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ABSTRACT

For a high speed electrical rail system, good dynamic performance of the
pantograph-catenary system is vital for smooth and continuous current collection.
To facilitate the prediction of the dynamic behaviour of the pantograph-catenary
system, a periodically time-varying SDOF model is developed in this paper which
allows an analytical approach to the sclution of the system. The stabilities of the
pantograph-catenary system are investigated, and both the displacement of the
pantograph head and the contact force between the pantograph head and the
overhead wire are calculated. The model used in this paper shows that the vibration
of the pantograph is not caused by an instability, but is parametrically excited by the
variable stiffness of the catenary. To reduce the variation in the contact force and
hence improve the current collection either the mass of the pantograph head should

be reduced, or the average stiffness of the catenary should be increased.



1. INTRODUCTION

High speed electric rail is competitive with airlines for journeys between several
hundred and one thousand kilometres if the operational speed of trains can reach
around 250 kilometres per hour or greater. One of the main problems to be solved
for high speed electric rail is the power supply. Electric trains derive power from an
overhead contact wire system (catenary), and current collection is accomplished
through a pantograph mechanism mounted on the roof of the locomotive. A picture
showing this arrangement is shown in Figure 1. Unfortunately, as the speed of a
train increases, the variation in contact force between the pantograph head and

contact wire also increases, which can lead to a loss of contact, arcing and wear.

The pantograph-catenary combination is a dynamic coupled system. This means the
dynamic response of the catenary affects that of the pantograph and vice versa. To
achieve a better understanding of the pantograph-catenary system's dynamic
behaviour much research work has been done over the years using various
techniques. An approximate analytical solution for the contact force was presented
by Ockendon et al [1]. Vinayagaligam [2] studied the variation of this force and the
panhead trajectory by using the finite difference method. Wormley et al [3] obtained
the free vibration modes of the overhead wire system and the contact force by using
the Rayleigh-Ritz and modal analysis methods. A non-linear, lumped parameter
pantograph model has been developed by Seering et al [4] to simulate its dynamic
performance, and this was compared with experimental data. Wu [5] established a
finite element model of the overhead wire system to determine its initial state, static
stiffness variation and natural frequencies and modes. Using this FE model
combined with a lumped pantograph model, the current collection problem was
studied by Wu [6]. Manabe (7] studied the dynamic response of the overhead wire,
and the energy propagation in the wire by using a model of a stable load travelling

along an infinite wire supported by discrete springs. Yagi et al [8] investigated the



dynamic response of the pantograph-catenary system to the lateral movement of the

contact wire due to its zigzag layout.

Although different aspects of the system's dynamics have been studied and have
produced valuable results, a clear and comprehensive description of the pantograph-
catenary coupled system has not been reported so far. One of the main sources that
cause the vibration of this system is the stiffness variation of the overhead wire along
the span. In the middle of a span the stiffness of the overhead wire is minimum and
near the support tower it is maximum. When the pantograph moves along the
overhead wire, this stiffness variation produces a periodic excitation to the
pantograph and leads to the vibration of the pantograph and the fluctuation of the
contact force. On the other hand, when the panhead moves along the overhead wire,
it causes flexural wave motion in the wire. In turn, this flexural wave propagation
. affects the contact force and the motion of the pantograph as well. This latter
phenomenon is not discussed in this paper, because the primary aim of the paper is
to investigate the effects of the time-varying stiffness of the catenary on the motion

of the pantograph.

Thus, a simple mathematical model of the pantograph-catenary system which
includes the main dynamic behaviour of the system is developed. It is simple
enough to obtain an analytical solution to the problem which allows physical insight
into the dynamic performance of the coupled system. The aims of the analytical
approach are to study the basic dynamic properties of the pantograph-catenary
system and to investigate the effects of the stiffness fluctuation of the overhead wire
on the interaction between the overhead wire and the pantograph. Therefore, some
factors such as excitation of the locomotive roof from below and aerodynamic forces

on the pantograph have not been considered.



