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Abstract

Spherical microphone arrays have been recently studied for sound analysis and sound
recordings, which have the advantage of spherical symmetry facilitating three-dimensional
analysis. This paper complements the recent microphone array design studies by presenting
a theoretical analvsis of plane wave decomposition given the sound pressure on a sphere. The
analysis uses the spherical Fowrier transform and the spherical convolution, where it is shown
that the amplitudes of the incident plane waves can be calculated as a spherical convelution
otween the pressure on the sphere and another function which depends on frequency and
the sphere radius. This is in contrast to planar configuration, where the waves amplitudes
and the pressure on a plane form: a Fourier transform pair. The spatial resolution of plane
wave decomposition given limited bandwidth in the spherical Fourier domain is analyzed,
and shown to be similar to the spatial resolution for planar configuration with finite aperture.

The paper concludes with a simulation example of plane wave decomposition.

PACS numbers: 43.60.Ac, 43.60.Fy, 43.55.Br. 43.55.Mc¢
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I. INTRODUCTION

Reverberant sound fields have been widely studied. as they have a significant influence on
the acoustic performance of enclosures in a variety of applications. For example, the intel-
ligibility of speech in lecture rooms; the quality of music in auditoria; and the noise level in
offices, are all affected by the enclosed sound field. Systems that measure reverberant sound
fields or operate in such fields often require microphone arrays to achieve the high spatial
detail imposed by the complexity of the sound field. Linear and planar microphone arrays
are commonly used, and have have a well developed theoretical analysis. For example, de-
composition into plane waves can be achieved with infinitely large linear or planar arrays by
the spatial Fourier transfornm. Furthermore, directivity due to a single wave “spreads” from
a delta function to a sinc function when the array aperture is made finite!. Some example
applications involving linear and planar microphone arrays include speech enhancement and
speaker tracking in conference rooms®?; auralization of sound fields measured in concert
halls®: and the study and modifications of sound fields in auditoria®®.

Recently, spherical microphone arrays have been suggested for spatial beamforming”*
and for sound recordings with high spatial detail'®!’. The advantage of the spherical mi-
crophone array configuration is the spherical symmetry which facilitates three dimensional
sound field analysis. Gover et al'? recently presented a measurement system based on
spherical microphone arrays for the analysis of reverberant sound fields using various spa-
tial measures. Beamforming is employed with the beam steered electronically to cover all
directions therefore providing complete three-dimensional sound field analysis.

The recent developments in spherical microphone arrays motivated the work presented in
this paper. Although useful microphone array designs and applications have been presented
in previous papers, they do not provide a theoretical analysis similar to that available for
linear and planar arrays. The aim of this work is therefore the theoretical analysis of
spherical microphone arrays, with a focus on plane wave decomposition and fundamental

limits of performance. Two simplifying assumptions are made:

(1) The sound pressure on the entire sphere is known. Although this is usually not true
in practice, this assumption simplifies the development of the theoretical results. The
discussion of spatial sampling by microphones is beyond the scope of this paper, al-

though the reader is referred to Driscoll and Healy'® for a discussion and a sampling
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theorem.

(ii) The sound field is composed of plane waves. This will be approximately true in

reverberant sound fields for waves which have traveled sufficient distance from their

source.

Given these assumptions, we show that the refation between the pressure on a sphere
and the complex amplitude of the plane waves composing the sound field around the sphere
is that of spherical convolution. In other words, plane wave decomposition is achieved by
convolving the pressure on a sphere with another function which depends only on frequency
and the sphere radius. This is in contrast to lincar and planar array configurations, where
the directivity of the sound field is given by the Fourier transform of the pressure on the
line or plane!. We also show that perfect pane wave decomposition requires infinite number
of spherical Fourier coefficients, or an infinite spherical harmonic order. We then derive an
expression for the spatial resolution in the more practical case where the harmonic order is
finite, and compare the results to the spatial resolution of a finite aperture planar array.

The paper is presented as follows. Section II presents the spherical Fourier transform and
the spherical convolution, and develops important relations that will be used later in the
paper. The sound pressure on the sphere is then analyzed in section III, and represented
as a spherical convolution between the plane waves amplitude and another function. Plane
wave decomposition is then developed in section IV-by de-convolution of the pressure, or
convolution with the inverse function. The effect of finite order or bandwidth in the spherical
Fourier domain on the resolution of plane wave decomposition is presented in section V, and
a comparison between spherical and planar configurations is presented in section VI. The

paper then concludes with a simulation example of plane wave decomposition in section VIL

II. SPHERICAL FOURIER TRANSFORM

The spherical Fourier transform’®, or spherical harmonics decomposition' is reviewed in
this section. In particular, the Fourier transform and convolution on the sphere, and some
 properties of spherical harmonics are presented which are then used in the derivations that

follow.

