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ABSTRACT

A comparative study is conducted into three signal processing techniques used to detect local
tooth defects in gears. The first technique involves creating the analytic signal from the time
history of measured gear vibration, as this shows the modulation of the gears due to a defect.
Wavelets are used in the second method to transform the vibration signal so that it can be
viewed in time and frequency simultaneously. The third technique involves calculating the
kurtosis of the time history, which gives a crude indication of a defect. This report contains
a brief discussion of these techniques, and presents experimental results which demonstrate
their relative merits.
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1 INTRODUCTION

The detection and diagnosis of gearing faults can be achieved by analysing the vibration
generated by meshing of the gears. A variety of signal processing techniques have been
developed for this purpose and the aim of this work is to compare three of these technigues
by way of an experimental investigation. All of the techniques require that the signal be
synchronously averaged for the gear-pair of interest to filter out disturbances that are not
related to gears being monitored [1]. This technique involves sampling the vibration signal
at a frequency which is synchronised with the rotation of the gear of interest, and then
calculating the ensemble average of the signal over many revolutions. The simplest and
crudest of the gear-fault detection techniques uses the statistical properties of the vibration
as a measure of the health of the gears and has been proposed by Stewart [2]. It involves
the computation of the normalised fourth statistical moment of the time history of the
vibration signal, which is known as the kurtosis. This is chosen as it provides a single non-
dimensional number that can potentially indicate faulty gears. Normal gears should generate
a reasonably uniform pattern of vibration at the tooth meshing frequency and consequently
the kurtosis value should be low. When a local tooth defect such as a damaged or cracked
tooth occurs, the tooth meshing will be modulated [3], and the kurtosis value will be raised.
Another relatively simple method of detecting gear faults is to examine the analytic
(envelope) function which carries information on the amplitude and phase modulation of the
gear meshing [4][5]. This function is formed by bandpass filtering the time averaged signal
about one of the dominant meshing harmonics (including all its sidebands) and performing
a Hilbert transform. This technique has been used by Mcfadden [5] to detect a fatigue crack
on a spur gear. In this work it was demonstrated that phase (frequency) modulation of the
vibration was a more important indicator than amplitude modulation. A relatively new
method of using wavelet transforms to detect gearing faults has been proposed by Staszewski
and Tomlinson [6]. This technique generates a three-dimensional complex time-frequency
graph of the gear vibration. This graph can be a little difficult to interpret, however the
advantage of using this method is that its variable time and frequency resolution enables the
evolution of the spectrum of a signal with time to be analysed with more flexibility than is

possible with established Fourier transform-based methods.



The report is split into four sections. Following this introduction the theory behind the three
detection techniques is explained briefly and demonstrated with computer simulations. This
is followed by details of the experimental work and a presentation of the results. Finally,
the effectiveness of the three detection methods is discussed before some conclusions are

drawi.
2 THEORY
2.1  Nature of gear vibration

The principal source of vibratory excitation of a pair of involute gears is the unsieady
component of the relative angular motion of the meshing gears [7]. This is caused mainly
by the compliance of the gear teeth and manufacturing inaccuracies. For a pair of gears, one
of which has T teeth and is rotating with frequency of f, rev s, which mesh under a constant
load and speed, the fundamental meshing vibration is given by f,, = If, Hz. The meshing

vibration may then be expressed as a sum of N dominant harmonics, each of amplitude X :

N
x@®) = Y, XcosRunf,t + ¢, 1)
n =0 '

where ¢, is the phase angle of the nth harmonic. If the gear has a local defect, such as a
partial tooth failure, then the amplitude and phase (frequency) of the vibration of the affected

gear will be modulated [3]. The modulated gear meshing vibration y{z} is given by [5]:

N
y& = Y X, (d+a,®)cos@rnf,t + §, + b)) 2)

n=0
where a,(t) and b,(?) are the amplitude and phase modulating functions respectively. These

can be written as a sum of harmonics of the gear rotational frequency as:

P
a® = A, cos2npfit + «,) (3a)
p=0
and
S
b = Y B, cos@nsf.t+ B,) (3b)
§=0

The way in which defective gears cause amplitude and frequency modulation are discussed

in detail in reference [3] and only the main features of a modulated signal are summarised
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in this report. Amplitude modulation produces sidebands around the carrier frequencies,
which in this case are the gear meshing frequency and its harmonics. The sidebands are
spaced at intervals of the modulating function frequencies. If the modulating function
contains only one frequency, say the frequency of rotation, then there will only be a single
pair of sidebands. This type of vibration is often as a result of periodic variations in tooth
loading, which can be caused by eccentricity of a gear, uneven wear, or tooth profile errors.
If the modulating function consists of many frequencies, caused by for example a local tooth

defect, then many sidebands will be generated.