A FE method (FEM) is used to analyse the stiffness distributions of different types of
catenary system. These are then coupled to linear models of the pantograph. A
periodically time-varying single degree of freedom (SDOF) model is developed to
describe the pantograph-catenary system's basic dynamic properties. This model is
first used to examine the instabilities of the pantograph-catenary system, and then
both the displacement of the pantograph head and the contact force are calculated
using perturbation methods. Finally, a two DOF model is set up to simulate the
pantograph-catenary system. A numerical method is used to investigate the
behaviour of this system and the results are compared with those from the SDOF
model to validate the simple model. Furthermore, the influences of some system
parameters such as pantograph mass and damping, and the stiffness between the

pantograph head and frame are also investigated.

The methods and results of this paper can be used to analyse existing pantograph-
catenary systems and predict their dynamic performance. They also provide a
theoretical framework for investigating improvements in the system design, and

could be useful in the study of an active pantograph system.

2. ANALYSIS OF THE CATENARY SYSTEM

The overhead line systems shown in Fig. 2 are complicated systems which consist of
two or three catenaries connected by some droppers which are fitted to minimise the
droop of the contact wire. Because the catenary system is complex it is appropriate
to calculate the stiffness of the contact wire using FEM [5]. For the coupled vibration
of the pantograph-catenary system, the most important consideration is the stiffness
variation of the contact wire in a span, because it is a primary source of vibration of

the pantograph.



2.1 Stiffness matrix of a single catenary

The discretization of a continuous catenary is shown in Fig. 3. For simplicity every
element is assumed to be the same length. The external force, including the weight
of an element, is concentrated at the nodes. If the element is short enough, it can be

considered to be a straight line, so the force balance equations at the nodes are

HLZZ_—E—H§+£1=O
X

Hii+1_}i~HX'i”:X'i'_"l+fi=0 i=2,3,...,n—1

Ax Ax
g pg¥nt¥el g g (1a, b, ¢)
Ax Ax

where H is the horizontal component of catenary tension, T, and H = T when the

droop of the catenary is small.
Equations (1a,b,c) can be represented in matrix form as

K5YS = FS (2)
where Kj is the stiffness matrix of the single catenary, ¥ is the vector of nodal
displacements and F; is the vector of vertical nodal forces. K is symmetric and its
elements are given by:

ki = 2H/ Ax i=1,2,...,n

kiy1i =kjie1 =—H/Ax i=1,2,...,n-1 (3a, b)



2.2 Stiffness matrix of the catenary system

The catenary system's stiffness matrix is composed of the catenary's stiffness matrix,

K, and the dropper's stiffness matrix, Kg:

K = Kc+Kyg (4)

where K, has the form of

(5)

where Kg1, Kgo «+- Ksp represent single catenary stiffness matrices which can be

calculated using (3). K has the form,

M M km - -km rth row
dez Kdmzz - (6)

m=1 m=1 "'km e km sth row

rth sth

column column

where Kqnm is the matrix of a single dropper which is decided by the mth dropper's

axial stiffness coefficient, ky,, and its two end positions, node r and node s.

2.3 Stiffness fluctuation of the contact wire in a span

To determine the stiffnesses of the catenary system we apply a force, f;, to node i,

then calculate the displacement of the node i, yj, by the equation



KY=F=[0...0£0...0]T (7)

where K is the stiffness matrix of the complete catenary system, Y is the vector of
nodal displacements and F is the vector of vertical forces. Thus the stiffness at point
i can be obtained. By repeating the same procedure for every node of the contact
wire in a span, the stiffness variation in a span is obtained. The calculated results of
the two types of catenary system shown in Fig. 2 are presented in Fig. 4 for different
catenary tensions. The parameters of the catenary system are quoted from [9].
Graphs 4(a), (b) and (¢) show the stiffness variation for the catenary in Fig. 2(a), and
graph (d) is the corresponding result for the catenary in Fig. 2(b) when
T1 = T2 =98 kN. We desire a catenary that has a minimum variation in stiffness, thus
for the catenary in Fig. 2(a) the best result is 4(c) and the worst is 4(a). It can also be
seen that the heavy compound catenary of Fig. 2(a) is better than the simple catenary
of Fig. 2(b). With the preferred heavy compound catenary it can be concluded that

the tensions should be reasonably distributed between the catenaries.
3. MODELLING OF THE PANTOGRAPH

A pantograph is a mechanism consisting of two main parts; a steel or aluminium
head fitted with a carbon current collector strip is held in contact with the overhead
wire by an uplift force which is provided by a spring-loaded or air-operated frame.
The air pressure or spring loading provides a nominally constant uplift force to keep
the pantograph head and overhead wire in contact. The whole pantograph

mechanism is mounted on the roof of a locomotive.

