: 
 

θ
ρ

cos
2

2

c
ll

PW yx
i = , (60)

 
where P is the acoustical pressure of the incident wave (Equation (19)) which is P=1 Pa 
throughout this report.  
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Figure 4  Effects of the variation of the radiating panel surface density. The left hand side column 
shows the simulation results in narrow frequency bands, and the right hand side column 
shows the simulation results in third octave bands. The first row shows the source panel 
kinetic energy, the middle row shows the radiating panel kinetic energy, and the bottom row 
shows the sound power transmission ratio. Solid line indicates the design (a), dashed line 
design (b), and the dotted line design (c). The straight lines in the sound transmission plots 
show the predictions using Equations (61-64). Black line is for the design (a), blue line is for 
the design (b) and green line is for the design (c). The vertical dash dotted lines indicate 
mass-air-mass resonant frequencies calculated using Equation (61) for the three designs. 
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The left hand side plots show the results in narrow frequency bands while the right hand 
side plots show the results in third octave bands.  Considering system design (a) first 
with the honeycomb radiating panel, below about 444 Hz the response and sound 
radiation are characterised by well separated resonances. These resonances are due to 
the coupled response of the two panels via the four mounts and the air in the cavity. The 
cavity air acts as an additional distributed relative spring since the first cavity resonance 
occurs at about 415 Hz. Therefore these modes are characterised by a plate-spring-plate 
type of coupled mode where the source plate is typified by volumetric flexural 
deformations with shape similar to the (1,1), (2,1), (1,2) modes of a simply supported 
plate and the radiating plate is characterised by rigid body volumetric deformations 
similar to a) the (0,0) even mode, b) the (1,0) and (0,1) beam-type modes and c) (1,1), 
(2,1), (1,2) flexible modes of a freely suspended plate.  Plots A and B in Figure 5 depict 
deflection shapes at the first and fifth resonant frequency, respectively. Note that the 
two plates move in phase since they are strongly coupled by the stiff air spring which 
forces the radiating plate to undergo motion similar to that of the source panel. 
 

1st resonance fn=40.8 Hz 5th resonance fn=84.3 Hz 23rd resonance fn=444.5 Hz 

 B CA 

Figure 5:  Scaled deflection shapes at three different resonant frequencies. 

 

The kinetic energy plots (A and C) in Figure 4 are characterised by more resonances 
than the sound transmission ratio plot (E). This is due to the fact that the modes with 
small volumetric component, (i.e. even-even or even-odd modes, such as for example 
the fifth mode (plot B in Figure 5)), have small radiation efficiency. In any case these 
resonances have small amplitudes since the air coupling between the two panels is also 
weakened when non-volumetric modes are involved. At 444 Hz there is a strong 
resonance noticeable in all the plots in Figure 4. This resonance is usually referred to as 
the mass-air-mass resonance [2], and the deflection shape is characterised by out of 
phase motion of the two plates (plot C in Figure 5). Since for design (a) the first cavity 
resonance occurs at 415 Hz, the cavity mode interferes with the shape of the mass air 
mass mode. At frequencies above the mass-air-mass resonance the response is 
characterised by the typical mass-law [2] with an initial descend of the sound radiation 
of 18 dB per octave band. Also, the modal density is much bigger since, together with 
the modes controlled by the two plates there are also modes controlled by the cavity. 
Thus, the rising modal overlap effect and the increasing damping action on the two 
panels smoothes out the spectra of the response and sound radiation which no longer 
shows well separated, lightly damped resonance peaks.  
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According to the simplified model given by Fahy and Gardonio [2] the mass-air-mass 
resonant frequency for unbounded plates depends upon the surface densities of the two 
plates, and the stiffness of the air, where the latter is determined by the depth of the 
cavity, by the air density and speed of sound: 
 

5.0

21

21
2

0
0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

mm
mm

l
c

z

airρω , (61)

 

where  is the distance between the two plates, zl airρ  is the mass density of air,  is the 
speed of sound, while  and  are surface densities (kg/m

0c

1m 2m 2) of the source and the 
radiating panel respectively. 
For example, the natural frequency of the mass-air-mass resonant mode calculated using 
Equation (61) is equal to 423 Hz, while the simulated value equals to 444Hz. The 
simulated value can be considered as in a good correspondence with theory, taking into 
account the fact that Equation (61) is valid for unbounded plates, coupled only by the air 
between them. 
Above the mass-air-mass resonance, the sound transmission ratio is mass controlled, so 
that the minima of the sound transmission ratio for this frequency range can be 
approximated using the following expression [2]: 
 

( ) 42log40
2

log20
0

21 +−⎥⎦
⎤

⎢⎣
⎡ +

−=
ω
ω

π
ωmmT , (62)

 
which is valid up to a critical frequency [2]: 
 

d
cair

c π
ρω

2
10 2

0
-1.8 ⋅⋅

= . 63)

 

Above the critical frequency cω  the theoretical minima of the sound transmission ratio 
descend with rate of 12 dB per octave band, following the equation [2]: 
 

87
2

20log-
2

20logT 21 +⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⎟
⎠
⎞

⎜
⎝
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−=
π
ω

π
ω mm . (64)

 
Considering now the simulations using aluminium and steel radiating panels, with the 
same bending stiffnesses but increased surface density, the sound transmission plot E 
and the kinetic energy plots A and C show a clear reduction of resonant frequencies of 
double panel modes, as the surface density is increased. The mean value of the sound 
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transmission ratio goes down as the density per unit surface goes up. This phenomenon 
shows a marked mass effect, because it affects both the coupled response of the double 
panel as well as the sound radiation by the radiating panel. The predictions using 
formulae (61,64) are shown on the sound transmission ratio plots (E and F) using  
coloured lines. There is a good agreement between the simulated and predicted sound 
transmission ratio trends, considering the mass variation effect of the radiating plate. 
 

3.2 Effects of the radiating panel bending stiffness 
 
The effects of the radiating panel stiffness are analysed considering designs (a), (d) and 
(e) indicated in Figure 3, which have the same radiating panel density per unit area, but 
different bending stiffnesses as listed in Table 1. The cavity depth for all the simulations 
was 30 mm. The source panel kinetic energy, the radiating panel kinetic energy and the 
sound transmission ratio are shown in Figure 6 against the frequency for the three cases.  
The left hand side plots show the results in narrow frequency bands while the right hand 
side plots show the results in third octave bands.  Considering all the system designs (d), 
(e), and (a), below about 440 Hz the response and sound radiation are characterised by 
well separated resonances just as observed in the previous subsection. The response and 
sound transmission ratio is also characterised by the mass law at the frequencies above 
about 440 Hz (the mass-air-mass mode). In fact, the natural frequency of this mode does 
not change with stiffness of the radiating plate, as one might expect, because the mode 
is mainly determined by out of phase motion of the two plates coupled by the air spring. 
At frequencies above the mass-air-mass resonance, where the response is mass 
controlled, the sound transmission ratio seems to be higher for stiffer radiating panels. 
Clear changes in the sound transmission ratio and kinetic energies also occur at lower 
frequencies, for example, below the first resonance of the coupled system (approx. 40 
Hz), where the response is stiffness controlled. The natural frequency of the first mode 
tends to go down as the stiffness of the radiating plate is reduced. Similar behaviour 
occurs for all the resonant frequencies below the mass-air-mass resonance. The sound 
transmission ratio in the whole frequency band tends to descend when reducing the 
radiating plate stiffness. 
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Figure 6:  Effects of the variation of the radiating panel bending stiffness. The left hand side column 
shows the simulation results in narrow frequency bands, and the right hand side column 
shows the simulation results in third octave bands. The first row shows the source panel 
kinetic energy, the middle row shows the radiating panel kinetic energy, and the bottom row 
shows the sound power transmission ratio. Solid line indicates the design (a), dashed line 
design (d), and the dotted line design (e) (Table 1). 
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3.3 Effects of the cavity depth 
 
The effect of cavity depth is shown in Figure 7 for distances depths of 20, 30 and 40 
mm. The stiffness of the mounts as well as other double panel parameters have been 
kept constant, as listed in Table 1, designs (f) and (g). Both total kinetic energy and 
sound transmission ratio plots show little variation below the mass-air-mass resonant 
frequency as the air gap is increased. The principal variation occurs at the mass-air-mass 
resonance which decreases from 444 Hz to 400 Hz as the cavity depth increases. This is 
because the air stiffness becomes smaller as the gap between the two panels increases. 
This cavity depth effect is in agreement with Equation (61).  
On the other hand, the low frequency response, for example near the first resonant 
frequency of the double panel, remains almost unaltered by the variation in the depth of 
the air cavity. This is because at such low frequencies the air in the cavity is controlled 
by the 0,0,0 volumetric mode which behaves as a stiff distributed spring. As a result the 
modal stiffness of the 40 Hz mode remains unaltered with variations of the air gap. The 
modal mass is barely affected by an increased mass of the cavity air (as the cavity depth 
increases) due to the relatively low air mass density. The basic simulation trends are in 
agreement with predictions based on Equation (61-64), as shown on the sound 
transmission ratio plots by straight lines. 
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Figure 7:  Effects of the variation of the depth of the air cavity between the two panels. The left hand 
side column shows the simulation results in narrow frequency bands, and the right hand side 
column shows the simulation results in third octave bands. The first row shows the source 
panel kinetic energy, the middle row shows the radiating panel kinetic energy, and the bottom 
row shows the sound power transmission ratio. Solid line indicates the design (a), dashed line 
design (f), and the dotted line design (g). The straight lines in the sound transmission plots 
show the predictions using Equations (61-64). Black line is for the design (a), green line is 
for the design (f) and blue line is for the design (g). The vertical dash dotted lines indicate 
mass-air-mass resonant frequencies calculated using Equation (61) for the three designs. 
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3.4 Effects of the stiffness of the mounting system 
 
The elastic mount stiffness effect is introduced in Figure 8 by showing the panel 
deflection shapes at 36 Hz, which is slightly below the first resonant frequency (40 Hz). 
Considering first the left hand plot (the case with relatively soft springs), the source 
panel vibrates like a (1,1) mode of a simply supported plate while the radiating panel 
vibrates as a (0,0) translational rigid body mode of a free plate. 
 