Frequency modulation produces a family of sidebands even if the modulating function is a
single tone. These sidebands are spaced at intervals of the modulating frequency, and the
bandwidth of a frequency modulated function is dependent on the frequency deviation of the
carrier signal. Generally, in gear systems there will be both amplitude and phase
modulation, and the resulting spectrum will contain sidebands produced by both of these
functions. Even though amplitude and frequency modulation produce symmetrical families
of sidebands when acting alone, the phase relationships on either side of the carrier frequency
are different and the combination of the two families of sidebands can either reinforce or

cancel. The result is an asymmetrical family of sidebands.
2.2  Hilbert transform based demodulation

This process has been described in detail by McFadden [5] and is only briefly discussed here.
It is not possible for the Hilbert transform to demodulate the envelope and phase of the whole
vibration signal, so the signal first has to be bandpass filtered around one of the dominant

harmonics, including all of its sidebands. For the n, harmonic the signal is:

z,(® = X,(1 +a O)cosQnnf,t + §, + b(D) @)

To form the analytic function ¢,(z), z,{t) is combined with its Hilbert transform to give:

& = 2,0 - JHR®) (5)

where H denotes a Hilbert transform. Substituting (4) into (5), and performing the Hilbert

transform, gives the analytic function-in its expanded form [5]:



¢, = X,(1+a,@)e @ V" 42 5O ©

It can be seen that the analytic function is complex. Its modulus is the envelope of the
modulated carrier signal and is a function of the amplitude modulation «,(z), and the phase
is a function of the phase (frequency) modulation b,(z). Thus by plotting the modulus and
phase of the analytic function, a gear defect which modulates the meshing vibration can be

identified.

There is a potential problem with this demodulation technique, however, which is the process
of bandpass filtering a dominant harmonic and all of its sidebands. It was described in
" section 2.1 that it is possible for many sidebands to be generated, and this is dependent on
the type of gear fault. If many sidebands are generated, then it is probable that these will
interfere between adjacent harmonics of the gear meshing frequency, and in this case it is not
clear how to choose the cut-off frequencies of the bandpass filter. A filter with a narrow
passband will probably miss some of the higher order sidebands of the chosen harmonic, and
a filter with a wider passband will probably pass some of the sidebands from adjacent
harmonics. In both of these cases the analytic function will be distorted and will not give
a true picture of the actual amplitude and phase modulation of the gear being monitored.
This has been discussed by Reynolds [8], and is evident in the experimental results presented

later.
2.3 The wavelet transform (WT)

The WT concept is most easily understood by development from the short time Fourier
transform (STFT), a transform which enables the evolution with time of the spectrum of a
signal (as generated by the Fourier transform) to be determined. This type of transform is
necessary when trying to detect a defective gear due to the non-stationary nature of the

vibration signal. The STFT is given by [9]:

where y{z) is the vibration signal given in equation (2) and g(#) is a windowing function

around time 7. The window function is shifted in time over the whole of the signal and



+

STFT(zf) = f y(H)g(t - t)e It o)

consecutive overlapped transforms are performed, which gives a description of the evolution
of the spectrum. If these transforms are arranged chronologically, a time-frequency
description of the signal is plotted. The introduction of the window g(?), which allows the
generation of a time-frequency description of the signal, has a detrimental effect upon the
frequency resolution. A short time window results in good time resolution af, but poor
frequency resolution af, and vice versa. This is described by the Heisenberg inequality,
which is sometimes called the uncertainty principle and is given by [9]:
ataf > = ®)
47

If a Gaussian window function is used then this relationship becomes an equality and the
resulting STFT is called a Gabor transform [10]. One problem with the STFT is that the
length and shape of the time window, which governs the time and frequency resolution
remains constant throughout an analysis and hence the time and frequency resolutions also
remain constant. In fact, the requirement is for short time windows for high frequencies, to
give good time resolution, and long time windows for low frequencies giving good frequency

resolution. The wavelet transform has this facility.