In general, a pantograph incorporates nonlinear damping elements, which include
both viscous and coulomb components, and a nonlinear spring [4]. The most widely
used model of a pantograph found in the literature, however, is the two DOF linear

model shown in Fig. 5(a) and this model is used in this paper. The upper mass, Mj,
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represents a pantograph head and the lower mass, Mj, represents the equivalent
inertia of the frame. Kj and Cj represent the stiffness and damping between the
head and the frame respectively, and Cy represents the damping between the frame
and the base. Fi and F> represent the contact force and uplift force, respectively. F»
is produced by air pressure or spring loading and may be regarded as constant.
Furthermore, the two DOF model of the pantograph may be simplified to a SDOF
model, as shown in Fig. 5(b), if the stiffness, K1, is much greater than the stiffness of
the contact wire. In Fig. 5(b), M =M; + M; and represents the mass of the whole
pantograph including the head and the frame. The difference between the dynamic

behaviour of the two DOF and SDOF models will be discussed later in this paper.

4. SDOFTIME-VARYING MODEL OF THE PANTOGRAPH-
CATENARY SYSTEM

As mentioned previously, the pantograph and catenary is a coupled (dynamical)
system, because they interact with each other through the contact force. The
combined system comprises a two DOF model of the pantograph and a continuous
stiffness model of the catenary, as shown in Fig. 6(a). This system can be described
by a partial linear differential equation with a set of complicated boundary

conditions together with two normal linear differential equations.

As the pantograph head moves along with the train, it should maintain contact with
the overhead wire. If this is the case then the velocity and acceleration of the
pantograph head are related to the local velocity and acceleration of the wire at the
contact peint, and the deformation and its time derivative at this point. In addition,
the acceleration of the pantograph head includes a centripetal acceleration
component due to the curvature of the wire. The kinematic relationship at the

contact point is described as follows:



dyp 9y, ¥ ®)

dt t X
dZy 92y a2y 92y
—-H_Edtz == F ZVM \" 2 9)

where yp and y represent the vertical displacement of the pantograph head and

contact wire, respectively, V is the operational speed of the train.

Because of these complicated relationships and the associated boundary conditions,
it is extremely difficult to obtain an analytical solution to the model in Fig. 6(a).
Thus, a simple model without loss of the main dynamic characters of the coupled
pantograph-catenary system for the model in Fig. 6(a) needs to be developed. It has
been mentioned previously that the stiffness variation of the overhead wire is a
source of vibration of the pantograph-catenary system. The stiffness variation in
every span is periodically repeated and the nature of this variation has a significant
influence on the dynamic performance of the pantograph-catenary system. If we
consider the contact wire's static stiffness only and use a SDOF model of the
pantograph, the simplest model that has the main dynamic properties of the
pantograph-catenary system is shown in Fig. 6(b). If wave propagation in the wire is
considered, dynamic rather than static stiffness should be used. The dynamic
stiffness of an overhead wire varies with the tension, the density of the wire and the
speed of the pantograph. Compared to the static stiffness, the dynamic stiffness will
dramatically change when the speed of the pantograph is close to the wave speed in
the wire, but it is very similar to the static stiffness if the moving speed is below
eighty percent of the wave speed [10]. For simplicity, only the static stiffness of the
overhead wire is used in this paper. The differential equation of this model is given

by:

My + ¢y + Kit)y = F (10



Omitting the stiffness variation between the droppers, whose effect will be discussed

later, and considering a train with constant speed V, then K(t) can be written as

2nV
K(t) =Ko + Kscos 7t (11

where L is the length of a span, and

1
Kp = P (Kmax + Kmin)
(12 a,b)

1
Ks = 2 (Kmax - Kmin)

where Kmax and Kpin are the largest and the smallest stiffness in a span,
respectively. Ko can be seen as the average stiffness of the contact wire and K; is the

amplitude of the stiffness fluctuation.