Design (a)                Design   (h)   Design (i) 

 
Figure 8:  Effect of increasing of elastic mounts stiffness on the source and radiating panel deflection 

shape at frequency of 36 Hz; for designs (a) k=0 N/m, (h) k=5891 N/m, and (i) k=58910 N/m 

 
When the stiffness of the four mounts is increased so that it becomes comparable or 
exceeds the bending stiffness of the radiating panel, the deflection shape of the radiating 
panel gradually changes towards the (1,1) mode of a panel pinned at the four corners.  
Also the natural frequencies of the modes tend to shift to the natural frequencies of the 
modes that correspond to the new boundary condition, (Figure 9, dotted lines). 
In general the spectra of the radiating panel total kinetic energy and the sound 
transmission ratio show little variation as the stiffness of the four mounts are increased. 
The most important effect corresponds to the first system resonance at about 40Hz 
which, as shown in Figure 9, tends to rise as the stiffness of the mounting system 
increases. This is due to the fact that, for soft mounts, the volumetric displacement of 
the source panel is absorbed by the rigid body motion of the radiating panel and the 
stiffness effect is controlled by the source panel and mounts’ stiffnesses only. In 
contrast, when stiff mounts are used, the volumetric displacement of the source panel is 
absorbed by the (1,1) flexural mode of the radiating panel so that there is an effective 
increase in modal stiffness. 
The mass-air-mass resonant frequency is affected slightly by the mount elastic constant 
variation. The air stiffness effect is much more important and the modal stiffness 
contributed by the mounts is relatively small. In contrast, the kinetic energy of the 
radiating plate and the sound transmission ratio (plots D and F) at the mass-air mass 
resonance are affected by the stiffness of the mounts. This is probably due to the fact 
that more rigid mounts, located close to the simply supported boundary of the source 
panel, constrain the vibration of the radiating panel, especially its rigid body motion. 

25 



 

 
So

ur
ce

 p
an

el
 k

in
et

ic
 e

ne
rg

y 
 

(d
B

 re
la

tiv
e 

to
 1

 J)
 

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

R
ad

ia
tin

g 
pa

ne
l k

in
et

ic
 e

ne
rg

y 
(d

B
 

re
la

tiv
e 

to
 1

 J)
 

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

So
un

d 
tra

ns
m

is
si

on
 ra

tio
 (d

B
) 

10
1

10
2

10
3

−120

−100

−80

−60

−40

−20

0

20

S
ou

nd
 tr

an
sm

is
si

on
 r

at
io

 (
dB

)

Frequency (Hz)
10

1
10

2
10

3
−120

−100

−80

−60

−40

−20

0

20

Frequency (Hz)

S
ou

nd
 tr

an
sm

is
si

on
 r

at
io

 (
dB

)

A B

C D

E F

Figure 9: Effects of the variation of the mounting system elastic constant. The left hand side column 
shows the simulation results in narrow frequency bands, and the right hand side column 
shows the simulation results in third octave bands. The first row shows the source panel 
kinetic energy, the middle row shows the radiating panel kinetic energy, and the bottom row 
shows the sound power transmission ratio. Solid line indicates the design (a), dashed line 
design (h), and the dotted line design (i). 
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4 IMPLEMENTATION OF DECENTRALISED VELOCITY 
FEEDBACK CONTROL SYSTEM 

 
The results of the parametric study in the previous Section indicated high sound 
transmission ratio, as well as kinetic energy levels of the radiating plate in low 
frequency bands, up to a characteristic cut-off frequency (the mass-air-mass resonant 
frequency). This behaviour has been observed for all designs (Table 1), including the 
reference case (the design (a) in Table 1), which suggests that the low frequency noise 
transmission can be a major problem for double panels excited by broadband 
disturbances. This is indeed the case with most transportation vehicles, especially 
aircraft which are inevitably excited by a turbulent boundary layer (TBL) excitation, 
among other noise sources. This sort of excitation is broadband and has random 
characteristics. The facts that low frequency noise is efficiently transmitted through the 
double panel, and that the excitation of the source panel can be the TBL, make feedback 
active control an attractive alternative to passive methods. Moreover the simulation 
results in Section 3 indicated that the sound transmission ratio is characterised by well 
separated low frequency resonances. If active damping systems are used then the low 
frequency resonant response (and the resonant transmission of sound) could be reduced. 
Moreover, a decentralised system could provide the necessary robustness and 
simplicity. 
 

4.1 Feedback control laws 
 
Direct velocity feedback control, implemented using Multiple-Input-Multiple-Output 
(MIMO) decentralised loops, is considered in this study. The velocity sensors and force 
actuators are collocated, which guarantees the stability of the feedback loops, if ideal 
sensors and actuators are assumed [14,15]. A direct velocity feedback control scheme is 
depicted in Figure 10, which is unconditionally stable for passive plant response 

)(ωccT , and a passive controller )(ωH . 

 

( )ωcpT  

)(ωccT  Σ  

( )ωcf  ( )ωcv  

)(ωH−  

( )ωpff  

 
Figure 10: Direct velocity feedback systems 
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Four control arrangements are investigated in this Section. The first two consist of a 4x4 
array of decentralised velocity feedback control systems using collocated velocity 
sensors and idealised skyhook force actuators on the source and radiating panels. The 
third arrangement applies a 16 channel MIMO system on the two panels. The fourth 
control system considers reactive actuators between the two panels, while the error 
signal is the relative velocity between the two panels at the control locations. Figure 11 
schematically shows the four feedback arrangements studied in Subsection 4.1. 
Simulations for each control approach have been performed up to 3 kHz with different 
feedback gain levels. The material properties of the radiating panel correspond to design 
(a) (Table 1).  
 

Radiating panel 
VFB 

Source panel 
VFB 

Source and radiating 
panel VFB 

Relative 
source/radiating 

VFB 

    

    

Skyhook actuators Reactive actuators 

Figure 11: Feedback arrangements 

 
 

4.1.1 Radiating panel direct velocity feedback using skyhook forces 
 
In order to implement a MIMO direct velocity feedback on the radiating panel, using 
skyhook forces, the matrix H in Equation (50) is formed so as to fill only the last 
sixteen spaces of its diagonal, which relates the radiating panels velocities at the control 
locations to the radiating panel control forces by means of a scalar feedback gain g.  
 
 
 
 
 

F - gv- 

-gv
F 

-

F -gv

-gv
F

F -

-
F

- g- v

FF

gv
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All other elements of this 32×32 matrix are equal to zero as indicated in Equation (65): 
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⎥
⎥
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In this way ideal skyhook dampers are modelled with the mobility matrix model 
presented in Subsection 2.2. The simulation results are depicted in Figure 12 using three 
different feedback gain values. The figures follow the standard layout in this report: the 
left hand plots show narrow frequency band results, while the right hand plots show the 
results in the third octave bands. From the top to the bottom of the figure, kinetic energy 
of the source panel, kinetic energy of the radiating panel, and the sound transmission 
ration are shown. The four curves plotted represent responses of the system with 
increasing control gains.  
As the control gains are increased the active damping action rises so that, as shown by 
the dashed lines, the response of the radiating panel, and thus the sound radiation, tend 
to go down at radiating panel low-order resonance frequencies. However, when very 
large control gains are used, the radiating panel tends to be pinned at the control 
position by the skyhook dampers resulting in very large reductions of source panel 
kinetic energy and sound transmission ratio. It must be emphasised that these results are 
valid provided the feedback control system is stable. This is indeed the case when 
collocated velocity sensors and ideal skyhook force actuators are used. When more 
practical actuators such as piezoelectric strain actuators, or electro-dynamic actuators 
that react against a proof mass or against the source panel, are used then stability is an 
open issue which may prevent the implementation of those feedback control gains 
which are necessary to get high reductions of the radiating panel kinetic energy and 
sound transmission ratio. Similar studies carried out on single panels with a 4x4 array of 
decentralised velocity feedback control systems using collocated velocity sensors and 
point forces have shown that when very large feedback gains are implemented the 
pinning effect produces two consequences. First, the response of the panel is 
characterised by a new set of modes defined by the new pinning boundary conditions 
introduced by the feedback control loops. Second, the response is characterised by 
lightly damped resonances, since having the control positions pinned prevents the 
generation of active damping. Therefore new resonances of the panel occur at higher 
frequencies. This type of phenomenon can be seen in Figure 12 (plots C and E) where 
the new resonances of the radiating panel occur above approximately 1 kHz. In other 
words, the broadband sound transmission of the panel is increased for very high 
feedback gains, as will be demonstrated in Section 4.1.5. 
 

