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Abstract

In this report, an established gear meshing model is first used to derive the secondary force
required to cancel the gear vibration with actuators positioned on the gear itself. The ratio of the
secondary force to the contact force between meshing teeth is found to be the stiffness
modulation index of the gear meshing stiffness. Equations to determine the required forces for
the specially configured actuators and the actual accelerations in three directions from three
sensors on the gear are derived. The difficulty in measuring the stiffness variation function and
the characteristics of the magnetostrictive actuators call for an adaptive controller to be integrated
into the active control system. An adaptive harmonic controller is adopted because it is most
suitable to control the vibration generated by meshing teeth due to the nature of gear vibration. It
is found that the gear vibration generated by the stiffness variation can be suppressed by the
specially configured actuators, leaving the vibration caused defects intact. Two time-frequency
distributions are used to analyse the vibration signals and it is shown that the higher order
moment spectra gives better results in detecting faults on gear teeth. Some previous proposed
stiffness variation functions are found to be inappropriate for the study reported here. Other
researchers have suggested that the decrease in meshing stiffness is the source of vibration
generated by meshing gears with faults on teeth faces. However, the results obtained from
simulations in this report suggest that that the discontinuity of the first derivative in the stiffness

variation function results in the gear vibration generated by faults on teeth.
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Notation

a maximum variation ratio of the meshing stiffness

ap coefficients of the Fourier series of the compliance function

b a constant

c damping in the linear oscillator

¢’ equivalent viscous damping coefficient

d(t) disturbance

e[6(1)] spatially periodic displacement excitation function in the linear oscillator
e’[ﬂ(t)] spatially periodic displacement excitation function

f=F/k,E dimensionless mean load

£.[6(1)] dimensionless time-varying load

fa forces generated by actuators (n=1,2,3)

Af amplitude of a dimensionless time-varying load

k[@(fr)] =k, +k, [9(’5)] spatially periodic stiffness function in the linear oscillator
k’[6(1)] spatially periodic stiffness function

ky =(k), time-invariant component of the stiffness k

ka[e(t)] spatically periodic alternating component of the stiffness k

m mass of the linear oscillator

me equivalent mass of meshing gears

r distance of actuators to the centre O

n pitch circle radius of gears (n=0, 1, 2)

() an analytical signal

A, amplitude of a dimensionless displacement

u(t) output of the frequency-domain controller

\4 quadrature amplifude of the frequency-domain controller output
W in-phase amplitude of the frequency-domain controller output

X relative displacement of meshing teeth

Xg maximmum deviation from the designed relative displacement

y(t) output of the parametric excitation system
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F'(x,0}
Fo
AF[8(1)]

r'—-«;«

v 0O Zz =~

coefficients matrix

unit displacement

force matrix

a constant load in the linear oscillator model

parametric excitation term

a constant force

a time-varying load in the linear oscillator model

polar moment of inertia of gears (n=1,2)

cost function

approximated cost function

constant stiffness

an integer

centre of the gear

force between meshing teeth along the path of contact
equivalent contact force of Ty, (n=1,2) along the path of contact

mean value of Py

variation of Py with respect to P,

a time-varying load

distance matrix

local autocorrelation

spectral density of s

constant torques on shafts (n=1,2)
torques caused by friction
Wigner-Ville distribution of the signal s
WHOMS of order n of the signal s
stiffness modulation index
coefficients (n=0,1,2,...)
dimensionless angle modulation depth
coefficients (n=0,1,2,...)

dimensionless displacement excitation function

v



e(t)

C:c/ZﬂlkOm‘

8

6(1) = AT+BE(7)

measured periodic error

damping ratio

angular displacement
angular parameter

initial angular displacement

convergence coefficient

dismesionless displacement coordinate

quasi-static loaded excitation function
a constant

dimensionless time variable

time lag

time delay
pressure angle
angular displacement of gears (n=1,2)

phase angle

aw[6(t)] = k,[6(T)]/k, dimensionless variation of stiffness

®
0, =Jk./m
O=nt+0,
Q

A=Qfw,

frequency
static natural frequency of the linear oscillator system
angular displacement

time-invariant mean angular velocity

dimensionless frequency ratio



1. Introdug:tion

This technical discusses the combination of the active control of gear vibrétion with condition
monitoring. Specially configured actuators and sensors make it possible to control the gear
vibration at the source and minimise the effects of transmission paths on measured vibration
signals. The sensors used for the active control system can also be used to acquire the signals for

the purpose of condition monitoring of gear meshing.