2
If we set w, = Kg/M and ® = 2nV/L, where oy is defined as the nominal natural

frequency of the pantograph-catenary system and ® is the frequency of the stiffness
variation which is related to the train's speed and the length of a span, then equation

(10) can be rewritten as
- g . 2 Ks E
¥+ Y+ oo, (l &, 08 o)t)y = M (13)

This equation can be non-dimensionalised by letting T = wyt, to give:

d?y . dy '
—= + 2 + (1+ =f 14
422 g e (1+acosrt)y (14)
K 2V F
where 2 = ,a=“‘s,r=£= u and f = &~
nM 0 WOn  n



If F is set to zero then equation (14) is the well-known damped Mathieﬁ's equation
[11]. Two parameters are very important and determine the dynamic behaviour of
the pantograph-catenary system. They are o which represents the stiffness variation
of the contact wire, and r which is related to the train's operating speed, the span
length and the nominal natural frequency of the pantograph-catenary system.
Equation (14) is used in subsequent sections to investigate the pantograph-catenary

system's dynamic performance.

5. STABILITY OF THE PANTOGRAPH-CATENARY SYSTEM

In a periodically time-varying system described by (14), the boundaries of stable and
unstable regions should be determined first. For a periodically time-varying system
Xt = A®) X(t), where A(t + T) = A(t) and T is the period, the relationship between
X(t + T) and X(t) can be written as X(t + T) = M X(f). M is known as the monodromy
matrix. According to the Floquet theory the stability of a periodically time-varying
system is determined by eigenvalues of its monodromy matrix {12]. For a SDOF
system its monodromy matrix and eigenvalues of the monodromy matrix can be
obtained numerically by calculating two linear independent solutions of the system's
equation under two specified inifial conditions during the first period of oscillation

[11].

For a practical overhead line system the stiffness uneveness coefficient o is in a range
of 0.25 - 0.60, and the highest operational speed of trains is under 500 km per hour,
so the coefficient r is less than 1.5. We take a range of 0.2 - 0.7 for c and 0.1 - 2.5 for r
and divide this area with a grid whose unit should be small enough to lead to a
reasonably accurate solution, and then every crossing point in the grid is calculated
by using the 4th order Runge-Kutta method to determine the system's stability at

these points.

-10 -



The results of this calculation are shown in Fig. 7 for three values of damping, { =0,
0.01 and 0.02. Three areas of instability can be seen in Fig. 7 and they occur in
regions around r =0.67, 1 and 2. These areas of instability are dependent upon
damping. For example, the system would be unstable forr=2, 0.=0.25and { =0,
but would be stable for r=2, « =0.4 and {=0.01. Since a realistic damping
coefficient is generally much greater than those shown in Fig. 7, a practical
pantograph-catenary system will probably not suffer from instabilities. Therefore,
we can conclude that the loss of contact between the pantograph head and contact
wire at higher speeds is probably caused by normal vibration of the pantograph
head and not unbounded or unstable vibration. If the stiffness fluctuation between
the droppers is considered in equation (14), the plot of stable and unstable regions
has few differences from that shown in Fig. 7. The reason for this is that the stiffness
variation between the droppers is much smaller than that in a span so the coefficient
a, the stiffness variation due to droppers, is very small so it has almost no effect on
the stability of the pantograph-catenary system. For simplicity, therefore, the

stiffness fluctuation between droppers may be neglected.

6. ANALYTICAL SOLUTION OF DISPLACEMENT AND
CONTACT FORCE

Because equation (14) represents a forced parametically-excited system, it is not
possible to obtain a closed form solution. However, it is possible to determi_ne an
approximate analytical solution using the perturbation method. Fortunately, it is
still a linear problem, so the superposition principle can be used. Thus, we can

divide the solution into two parts.