29 



 

So
ur

ce
 p

an
el

 k
in

et
ic

 e
ne

rg
y 

(d
B

 re
la

tiv
e 

to
 1

 J)
 

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

R
ad

ia
tin

g 
pa

ne
l k

in
et

ic
 e

ne
rg

y 
(d

B
 

re
la

tiv
e 

to
 1

 J)
 

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in

et
ic

 e
ne

rg
y 

(d
B

)

So
un

d 
tra

ns
m

is
si

on
 ra

tio
 (d

B
) 

10
1

10
2

10
3

−120

−100

−80

−60

−40

−20

0

20

S
ou

nd
 tr

an
sm

is
si

on
 r

at
io

 (
dB

)

Frequency (Hz)
10

1
10

2
10

3
−120

−100

−80

−60

−40

−20

0

20

Frequency (Hz)

S
ou

nd
 tr

an
sm

is
si

on
 r

at
io

 (
dB

)

A B

C D

E F

Figure 12: Radiating panel direct velocity feedback using skyhook forces. The left hand side column 
shows the simulation results in narrow frequency bands, and the right hand side column 
shows the simulation results in third octave bands. The first row shows the source panel 
kinetic energy, the middle row shows the radiating panel kinetic energy, and the bottom row 
shows the sound power transmission ratio. Solid line – no control, dashed – low feedback 
gains, dotted – intermediate feedback gains, dash-dotted – high feedback gains. 
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4.1.2 Source panel direct velocity feedback using skyhook forces  
 
In order to implement MIMO direct velocity feedback on the source panel only, using 
skyhook forces, the matrix H in Equation (50) is formed so as to fill only the first 
sixteen spaces of its diagonal, which relates the source panel velocities at the control 
locations and the source panel control forces by means of a scalar feedback gain g. All 
other elements of this 32×32 matrix are equal to zeros as indicated in Equation (66):  
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In this way ideal skyhook dampers are modelled within the mobility matrix model 
presented in Subsection 2.2. 
The simulation results are depicted in Figure 13 using three different feedback gains. 
The left hand plots show narrow frequency band results, while the right hand plots show 
the results in the third octave bands. From the top to the bottom of the figure, kinetic 
energy of the source panel, kinetic energy of the radiating panel, and the sound 
transmission ration are shown. Also in this case when the control gains are raised from 
zero, the response of the radiating panel and the sound transmission go down at the low 
frequency resonances. However, for very large control gains, although very large 
reductions are achieved at the first few resonance frequencies, the new lightly damped 
resonances become prominent (plots C and E). Active damping of the source panel does 
not seem to reduce the sound radiation near the mass-air-mass resonance (plots E and 
F), since the radiating panel is free to vibrate independently of the highly constrained 
source panel. 
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Figure 13:  Source panel direct velocity feedback using skyhook forces. The left hand side column shows 
the simulation results in narrow frequency bands, and the right hand side column shows the 
simulation results in third octave bands. The first row shows the source panel kinetic energy, 
the middle row shows the radiating panel kinetic energy, and the bottom row shows the 
sound power transmission ratio. Solid line – no control, dashed – low feedback gains, dotted 
– intermediate feedback gains, dash-dotted – high feedback gains.  
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4.1.3 Source and radiating panel direct velocity feedback using skyhook forces 
 
In order to implement MIMO direct velocity feedback on the source and on the 
radiating panel simultaneously, using skyhook forces, the matrix H in Equation (50) is 
formed so as to fill its diagonal, which relates the radiating panels velocities at the 
control locations and the radiating panel control forces as well as the source panel 
control velocity and the source panel control forces by means of a scalar feedback gain, 
g. All other elements of this 32×32 matrix are equal to zeros as indicated in Equation 
(67):  
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In this way ideal skyhook dampers are modelled within the mobility matrix model 
presented in Subsection 2.2. The simulation results are depicted in Figure 14 using three 
different feedback gains. The plots in Figure 14 show the control effects that would 
result when the two control arrangements act simultaneously on the source and radiating 
panels. Comparing these results with those plotted for the control system acting on the 
radiating panel (Figure 12), it is clear that relatively larger control effects are generated 
when the two control systems act simultaneously. However it must be emphasised that 
this is actually 32 channel control in comparison to the 16 channel control of previous 
two arrangements. For very high feedback gains there is still a pinning effect which 
causes the new lightly-damped resonances above approximately 1 kHz. 
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Figure 14: Source and radiating panel direct velocity feedback using skyhook forces, applied 
simultaneously. The left hand side column shows the simulation results in narrow frequency 
bands, and the right hand side column shows the simulation results in third octave bands. The 
first row shows the source panel kinetic energy, the middle row shows the radiating panel 
kinetic energy, and the bottom row shows the sound power transmission ratio. Solid line – no 
control, dashed – low feedback gains, dotted – intermediate feedback gains, dash-dotted – 
high feedback gains. 
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4.1.4 Relative velocity feedback using ideal reactive actuators 
 
In order to implement MIMO direct velocity feedback using the relative velocity of the 
source and radiating panel at the control locations, and reactive control actuators, the 
matrix H in Equation (50) is formed so as to fill its main diagonal by scalar gains. 
Furthermore, the upper and the lower sixteenth diagonals are populated by negative 
scalar gains so as to subtract the absolute velocities of the radiating and source panels in 
order to obtain the relative velocity.  In this way the reactive dampers, driven by relative 
radiating/source panel velocity signals, are modelled within the mobility matrix model 
presented in Subsection 2.2.  
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In order to clarify this modelling strategy, the control forces that result from the gain 
matrix arranged this way are calculated. If Equation (68) is substituted to Equation (50), 
which relates the control forces with control velocities using the gain matrix H, the 
following expression is obtained: 
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so that the elements of the control force vector are given by: 
 

( ) ( )
( ) ( )

( ) (
( ) (
( ) (

( ) ( 1616161616

22222

11111

1616161616

22222
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scrcrcscrc

scrcrcscrc

scrcrcscsc

scrcrcscsc
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vvgvgvgf

vvgvgvgf
vvgvgvgf
vvgvgvgf

vvgvgvgf
vvgvgvgf

−−=⋅+⋅−−=

−−=⋅+⋅−−=
−−=⋅+⋅−−=
−=⋅−⋅−=

−=⋅−⋅−=

)
)
)

)

−=⋅−⋅−=

M

M

. (70) 

 
 It is clear from Equation (70) that the source panel and the radiating panel control 
forces  and are proportional to the relative velocities scjf rcjf ( )scjrcj vv − . Also, the 
source panel control forces and the radiating panel control forces satisfy the equilibrium 
condition for the j-th reactive actuator: 
 

( ) ( ) 0=−−−=+ scjrcjscjrcjrcjscj vvgvvgff . (71) 

 
because the two force components are of equal magnitude with opposite sign. 
The simulation of the control performance is depicted in Figure 15 using three different 
feedback gains (plus the zero gain case). As the control gains are raised from zero, 
active damping is generated so that the response at the low frequency resonances goes 
down. However, comparing the plots in Figure 15 to those of Figures 12 and 14, the 
maximum control effectiveness that could be obtained is much lower. Moreover, the 
pinning effect when very large control gains are implemented, which in this case causes 
the two panels to move together as if they were connected by infinitely rigid studs, 
shifts the original low frequency resonances up slightly. This is probably because the 
double panel becomes a sort of thick and light single panel with a high stiffness-mass 
ratio. The next important feature is a significantly reduced response and sound 
transmission at the mass-air-mass resonant frequency (plots C and E). The relative 
dampers seem to successfully restrict the typical out of phase motion of the two plates. 
However, above the mass-air-mass resonance sound transmission is increased by the 
control system and the beneficial mass law that governs the passive response is 
compromised.  
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Figure 15:  Relative velocity feedback using reactive control forces. The left hand side column shows the 
simulation results in narrow frequency bands, and the right hand side column shows the 
simulation results in third octave bands. The first row shows the source panel kinetic energy, 
the middle row shows the radiating panel kinetic energy, and the bottom row shows the 
sound power transmission ratio. Solid line – no control, dashed – low feedback gains, dotted 
– intermediate feedback gains, dash-dotted – high feedback gains. 
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4.1.5 Comparison of the reductions in the broad frequency band 
 
The two plots in Figure 16 show the kinetic energy of the radiating panel (plot A) and 
the sound transmission ratio (plot B), integrated from 0 Hz to 3 kHz and normalised 
with respect to the uncontrolled case, for the four control strategies: active damping of 
the radiating panel, active damping of the source panel, radiating and source active 
damping simultaneously, and relative active damping.  
Both the kinetic energy of the radiating panel and the sound transmission ratio 
monotonically decrease as the sixteen control gains are raised, so that a maximum 
reduction respectively of about 29 dB and 32 dB are generated for the radiating panel 
active damping strategy (dash-dotted lines). For higher control gains the reduction of 
kinetic energy and sound transmission ratio degrades because of the pinning effect that 
introduces a modal response characterised by lightly damped new resonances.  
The overall reductions of the kinetic energy and sound transmission ratio in the case of 
the source panel control are shown by the dashed lines in Figure 16.  
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Figure 16:  Normalised kinetic energy of the radiating panel (left) and sound transmission ratio (right), 
integrated from 0 Hz to 3 kHz, plotted against the control gain, for the four control strategies: 
source panel direct velocity feedback (dashed lines) with skyhook control forces, radiating 
panel direct velocity feedback (dash-dotted lines) with skyhook control forces, relative 
velocity feedback using reactive actuators (solid lines) and both source and radiating panel 
direct velocity feedback using skyhook control forces applied simultaneously (dotted lines). 