The standard cartezian (2, y, z) and spherical (r, 8. o) coordinate systems as used through-



out this paper are illustrated in Fig. 1. Consider a function f(6, ¢) which is square integrable

on the unit sphere, then the spherical Fourler transform of f, denoted by fnm is given by!*:

fn= | 0.9V 0.6)40=51/(6.6)} ey
Z Z fm‘nYm 9 O S ! {f-:’lﬂl-} (2)

where S and S™! represent the forward and inverse spherical Fourier transforims respec-

tively, and ¥ represents coniplex conjugate. The spherical harmonics Y7* are defined by

ﬁ
Sy LY — (?‘n + 1) (”’ - ]n)! imneh s
v, m#\/ T T (oste (3)

7

where n is the order of the spherical harmonics and 7 = +/=1. The spherical harmonics are
the solution to the wave equation, or the Helmholtz equation in spherical co-ordinates’*
The associated Legendre function P represents standing spherical waves in § while the
term ¢ represents traveling spherical waves in . The integral fo_ 57 d) covers the entire

surface area of the unit sphere, denoted by S 2 and is expressed as’:

/ ) = f — / sin 86 dg (4)
Qes? 0 0

Some properties of spherical harmonics and the spherical Fourier transform which are

used in the derivations that follow are presented below.

A. Orthogonality

The spherical harmonics are orthonormal, and so the following relations hold'*:

s{vE' 0.9} = [ V0.0 0,80 = b (5)
IS ¥4
STy, ¢)} = Z Z VA URANSCRY)
n=0 m=—n
1
= §(¢ — ¢')é{cosf — cosf') = mﬁ(g& — (6 - ¢) (6)



where 6, and d,,_, are unity at n =n' and m = m’ respectively, and zero elsewhere,

and similarly, 6(o — ¢') and §(¢ — &) are infinite at ¢ = @' and § = @ and zero elsewhere.

B. Complex conjugation

The following relation hetween a spherical harmonic and its complex conjugate holds!?:

~1
—

}/Tzn" — (_l)mynﬁm (

C. Phase shift

Given a direction denoted by (6, ¢), then the opposite direction is given by (w—G.0+7).

The relation between the spherical harmonics at point of opposite directions is given byv18:

Y — 8,6 +7) = (1", ) (8)

Also, from the two relations'® Y™(8, —¢) = (~1)™¥,™(6, $) and Y™, 7 + o] =

(—1)"Y"(8, ¢}, the following relation for a phase inversion and shift in ¢ can be derived:
Y8, —¢) =Y,."(6,9) (9)

D. Azimuthal symmetry

In this section the relations between the Fourier coefficients of a function and its symmetry
on the sphere with respect to the azimuth ¢ are established. First, consider a function 2 on
the sphere with coefficients which are zero for all m # 0, i.e. R, = B8, In this case we

can show that the function is constant along ¢, L.e.

This is since the integral over ¢ in Eq. (1) reduces in this case to fogr e™®dp = §,,. while

the summation in Eq. (2) reduces to a single summation over n which is not a function of

¢h.



Another type of symmetry is considered when Py = fln(_m). Evaluating k(6,7 — ¢) in

Eq. (2), and substituting Eq. (9) and flnm = fl,,(wm), it can be shown that:

il'nm = fln(—m) = h-(@, é) = ]],(9.,’1‘? - ¢) (11)

This means that symmetry over m = 0 results in svmmetry over ¢ with the symmetry
points ¢ = 90° and ¢ = 270°.

When the Fourier coefficients are equal for all m, iLe. ﬁﬁm = /1,10 = ﬁm then h can be
evaluated in terms of the two svmmetrv properties discussed above. First, the values of ﬁnm
for 1 = 0 correspond to the part in i which is constant with ¢. Then, as the coefficients are
all constant with respect to m. fl.m,, = ﬁn(_m) is satisfied and so the function is symmetric

along ¢ around the symmetry points ¢ = 90°,270°. This result wiil be used later in this

paper.