Yy=Vt+Vs (15)

-11-



where yi and y; represent the transient and steady-state responses, respectively. It is

advisable to use different methods for solutions of y; and ys.
6.1 Transient response

The method of multiple scales [11] is used for the solution of the transient response,

yt. We first rewrite equation (14):
ye+2enyy +(1+2ecosrt) yp=0 (16)

where 2 € = o and ey = {, and then take a second-order uniform expansion for y; of

the form,
yi (1, &) = yo (T, Ty, T2) + ey1 (T, Ty, T2) + € y2 (Tg, Ty, T2) (17)

where T = 1, n = 0, 1, 2. Substituting egqn. (17) into eqn. (16) and equating the

coefficients of €0, ¢! and €2 to zero, we obtain
2
Dy yo+ yo=0 (18)
) _
Dyy1 + y1 = -2Dg D1 yp-2 puDgyo— 2yg cosr Tg (19)

2
Dyya+ya=- (D12 + 2Dp Dyy yp - 2uD1yp - 2Dp Dy - 2uDgy1 - 2yq cos
(20)

where Dy, = 9"/dTh, n =0, 1, 2. If we obtain solutions for equations (18), (19) and

(20), and substitute these into equation (17), we obtain

-12-



Yt = Vo +EY1 + €2y2

€ (2 g2
+———r(2+r) cos 1_?“‘_4——:2 T+ ¢_

£ (2 g2
—rE oD s [1—-2——r—4_r2]1:+¢_

g2 ¢2 2
+————r(2+r)(l+r) cos[(l—-?:'+2r—4_r2]t+c|)}

2 2 2
+—r(2~f)(1—r) cos[(l—%—Zr—4fr2Jt+¢” (21)

A and ¢ are constants decided by the initial conditions of the system. It should be

noticed that this solution is only valid when the system is stable.

Equation (21) reveals that transient response consists of some harmonic motions at
different frequencies and their amplitudes decay with increasing time due to the

negative exponent caused by damping.

6.2 Steady-state response

As the transient response vanishes with increasing time, the steady-state response is
the most useful solution to study. To obtain the steady-state response, we rewrite

equation (14) as follows:

Vs +20ys + (1 + acosr1) yg = f (22)

-13 -



The solution can be obtained by using the straightforward expansion method [11].
For a better approximate solution of the steady-state response we assume a four term
expansion having the form,

ys (1, o) = yo¥) + ay1(n) + oya(r) + odys(1) (23)

Substituting equation (23) into equation (22) and equating coefficients of like powers

of o, we obtain
yo + 20yo + yo = f (24)
Vi + 20y; + yvi = —yi1cosrt i=1,2,3 (25)

By seeking steady-state responses of equations (24) and (25) successively and

substituting them into (23), we obtain

Vs = yo + oy1 + 02y> + ody3

=f 1+“-9“L*"{—cos(r’t~—q))+E oS ¢ +“—1‘"‘“COS(21'T—‘D - ¢2)
R 03 [ o)

o2 [2 591 cos (rt 1) + : [ ~ cos (rt 2¢1-¢2)
a2 o) e | ~ 261 - 2
e VIR VR 1

1
+ ECOS (Brt—-¢1 -2 - ¢3)] } } } (26)

where

2Cr
Ry =(1-r22+2{n? ¢1=tan’ly —C r2

~-14-—



4(r

- (1 - 4r2)2 2 gy =tan-l —2—
Ry=(1-4r5)2 +(44r)* o =tan-' 7 >

6
Ry=(1-9r2)2+ (6{r)2 ¢ =tan"! ; _Ciz (27a,b, ©)

Equation (26) shows that the steady-state response of a periodically time-varying
system to a constant external force is composed of a DC component and some
harmonic motions with a dominant component having frequency, r. When the
damping is small and r is 1, 1/2 and 1/3, the response is a maximum at these non-
dimensional frequencies. They can be regarded as a primary resonance for r equals 1
and sub-resonances for r equals 1/2 or 1/3. This character is very important for a

periodically time-varying system, which does not exist in time-invariant systems.

To compare the response predicted by the analytical model described above, it is

compared with a numerical solution.