 
The reductions are much lower in comparison to those obtained with the 16 channel 
control system on the radiating panel. In fact, the radiating panel kinetic energy is 
brought down by a maximum of about 17 dB, while the sound transmission ratio goes 
down by only 12 dB. In this case, for very large control gains, the pinning effect on the 
source panel rearranges the response of the double panel in such a way that the 
normalised sound transmission ratio is similar to that of the non-controlled system. 
The dotted lines in Figure 16 show the control effects that would be generated when the 
two control arrangements act simultaneously on the source and radiating panels. 
Comparing these results with those plotted for the control system acting on the radiating 
panel, it is clear that relatively larger reductions are generated when the two control 
systems act simultaneously. However, the dotted lines in Figure 16 indicate that the 
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maximum reduction of the kinetic energy and the sound transmission ratio are increased 
only by a few dB. Thus it may be possible to achieve much larger reductions by 
arranging the 32 control units on the radiating panel. 
In conclusion, as shown by the solid lines in Figure 16, the maximum reductions of the 
radiating panel normalised kinetic energy and normalised sound transmission ratio are 
of about 15 and 18 dB for the case of reactive actuators driven by relative velocity 
signals. Although the reductions with skyhook control forces acting on the radiating 
panel are almost twice as much, the reactive actuators are a more feasible actuation 
solution. In contrast the skyhook actuators are only a theoretical tool useful for analysis 
only.  

 
4.2 Stability and control performance analysis  
 

4.2.1 Feedback configuration 
 
An ideal reactive actuator (neglecting actuator dynamics) is dual and collocated with a 
relative velocity sensor. This guarantees unconditional stability of the direct velocity 
feedback loop. Therefore the approach described in Section 4.1.4 (relative velocity error 
signals and reactive actuators) does not need particular stability analysis as long as ideal 
reactive actuators with ideal velocity sensors are considered. 
The reduction in the sound transmission ratio, as well as in the kinetic energy of the 
radiating plate were, however, much less than the reductions obtained using, for 
example, the skyhook actuators acting on the radiating plate. For this reason different 
control law relationships are discussed next. 
In order to improve the performance of the MIMO direct velocity feedback loops using 
a reactive actuation scheme, the velocities that are collected from the radiating and the 
source panel are weighted by a factor, as shown in Equation (72), so that: 
 

αα scrcE vvv −−= )(1 , (72)

 

where  is the error signal which is amplified and fed back to the reactive actuator, 
and  are the velocities measured on the radiating and source panel for one of the 

decentralised control systems, and 

Ev

rcv scv
α  is the velocity weighting factor. 

If α =0, the error signals are formed purely from the radiating panel velocities at the 
control locations. In contrast, if α =1, the error signals are formed purely from the 
source panel velocities. If α =0.5, the error signals are then proportional to the relative 
velocity of the panels at the control locations. By changing the weighting factor from 
zero to one it is possible to smoothly transform the error signal from a pure radiating 
panel velocity, across the relative radiating/source velocity towards a pure source panel 
velocity.  
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A single actuator produces a reactive force designated as  (control force) which is 
applied to the radiating panel, , and to the source panel, , (Figure 17). The 
minus sign before  comes from the equilibrium condition which requires that 

, and from the fact that positive z-axis is directed from the source towards the 
radiating plate.  Due to the acoustical/structural coupling of the panels, each of the 
control force components,  and , contributes to the motion of each panel at both 
(source and radiating) control locations. For example, the radiating panel control force 
component  contributes to the radiating panel velocity at the radiating panel sensor 
location  via the corresponding point mobility function  

cf

crc ff = csc ff −=

cf

scrc ff −=

rcf scf

rcf

rcv ( )ωrr
ccT , ,  but  it  also  

contributes  to  the source panel velocity at the sensor location ( ) via the 
corresponding transfer mobility function 

scv
( )ωsr

ccT ,  of the coupled system (Figure 17). 

 

cf  
Ev  

α  

α−1  

rr
ccT ,

ss
ccT ,

rcf  

scf  

scv  

rcv

+ 

-

rs
ccT ,

sr
ccT ,

+
+

+
+

 
Figure 17: Configuration of the error signal 

 

On the other hand, the source panel secondary force component  contributes to the 
source panel velocity at the sensor location  via the corresponding point mobility 
function  ,  but  it  also  contributes  to  the radiating panel velocity at the sensor 
location ( ) via the corresponding transfer mobility function 

scf

scv
( )ωss

ccT ,

rcv ( )ωrs
ccT ,  of the coupled 

system (Figure 17). Therefore, use of the reactive actuation scheme includes indirect 
actuation paths, which are realised through structural and acoustical coupling of the two 
plates. The superscripts ( ),r,r ( )s,s,    ( )sr and ( )r,s are used to indicate the point and the 
transfer mobilities of the double panel system at control locations. Respectively they 
designate radiating to radiating, source to source, source to radiating, and radiating to 
source mobilities between the two points of interest (Figure 17). The point mobilities 

 and  are the elements located on the main diagonal of the  matrix     
(Equation (49)), while the transfer mobilities 

( )ωss
ccT , ( )ωrr

ccT ,
ccT

( )ωrs
ccT ,  and ( )ωsr

ccT ,  are located on the 
sixteenth upper and lower diagonal of the  matrix respectively, in the case when ccT
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sixteen loops are used. The point mobility functions ( )ωss
ccT ,  and  model direct 

actuation paths whereas the transfer mobility functions 
( )ωrr

ccT ,

( )ωrs
ccT ,  and  describe 

indirect actuation paths. 
( )ωsr

ccT ,

The existence of indirect actuation paths can affect the stability of the control system if 
the α  factor is different from 0.5 (dual and collocated case). 
The effects of the control systems that use weighted velocities to form the error signals, 
and reactive control actuators, can be simulated via the matrix H in Equation (50). The 
H matrix is formed in the following way: its main diagonal and the sixteenth upper and 
lower diagonals are populated with appropriate weighting factors, as given in Equation 
(73):  
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If Equation (73) is substituted into Equation (50), which relates the control forces with 
control velocities, using the matrix H, the following expression is obtained: 
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so that the elements of the control force vector are given by: 
 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
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11

11
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M

M

. (75) 

 
Also, the source panel and radiating panel control forces satisfy the equilibrium 
condition for a reactive actuator j: 
 

( )( ) ( )( ) 011 =−−+−−−=+ scjrcjscjrcjrcjscj vvgvvgff αααα . (76) 

 
since the two force components are of equal magnitude with opposite signs. 
 
 
4.2.2 Control performance 
 
Control performance results are shown in Figure 18 using three different feedback gain 
values. The velocity weighting factor used in these simulations was α =0.375, which 
slightly emphasises the radiating panel velocity signals. The double panel system 
properties correspond to system design (a) (Table 1). Previous simulations that have 
been carried out with skyhook forces have shown that the best control action is achieved 
when the sixteen feedback control loops are formed by the error velocity signals 
measured at the radiating panel only, using the skyhook actuators. However, as will be 
discussed in Section 4.2.3, if this feedback configuration is used with the reactive 
actuators, it has severe stability limitations which preclude the implementation of large 
feedback control gains required to generate the desired active damping effects. A 
careful stability analysis indicates (Section 4.2.3) that unconditionally stable feedback 
control loops can be obtained when relative velocity feedback loops are implemented 
with a weighting factor of at least α =0.375, which emphasises the velocity signals from 
the radiating panel.  
The solid lines on all graphs in Figure 18 represent either the sound transmission ratio 
or kinetic energy of the panels without control. Considering feedback control loops with 
α =0.375, as the feedback control gains are turned up active damping action rises so 
that, as shown by dashed and dotted lines in Figure 18, the response of the radiating 
panel, and thus the sound radiation, tend to go down at the radiating panel low order 
mode resonant frequencies. If very large gains are applied, the response of the radiating 
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panel is characterised by a new set of modes. These modes are defined by the control 
forces that bring the two panels to move together as if they were connected by very rigid 
fasteners, since the α  value is quite close to 0.5. Thus a new set of resonances are 
produced at slightly higher frequencies and with relatively higher amplitudes. In other 
words the double panel tends to become a sort of thick and light single panel with a 
higher stiffness-mass ratio. The response is then characterised by lightly damped 
resonances, since having the control positions of the source and the radiating panel 
connected by the rigid links prevents the generation of active damping. 
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Figure 18:  Direct velocity feedback using reactive control forces with velocity weighting factor equal to 
α =0.375. The left hand side column shows the simulation results in narrow frequency 
bands, and the right hand side column shows the simulation results in third octave bands. The 
first row shows the source panel kinetic energy, the middle row shows the radiating panel 
kinetic energy, and the bottom row shows the sound power transmission ratio. Solid line – no 
control, dashed – low feedback gains, dotted – intermediate feedback gains, dash-dotted – 
high feedback gains. 
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Figure 19 illustrates the response of the panel at three resonant frequencies when there 
is no control (top row) and when the sixteen control units either implement the control 
gains that give the largest active damping effect (centre row) or implement very large 
control gains so that the two panels are linked together at the sixteen control positions 
(bottom row).  
 