The report is concerned with (1) a gear meshing model with secondary forces applied, (2) the
active control of gearing vibration using three specially configured secondary actuators, (3} the
adaptive controller for the attenuation of gearing vibration, and (4) the condition monitoring of

gearing vibration, using Wigner-Ville distribution (WVD) and Wigner Higher Order Moment
Spectra (WHOMS).

A simple gear model without applied secondary forces has been proposed by Chen & Brennan
[1] to analyse the dynamics of a pair of meshing gears. This has been further simplified to a
linear oscillator similar to the one discussed by Blankenship & Singh [2]. In this report, a model
of meshing gears with secondary forces is first established, followed by the requirements and

effects of secondary forces for vibration cancellation.

The method proposed to suppress the gearing vibration preserves the spirit of noise and vibration
control - “Control at the source”. It is shown that the force ratio of the secondary force required
for complete cancellation of gearing vibration to meshing forces is only dependent on the index
of meshing stiffness variation. This together with the meshing force determines the type of

actuators which should be used for the purpose of vibration control.

The difficulty in measuring the variation of teeth meshing stiffness and the nonlinearity of
magnetostrictive actuators demands an adaptive controller to be integrated into the active
vibration control system. An adaptive harmonic controller proposed by Sutton & Elliott [3] is
capable of suppressing harmonic disturbances in nonlinear systems. The adaptive controller used

in this report is studied in the frequency domain which is suitable for the attenuation of gearing



vibration since the frequencies of vibration generated by meshing teeth arc all related to the

rotational speéd of shafts (shaft order) on which gears are mounted.

Two time-frequency distributions, Wigner-Ville distribution (WVD) [4,5] and Wigner Higher
Order Moment Spectra (WHOMS) [6,7,8], are employed to diagnose the conditions of meshing
gears by monitoring the vibration signals. WHOMS preserves the properties of WVD and

extends them to the higher-order spectra domain. Results of both methods are compared to show

their differences and advantages.

In the following sections this report séts out the modelling of meshing gears with applied
secondary forces and goes on to describe specially configured actuators which will be
implemented in future experiments to provide the required secondary forces. This is followed by
a discussion of the adaptive controller used for the attenuation of harmonic disturbances and
time-frequency methods for the condition monitoring of meshing gears. Finally, simulation
results are presented to show the limitations of the gear meshing model described and the

capability of the adaptive feedforward control scheme.



2. Gear meshing model and the determination of secondary forces

The model of meshing gears proposed in [1] is further extended in this section to investigate the
feasibility incorporating a secondary force onto the gear to cancel the gear vibration generated by

teeth meshing.

2.1 Gear meshing model

The dynamics of one pair of meshing gears is schematically shown in figure (2.1). Assuming

torques T and T, in figure (2.1} are functions of 8, i.e. T,(8) and T,(0), the equation of motion
for the driving gear can be written as:
T, —Pr,cos 0~ T, = 1,6, 2.1

and for the driven géar:

Pr,cos¢+T,—T, =L, (2.2)
In equations (2.1) and (2.2), T,(8) and T,(8) can be represented by the product of a force
(PO =P, + AP, (9)) along the path of contact and the gear radius (T, = Py5 cos¢, T, = Pr, cos¢).

Hence, equations (2.1) and (2.2) become:

6151=—(P—E—AP0(6))"‘°I°S¢—% (23)
1 i
b, =(P-P, - AR, (6)) rﬁ‘;"sq’ ’Ir (2.4)

The relative displacement, X, between the driving and the driven gear wheels is given by

X = 1,0, — 5,0, , so that equations (2.3) and (2.4) combine to give:

5&:_(P—Apo(e))(;iJr;i]cosq)—ﬁ’l TIY}-P(: fjcos@) (2.5)

1 2 1 1 2

Equation (2.5) can be written as:

X+c'x+F(x,0)=F, (2.6)



. ) ] T! Tf _') 2 2 B 2 2
in which, ¢"%-= (%%—%), F'(x,0)=(P— AP, (9)){%+%-Jcosq) ,and F,= PD(—;L-I-%JCOS(I) :

! 2 1 2 1 2

The contact force between meshing teeth can be expressed as [9]:

P(x,0)=K(1+acosB){(x — x, cosB), (2.7)
Substituting equation (2.7) into equation (2.6), gives:

%+ ¢’k + 6K (1 +acos 0)x — AP, (8)o = oF, + oK (1 +acosB)(x, cos8) (2.8)

2 2
where ¢ = (i.ﬁi} :
Ii 12
Setting a spatially periodic stiffness function k[6(t)]=k’[8(t)+ 2nt]=K(1+acos8), and a

spatially periodic displacement excitation function then equation (2.8) can be further written as:

% + ¢k + ok’ [6(t) [x(t) = oF, + 6AP, + ok’[6(t) [e'[6(t)] (2.9)
Dividing equation (2.9) by the constant G, here an equivalent mass m which can be represented

by m=1/c =m,m,/2(m, +m,) is used. Equation {2.9) can be schematically realised by a linear

oscillator shown in figure (2) by introducing the relative displacement between meshing teeth
which simplifies the two DOF (degree of freedom) gear meshing model to a single DOF linear

systern, and can be written as:
m + cx + k[B(t) [x(t) = F+ AF[8(t) ]+ k[6(t) Je[6(1)] (2.10)

where mi is the inertial force, ¢x is the damping force, k[e(t)]x(t) results from the variation of

stiffness, F is a constant load, AF is a time-varying load, and k[6(t)]e[6(t)] is due to the

displacement excitation. The physical system for equation (2.10) is shown in figure (2.2).

The mass m shown in equation (2.10) is the equivalent mass for meshing gears in the rotational

model, and other coefficiente are all scaled by this equivalent coefficient.



2.2 Liner oscillator

In order to investigate the interactions between the mean force, displacement excitation and

stiffness, equation (2.10) can be further written as [1,2]:

E+20E+ {1 +oy0(n) [Je(r) = £ + £, [6(1) ]+ {1 +ony0(7) ]}3[6(7)] (2.11)

in which, the dots denotes differentiation with respect to T. Validations of this parametric
equation for gear vibration can also be found in [10]. Only three simple harmonic forms of the

dimensionless stiffness variation W(NB8), the dimensionless displacement excitation function

8(8) and the dimensionless time-varying load f (NO) are considered in this report:

w(0) = cos(N6) (2.12)
8(8)=A,cos(0+9,) (2.13)
f (NB) = Af cos(NB) (2.14)

Equation (2.11) can also be written in terms of an equivalent quasi-static loaded excitation

function Ej,(f ,8) [21:

£+286 + {1+ oo ]Je() = {1+ oup[e('c)]}é[f ,6(1)] (2.15)

where é(f ,8) may be computed or measured under quasi-static conditions as A — 0 (é =0 and

E =0) and can be derived from equation (2.11) [2]:

E(f,0) = 8(0) + (£ +1£,(6))/[1+ 0w (8)] (2.16)

This compliance function (can be found in [1]} is an even function which is periodic in N6 and

can be expressed in terms of the Fourier coefficients:

[1+0cos(NO)|” = 3 a, cos(nN®) 2.17)
n=0

in which, n is the mesh harmonic index and a, is given by:



2 n
g n=0, 2 =2 [ - 1} n=123.. (2.18)
2 o

To gain insight into the effects of the mean load, stiffness variation, and the time-varying load on
the generation of higher order mesh harmonics, the stiffness term in equation (2.15) is replaced

by its spatially averaged mean value, a linear differential equation with time-invariant (LTI}

coefficients can be obtained:

E+20E +£(x) = E[F,0(1)] (2.19)

The linear differential equation (2.19) approximates the parametric equation (2.15) by neglecting
the consideration of instability which can be found in [1]. Nevertheless, it is found that the linear

differential equation can be used to predict the gear vibration satisfactorily.

2.3 Determination of secondary forces

In this section, efferts are made to determine the secondary forces required for the actuators

positioned on the gear to cancel the gear vibration.

Equation (2.19) together with equations (2.13), (2.14), (2.15), (2.16) and (2.17) becomes:

E(7)+20E(T)+E(T) = A, cos(AT+ (ﬁs J+1- i cos(nNAT)+ Af i cos(nNAT)cos(NAT)  (2.19a)

The steady state solution of equation (2.19a) can be written as [see Appendix A for a detailed

derivation]:

AJ(1- A7) cos(AT+0,)+(20A)sin(AT+9,)]
(1-A%) +(2CA)’
S a, {[1 - (nNA)Z]cos(nNAT) +2{(nNA) sin(nNA’c)}
= |1 (NAY] +[20@NA)]
{[1 ~(NA) Jcos(NAT)+24(NA)sin(NAT)}
[1-(NAY] +l25A)T

(1) = (2.20)

+Af -a,



{[1-((n + NAY Jeos((n + NAT) + 2L ((n-+ DNA)sin((n +1) NA’E)}

cAf-S 2
gl‘z - (n+1NA)] +[2L((n+ NA)
+Af~iﬁ{[ ((n- l)NA)Z]cos( (n —1)NAT)+2¢{{n— )NA)sin((n HlNA’C)}
2R [1- (- DNAY T +[28(n-1ma)f

Assuming A, =0, ie. no dimensionless displacement excitation, in equation (2.10), and

collecting terms, equation (2.20) can be further written as:

{[1 ~ (nNA)? Jcos(nNAT) + [2(nNA)]sin(nNAT)|

A7) = [1- (nNAY] +[26(aNA)f (2200
Coefficients of each frequency in equation (2.20a) can be written as:
(05NA) Co=a,f +%Af (2.21a)
(1+NA) Ci=a,f+ [ao +Z—2JAf (2.21b)
(24NA) Co=a,f + [%‘—Jr%jm (2.21¢)
(3¥NA) Cy=a,f +(322‘-+a—24)/3f (2.21d)
Setting equation (2.21b) to zero, the force ratio can be obtained:

AM__ 2 g (2.22)

f 2a,+a,

Substjtuting equation (2.22) into equations (2.21a,c,d), the coefficient of (0*NA) term is f, and

coefficients of other frequencies are all zero. Results shown in figure (2.3) are obtained by
substituting equation (2.22) into equation (2.11) with three different secondary forces, 25% Af,
50% Af and 100% Af, respectively. The force df shown in figure (2.3) is the force Al used in

this section.



It can be seen that for Af = f, the peak-to-peak amplitude is zero everywhere except for
NA =2 which is caused by the instability and the amplitude is determined by the damping in the
system. The secondary force required to fully cancel the gearing vibration can be determined

using equation (2.22).

The result obtained in equation (2.22) shows that the force ratio between the secondary forces
required for actuators positioned on the gear to cancel gear vibration and the teeth contact force
is the stiffness modulation index . At the first sight, this may restrict the applications of this
proposed control scheme for the active control of gear vibration, it is found that for higher
ccontact ratio meshing gears, the stiffneés modulation index can be small, and the contact force
between meshing teeth is dependent on the linear speed at the contact point and the transmitted

power of meshing teeth which may still make this control scheme applicable.



3. Actuator configuration

Section 2 showed that in principle that gear vibration can be controlled using' secondary forces on
meshing gears. In this section, efforts are made to investigate the feasibility of placing actuators
on one of meshing gears to cancel the gearing vibration. Secondary forces generated by three

actuators on a rotating disk are considered in this section.

3.1 Configuration

Three actuators are required to balance the force acting at the central position (O in figure (3.1))
and the torque caused by the applied force Py, which is a function of time, i.e. there will not be
any extra forces caused by three actuators except the cancellation of resultant forces in the x-, y-
directions and torque at centre O caused by the fluctuating force Py. These three actuators are
positioned 2m/3 radians apart as shown in figure (3.1). The forces exerted on the disc are
labelled as fj, fp, and f3, and all are in the tangential directions. The distance between the
actuators and the centre O is denoted by r. Force Py acts at the edge of this disc (radius o) along

the line contact with the pressure angle ¢ with respect to the tangential direction.

3.2 Equilibrium equations

The force Py shown in figure (3.1) contains only the fluctuating terms which together with the
constant component (not considered in figure (3.1)) causes the variations of applied force and
torque at centre O. The obje'ctives of actuators are to cancel the fluctuating forces (both in the x
& vy directions) and the fluctuating torque generated by the external force Py. Hence, in the x-

direction, the equation of equilibrium can be written as:

f sin{wt + 6, )+, sin(wt + 8, — 27/3) + f; sin(wt + 8, — 47/3) = —P, sin 6 (3.1)
and the equilibrium equation in the y-direction is given by:

f cos(ewt +8, )+ £, cos(wt + 8, —27/3) + £, cos{wt + 6, — 47m/3) = —P, cos ¢ (3.2)
and the third equation is for the balance of the torque about centre O:

fr+fr+fir=—Pr,cosd (3.3)

Combining equations (3.1-3.3), they can be written in a matrix form:



Alo,t,8,)-F=-PR 34)

where
sin(wt+8,) sin(wt+6,—27/3) sin(wt+86, —47/3)
A= cos(a)t+60) cos(mt +8, —2%/3) cos(oat+8(, —4n/3) (3.5)
T T r
F=If, £ f5]' (3.6)
R=[sin¢ cosd r1,c08 o] 3.7

The force on each actuator can be obtained from equation (3.4}, and can be written as:

F=-P,AR (3.8)

Each force is expressed as follow:

f, :;—PO{Qrsinq)sin®+2rcos¢cos®+r0 cos¢} (3.9
T

f, = _?’PD {—rsin cb[sin@ ++/3 cos ®]+ 1COs ¢[«/§sin®—cos ®]+ I, COS (I)} (3.10)
T

f, = _3—1?{rsin q)[—sin @+\/§cos®]— rcos¢[J§sin@+ cos®]+r0 cos@} (3.11)

where ©=mt+6,. The maximum ratio of force of one actuator to the external force Py can be

determined from equation (3.9), by differentiating it with respect to time t and setting it to zero.