E. Convolution

Driscoll and Healy!® show that the spherical Fourier transform converts convolution
into multiplication. As this is a result which is kev to this paper, the spherical con-
yolution is described in an appropriate detail. Consider two functions f(v) and A(7)
square integrable on the unit sphere, with the vector of cartezian coordinates ¥(8,¢) =
(sin 6 cos ¢, sin @ sin ¢, cos 8)T representing & point on the unit sphere. The convolution of f
with h denoted by e = f = h is defined™® in a similar way to the conviution over a line or a

plane, as the integral of the product of f and a rotated h, for all possible rotations,

e(y) = (F ¥ R)(7) = f Flemh(g™*7)dg (12)

9€50(3)
where the special orthogonal group of 3 x 3 matrices, SO(3), represents the three dimen-
sional rotation group, with g € SO(3) spanning all rotations, and n = (0,0, 1)T is the north

pole. Euler matrix representation of rotation can be used, where

9 = R.(¢)Ry(F)R.(¢) (13)

The 3 x 3 matrix R.(¢) represents a counterclockwise rotation by an angle ¢ about the



+ axis, while the matrix R, (J) represents a counterclockwise rotation by an angle § about

the y axis, and are given by™

cos¢p —sing 0 cosf 0 sind
RA¢)=| sing cos¢ 0 |, By(8)= 0 1 0 (14)
0 0 1 —sinf 0 cosf

Note that the rotation matrices are defined in cartezian coordinates, e.g. R, rotates a
point (i, y, z) to the point (', ¢, AT = R.(o) (. y. 2Y7. R.{¢) is defined similarly to R.{0).

The inverse of g in Eq. {12} can be written as!t;
4 [- 1

g l=g" = R.(—v)Ry(~8)R:(—¢) (15)

The position defined by gn in Eq. (12) simplifies to (6, ¢) in spherical coordinates®?, i.e.

gn = (sind cos ¢, sin 0 sin @, cos o) (16)

Representing rotations by the Euler angles, the rotation integral can be written asts:

. 2w 27 b
/ dg = / / / sin 6 df de d (17)
9€50(3) o Jo Jo

Driscoll and Healy show that spherical convolution converts to multiplication through

the spherical Fourier transform, i.e.

b = S} =S UMb = [ [ flenhtg™ ¥ (g
= fnm . ‘%'n[) (18)

where f.,,m =S{f} and B = S {h}. Note that fznm is evaluated only at m = 0. This
means that f =g # ¢ % h and so the spherical convolution is non-commutative, or non-
abelian. The convolution: f * h is denoted the left convolution'® of h by f. Also note that
an alternative definition of spherical convolution exists'®, although the one presented here

was found to be more useful in this paper.
Eqaution (18) suggests that only the coefficients h.g which correspond to the azimuthally
symmetric part of h participate in the convolution. The function with Fourier coefficients

o is symmetric along ¢ in a manner described in section IID.
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III. THE SOUND PRESSURE ON A SPHERE

I this section the sound pressure measured on a sphere is derived given the sound field
around the sphere. The results are then combined in the next section with the results on
spherical convolution in the formulation of plane wave decomposition. As the sound field
is assurned to be composed of plane waves, the pressure on a sphere for such sound field is
derived .

Consider an incident plane wave arriving from a direction denoted by (6, ¢}, with am-
plitude w(8. ¢&). The wave therefore propagates in the direction given by (7 — 1.6 + 7).
The pressure on an open sphere (virtual sphere) due to the incident plane wave at the posi-
tion r = {r. 6, ¢) and wave-number &. denoted by pi(kr. 8, ¢), can be written using spherical

. 1
liarmonics as’:

ik, 6,8) = w(t, ¢’ =w(B,é) Yy >, (=) Gulkr )Y (61, ¢0)Y,7 (8, ¢) (19)

n=0 m=—n
where k; is the wave number vector representing the direction of propagation of the wave,

with & = |k;|. Note that Williams® (page 9227) represents a similar equation in terms of the
direction of propagation of the plane wave. Equation (19) was derived from the one given by
Williams by using the relation in Eq. (8), and so (8,, ;) represents the direction of arrival.
If the sphere is rigid, then a scattered pressure from the sphere will be added to the incident,
pressure (which is equal to the open sphere case, Eq. (19)). The boundary condition o
the rigid sphere (normal velocity equal zero) is substituted into Euler’s equatlon (expressing
velocity as the gradient of pressure), to calculate the coefficients of the scattered field and

therefore the total fild. A derivation can be found in Williams! (page 226), and the pressure

inn this case is given by:

plkr,6,0) = Z Z w(By, ¢1)bn (o, k)Y (81, d1) Y (6, ) (20)

n=0m=-n

where b, is generalized for both the open and rigid sphere cases:

dr(—i)" (jn(k'r) (k’r)) rigid sphere

dar{(—i)"jn(kr} open sphere

Bn(kr} ka) = (21)



where fi,, (k1) is a spherical Bessel function (also denoted by hg)), and a < r is the radius

of the rigid sphere.
Tasking the spherical Fourier transform (as in Eq. (1)) of Eq. (20}, the coeflicients py,,,,

are given hy:

Bl (k) = w(by, @)bulkr, ka)Y, (01, &) (22)
We now assume that an infinite number of plane waves arrive at the sphere from all

directions € = (01, ¢). The total pressure on a sphere of radius r due to all waves can be

calculated by integrating Eq. {20) over these directions:

20.6) = [ nsdia=3 3 b [ wlbor 0,608 700

n=0 m=—n

i Z {En{ﬁnm}ynm(g: ) (23)

n=0m=—n

I

where the dependence on & has been dropped to simplify notation. From the definitions
of the spherical Fourier transform, Eqs. (1) and (2), it is clear that the curly brackets in
Fq. (23) represent the Fourier coefficients P, of the pressure p, while the term in the
square brackets represent the Fourier coefficients @, of the sound field directivity function

w. They are therefore related by the term Bn, ie.

ﬁnm = {Enmgn (24)

Equation (24) has the same form as Eq. (18), where we set b0 = b,. Because in this
case the coefficients 5,,_m are equal for all m, and are therefore simply denoted by 5,1, the
multiplication in Eq. (24) transform into convolution as in Eq. (12). Therefore, the pressure

on the sphere can be written as a spherical convolution between the directivity function w

and the inverse spherical Fourier transform of by:

p=wxb (25)

where

h=5"1 {b} (26)
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Note that w for the case of a single plane wave as used in Eq. (19) represents sound
pressure amplitude, while w for the case of an infinite number of plane waves, as used in Eq.
(20) represents sound pressure amplitude density (spatial density with respect to the solid

angle). For notation simplicity, they are both denoted w.

IV. PLANE WAVE DECOMPOSITION

Equation (24) can be rewritten as:

- . 1 -
Wy = Pam 5 (2!)
bn

By taking the inverse spherical Fourier transform of both sides and using the result in
Eq. {18), we can write the relation between the the amplitude of the incoming plane waves

and the pressure measured on the sphere, i.e. the plane wave decomposition, as spherical

convolution:

where

g=38" {5—} (29)

Plane wave decomposition, or w can therefore be found by de-convoltution of p with b, or

by convolution of p with 5.

Taking the simple case of a single plane wave with a unit amplitude arriving from direction
(01, ¢1), we can substitute Eq. (22) in Eq. (28), and use the orthogonality property of the

spherical harmonics (Eq. 6) to get:

w(f, ) = \i n{ﬁnmi}w(&@)

= Z STV (6, Y0, 6) — 6(6 — dr)d(cos § — cos ) (30)

m=-n

;3"M3
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This confirs that the directivity of a single plane wave is a delta function pointing to
the arrival direction of the plane wave.

Figures 2a and 2b show 13,1(1;7-, kr) for a rigid and an open sphere, respectively, as a func-
tion of kr and the order n. It is clear that terms with higher order have smaller magnitude,
while for the rigid sphere, terms with order higher then about Ar contribute significantly
less than the lower order terms. Figure 2b shows that for an open sphere, some coefficients
b, will be zero for some values of kr, and so Eq. (28), which uses Eq. (29) and 1/ b, cannot
be used. This is not the case for a rigid sphere, and so the advantage of the rigid sphere in
providing a better conditicned problem is clear. Figure 3 further illustrates b, for a rigid
sphere and several values of ka, showing clearly how b starts to decay in magnitude beyond
about n = ka.

As an example and to illustrate functions b and J for a rigid sphere, they are calculated
for kr = ka = 5 and n < 10 using Eq. (2), and evaluated over a finite grid on the unit
sphere. Figures 4a and 4b show b(8, ¢) using a 3D plot on a unit sphere, and on a 2D plot
as a function of @ and ¢. Note the symmetry around ¢ = 90° and ¢ = 270°, as expected
from the symmetry property presented in Eq. {11) satisfied by by