 

A C B

Figure 19: Scaled deflection shapes of the two panels at the 1st (column A), 5th (column B) and 23rd 
(column C) resonances of the system. First row depicts the resonances with no control, centre 
row with optimal gain, and the bottom row with large feedback gain (α =0.375). 

 
The mode shape designated by (A) is characterised by a (1,1) volumetric mode of the 
source panel which induces an even rigid body mode of the resiliently mounted 
radiating panel (the first mode of the double panel). The four flexible mounts change the 
vibration field of the radiating panel in such a way that it looks like a (1,1) flexible 
mode which is pinned at the four mounting points. The mode shape designated by (B) is 
characterised by a (2,1) mode of the source panel which induces a rocking rigid body 
mode of the resiliently mounted radiating panel. Also, in this case, the four mounts 
constrain the vibration of the radiating panel at the corners. Finally the deflection shape 
(C), (mass-air-mass), besides the air acting like a spring between two masses, is 
characterised by strong coupling between the two panels via the first cavity mode 
(1,0,0) which resonates. As a result the responses of the two panels are influenced by 
the cavity mode which induces a cosinusoidal field in x-direction on the source panel. In 
this case, the sixteen control units tend to prevent the excitation of the resonant cavity 
mode, and the relative out of phase motion of the two plates. Thus, when the control 
gains are raised the response of the two panels monotonically falls off at the mass-air-
mass resonance even for very large control gains (Figure 19, column C at the bottom). 
The two plots in Figure 20 show the normalised kinetic energy of the radiating panel 
(plot A) and sound transmission ratio (plot B), integrated from 0 Hz to 3 kHz and 
plotted against feedback gain. The curves in each plot have been derived by varying the 
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sensor weighting factor α  between 0.875 and 0.375, where 375.0=α  is the smallest 
value of α  for which the system is unconditionally stable. Also, the dash-dotted curves 
have been added which represent the reductions which would be generated by a 
decentralised MIMO feedback system that uses ideal skyhook actuators and velocity 
sensors on the radiating panel (Section 4.1.5). 
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A B

Figure 20: Normalised kinetic energy of the radiating panel (A) and 
integrated from 0 Hz to 3 kHz, plotted against the control g
values: α =0.875 (solid faint line), α =0.75 (dashed faint line
α =0.5 (dash-dotted faint line) and α =0.375 (solid line) a
feedback system that uses 16 ideal skyhook actuators and ve
panel (dashed line). 

 
The results indicate that the latter is by far the best arrang
sound radiation reductions are twice that obtained with the be
configuration. However, it must be emphasised that in practic
to have a reactive arrangement in order to obtain a pure force
could be obtained with proof mass actuators. But in this case
conditionally stable and does not permit control gains nece
control effects predicted by the dash-dotted lines in Figure 
control scheme is discussed next. 
For all the α  values the kinetic energy of the radiatin
transmission ratio monotonically decrease as the sixteen con
zero to approximately 10 Ns/m - 100 Ns/m. This results 
respectively of about 16 dB (plot A) and 24 dB (plot B) for 
for optimal (the smallest) velocity weighting factor α =0.375
the reduction of kinetic energy and sound transmission ra
control systems tend to connect the panels at the control pos
active damping and introduces a modal response characterise
resonances.  
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Figure 21 shows that the best reductions of sound transmission ratio and kinetic energy 
of the radiating panel are obtained when the error signals of the sixteen control loops are 
tuned in such a way as to weight the radiating panel velocities more. In contrast, the best 
reduction of source panel kinetic energy is obtained when the error signals are tuned in 
such a way as to weight the source panel velocities more. 
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UNCONDITIONALLY STABLE 

Figure 21: Maximum reductions of the: a) sound transmission ratio (solid line), b) normalised total 
kinetic energy of the source panel (dashed line), c) normalised kinetic energy of the radiating 
panel (dotted line). 

 

4.2.3 Stability 
 
As was mentioned before, indirect actuation paths are relevant if reactive actuators with 
“unbalanced” relative velocity sensors are used on the double panel system considered 
in this paper. As a result the implementation of large control gains can be limited by 
stability issues. In this study, the Nyquist criterion is used to assess the stability of a 
single control loop. In practice the stability of all sixteen control loops should be 
assessed with a generalised form of the Nyquist criterion [6,7]. However the stability 
analysis of a single control unit can be better interpreted in terms of the physics of the 
system. Moreover any instability of a single unit is likely to affect the stability of the 
whole sixteen channel control system. Thus the stability of a single control unit can be 
assumed as a necessary condition for the stability of the whole sixteen channel control 
system. 
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Figure 22 shows Bode (left hand side) and Nyquist (right hand side) plots of a sensor-
actuator open loop frequency response function assuming the velocity weighting factor 
α =0.5. The feedback loop considered here is one of the inner four feedback loops 
(Figure 1). The FRF phase is confined between ±90º, thus there is no negative real part 
in the Nyquist plot and the feedback loop is bound to be unconditionally stable. Also a 
decrease in the FRF amplitude is noticeable, which shows that controllability at higher 
frequencies is reduced.   
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panel. These modes are characterised by a radiating panel field that is forced to follow 
the source panel motion via the acoustical coupling (plots A and B in Figure 19). In 
order to illustrate the importance of acoustical indirect actuation path, a simulation has 
been performed, which neglects the acoustical coupling of the two panels. The 
corresponding results are depicted in Figure 23 by the dashed lines. The control system 
in that case would be stable as the phase of the open loop FRF is constrained between 

 and thus the locus stays in the positive real quadrants.  o90±

Figure 24 shows the maximum value of oδ  (see Figure 23) plotted against the velocity 
weighting factor, α , for cases with and without acoustical coupling. According to the 
Nyquist criterion, if 0=oδ  then the system is unconditionally stable. In contrast, if 

1−<oδ  the system is unstable. Finally, if 01 <<− oδ  then the system is conditionally 
stable, although control spillover effects are likely to occur at some frequencies. It can 
be seen that acoustical coupling between the panels is the major cause of conditional 
stability for the control with α -factor lower than approximately 0.375. This value 
corresponds to the knee location in Figure 24, as designate by arrow. The α -factor of 
the knee, where the system switches from conditional to unconditional stability, is 
considered the critical velocity weighting factor ( critα ) throughout this report. 
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Figure 24: 0δ value plotted against the velocity weighting factor α  when the acoustical coupling 

between the two panels is (solid line) or is not (dashed line) taken into account in the model. 

 
Elastic mounts are another path for indirect actuation. Indeed it is the coupling via the 
elastic mounts that limits the stability in the case where no acoustic coupling is 
considered between the two panels (dashed line). In summary the velocity weighting 
factor of approximately α =0.375 can be considered a threshold for unconditional 
stability of feedback control with reactive actuators for the double panel system design 
(a) (Table 1) and for the feedback loop considered here. 
So far the frequency response function considered was for one of the inner four control 
loops of the array with sixteen control units (Figure 1). However, the location of the 
feedback unit might also be an important factor. For example, the source panel is simply 
supported along its edges. If a control unit is located exactly at an edge, the velocity  
equals to zero, as well as mobilities 

scv
( )ωss

ccT , , ( )ωrs
ccT ,  and ( )ωsr

ccT ,  (see Figure 17). Only 
the transfer mobility  is different from zero. Therefore the indirect actuation ( )ωrr

ccT ,
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paths do not exist and the error velocity is purely determined by the radiating panel 
control force component . As a consequence, even for rcf 0=α  a control loop located at 
edges should be unconditionally stable. This suggests that there must be spatial 
distribution of the critical velocity weighting factorα . 
In order to investigate this effect, simulations have been performed with control units 
located all over the double panel surface: in total 34×34 x and y coordinates have been 
investigated, and for each location the critical velocity weighting factor has been 
determined. The results are depicted in Figure 25, which shows contour plots of the 
critical α  over the panel’s surface. Plot A indicates that the highest α  factors are 
necessary near the centre of the plate to ensure unconditional stability. As expected, 
zero values are required at the edges. Very high values can also be observed near the 
mounts. If the mounts are removed this effect vanishes as shown in plot B in Figure 25. 
High values are still present in the centre of the panel. Finally, if the air coupling is 
neglected, the critical α  value drops significantly all over the panel, except in the 
vicinity of the mounts (plot C). This indicates that the acoustical coupling is the most 
important path for the indirect actuation when using reactive actuators in the model 
double panel considered here. 
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Figure 25: Critical α -factor distribution plotted over the surface of the double panel in case of fully 
coupled configuration (plot A), in case when structural coupling is neglected (plot B), and in 
case when acoustical coupling is neglected (plot C).  
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4.3 Parametric study of the stability of the feedback loops 
 
In order to assess the effect of the physical properties on control system stability, a 
parametric study has been performed. The following properties have been varied: a) 
mass density (surface density) of the source panel, b) Young’s modulus (bending 
stiffness) of the source panel, c) mass density (surface density) of the radiating panel, d) 
Young’s modulus (bending stiffness) of the radiating panel, e) elastic mount stiffness, f) 
and mass density of the air in the cavity. During variation of each of the parameters, all 
other properties of the double panel were equal to the properties of design (a), Table 1.  
Since it was observed that the centre of the double panel represented the most critical 
location for the reactive actuator (Figure 25), this location has been chosen to assess the 
stability of the feedback loop for this parametric study. 