The maximum ratio is found to be:

t/Pof._ =~;{2+£§-cos¢) (3.12)

Tt can be seen that the maximum ratio is frequency independent. Since these three actuators are
symmetrically positioned, the maximum force ratio for each actuator is equivalent, they only

differ in phase lag (i.e. time delay).

10



Results shown in figure (3.2) are obtained by setting 8, =0, =1, 6=20", r=0.1 m, rp=0.15 m,
and P, =100cos(27-16t). The forces obtained for actuators in this case can be treated as the
forces required to cancel the gear vibration for a gear with 16 teeth, and the force shown is for

one revolution of the gear.

11



4. Adaptive harmonic controller

The nonlinearity of actuators, the progression of faults on gear teeth, and the characteristics of
gearing vibration call for a frequency-domain adaptive controller. The block diagram of this
adaptive harmonic controller is shown in figure (4.1) which is similar to the one proposed by

Sutton and Elhott [3].

Referring to equations (2.14) and (2.22), the secondary force required to completely cancel the
gearing vibration is a single tone sinusoidal wave whose amplitude is decided by the index of
stiffness variation of meshing gears. First, a linear actuator is assumed which can be easily

extended to handle multi input multi output systems.

The in-phase and quadrature amplitudes, wy and vy, of the frequency domain controller output
u(t) are adapted by using the gradient descent algorithm. The cost function J to be minimised is

chosen to be the mean squared error averaged over one rotation of the gear which actuators are

mounted on.

1 pti2
Izjrm‘[,r/_sz(t)dt 4.1)

where €(t) is the measured periodic error, i.c. the torsional acceleration determined by

accelerations measured by three accelerometers placed on the gear, which is the sum of the

disturbance d(t) and the output y(t) of the parametric excitation system. If the error £(t) is written

as:

e(t) = i[(xn cos(nNwt) + B, sin(nNaot)] (4.2)

=l

Then the cost function can be approximated, only the first harmonic is considered, and by

Parseval’s theorem, written as:

I, = %(af +B;) (4.3)

The controller output u(t) 1s:

12



u(t) = w, cos(Nwt) + v, sin(Nowt) (4.4)

'The gradient descent algorithm to update the controller coefficients w; and v; at the i-th period

1s:

dJ

W](i+1)zwl(i)_“awlzi) {4.5a)
NP )
vi(i+1)=v,(i}—u v, (1) (4.5b)

There are two parameters, dJ, /ow, and 9J, /dv,, in equation (4.5) to be determined from the
actual system before adopting the adaptive algorithm. Nevertheless, simulations results shown in
this report are carried out in the linear region, the coefficients (wy, vy) of controller can be found

directly from the spectral density of the error signal.

The advantages using this frequency domain adaptive harmonic controller are
(1) The nonlinearity of actuators can be taken into consideration.
(2) No attention has to be paid to the causality problems of the controller since the coefficients

wy and v, can be adapted to cope with the time delay caused by the error path.

13



5. Condition monitoring: time-frequency distribution
The Wigner-Ville distribution has been a well-known time-frequency distribution to engineers.
The recently developed WHOMS is based on the WVD and comparisons of these two

distributions are given in this section.

Two time-frequency distributions, the Wigner-Ville distribution (WVD) [4,5] and the sliced
Wigner Higher Order Moment Spectra (WHOMS) [6,7,8] are used in this report to monitor the
conditions of meshing gears in which the localised defects generate noh—étationary signals. WVD
and WHOMS have some similar properties in terms of the correlation of input signals.

Introductions to these two distributions are given as follow:

5.1 Wigner-Ville distribution

The WVD can be derived from the relationship between the autocorrelation function and the
power spectrum for non-stationary, time-variant signals, which represents the instantaneous

power spectral density. The WVD is defined as [4]

W,(t,0) = j:'s*(t - %)S(t +§je‘jmd'c (5.1)

or can be defined in terms of spectrum as:

—co

W.(o,t) = j *“”s*(m - —2-)8(0) + gje—j“"‘de (5.2)

The s(t) in equation (5.1) is an analytical signal which can be obtained by using the Hilbert
transform. Since the spectrum of an analytical signal does not have any negative frequencies, it

prevents the interference between positive and negative {requencies [5].

In practical applications, it is often that only a limited length of data is available. The pseudo

WVD is defined by employing a windowing function h(1) into the integral in equation (5.1).