A numerical calculation of the steady-state response was performed using the 4th
Runge-Kutta method. It may be used as an exact solution for comparison with the
solution given in equation (26), with { = 0.1, « = 0.5 and f = 1. The steady-state peak-
to-peak displacements for both methods are plotted in Fig. 7 where it can be seen
that the approximate analytical solution is quite satisfactory for the values of r from

0.1to 1.5.

Using equation (26) some important aspects of the dynamic performance can be
predicted, for example, the operation speed causing resonance, the DC component of

displacement of the pantograph head and the system's vibration amplitude.

Equations (26) and (27 a,b,c) can be used to show that the stiffness variation between

droppers has only a small effect on the system's steady-state response if it is added

~ 15—



into the model. The reason is that a dropper span is much shorter than a whole
span, so the coefficient r due to dropper span is much larger than that due to 2 whole
span in terms of the definition of r (r = 2nv/wyL) for the same operation speed of a
train. This will result in large values of Ry, Ry and R3, and hence small 1/ \/R_l, 1/4Ry
and 1/4/R3. In addition, the stiffness variation between the droppers is much
smaller than that in a whole span. Therefore, the contribution to the steady-state
response due to the stiffness variation within the dropper span is small enough to be

neglected.
6.3 Analysis of the pantograph-catenary system's dynamic performance

The results in the normalised form of peak-to-peak, maximum displacement and
contact force for a pantograph-catenary system having different parameters are
shown in Fig. 9 - Fig. 12 by using equation (26), with setting f = 1. These figures
describe main aspects of the pantograph-cateﬁary system's dynamic behaviour

which can be summarised as follows:

1. There are three resonance peaks appearing atr = 1/3, 1/2 and approximately 1.
The primary resonance is when r is approximately 1 and the others are sub-
resonances. For a high speed pantograph-catenary system, for example, the
speed atr =1/3,1/2 and 1 is about 160, 240 and 480 km/h, and for a standard
speed pantograph-catenary system it is about 100, 200 and near 300 km/h,

respectively [9].

2.  The stiffness variation coefficient o of the contact wire in a single span has a
significant influence on the system’s dynamic performance because it is the
source of the parametrical excitation. It can be seen in Fig. 9 - Fig. 12 that the
smaller the coefficient a is, the smaller the variation in the contact force.

Therefore, the stiffness variation of the contact wire should be kept as small as
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possible. For a heavy compound catenary used for high speed trains, « is about
0.3 and for a simple catenary used for standard speed trains o is about 0.6.
Thus the compound system is clearly preferable, but it would of course be

much more costly.

When the peak-to-peak contact force or displacement is greater than the
maximum contact force or displacement, loss of contact between the
pantograph head and contact wire will occur. Thus, the first cross-over point
on the peak-to-peak and maximum contact force graphs represents an upper
limit of the operational speed of trains. For a heavy compound catenary the
highest operational speed is mainly limited by the primary resonance, and for a
simple catenary the highest operation speed is mainly limited by the lowest

sub-resonance.

The damping between the pantograph's frame and head has an important effect
on the shape of the graphs around resonance; the smaller the damping, the
sharper the resonance. A small increase in damping will increase the margin of

positive contact force or raise the upper operational speed of the train.

Increasing the average stiffness of the contact wire and decreasing the mass of
the pantograph both have a positive effect on improving the pantograph-
catenary system's performance since this will raise the system's nominal natural
frequency which will lead to a reduction in the value of r for the same

operational speed, or allow a higher speed for the same value of 1.
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7. TWO DOF TIME-VARYING MODEL OF A PANTOGRATH-
CATENARY SYSTEM