For each parameter reciprocal values of the available gain margin, i.e. oδ  values, have 
been derived for different velocity weighting factors in the range 0-1. In this way it was 
possible to determine the critical velocity weighting factor, which was observed in the 
previous section of this report, with respect to the varied parameters. Therefore the 
range of α  factors for which the loop remains in the unconditionally stable regime has 
been considered. Also the value of oδ  in case when α =0 have been determined for 
each parameter. This value is important because it gives an idea of the maximum 
feedback gain which is available to conditionally stable systems with velocity sensors 
located on the radiating panel only. 
Figure 26 shows the results of the parametric study with respect to the variation of the 
source panel material properties including: mass density (left hand plots) and Young’s 
modulus (right hand plots). These properties directly influence the surface density of a 
plate and its bending stiffness, as shown by Equations (56,57). Plots A and C indicate 
that the critical α  value is only a little influenced by the mass density of the source 
panel. (The critical α  is the knee location indicated by arrow in Figure 26 A.) On the 
other hand, oδ  in case when α =0 shows sensitivity to the variation since the available 
gain margin tends to change substantially (plot E). Moreover plot E clearly indicates 
that very heavy source panels provide more gain margin in the range of conditional 
stability. In contrast, variation of source panel stiffness causes the critical velocity 
weighting factor to change substantially, and, in the case of extremely stiff source 
panels, the value approaches zero (plot D). Also, oδ  in case when α =0, decreases as 
the source panel bending stiffness increases, giving more gain margin for conditionally 
stable feedback loops (plot F). 

The sensitivity of critα  to variation of either stiffness or mass of the source plate around 
the reference case (vertical lines in plots) is small (plots C and D). This indicates that 
there is not much room for affecting the critical velocity weighting factor without 
considerably changing the mass and the stiffness of the source panel. On the other hand 
the sensitivity of the gain margin for conditionally stable systems around the reference 
case is considerable (plots E and F). However, the desirable feedback gain of 
approximately 100 Ns/m (Figure 20) is not achievable for reasonable values of mass 
and stiffness. 
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 Variation of the source panel mass density Variation of the source panel Young’s modulus 
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Figure 26: 0δ  plotted against the velocity weighting factor (plots A and B), critical velocity weighting 
factor (plots C and D) plotted against the varied parameter, 0δ  in case when 0=α  plotted 
against the varied parameter (plots E and F). The parameters varied in this figure are the 
source panel mass density (plots A, C, and E) and the source panel elastic modulus (plots B, 
D, and F). The vertical lines on plots C-F indicate the location of the reference case (a) (Table 
1) on the parameter axis. 
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Figure 27 shows stability parametric study results for variations in radiating panel mass 
density (left hand plots) and Young’s modulus (right hand plots). It can be observed that 
the critical α  value is insensitive to changes in mass density of the radiating panel 
(plots A and C). This statement also extends to oδ  in the case when α =0, since the gain 
margin does not change substantially (plot E). In contrast, an increase in radiating panel 
stiffness causes the critical velocity weighting factor to decrease in the vicinity of the 
reference case (plot D). But, even in case of extremely stiff radiating panels, this value 
does not decrease to zero. Considering now oδ  in case when α =0, it decreases with 
increase in radiating panel bending stiffness (plot F), giving more gain margin for 
conditionally stable feedback loops. However the increase of the gain margin is not high 
enough to permit implementation of desirable feedback gains. 
In conclusion, the study of radiating panel material properties indicates that the stability 
properties are only significantly influenced by the variation of the bending stiffness 
(Young’s modulus) of the radiating panel. This could have an impact on the stability if 
the panel had very low stiffness, as indicated by the slope of the curve plot D of Figure 
27. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

54 



 

 Variation of the radiating panel mass density Variation of the radiating panel Young’s modulus 
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Figure 27: 0δ  plotted against the velocity weighting factor (plots A and B), critical velocity weighting 
factor (plots C and D) plotted against the varied parameter, 0δ  in case when 0=α  plotted 
against the varied parameter (plots E and F). The parameters varied in this figure are the 
radiating panel mass density (plots A, C, and E) and the radiating panel elastic modulus 
(plots B, D, and F). The vertical lines on the plots C-F indicate the location of the reference 
case (a) (Table 1) on the parameter axis). 
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The variation of elastic mounts stiffness, depicted in plots A, C, and E of Figure 28 is 
considered now. This parameter has a modest influence on critical velocity weighting 
factor and gain margin for conditionally stable systems. Even in case when the stiffness 
of the mounts is varied between 0 and 105 N/m, critα  changes are bounded between 0.28 
and 0.37 (plot C), while oδ  with 0=α  changes are limited between -0.33 and -0.46 
(plot E). However, it is worth noting the overall trend in the critα  dependence upon 
mount stiffness since it increases with increase of stiffness. This outcome is not 
surprising because the structural coupling of the two plates is a path for the indirect 
actuation effect. It is also worth noting that there are only four elastic mounts and they 
are near the edge of the plate, where the mobility functions of the source panel have low 
amplitudes. This limits the influence of the structural indirect actuation in a first place, 
so that varying its strength does not significantly affect the stability limits. These limits 
are predominantly determined by the very strong acoustical indirect actuation path. 
In fact, in the previous subsection the simulations with and without the air in the cavity 
indicated the importance of the acoustical indirect actuation path. Figures 23 and 24 
showed how the absence of the air can dramatically reduce the critα . These results were 
motivation to study the stability with respect to the air density which, for the last 
parametrical study was varied between 0 (total vacuum) and the air density under the 
standard atmospheric conditions ( 19.1=airρ 3kg/m ). critα  was very sensitive to air 
density, but the shape of the curve in Figure 28D, shows that, the principal variation 
occurs at very high levels of vacuum. In other words, the slope of the curve is very 
small around the reference case ( 0ρρ =1). It is interesting to compare plot B in Figure 
28 to plot B in Figure 26 where the source panel stiffness variation is shown. These two 
plots show different curve shapes in the conditionally stable region. The stiffness of the 
source panel primarily acts by increasing the available gain margin, whereas the density 
of the air in the cavity shifts the knee ( critα  value) to the right.  

In conclusion, the parameters of the double panel system that strongly affect the 
stability of the feedback loops are the strength of the acoustical coupling effect, and the 
stiffness of the source plate. However the influence does not occur in the vicinity of the 
reference case (the design (a) in Table 1). In addition, the strength of the acoustical 
feedthrough effect can probably be affected by means other than the density of the air, 
such as, by changing the air cavity boundary conditions.  
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 Variation of the mount stiffness Variation of the air density 
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Figure 28: 0δ  plotted against the velocity weighting factor (plots A and B), critical velocity weighting 
factor (plots C and D) plotted against the varied parameter, 0δ  in case when 0=α  plotted 
against the varied parameter (plots E and F). The parameters varied in this figure are the 
stiffness of the elastic mounts (plots A, C, and E) and the mass density of the air in the cavity 
between the plates (plots B, D and F). The vertical lines on the plots in the second and third 
row indicate the location of the reference case (a) (Table 1) on the parameter axis). 
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The final parameter considered is the air cavity depth (lz). Three depths were considered 
including: 0.02m, 0.03m, 0.04m The influence on the stability properties is negligible, 
as shown in Figure 29 (the three curves overlap). 
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Figure 29: The effect of the lz dimension of the air cavity to the oδ  versus α  curve. Three cavity lz 

dimensions have been considered here (0.02m, 0.03m, 0.04m), but the curves overlap. 

 
This outcome can be explained by considering the physics of the acoustical coupling at 
the lowest resonant frequency of the double panel (approximately 40 Hz). At this 
frequency the mode shape is dominated by volumetric, in phase motion of the two 
panels (Figure 5A). The cavity air only couples the two plates like a very stiff 
distributed spring. This is important for the stability since the most important phase lag 
for conditionally stable systems occurs at this frequency (40Hz). This lag is 
characterised by the largest resonant amplitude of the sensor-actuator FRFs (Figure 
23A). Therefore oδ  is observed at the lowest resonance of the double panel system 
(Figure 23B). The air in the cavity has very limited influence on the vibration amplitude 
or natural frequency of the mode (Figure 7). In fact, the natural frequency of the mode is 
mostly determined by the two panels’ mass and stiffness properties, while the air 
constrains the motion of the two plates without contributing to the modal mass or 
stiffness.   
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5 CONCLUSIONS 
 