Previously, the STFT (equation (7)) was interpreted as the Fourier transform of the
windowed signal y(tjg(t - 7), but it is equally valid to describe this function as the
decomposition of the signal y(#) into the windowed basis functions g, {r) = g(t - 7)¢”. The
term ‘basis functions’ refers to a complete set of functions that can be combined as a
weighted sum to construct a given signal. In the case of the STFT these basis functions are
sine and cosine functions windowed by the function g(#) centred around time 7. Using this
description it is possible to write down a general equation for the STFT as the inner product

of the signal and basis functions:



STFT(xf) = [y®q,Lo)dt ©

The WT can also be described in terms of its basis functions, known as wavelets, using
equation (9). In this case the frequency variable is replaced by the scale variable g, and the

time-shift variable 7 is replaced by b. The wavelet or basis functions are represented by:

hy® - L h*(’ - ”) 10)
Va a
where * denotes the complex conjugate.  Substituting this into equation (9) gives the

definition for the continuous wavelet transform (CWT):

1 +od t _ b
CWI(a,b) = — |y h*(——]'dt (11)
va f-. a

This equation shows that the WT performs a decomposition of the signal y(?) into a set of
weighted set of scaled wavelet functions; all wavelets are scaled versions of a common
‘mother wavelet’ By employing scaled window functions the WT does not overcome the
uncertainty principle, but because it accommodates variable window lengths, there is
variable resolution, and an increase in performance is possible. Due to the scale factor « in
the window function, the time window decreases in length as the frequency increases. Thus
at low frequencies where the time window is large there is poor time resolution but good
frequency resolution and at high frequencies, there is good time resolution but poor
frequency resolution. It should be noted that the bandwidth of a wavelet is proportional to
its centre frequency so the WT acts like a bank of constant relative-bandwidth (constant Q)
filters which give a logarithmic coverage of the frequency domain. It is this flexible scheme
of time and frequency localisation that makes the WT attractive for the analysis of signals

involving discontinuities or transients.

Many wavelets are available as basis functions, however, the question of which wavelet is
suited to a particular application is difficult to answer, and is the subject of current research.
In this work the Morlet wavelet [11] was chosen as it is closely related to Fourier analysis
and therefore relatively easy to understand and implement. It is in fact an analytic sinusoid

within a Gaussian envelope.



2.4  Kurtosis analysis

Kurtosis is the normalised fourth statistical moment about the mean of a random variable
(signal). This gives an indication of the peakedness of the signal but is robust to single
‘outfliers’, i.e., rare extreme data points. To understand what kurtosis is, it is necessary to
briefly explain the concept of a statistical moment. The mean u, of a random signal X is
given by [12]: '

p = E{X} (12)
where E is the expectation operator. This is the first moment about zero. The

variance,which in usual notation is written as o2, is the second moment, and is defined as:

b, = 0> = E{X - p)) 13)

Higher order moments are defined in a similar manner:

M = B{(X - L k = 3,4,... (14)
Kurtosis is just the fourth moment normalised to the square of the variance, and is given by:

kurtosis = —* (15)
4
0 .
Once the vibration signal has been time averaged to remove frequency components not
related to the gears of interest, equation (15) can be used to calculate the kurtosis of the
signal. For a normal distribution (a Gaussian signal with zero mean) the kurtosis is 3. As
the peakedness of the vibration signal increases, as you might expect with a defective gear
tooth, kurtosis increases. It is this characteristic that is exploited in the detection of gear

faults, and although it is perhaps crude, it is very simple to implement.
2.5 Computer simulations

Before applying the techniques to experimental data, computer simulations were carried out
to see how well the three methods would perform in detecting a simulated fault. An
extensive set of simulations were carried out [8], but only one simulated fault is reported

here. A typical meshing vibration signal was generated by extracting the first seven



harmonics of an empirically-derived cycle of spur gear meshing vibration taken from
reference [13]. The signal undergoes frequency modulation, which is simulated by a phase
deviation modelled as a one-tooth duration cosine-shaped lag of 30° of meshing phase. In
addition, the impulse response of a damped second order system with a natural frequency of
820 shaft orders was embedded. The time history of one rotation of the 30 tooth gear is
shown in figure 1a and the Fourier transform of this signal is shown in figure 1b which is

plotted in the shaft order domain (30 shaft orders is the meshing frequency).

Figures 1c and d show the magnitude and phase of the analytic function respectively. To
generate this function, the vibration signal was filtered around the dominant second harmonic
using a rectangular bandpass filter with a bandwidth of 30 shaft orders. The phase deviation
is apparent, however the function only shows a maximum deviation of 15° rather than 30°.
This is believed to be due to the bandwidth of the filter, which also had the effect of
increasing the time duration of the phase excursion. A brief reduction in the amplitude of
the envelope is also evident. The position of the centre of these features is at about 170°

gear rotation, which corresponds with the position of the fault as shown in figure 1a.