For band-limited p, i.e. fpm = 0 for n > N, the corresponding w is also band-limited as
evident from Eq. (27). This means that to find w, a band-limited version of § is required,

i.e. only 1/b, for n < N are required. A band-limited version of Eq. {28) can therefore be

written as:

wy = py * On (31)

where the functions wy, py and By are calculated using the inverse spherical Fourier
transform as in Eq. (2) only with the summation over n taken from 0 to ¥V and not infinity.
This is a useful result since the calculation of 3 using Eq. (29) involves an inverse of b,, and
as illustrated in Fig. 3, b, — 0 as n. — oo. To ensure stability of 3, b, must be truncated,
and so if p is originally measured over a finite band, b, is truncated to the same order with
no further loss of accuracy in plane wave decomposition. Note from Eq. (22) that by also
appears in the magnitude of the pressure on the sphere due to a plane wave, and so given the
frequency and the sphere dimensions, %7, the magnitude of the Fourier coefficients of order

larger then kr is expected to diminish, and so the assumption that p is band-limited will be
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approximately correct. Nevertheless, as shown in the next section, the spatial resolution of
plane wave decomposition depends on the order N, and so truncating the bandwidth of p
could limit plane wave decomposition.

Figures 5a and 5b presents the corresponding plots for 3, for n < 10, showing similar

symmetry properties over ¢

V. FINITE HARMONIC ORDER AND SPATIAL RESOLUTION

In practice it might not he possible to measure 2ll spherical Fourier coefficients of the
pressure, since cocfficients which are of order higher then about kr might be too smail in
magnitude to be computed accuratelv. Therefore, a finite harmonic order, or finite band-
width, is considered in this section, and the effect on plane wave decomposition is studied.

The directivity of the sound field can be calculated by taking the inverse spherical Fourier

transform of Eq. (27), only with a finite order NV:

N n

z Z p,mm Y8, ¢) | (32)

n=0 m=-n
We now study the effect of finite order on the estimation of the directivity of a single
plane wave with a unit amplitude arriving from (4, @), by substituting Eq. (22) in Eq.

(32):

N

wy(0,4) = Z Z pw Y0,9) = Z ST Y0, Y0,¢) = n
n=0 m=-n n=0 m=—n n=>0
N+1  p.i(cos®) — Pu(cos©)) = wy(©) (33)

~ dn{cos© — 1)
where © is the angle between the vectors with directions (0, ¢) and (61, ¢1), which can be

written as?

cos© = cos 0 cos b, + cos(@ — &) sinOsin (34)

The Spherical harmonic addition theorem (Arfken and Weber!4, page 796 and onwards)

was used in the first line of Eq. (33), while the second line used a result from Gradshieyn

and Ryzhik!7 (page 1026, section 8.915 {1}).
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A finite order will result in directivity for a plane wave which is not a delta function,
and will compromise plane wave decomposition. Figure 6 shows the directivity wn(©) for
various values of N, normalized to have a unit gain at © =0 . It is clear that with higher
orders the directivity approaches that of a delta function. Notice that wy is now only a
function of a single angle @ around an axis given by the vector (6, o).

We now formulate a relation between N and the resolution in the plane wave decompo-
sition, by considering the first zero Qg of wn(©), and raking twice that value. or the width
of the main lobe, as the resolution. This implies that plane waves separated by 20, should
be decomposed reasonably well, where &y is the smallest value that satisfies wa (@) = 0.
Equation (33) shows that wy 1s a sum of two Legendre polynomials in cos ©. Ve can there-
fore compute the coefficients of these polynomials for every N, find their zeros, and locate
the smallest zero ©g. As Legendre polynomials F,(z) are defined over z € (—1,1], we find
the zero which is nearest to 1 (such that cos© is nearest zeroj. It turns out that the poly-
nomial defined by Pu41{z) — Pn(2) has the first zero at z = 1, which is cancelled by a pole
at z = 1, i.e. the term cos © — 1. Therefore the next zero nearest 1 is chosen. Table I shows
wy expressed as a polynomial for N < 5. This provides an explicit form for the directivity
function, although the result in Eq. (33) can be used more generally.

Figure 7 shows ©g as a function of .V, and as approximated by:

s

The error of this approximation was found to be less then 2° for N € [4,40]. Assuming
that for a given frequency we choose N = kr, le. neglecting the higher order harmonics
which are less significant and more difficult to compute accurately, as discussed above, then
a new relation for the width or resolution 20 can be written using Eq. (35), in term of the

sphere radius r = a and the wave number k, as:

27
205 ~ 7 (36)

£

VI. COMPARING PLANAR AND SPHERICAL CONFIGURATIONS

This section compares the results for plane wave decomposition given the pressure on a

sphere. to the already established results of plane wave decomposition given the pressure

14



on a plane. In particular, it is shown that while the pressure and the directivity functions
are related through convolution in the spherical case. they form a Fourier pair in the planar
case. Also it is shown that both configurations provide comparable spatial resolution under
practical constraints of finite harmonic order for the spherical case and finite aperture for
the planar case.