In this report a theoretical analysis is presented of a smart double panel system for 
active structural acoustic control. The system consists of two panels coupled structurally 
by passive elastic mounts and acoustically by air in the cavity between the two panels. 
The “source” panel is excited by an acoustic plane wave while the “radiating” panel 
radiates sound into the free-field. The principal dimensions of the double panel have 
been selected to replicate a typical skin of a transportation vehicle such as an aircraft or 
a train. 
First a parametric study has been performed in order to determine the influence of: a) 
the material properties of the radiating panel; b) amplitude of the air gap; and c) the 
stiffness of the mounting system. The effect of the material properties were studied 
considering realistic mechanical and geometrical parameters for the radiating panel 
(density, Young’s modulus and thickness). A large number of cases has been studied 
which show that when the (surface density)/(bending stiffness) ratio increases the 
response of the radiating panel and sound transmission is affected by a downward shift 
of the resonant frequencies. The source and radiating panels are strongly coupled via the 
mounts and the air in the cavity. The characteristic mass law spectrum of the radiating 
panel kinetic energy and sound transmission ratio exists at higher frequencies, above the 
mass-air-mass resonance. Variations of cavity depth tend to shift the mass-air-mass 
resonance frequency. Variations of the mount stiffness tend to shift the lowest 
resonance frequency of the double panel. 
The effects of four MIMO decentralised feedback control systems have been 
considered. The first two systems consisted of a 4x4 array of collocated velocity sensors 
and sky-hook force actuators implementing decentralised feedback control loops either 
on the radiating or source panel. The third system implemented skyhook damping on 
both the source and radiating panels. Finally the fourth system used a 4x4 array of 
reactive forces acting between the two panels to implement relative damping. The 
overall conclusion is that skyhook damping on the radiating panel produces large 
reductions of both the radiating panel kinetic energy and sound transmission ratio; up to 
29 and 32 dB respectively. The skyhook damping on the source panel produces modest 
results of 17 dB and 12 dB reductions in radiating panel kinetic energy and sound 
transmission ratio. The use of sky-hook active damping on both panels increases the 
kinetic energy and sound transmission reductions by just few dB in comparison to the 
radiating panel active damping. Finally the implementation of relative damping 
produces 15 dB and 18 dB reductions in radiating panel kinetic energy and sound 
transmission ratio. 
The reactive actuation scheme is a more realistic strategy than the sky-hook actuation. 
In order to improve the performance of the reactive strategy the error signal is formed 
by using weighted velocities of the source and radiating panels. The control effects of a 
4x4 regular array of such decentralised control units have been considered. Better 
results are obtained for weighting factors that emphasise the radiating panel velocities. 
However, if only radiating panel velocities are used for the error signal, only 
conditionally stable loops are possible. It is shown that this outcome is due to the 
acoustical and structural coupling of the two panels, which cause indirect actuation 
paths. The indirect actuation paths are particularly important at lower frequencies. 
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Stable feedback control loops and a good performance can be obtained when source and 
radiating panel error velocities are weighted by factor of 375.0=α  (the critical value). 
This is valid for the reference design of the model problem. It has been shown that the 
main indirect actuation effect is caused by the air in the cavity (acoustical path); while 
the elastic mount system (structural path) is of minor importance. The critical weighting 
factor of the source and radiating panel velocities ( critα ) depends upon the location of 
the control unit. The units close to the boundaries of the plates have critical α  values as 
low as zero. 
A parametric study demonstrated that parameters (such as stiffness of the radiating 
plate, mass of the radiating plate, mass of the source panel, and air cavity depth) do not 
have significant influence on the system stability. This is because critα  remains 
approximately the same around the reference case. A modest influence to the critical α  
value can be obtained if the elastic constant of the mounts is varied. On the other hand 
the critical value of the velocity weighting factor is sensitive to the acoustical coupling 
strength. The acoustical coupling has been addressed via the air density in the cavity. 
However, high vacuum (far from the design point) is needed to reduce the critical α  
towards zero. The stiffness of the source panel influences the gain margin of the 
conditionally stable systems and the critical α  value. The critical value decreased to 
zero by increasing the stiffness of the source panels. However, unrealistically stiff 
source panels, (far from the design point) are needed for unconditional stability. 
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A APPENDIX: MOBILITIES AND IMPEDANCES 
 
Appendix A describes the mobility and impedance matrices used in Equations (15,16 
and 20) in more detail than then they were described in the Section 2.2 of the report. It 
also gives the expressions for the mobility and impedance functions that the mobility 
and impedance matrices consist of. 
 
A.1 Mobility matrices 
 

The mobility matrix, , in Equation (15) is used to calculate the contribution to the 
source panel velocity vector, defined in Equation (7), due to the action of the source 
panel force vector given in Equation (11). It contains mobility functions between all the 
possible locations pairs for the elastic mount junction points and centres of source panel 
elements. The matrix  is given by the following equation: 
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where the q×q matrix  contains the source panel mobility functions between all the 
points of the elastic mount junctions; the q×k matrix  and k×q matrix  contain 
the source plate mobility functions between the centres of elements and points of the 
elastic mount junctions; the k×k matrix  contains the source plate mobility functions 
between all element centres; and where q is the number of elastic mounts, and k is the 
number of elements on a panel. 
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In a similar way the mobility matrix  in Equation (16) is used to calculate the 
contribution to the radiating panel velocity vector, defined in Equation (8), due to the 
action of the radiating panel force vector given in Equation (12). It contains mobility 
functions of the radiating plate between all possible pairs of the elastic mount junction 
points and element centres. The matrix  is given by the following equation: 
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where the q×q matrix  contains radiating plate mobility functions between all the 
elastic mount junction points; the q×k matrix  and k×q matrix  contain the 
radiating plate mobility functions between the element centres and elastic mount 
junction points; whereas the k×k matrix  contains the radiating plate mobility 
functions between all the element centres. 
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The mobility matrix  in Equation (15) is used to calculate the contribution to the 
source panel velocity vector, defined in Equation (7), due to the action of the primary 
excitation force vector , which is a subset of the primary-flanking excitation vector 

 given in Equation (25). The primary excitation is modelled using out of plane point 
forces, contained in the primary-flanking excitation vector , which act on the 
geometrical centres of the elements, but not on the elastic mount junctions. Therefore 
the matrix  contains mobility functions between all the possible pairs of points that 
can be made using the element centres, and between all the possible pairs of points that 
can be made combining the element centres with the source panel elastic mount 
junctions. Thus the matrix , of size (k+q)×k, is given by the following equation: 
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Similarly, the mobility matrix  in Equation (16) is used to calculate the contribution 
to the radiating panel velocity vector, defined in Equation (12), due to the action of the 
flanking excitation force vector , which is a subset of the primary-flanking excitation 
vector , given in Equation (25). The flanking excitation is again modelled using out 
of plane point forces, contained in the primary-flanking excitation vector , which act 
on geometrical centres of the elements, but not on the elastic mount junctions. Therefore 
the matrix  contains mobility functions between all possible pairs of points that can 
be made using the element centres, and between all the possible pairs of points that can 
be made combining the element centres with the radiating panel elastic mount junctions. 
Thus the matrix  of size (k+q)×k is given by the following equation: 
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The mobility matrix  in Equation (15) is used to calculate the contribution to the 
source panel velocity vector, defined in Equation (7), due to the action of the control 
force vector , given in Equation (14). Therefore the matrix  contains mobility 
functions between all the possible pairs that can be made combining the source panel 
element centres and the control force points of action on the source panel as well as 
mobilities between all the possible pairs that can be made combining the source panel 
elastic mount junctions and the points of action of the control forces on the source 
panel.  
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The matrix  of size (k+q)×2p, where p is the number of the control forces, is given 
by the following equation: 
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where the q×p matrix  contains the mobility functions of the source panel between 
the elastic mount junction points and the points of action of the control forces;  and k×p 
matrix  contains the mobility functions of the source plate between the centres of 
elements and the points of action of the control forces. 
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secY

Similarly, the mobility matrix  in Equation (16) is used to calculate the contribution 
to the radiating panel velocity vector, defined in Equation (7) due to the action of the 
control force vector , given in Equation (14). Therefore the matrix  contains 
mobility functions between all the possible pairs that can be made combining the 
radiating panel element centres and the radiating panel control force points of action as 
well as mobilities between all the possible pairs that can be made combining the 
radiating panel elastic mount junctions and the points of radiating panel control forces 
action.  The matrix  of size (k+q)×2p is given by the following equation: 
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where the q×p matrix  contains the radiating panel mobility functions between the 
points of the elastic mount junctions and the points of action of the control forces,  and 
k×p matrix  contains the radiating plate mobility functions between the element 
centres and the points of action of the control forces. 

rmcY

recY

 
A.2 Mobility functions  
 
In the Subsection A.1 of Appendix A the mobility matrices have been described in such 
detail so that the elements of each matrix have been defined as mobility functions 
between two points of either source or radiating panel. In this Subsection it is explained 
how to calculate a mobility function between two arbitrary points of the source and the 
radiating panels. 
The mobility function is a frequency dependent complex function that can be defined 
between two points of a plate and which is given by a ratio of a time harmonic velocity 
at one point resulting from a time harmonic force acting at some other point on the 
plate. If the locations of the two points are different, then the mobility function is called 
the transfer mobility. In contrast, if the two points share the same location then the 
resulting mobility is called the point mobility. Due to the principle of reciprocity, if the 
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force and the velocity switch their locations then the mobility function does not change. 
Figure A1 shows a plate excited by an out of plane force  at location P1, and the 
resulting out of plane velocity  at location P2.  
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Figure A1: Notation of the velocity  at position P2 when a plate is excited by an out of plane force  

 at position P1. 
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A mobility function between the points P1 and P2 is given by [24]: 
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The function in Equation (A7) for a thin lightly damped rectangular plate is given by 
[24]: 
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where:  
 

j    - imaginary unit, 
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ω   - circular frequency, 

nm,φ  - mode shape function, 

ρ     - mass density of the plate material, 

sh       - plate thickness, 

xl       - plate length,  

yl     - plate width,  

nm,ω   - plate natural frequencies, and 

η   - plate loss factor. 

 
For the source panel (simply supported thin rectangular plate) natural frequencies can be 
calculated using following equation [24]: 
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where: 
 

sE     - the Young’s modulus of the source panel material, 

sν      - the Poisson’s ratio of the source panel material, 

sρ     - density of the source panel material, 

sh      - source panel thickness, 

sI      -  source panel second moment of area (
12

3
s

s
hI = ), 

m      -  mode number in x direction, 
n       -  mode number in x direction, 

xl      - double panel system length, and 

yl      - double panel system width. 