A two DOF model of the pantograph-catenary system is shown in Fig. 13, where M,
K1 and Cj represent the mass, stiffness and damping of the pantograph head,
respectively, and M; and C; represent the mass and dampng of the pantograph
frame, respectively. K(t) represents the stiffness of the contact wire and F is a
constant uplift force. A specific pantograph-catenary system from {9] has the
following parameters: Mj = 6.5 kg, My = 8.5 kg, K1 = 39000 N/m, C1 = 120 Ns/m,
C2=30Ns/m, F=54Nand L =50 m. Knax and Kpjn, are calculated by using FEM
developed in this paper, and their values are: Kmax = 5730 N/m and
Kmin = 2920 N/m. The steady-state response of the system is calculated by using the
4th order Runge-Kutta method at an operational speed, V = 300 km/h. A
comparison of the results of the SDOF model in terms of displacements is shown in
Fig. 14. It can be seen from Fig. 14(a) that there is almost no difference between the
two DOF model and SDOF model in terms of the displacément of the pantograph
head. As to the displacement of the pantograph frame, the difference between the
two models is a DC shift in the frame displacement. This DC shift can be regarded

as the static displacement of the pantograph frame.

The larger the stiffness is between the head and frame, the smaller the static
displacement of the frame. For a SDOF model the connection between M1 and M5 is
rigid, so the static displacement of the frame is the smallest. By using a two DOF
model of the pantograph-catenary system, the influences of the pantograph head's
mass, damping and stiffness on the system's dynamic performance can also be
investigated. The results of changing mass and stiffness can be seen in Fig. 15 and

Fig. 16, respectively. Some important conclusions may be stated as follows:
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1. For a given speed, reducing either the head mass or frame mass will marginally
decrease the contact force fluctuation between the pantograph head and contact
wire. The main function of reducing mass is to increase the system's nominal
natural frequency and thus allow a higher operational speed for the same

variation in contact force.

2. Decreasing the stiffness between the head and the frame can reduce the
sharpness of the resonance, and thus reduce the variation in the contact force.
The reason for this is that a softer spring is a better absorber of an impulsive

force.

3. Changing the damping between the pantograph head and frame has almost no
effect on the contact force. Setting Cy = 80, 120 and 160 Ns/m, the results

overlay and so they are not plotted.

8. CONCLUSIONS

A periodically time-varying SDOF model of the pantograph-catenary system has
been developed for the analytical study of the system's dynamics. It is simple but
retains the main dynamic properties of the system. Although there is the possibility
of a stability problem for a periodically time-varying system, typical pantograph-
catenary systems operate in a stable region when their operating speeds are limited
to under 500 km/h and there is a small amount of damping present. The loss of
contact between the pantograph head and contact wire at higher speeds, therefore, is
due to bounded vibration. The stiffness variation between the catenary spans is the
initial source of a parametrical excitation causing vibrations of the pantograph-

catenary system during the train's operation.
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Below the speed of about 500 km/h there are three bounded resonance areas for the
pantograph-catenary system which limit the highest operation speed of trains. The
stiffness variation coefficient of the catenary and the damping between the
pantograph frame and base affect the shape of the resonant response significantly.
For a heavy compound catenary its stiffness variation coefficient is smaller, so the
upper limit of operation speed is limited by the primary resonance and thus a higher
speed is possible. On the other hand, for a simple catenary its stiffness variation
coefficient is larger, so the upper limit of operation speed is limited by the first
subresonance area and thus there is a lower speed limit. Changing the average
stiffness of the catenary and the mass of the pantograph will lead to a change in the
nominal natural frequency of the pantograph-catenary system and thus the upper

limit of the train's operational speed.

As mentioned in the introduction, the influence of wave propagation in the overhead
wire has not been included in the model discussed in this paper. If wave
propagation is considered, the dynamic rather than static stiffness should be used.
Because the dynamic stiffness fluctuation will become larger than the static stiffness
fluctuation when the operational speed of a train is close to the wave speed in the
wire, the dynamic performance of the pantograph-catenary system at higher speeds

will be worse than that predicted by the model used in this paper.
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Figure 3 Discretization of catenary.
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Figure9  Peak-to-peak and maximum normalised displacement, { =0.05and f=1:
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Figure 10 Peak-to-peak and maximum normalised contact force, { = 0.05 and f = 1:
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(@a=03, b)ya=04, (c)a=05, (d) a=0.6.
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Figure1l Peak-to-peak and maximum normalised displacement, { = 0.1 and f = 1:
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Figure 16 Influences of different stiffness between head and frame with
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