Consider a plane wave of angular frequency w propagating in a three dimensional space
denoted by the cartezian coordinate system (x,y,z), as in Fig. 1. The wave number scalar
k= w/c=2r/A, with ¢ the speed of sound and ) the wavelength, describes the wavelength
along the direction of propagation. The wave number vector k has a magnitude of & and a

divection equal the direction of propagation of the plane wave, such that

k = (ks, ky, k2, k| =k = \/k2+ E2+ k2 (37)

The pressure on the plane z = 0 at the position vector x = (z,7,0) due to a plane wave
with a complex amplitude w(k) is given by

oz, y) = w(ky, k)™ = w(k,. ky)ej(krﬁk”y) {38)

where {-} is the dot or scalar product. The dependence of w on k, has been dropped

because from Eq. (37) we can write k. = 4,/k* — &2 — k. To eliminate the ambiguity in

the direction of arri\;a.i (due to the sign of k), we assume that the waves arrive only from

one side of the plane.

We next assume that an infinite number of plane wave compose the sound field, covering
all real values of k, and £, from —oo to oo {although as discussed in Williams!' we expect
w(k,, k,) to be zero outside the circle k2 + kI = k? if only plane wave are considered). The

total pressure on the plane can now be written as a double integral over k. and ky, as follows

(see Williams' page 32):

p(o‘:,y)=£r;_; / f w(ky, ky)elF== ) dk, dky (39)

Note that w in Eq. (39) now denotes sound pressure amplitude density (with respect to &,
and k,), although as discussed above for the spherical configuration, the distinction between
w in Eqs. (39) and (38) is not made for notation simplicity. The derivation presented by

Williams!{page 32) does not make this distinction as well.
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Fquation (39) has the form of an inverse Fourier transform. The corresponding forward

transform can therefore be readily calculated as':

wlhok)= [ [ plee sty (40)

This result shows that using the Fourier integral, the total pressure over the infinite plane
» — 0 can be used to calculate the amplitude (density) and directivity of all plane waves
contributing to that pressure, i.e. plane wave decomposition. The result for a rigid plane
will be similar as the presssure on the plane will be doubled compared to an open plane.
Considering a plane wave as in Eq. (38) but with a unit amplitude propagating in the
divection {kyg, ky0), and substituting in Eq. {40). the directivity for a single plane wave is

given by:

tdkmkw==]1 /ﬂ i lkazteyy) =i(keozthoon) gy = 26 (ky — ka0, by — Byo)  (41)

This is derived from the fact the the Fourier transform of an exponential is a delta
function!®. This shows that plane wave decomposition can be achieved perfectly with an
infinite plane, and that the pressure on the plane and the directivity of the plane waves
form a Fourier pair. This is in contrast to the spherical configuration where the relation was

found to bé that of convolution.

Since the measurement plane is never infinite in practice, it is important to derive the
effect of the finite aperture. This effect can be described mathematically as a multiplication

of the pressure over the entire plane with a spatial rectangle window function, II, where

1 —1/2<z,y<1/2
2Lz, y<1/ (12)

Iz, y) = _
0 otherwise

The directivity of a finite aperture array of dimensions L. and L, can be calculated

similar to Eq. (41), for a signle plane wave propagating to (kzo, kyo), as:

wy(kz, by) = / / H{x/L.,, 'y/Ly)ej(k"“kyy)e‘j(k‘”""ky“y)dﬂ;dy
= L L,8{ks — ku0)d(ky — kyo) * sinc(k, L, /2)sinc(ky Ly [2)
= L,L,sinc((k; — kuo)L/2)sinc((ky — kyo)Ly/2) (43)
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where * denotes (2D) convolution. and the effect of the finite aperture is represented
as convolution of a sinc function with the “ideal” directivity of a delta function. With a
directivity of a sinc function, plane wave decompaosition cannot be achieved perfectly. The
resolution or the width of the main lobe of the sine function depends on frequency, the
aperture, and the actual direction of arrival (k.. kyo). The dependence on the direction of
arrival can be illustrated using the Ewald sphere construction, where the sinc function on
the (k, k,) plane is mapped to a directivity function in spherical coordinates (see Williams!
page 43).