 
Source panel modal shapes are given by [24]: 
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For the radiating panel (a thin rectangular plate, with free boundary conditions along all 
the edges) natural frequencies are given by [24]: 
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where: 
 

r
nm,ω  - radiating panel natural frequencies, 

rE    - the Young’s modulus of the receiver panel’s material, 

rν     - the Poisson’s ratio of the receiver panel’s material, 

rρ    - density of the receiver panel’s material, 

rh     - receiver panel thickness, and 
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The constants , ,  and , ,  are given in Table A1. In Table A1 k takes 
the values of m or n (for calculating values of G, H, and J) for x or y directions, 
respectively. Regarding rigid body motion of the plate, there are two non-deforming 
beam functions as well, and these are designated in the table as an “even” and a 
“rocking” mode. These must be included in the m, n combinations as well as deforming 
beam functions (i.e. in the modal superposition there are modes with natural 
frequency

xG xH xJ yG yH yJ

7,rockingω  or 3,evenω ). 

 
Table A1 Values for the constants G, H, and J 

k  G  H  J  
Even mode 0 0 0 

Rocking mode 0 0 212 π  
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Modal shapes for the radiating panel are given as products of characteristic beam 
functions: 
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The characteristic beam functions for free boundary condition along all the edges are 
given in Table A2.  
 

Table A2 Characteristic beam functions for a plate with free edges (after [24]) 
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The zeros of the “gamma functions” are given in Table A3. 

 
Table A3 Zeros of the “gamma functions” (γ in Table A2) 
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1 7.8532 4.73004 
2 14.13716 10.9956 
3 20.4204 17.27876 
4 26.7036 23.5620 
5 32.9868 29.8452 
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A.3 Impedance matrices 
 
The transmission system dynamics in the mobility matrix model (Section 2.2.2) is 
modelled using an impedance approach, as given by Equation (20). The matrix 

relates the force vector of the transmission system , defined in Equation (13) to the 
transmission system velocity vector , which is defined in Equation (9). It can be 
subdivided into subsets of impedance matrices which contain the impedances of the 
transmission system at the source panel , radiating panel , and the cross 
coupling impedances of the source to radiating panel  and the radiating to source 
panel impedances : 
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The sub matrices in Equation (A8) can be further subdivided into impedance functions 
of the structural transmission path and the acoustical transmission path, as given by 
Equation (A14-A17): 
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A17) 

 

where the matrices , , , and  contain impedance functions for 
mount junctions on the source panel and the radiating panel, modelling the dynamics of 
the structural transmission path. The size of each of these matrices is q×q. These 
matrices are diagonal because a velocity at a mount junction can only cause a force due 
to elastic deformation of a mount at the junction points of that mount. In contrast, the 
impedance matrices , , , and , which model the dynamics of the 
acoustical transmission path, are fully populated since a velocity of one element will 
cause pressure fluctuation all over the air cavity, and will therefore generate a force at 
all other elements on the source and the radiating panel. The size of each of these 
matrices is k×k. 
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A.4 Impedance functions  
 
In the Subsection A.3 of Appendix A the impedance matrices of the transmission 
system have been described in such detail so that the elements of each matrix have been 
defined as impedance functions between two points of either acoustical cavity or elastic 
mount junctions. In this Subsection it is explained how to calculate these impedance 
functions. 
An impedance function is a frequency dependent complex function that can be defined 
between two points of a body. It is given by a ratio of a time harmonic force at one point 
which results from a time harmonic velocity at some other point of the body. The 
impedance concept can also be used when a rectangular acoustical cavity is driven by an 
acoustic source causing pressure fluctuations across the cavity. Using elemental 
subdivisions of the cavity boundaries it is possible to relate pressure fluctuations 
distributed over element surfaces to resultant point forces at element geometrical 
centres. It is also possible to relate velocities of element geometrical centres to the 
strengths of acoustical sources. Therefore, velocity of an element centre located at a 
cavity boundary can be related to the consequent force at some other boundary element 
centre. Figure A1 shows a rectangular air cavity excited by a velocity  of an out of 
x,y plane moving boundary at location P2, and the resulting out of plane force  at 
location P2.  
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Figure A2: Notation of the force  at position P2 when an air cavity is excited by an out of plane 

velocity  of the moving boundary at position P1. 
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The impedance function between the points P1 and P2 is given by: 
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The impedance function in Equation (A13) for a rectangular acoustical cavity is given 
by [5]: 
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where: 
 

eA            - area of the surface element, 

airρ          - air mass density, 

0c            - speed of sound in the air, 

zl             - cavity depth (distance between panels’ inner surfaces), 
1

,, 321

P
nnnψ     - natural mode shape function at point P1, 

2
,, 321

P
nnnψ     - natural mode shape function at point P2, 

ζ      - air cavity loss factor. 
cav

nnn 321 ,,ω     - air cavity natural frequency, 

321 ,, nnn  - mode numbers for, x,y, and z directions. 

 
Natural frequencies of the acoustical cavity can be expressed as [5]: 
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Natural modes of the air cavity are given by [5]: 
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where  is an arbitrary complex constant. In order to normalise all the mode shape 
functions with respect to the volume of the air cavity, this constant has been chosen so 
that: 

nA

 

321 εεε=nA , (A17)

 

where
02
01

>∀
=∀

=
i

i
k n

n
ε . 

 
The impedance function between the two elastic mount junction points is calculated 
assuming that an elastic mount can be modelled as a spring-damper system. In this case 
the impedance function in Equation (A13), is given by [24]: 
 

ω
ω

j
kcZ PP +=)(2,1 , (A18)

 
where: 
 
c -is the viscous damping factor, 
k -is the elastic constant. 
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B APPENDIX: CONVERGENCE  
 
The numerical accuracy of the mathematical model presented in Section 2 depends upon 
the number of elements used for the subdivision of the two panels and adjacent cavity 
sides, and upon the number of modes used for the modal summation. The number of 
elements has been determined with respect to the higher modal order used in 
calculations. Throughout this report the simulation results are obtained using two 
elements per the shortest wavelength in the cavity and the two plates, up to the 
frequency of interest is 3 kHz. The natural frequency of the highest mode used for 
modal summation (truncation) is 20 kHz. It is important to have an idea about the 
sensitivity of the simulation results to the number of elements per wavelength and to the 
natural frequency of the highest order mode.  
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Figure B1 shows this sensitivity for the reference case double panel when either one or 
two elements per wavelength are used in the simulations. The natural frequency of the 
highest mode that has been used is 20 kHz for all the results plotted. For this result there 
has been no control action applied. 
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The plots in Figure B2 show the sensitivity to the number of elements in case when 16 
decentralised control systems are used, which perform active damping on the radiating 
panel. The feedback loops use the optimal feedback gain, which provides the largest 
broadband reductions as explained in Section 4.1.1.  
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Figure B3 shows the sensitivity when frequency of 20 kHz, 10 kHz or 3 kHz is used for 
the highest mode natural frequency in the modal summation. For the results on this plot 
there has been no control action applied, and the number of elements per wavelength is 
two.  
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Figure B3: Kinetic energy of the radiating panel (plots A and C) and the sound transmission ratio (plots 
B and D) of the double panel excited by the plane acoustic wave, without active control. Plots 
A and B show broadband (10 Hz – 3 kHz) agreement of the results with 20 kHz maximum 
frequency for modal truncation (solid lines), with 10 kHz maximum frequency for modal 
truncation (faint lines) and with 3 kHz maximum frequency for modal truncation (dashed 
lines). Plots C and D show the zoomed areas of plots A and B between 1 kHz and 3 kHz, 
where the differences have the highest values. 

 
The curves showing the results with the highest mode natural frequency of 10 kHz and 
20 kHz almost overlap over the whole frequency range (solid and faint lines) but the 
curves with 3 kHz show discrepancies of approximately 11 dB at 3 kHz. This suggests 
that 20 kHz is sufficiently high cut-off natural frequency. The results shown by dashed 
lines (3 kHz cut-off), suggest that at least some modes with natural frequencies higher 
than the maximal frequency of interest need to be used in modal summation.   
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Figure B4 shows the sensitivity when 20 kHz, 10 kHz or 3 kHz cut-off frequency is 
used. 16 decentralised control systems are used, which perform active damping on the 
radiating panel, using the optimal feedback gain (the largest broadband reductions) for 
that case. 
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Figure B4: Kinetic energy of the radiating panel (plots A and C) and the sound transmission ratio (plots 
B and D) of the double panel excited by the plane acoustic wave, with active control systems 
as in Section 4.1.1. Plots A and B show broadband (10 Hz – 3 kHz) agreement of the results 
with 20 kHz maximum frequency for modal truncation (solid lines), with 10 kHz maximum 
frequency for modal truncation (faint lines) and with 3 kHz maximum frequency for modal 
truncation (dashed lines). Plots C and D show the zoomed areas of plots A and B between 1 
kHz and 3 kHz, where the differences have the highest values. 

 
The curves of 10 kHz and 20 kHz cut-off almost overlap over the whole frequency 
range (solid and faint lines), but not as closely as in the no control case.  The curves 
with 3 kHz cut-off show more considerable discrepancies of 13 dB at approximately 3 
kHz (plots C and D). This suggests that for active control simulations modes with 
natural frequencies higher than the maximum frequency of interest must be included in 
order to obtain accurate results.  
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