Figures le and f show the magnitude and phase of the wavelet transform. The meshing
harmonics are seen as horizontal bands of constant frequency, but the higher harmonics
merge as the bandwidth of the wavelet increases. To get a clearer picture of the phase
behaviour a threshold was set below which the coefficients of the WT were set to zero. In
this case this was set to 3% as shown in figure 1f. The damped impulse response can be
seen as a shaded area in both the plots spreading between about 140° and 210° gear rotation
and between the first and fourth harmonics. (The WT of an impulse is shaped as an inverted
triangle with concave sides {8]). The kurtosis of the signal was calculated to be 13.88, and

thus all three methods were considered to be successful in detecting the fault.
3 EXPERIMENTAL WORK
3.1 Experimental procedure

Verification of the simulated results was attempted using the gearing test rig which is shown



schematically in figure 2. It is a twin-shaft circular power device with two pairs of gears
on two shafts, and the load is applied using a torsion device fitted to one shaft. The gears
are splash lubricated in mineral oil, and the rig is driven at approximately 1000 rpm by a 2.2

kW induction motor.

The test gears used were single helical, 17°45’ helix angle, 30 tooth pinion and 45 tooth
wheel of EN32 steel with no surface hardening. Two defects were introduced (on separate

pinion wheels) as follows:

Defect A Flank-to-root partial tooth loss over 40% facewidth at the tip and 20%
facewidth at one root, due to a face {pitch circle point on flank)-to-root (of

back) fracture.

Defect B Root-to-root partial tooth loss over 40% facewidth at the tip and 20%

facewidth at the root, due to a root-to-root fracture.

The vibration was sensed using an accelerometer on the bearing housing nearest the faulty
pinion. A hall effect sensor was also fitted to give a pulse each pinion shaft rotation. The
accelerometer signal was low pass filtered with a Kemo VBF/4 filter with the cut-off
frequency set to 4 kHz. It was then converted to a 16 bit resolution digital signal with a
CED 1401 A to D converter connected to a host PC. 32 contiguous revolutions were
sampled in blocks of 512 samples per revolution at a sampling frequency of 8772 Hz, with
the pulse from the Hall effect sensor being used as a trigger. Data were captured for three
pairs of gears; a healthy gear, defect A and defect B. All test gears were run at their design

torque of approximately 100 Nm.
3.2  Experimental results
3.2.1 Healthy gears

The averaged time history for one rotation of the pinion is shown in figure 3a, and figure

3b shows the Fourier transform of this plotted in the shaft order domain. It can be seen that



it is difficult to determine anything about the state of the gears from these plots. Because
the gear ratio is 45/30 = 3/2, there is a periodic fluctuation with every three rotations (a
frequency of 1/3 shaft orders) of the pinion and two rotations of the wheel. This is probably
modulating the gear meshing frequency resulting in sidebands spaced at 1/3 pinion shaft
orders. It can be seen in figure 3b that the spectrum is very crowded, which suggests that
there is also considerable phase modulation taking place, causing sidebands of adjacent
harmonics to interfere. However, as the experimental rig did not have the instrumentation
to measure rotational frequency variation with rotation this could not be verified. Evidence
of the meshing frequency can be seen at around 30 shaft orders on the magnitude and phase
wavelet plots in figures 3c and d. There are also constant frequency lines at around 20 and
40 shaft orders suggesting that the gears are being modulated every 10 shaft orders or at one
third of the meshing frequency, and it is possible that this is due to frequency modulation.
There is evidence of an impulse at about 250° gear rotation in the time history and in the
wavelet plots, particularly in the phase plot where it can be seen as.converging phase lines.
It is thought that this may have been be due to a once per rotation impact from a source other
than the gears of interest and not a gear fault as a visual inspection showed the gears to be
healthy. Because the spectrum was so crowded and there was no harmonic of obviously
significant magnitude, there was little point in bandpass filtering to demodulate the magnitude