W2 (t,0) = jT; h(m)s*(t - %)S[t +%je'j“”dfc | (5.3)

14



The bilinear character of WVD leads to interference or “cross-terms” in the time-frequency
domain which can be seen from the WVD over some regions without any signals existing. The
interference can be removed by using Choi-Williams distribution [11] at the expense of losing

resolution. Nevertheless, this property does not inhibit its application and acceptance.

5.2 Wigner higer order moment spectra

The WHOMS is illustrated here to compare its performance with WVD. The WHOMS of order n

of a complex deterministic signal s(t) is defined as [6]

5

W (L, 0,) = _L;..L"R;’(t,’c{,...,'cn)ill"‘{e_j‘“fridti (5.4)

5

R(t,7,,...,T, )= 5" (t— 1 )TTsV" (47, ~ 1) (5.5)
i=]

The notation (*)™*' used in equation (5.5) denotes conjugation if (i+1) is odd, and no conjugation
if (i+1) is even. The time delay T, should be properly chosen to satisfy the three basic properties

of time-frequency distribution [7] , namely (a) shift in time (or frequency) of the signal should
result in a corresponding shift of the distribution, (b) the integral of the distribution over all
frequencies (or time) should be equal to the instantaneous power (or spectral density), and (c) the
mean frequency (or time) of the distribution at each time (frequency) should be equal to the

instantaneous frequency (or group delay), and is found:

Ly (5.6)

’Cd:— T.
n+1<

The symmetric Wigner trispectrum can be written as [8]

W (t,0,0,,0,)= ”_[ s'(t-D)s(t—T+7 s (t—T+7, )s(t—T+715 Yo Kooz Jdr,dt,d,
(5.7)

where

o LT, (5.8)

15



By setting ©, =—, =®, =0, the sliced Wigner trispectrum (SWT) is obtained which

significantly reduces the number of cross terms [8] and the SWT is used in this report. A more

detail descriptions of SWT can be found in [8].
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6. Simulation

The variation of gear meshing stiffness is considered to be the most effective source of gear
vibration by Dalpiaz and Meneghetti [12]. They also proposed a simple stiffness function which
consists of two half-sinusoids of different amplitudes and duration superimposed on a constant
term. However, this approximation of the actual meshing stiffness is found inappropriate for the
purpose of this report. Daniewicz ef. al. [13] presented expressions to determine the decreased
tooth stiffness of a gear with a cracked tooth which further dictates fatigue resistance and gear
noise. In the paper written by Umezawa et. al. [14], seven stiffness functions were discussed and

it can be seen that even healthy gears exhibit the behaviours of variation of meshing stiffness.

First, a meshing stiffness for a pair of healthy gears is proposed to investigate the steady state
response of meshing gears, two time-frequency distributions mentioned before are applied to
monitor the conditions of gear teeth. The magnitude of the secondary force required to cancel the
gear vibration is calculated, and the steady state response of this meshing gears with the

secondary force applied are shown.

Following the results for healthy gears, the results of a pair of meshing gears with one defect on

one tooth, which causes the decrease of meshing stiffness, are then presented.

Finally, the reason why the stiffness function suggested by Dalpiaz and Meneghetti is

inappropriate for the purpose of this report is given.

For all results shown in figures (6.1 - 6.3), the governing equation (2.10) is integrated using the

Runge-Kutta 4th order method to obtain the accelerations. Parameters set as follow unless
specifically described: mass m=12 kg, damping c is set for a constant damping ratio {=0.03,
primary force F=500 N, 512 samples in one rotation, the rotational speed of the gear is 600 RPM,
N=16.
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6.1 Healthy gears

Simulation results for a healthy gear are first shown to verify the resulis obtained in previous

sections.

Figure (6.1a)
The meshing stiffness is set as: k,=5-10°N/m, =02, ie. k=k,(1+ccosN6). Figure

(6.1a) shows the meshing stiffness both in time domain and frequency domain.

Figure (6.1b)

Acceleration of the linear oscillator in time domain and frequency domain.

Figure (6.1c¢)

Wigner-Ville distribution of the acceleration shown in figure (6.1b), the dominant frequency can

be seen is the meshing frequency, i.e. 16 shaft orders.

Figure (6.1d)

Sliced Wigner trispectrum, the SWT enhances the distribution in the time-frequency domain.

Figure (6.1e)
The secondary force required to completely suppress the gear vibration, which can be determined

either from the stiffness modulation index o or from the Fourier coefficient of the meshing

frequency of the acceleration shown in figure (6.1b).

Figure (6.11)

The acceleration with applied secondary force in time and frequency domain. It can be seen that

the gear vibration is suppressed.