To simplify the analysis of resolution, we assume that Ly, = L, = L and that ko = by =
0. i.e. direction perpendicular to the plane. The first zeros of the sinc function in this case
form a squave confined by k, = k, = +27/L, while its peak points to =10 {ky =k, =0).
We further sin:plify the analysis by approximating the square formed by the first zeros of
the sinc function by an inner circle of radius /k2 + k2 = 2w /L. Writing ky = ksinfcos ¢

and k, = ksinfsin ¢, we get an approximation for the position of the zeros:

]

in By~ 2L 44
511 U L ( )

For planes apertures which are much larger then a wavelength, kL > 27, we can further

approximate sin fy by 65, and the width of the main lobe, or resolution, is approximated by:

e
=

26y ~ (45)

|

I
o

The dependence on ¢ is less clearly defined. There will be little dependence on ¢ for
small @, while for larger & the value of the sinc function will be small anyway.

The width of the main lobe, or resolution, approximated by Eq. (45) for the plane
configuration, can be compared to Eq. (36) for the spherical configuration. These are similar
when L, the width of the plane, is comparable to 2a, the diameter of the sphere. This shows
that when imposing finite size constraints on the piane, and finite order constraint (which
relate to the sphere size) .on the sphere, both provide similar spatial resolution for plane
wave decomposition.

Table IT illustrates the spatial resolution in plane wave decomposition by showing 260,
for the sphere and 26, for the plane as a function of sphere diameter and plane aperture.

The table shows that high harmonic order, or spheres and planes of large dimensions are
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required to achieve high resolution in plane wave decomposition.

VII. EXAMPLE: PLANE WAVE DECOMPOSITION

An example of plane wave decomposition given the sound pressure on a sphere is presented
in this section to illustrate the theoretical results of this paper. A single frequency sound
field around a rigid sphere of radius r = a, with ka = 5, Is considered. The sound field is
composed of five plane waves. Fig. 8 illustrates the direction of arrival of each wave and
Table III shows their amplitude.

The spherical Fourier coefficients of the pressure on the sphere due to each of the waves
was calculated using Eq. (22). and the spherical Fourier coefficients of the total sound
pressure on the sphere calculated as the sum of the five sets of coeflicients. As ka = 5, the
Fourier coefficient were truncated at N = 10 {n < 10). Figure 2a shows that the higher
order harmonics (the magnitude of by, for n > 10) is smaller by at least 40 dB in this case.
Given N = 10 and P the spherical Fourier transform of the total sound on the sphere, the
directivity wy. or plane wave decomposition was calculated using Eq. (32).

Figure § illustrates the total pressure on the sphere due to the five plane waves. As can
be seen it is not clear where the wave are arriving from given the total pressure. Figure 10
shows similar plots for wy, the plane waves amplitudes after plane wave decomposition was
performed. where the directions of arrival are illustrated more clearly. Table II shows that
for N = 10 the spatial resolution, or width of the main lobe, is 36°. The waves denoted
by (iv) and (v) in Table III are well separated in Fig. 10, as their spatial separation is
10°. However, the two waves denoted by (ii) and (iii), separated by only 15°, cannot be
resolved in Fig. 10, as their separation is smaller then the resolution. Figure 11 shows a
plot similar to that of Fig. 10b, only here a higher order of N = 50 was used for plane wave
decomposition, corresponding to a spatial resolution of 7.2° (see Table II). All five waves
can now be resolved with this improved resolution.

This example iilustrated how plane wave decomposition can be achieved using spheri-

cal convolution and how finite harmonic order limits the spatial resolution of plane wave

decomposition.
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VIII. CONCLUSIONS

This paper presented the theory and an example of plane wave decomposition given
the pressure on a sphere, and the limitations of spatial resolution when a band-limited
analysis in the spherical Fourier transform domain is employved. The results were compared
to that of planar configuration. It was shown that while the amplitude of the plane waves
composing the sound field and the pressure on the plane form a Fourier transform pair,
for spherical configuration the waves amplitude and the pressure on a sphere are related
through spherical convolution. It was further shown that under practical constraints. both
the planar and spherical configurations have similar spatial resolution.

The results developed in this paper can be useful in the analysis and design of spherical
microphone arrays for sound field analysis or other sound field measurements. Spherical
microphone arrays that aim to perform plane wave decomposition can compute an approx-
imation of the spasial distribution of the plane waves amplitudes by directly performing
convolution as described in this paper, or by computing convolution through the spherical
Fourier transform. This is in contrast to current methods which use beamforming for direc-
tive sound field analysis or measurement. Spherical convolution based microphone arrays

and their use for sound field analysis are the subject of current research.
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Order NV Directivity wy(z), z =cos©

0 %

1 I’;(.?z -+ 1)

2 ﬁ-‘%(-ﬁzg——k—l)

3 £ 1(352% + 1522 - 152 - 3)