and phase, however the kurtosis was calculated to be 5.54.
3.2.2 Defect A

Figures 4a and b show the averaged signal in the time domain for one revolution of the gear
and the same data transformed into the shaft order domain. These figures show that the
meshing frequency and its second harmonic are much stronger than in the case of the healthy
gears. However, bandpass filtering around one of these frequencies remains problematic.
The subsequent results of demodulation by Hilbert transform were heavily dependent upon
the bandwidth chosen [8]. Figures 4c and d show the magnitude and phase of the analytic
function, with the signal filtered around the 2nd harmonic with a bandwidth of 30 shaft
orders. The phase shows an abrupt change with a local minimum at about 90° gear rotation
(although there are other such lags) which corresponds reasonably well with the position of

the fault at about 85°. It was demonstrated by Reynolds [8] that if the bandwidth of the filter
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is reduced, the higher frequency components are removed, leaving a low frequency sinusoidal
modulation of 1 shaft order. Unfortunately this dominates the phase plot making detection

of a local tooth fault without @ priori knowledge very difficult.

The defect can be seen relatively clearly in figures 4e and f, the wavelet magnitude and
phase plots. High frequency lines between the second and third harmonics of the gear
meshing frequency and localised in time arcund 100° gear rotation are visible on the
magnitude plot. Although converging phase lines are not evident, there is a broadband
feature at the defect location which could be interpreted as an impuise. The kurtosis

calculated for this defect was 3.62.

Examination of the gears revealed wear only at the ends of the teeth (at the opposite end
from the defect location in the pinion) explaining the strong meshing frequency behaviour

and suggesting misalignment.
3.2.3 Defect B

Inspection of figures 5a and b shows that defect B appears to be much more serious, even
from the averaged time domain signal. There is a strong impulse at about 120° gear
rotation, but the meshing frequency and harmonics are barely visible because of the many
sidebands excited due to the strongly impulsive nature of the signal. Because of this
demodulation of the signal was not attempted, however a wavelet transform was performed
and the magnitude and phase plots are shown in figures 5b and c. The magnitude plot shows
signs of an impulse at about 120° gear rotation and the phase plot shows some evidence of

converging phase lines. The kurtosis calculated for this defect was 21.4.

The reason for the more obvious impulse in defect B rather than defect A could be seen from
the wear patterns of the gears. The gears with defect B showed wear on one end of the faces
of the teeth and on the opposite end of the backs of the teeth, suggesting more serious
misalignment. This caused the tooth following the defect to mesh into an exaggerated

transmission error and hence generated a large impulse.
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4 DISCUSSION AND CONCLUDING REMARKS

Three potential techniques to diagnose gear faults have been discussed and compared
experimentally. Although they showed some promise theoretically, the experimental results
demonstrated that none of the of the techniques has provided an obvious and reliable
diagnosis of gear condition in isolation. It is thought that one major practical problem was
the filtering of the signal generated by the gears by the ‘lively’ structural dynamics of the
experimental rig. Thus the signal available for analysis carried information about the test rig
dynamics as well as the gears. This is likely to occur in any gear monitoring situation,
resulting in the amplification or attenuation of important excitation frequencies that carry
information about the health of the gears, thus making detection of faults more difficult. One
way that may help to overcome this problem is to mount transducers on the gear itself,
however this will significantly increase the complexity of system and requires further

research.

The demodulation technique used in this report is not well suited to the detection of impulsive
disturbances or in situations where the frequency modulation of the gear is considerable.
This is because of the problems in bandpass filtering the vibration signal around a dominant
harmonic due to the interference of the sidebands from adjacent harmonics. The technique,
however, is good for detecting low frequency modulation caused by misalignment or

eccentricity.

The wavelet transform, although a fairly complex tool, is useful in the detection of local
tooth gear faults, The three-dimensional magnitude and phase plots are complicated and can
be difficult to interpret, however the technique proved successful in detecting both gear

defects in the experimental work.

Kurtosis detected defect B which generated a large impulsive signal but did not detect fault
A, where the signal was much more regular; in fact the kurtosis was smaller in this case than
with the healthy gear. This might have been because the signal was heavily modulated due
to misalignment (a sine wave has a kurtosis value of 1.5, compared to 3 for a random signal

with a Gaussian distribution).

12



The three techniques discussed in this report all have merits in the detection of gearing faults.
Kurtosis is a useful indicator of potential problems and it is a inexpensive way of crudely
monitoring the state of a gearbox. The techniques using the Hilbert transform and Wavelet
transform are more sophisticated, and could be useful in the periodic checking of the health
of a gearbox. More work is required on the optimum positioning of sensors in conjunction

with these techniques.
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Figure 3 Experimental data from a healthy gear.
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Figure4 Experimental data from the gear with defect 'A".
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Figure 5 Experimental data from the gear with defect 'B'.
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