6.2 Cracked gears
Figure (6.2a)

The meshing stiffness of cracked gear is set as: k, = 5-10°N/m, o.=0.1. The cracked tooth

locates approximately from 180° to 200°.
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Figure (6.2b) ‘
The acceleration of the linear oscillator in time domain and frequency domain. This system’s

natural frequency (= 110 shaft orders) can be clearly seen in time domain and frequency domain

which complicates the response of the system.

Figure (6.2¢)
Wigner-Ville distribution of the acceleration shown in figure (6.2b), the position of the fault can

be observed from this figure.

Figure (6.2d)
Sticed Wigner trispectrum of the acceleration shown in figure (6.2b) which again shows the

position of the fault.

Figure (6.2¢)
The secondary force required to completely suppress the gear vibration, which can be determined

either from the stiffness modulation index o or from the Fourier coefficient of the meshing

frequency of the acceleration shown in figure (6.2b).

Figure (6.21)
The acceleration with applied secondary force in time and frequency domain. It can be seen that

the gear vibration is suppressed except the vibration introduced by the defect.

6.3 A different stiffness function
Figure (6.3a)
The stiffness function proposed by Dalpiaz and Meneghetti.

Figure (6.3b)

Acceleration generated by the variation of the meshing stiffness shown in figure (6.3a).

The dominant frequency of the acceleration is the natural frequency of this linear oscillator with

two clear sidebands amplitude modulation which are resulied from the tooth meshing frequency.
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Since the dominant frequency is neither the tooth meshing frequency, nor its harmeonics, which
does not agree with the reported results, hence is considered inappropriate. The discontinuity of

the first derivative of the meshing stiffness might be the cause which excites the sysiem

periodically.

6.4 A more general stiffness variation function
The stiffness variation function described above might be found too coarse. A more general

stiffness variation function with one dc term and two sinusodal terms is used in this section to

show its effects in determining the secondary force.

The stiffness variation function used for results shown in figure (6.4) is set with a mean value

ko=5*10° N/m, plus one sinusoidal function at the meshing frequency with o, =0.2, and one

sinusoidal at twice of the meshing frequency with o, = 0.05.

Figure (6.4a)

The meshing stiffness.

Figure (6.4b)

Acceleration of the linear oscillator in time domain and frequency domain.
Figure (6.4c)

The secondary force required to completely suppress the vibration. The force shown here is

determined by two stiffness modulation indices ¢, and ¢, .

Figure (6.4d)

The acceleration with the secondary force applied in the time and frequency domains.
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7. Conclusion

The vibration generated by meshing (healthy) gears can be predicted by utilising the variation of
tecth meshing stiffness. This approach is also valid when there is a defect on one tooth of one of

the meshing gears, the defect results in the decrease of meshing stiffness.

The force required for actuators mounted on a gear to suppress the gear vibration can be

determined either from the stiffness modulation index or from the Fourier coefficient of the

meshing frequency of the vibration signal.

The WVD and WHOMS are two useful time-frequency distributions in identifying the positions

and frequencies of generated vibration signals of defects on gears.

Although the secondary forces generated by actuators cannot completely suppress the gear
vibration when there is a defect on the gear, it provides an alternative method to enhance the

SNR (signal to noise ratio). Here, the transient signal generated by the defect is crucial for the

purpose of condition monitoring.

Moreover, referring to the results shown in figure (6.4), it can be concluded that by applying the

secondary force to the meshing gear, the variation of meshing stiffness can be determined if the

rotational acceleration of the gear can be suppressed.
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Appendix A. Steady-state solution of the simplified gear model

The steady-state solution for the simplied gear model with an applied secondary force is derived.

Since the angle modulation is not considered (i.e. p=0) in this LTI model, the angle parameter

8(t) can be written as:

6(t) = At (A.1)

Soem of the equations in the main text are repeated here for reference:

8(8) = A, cos(0+ ;) | (2.13)
£+ 2L€ + {1+ ony[B(0) [JE() = {1+ onyf(x) [FE[ . 0(7) ] (2.15)
[1+cicos(NO)| ' = Zan cos(nN©) (2.17)
E-+2LE +E(1)=E[1.0(7)] (2.19)

Combining equation (2.19) together with equations (2.13), (2.15) and (2.17) becomes:

E(t)+20E(1) +&(1) = A, cos(AT+ 0, ) +f- i cos(NNAT)+ Af i cos(nNAT)cos(NAT)  (A.2)

Equation (A.2) can be solved by separating the right-hand-side into three terms and equation

(A.2) becomes three linear differential equations:

E(t)+20E(1) +E(1) = A, cos(AT+0,) (A.3)
E(v) +20E(1)+ £(7) = - Y cos(nNAT) (A4)
E(0) -+ 20E(1) + £(1) = Af - S cos(nNAT) cos(NAT) (A5)