4 L 5(632% + 282% — 4227 — 122 + 3)

TABLE I: Directivity function wa for several orders N,



Sphere 209 N 2a(X)

Plane 26 LN
360.0° 1 03
180.0° 2 086
7200 5 16
36.0° 10 3.2

12.0° 30 95
2% 50 159

-~
N

3.6° 100 318

[

1.2° 300 95.5

TABLE II: Resolution, or width of main lobe for the spherical configuration (26¢) and planar

configuration (26y) as a function of harmonic order N, diameter of measurement sphere (2a) or

plane aperture {L).
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8 o (b, o) cwl(f, dr)

(1) 20° 200° 1 0°
(i) 43° 270° 1 20°
(iii) 60° 270° 1 80°
(iv) 120° 210° 1 180°
(v) 120° 250° 1 270°

TABLE ITI: Direction of arrival {4;, &). magnitude and phase of each of the five plane waves.



Figure captions

Fig. 1: Cartesian and spherical coordinate systems.

Fig. 2: Magnitude of b,{kr, ka) for {a} rigid sphere with kr = ka, (b) open sphere, with

orders of n=0 to 4 denoted on the figures.

Fig. 3: Magnitude of by (kr, ka) for a rigid sphere as a function of n, for ka = 1, 5 and 10

as denoted on the figure, and kr = ka.

Fig. 4: Magnitude of b(8, ¢) for a rigid spheve, kr = ka = 5, n < 10, (a) three-dimensional

plot on the unit sphere, and (b) two-dimensional plot as a function of (0, 6).

Fig. 5 Magnitude of 3(0, ¢) for a rigid sphere, kr = ka =5, n < 10, (a) three-dimensional

plot on the unit sphere, and (b) two-dimensional plot as a function of (8, ¢).
Fig. 6: Normalized directivity wy(©) for  plane wave as a function of order N.

Fig. 7: The first zero wx(Qg) = 0 as a function of N, and the approximation Oy = w/N.

9

Fig. 8 Direction of arrival of the plane waves as described in Table III, illustrated on a

two-dimensional plot as a function of (6, ¢).

Fig. 9: Magnitude of the sound pressure level px({0, ) on the sphere due to the plane
waves described in Table III, (a) three-dimensional plot on the unit sphere, and (b)

two-dimensional plot as a function of (8, ¢).

Fig. 10: Directivity wy of the sound field due to the plane waves described in Table III
and Fig. 8, caleulated for n < 10, illustrated using (a) three-dimensional plot on the unit

sphere, and (b) two-dimensional plot as a function of (6, ¢).

Fig. 11: Directivity wy of the sound field due to the plane waves described in Table 11 and

Fig. 8, calculated for n < 50, illustrated using two-dimensional plot as a function of (8, ¢).
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FIG. 1. Cartesian and sphkerical coordinate systems.
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FIG. 2: Magnitude of &, (kr, ka) for (a) rigid sphere with kr = ka, (b) open sphere, with orders of

n=>0 to 4 denoted on the figures.
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FIG. 3: Magnitude of b, (k. ka) for a rigid spherc as a function of n, for ka = 1, 5 and 10 as

denoted on the figure, and &7 = ka.
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FIG. 4: Magnitude of &(6, ¢) for a rigid sphere, kr = ka = 5, n < 10, (a) three-dimensional plot

on the unit sphere, and (b) two-dimensional plot as a function of (f, ¢).



160

140

120

100

80

50

40

20

FIG. 5. Magnitude of 3(8, ¢} for a rigid sphere, kr = ka =5 n < 10, {a) three-dimensional plot

on the unit sphere, and (b) two-dimensional plot as a function of (8, ¢).
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FIG. 6: Normalized directivity wpn(©) for a plane wave as a function of order V.
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Fi(i. 8 Direction of arrival of the plane waves as described in Table IIT, illustrated on a two-

dimensional plot as a function of (8, ¢).
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FIG. 9: Magnitude of the sound pressure level py(4,¢) on the sphere due to the plane waves

described in Table III, (&) three-dimensional plot on the unit sphere, and (b) two-dimensional plot

as a function of (@, ¢).
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FIG. 10: Directivity wy of the sound field due to the plane waves described in Table II[ and Fig.

8, calculated for n < 10, illustrated using (a} three-dimensional plot on the unit sphere, and (b)

two-dimensional plot as a function of (8, ¢).
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FIG. 11: Directivity i of the sound field due to the plane waves described in Table III and Fig.

8, calculated for n < 50. illustrated using two-dimensional plot as a function of (6. ¢).
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