Since
cos(y)= (ejY e ) /2

c0s0, cosb, = [cos(@1 +9,)+cos(8, - 92)]/2 = (ej(a'w’) g 1002) MO0 efj(e‘"ez))/ﬁl
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the steady state solution for equation (A.5) can be written as: (solutions of equation (A.3) and

{A.4) can be found in Appendix B of [1}}
assg()t) - Clej({nH)NAt) 4 Czefj((ru-])NAr} + C3ej((n41)NA1) + C4e—j((n—l)N/\t) (A6)

Substituting equation (A.6) into equation {A.5), and collecting terms, coefficients ¢, ¢z, ¢3, and

C4 can be written as:

a,/4
- ((n+1)NA) +j2¢((n + )NA) A7

¢, = a,/4 (A.8)
—((n+1)NAY - j2¢((n+1)NA) '

_ a,/4
T ((n-DNAY + j24((n —NA) (A9

c,= 8,/4 A10
* = ((n-)NAY - j2¢((n—1)NA) (A1O)

The steady state solution of equation (A.2) can be written as:

Gas (1) = e (D (D) +E,5(T) (A1)

where &, contains the displacement excitation (A, ) terms, &_, the primary force (f) terms, and

& .., the secondary force ( Af ) terms. Equation (A.11) can be further written as:

—j((n+1)NA'r) +c ej((n—l)NA1}+C e—j{{n—l)NAt)
3 4

£ (1) = B (D& (1) +¢, T e,
A [ (1- A% )cos(AT+4, )+(2C_.A)sm(A’c+¢ )]
(1-A%) +(2CA)
- an{[l — (nNA)*|cos(nNAT)+2{(nNA )sin(nNA) |
= [1-(@NAY +[2L@NA)
{[1—(NA)Z]cos(NA'c)+2C(NA)sin(NA'c)}
[1-NAY] +[2tA)T
. Z o, (1= (m+NAY Jeos(( n+1)NA:)+2§((n+1)NA)sin((n+I)NAT.)}
= [1-(n+DNAY +[25((n+ NA)]

+Af-a,
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{[1 ~((n=1)NA) Jeos((n ~ DNAT)+2¢{(n ~ [)NA)sin{(n - 1)Nm;)}
[1-((n=~DNAY | +[26((n ~ )NA)]

— 4
+Af- Yy 2
25

2

(A.12)

This concludes the derivation of the steady-state solution of the simplified gear model.
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(a)

/— pressure angle ¢

/— driving gear (1)

line of contact

driven gear (2) '\

driven gear (2) driving gear (1)

Figure (2.1) (a) A pair of meshing gears, (b) free body diagram of meshing gears.

Figure (2.2) The physical system: a single DOF system with spatially periodic stiffness k[6(t)]
and displacement excitation e[@(t)] under a mean applied force ¥ and a time-varying

applied force AF.
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Responses of different secondary forces
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Figure (2.3) Peak-to-peak amplitude of steady state responses &_/f with different secondary
forces, ----mrmnmes , T, = 0.25Af .
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Figure (3.1) Configurations of three actuators on a gear.
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Figure (3.2) Forces required for actuators to cancel gear vibration.
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Figure (6.1a) Meshing stiffness and its Fourier transform.
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Figure (6.1b) Measured acceleration and its Fourier transform.
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Figure (6.1c) Wigner-Ville distribution of the acceleration.
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Figure (6.1e) Waveform of the output of the harmonic controller.
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Figure (6.1f) Acceleration with the secondary force.
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Figure (6.2a) Meshing stiffness and its Fourier transform.
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34



e ] [ ] L LR o [ 5]
i 160 ; :
= : :
=) N M
5] : :
B : :
= . N
(7] : N

100 ; :

50 : :
o L 1 1 1 | i1 I
o 50 100 150 200 250 200 350
Degres

Figure (6.2c) Wigner-Ville distribution of acceleration.

OEBQ- | ‘ .............. . [ ’ .............. o T i’ -

200 -
@ 180 ; :
@ B :
= N N
S : 5
k] : .
L2 - .
(7] : :
100 : :

o ; ; ; ! . i i
[s3 50 100 150 200 250 300 350

Degree

Figure (6.2d) Sliced Wigner trispectrum of acceleration.

35



Secondary force
50 T T T T T T T

40

300

20 H

10+

Foree {N}
o
T

-40 |-

_50 1 1 1 1 1 i1
0 50 ico 150 200 250 300 350

Giear rotation (degree}

Figure (6.2e) Waveform of the output of the harmonic controller.
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Figure (6.4d) Acceleration with the secondary force.
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