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1.0 INTRODUCTION

This report will detail the development of a depth dependant algorithm for the
calculation of phase speed and attenuation for a plane acoustic wave in a bubbly
medium.

First, the physics of the dispersive properties of bubbly media will be described,
culminating with appropriate equations for depth independent phase speed and
attenuation.

Second, explanations of the variation of a bubble population with depth will be
presented, resulting in the adaptation of existing dispersion algorithms to incorporate
depth dependence.

This report will conclude with a summary of the equations required by the reader to
perform meaningful simulations of the effect of depth dependent bubble populations
on a ray-tracing model of the surface layer of the oceans.

2.0 DISPERSION CAUSED BY BUBBLES

A plane wave travelling through a bubbly liquid will be attenuated more than in a
bubble-free liquid because of the added absorption and scattering effects of the
bubbles. Bubbles also cause the compressibility of the fluid volume to be complex.
Complex compressibility equates to a dispersive medium (Leighton, 1994).

Before detailing the physics of the propagation of a plane wave through a bubbly
liquid, this chapter will start by presenting the calculations for the attenuation of a
plane wave in a bubble-free environment, since it is the excess attenuation presented
to a plane wave in a bubbly medium that is detailed later in this section.

2.1 Homogeneous Attenuation of a Plane Wave

When there are no scattering processes involved, a plane wave is attenuated by the
conversion of acoustic energy into heat. Acoustic losses in sea water are caused by
the effects of shear viscosity, bulk viscosity and relaxation processes. The attenuation
of a plane wave is usually characterised by the Attenuation Coefficient and is
measured in dB per meter (Clay and Medwin, 1977).

2.1.1 The Attenuation Coefficient

The rate of decrease of pressure amplitude (P) with distance (x) in a progressive plane
wave is proportional to the pressure amplitude of the wave.

dpP
~o=@)n, M

Integrating with respect to x gives,



P, = P,exp(-a,x) )

where P, is the rms pressure at some distance x, P, is the rms pressure at x = 0 and ¢,
is the exponential pressure attenuation rafe measured in units of Np/m (Nepers per
metre). :

The plane wave attenuation coefficient measured in decibels is proportional to the
logarithm of the pressure ratio which can be found from equation (2), as follows:

P
dBloss = 2010810(‘;5'] = (e, )x(20log,, €) = 8.686(cx, )x (3)

The attenuation coefficient, & (dB/m), is therefore expressed as,

o = 8.686Q, 4)
Substituting equation (3), gives

dBloss = ox &)
2.1.2 Antenuation Coefficient of Sea Water

The attenuation coefficient of a plane wave in pure water is dominated by the shear
and bulk viscosities of the water and is proportional to the square of the frequency
(figures 1a and 1b). To extend the pure water model to sea water, the relaxation
processes of magnesium sulphate and boric acid are added to the pure water term.
Shear viscosity losses are caused by the frictional forces due to the relative motion of
adjacent layers of the liquid. Bulk viscosity is caused by molecular rearrangements
that occur during a cycle of the sound wave. The time necessary to reorder the
molecules of the medium in response to the changing pressure of the sound wave is
termed the relaxation time. Acoustic losses due to relaxation processes depend upon
the period of the sound wave and its relation to the relaxation time. Large losses are
evident when the two times are comparable and small losses are evident when the two
times are significantly different (Clay and Medwin, 1977).

The attenuation rate for fresh water is described in the following empirical expression
(Clay and Medwin, 1977),

434 (4uf
af-—

= ——+u' > (dB/
o3 uf)w( m) ©)

where pr is the density of pure water, U and u” are the shear and bulk viscosity of
water respectively and @ is the insonifying frequency in rad/s. Shear and bulk
viscosities are temperature dependent. For the purpose of calculations, a temperature
of 14°C was used, giving values of 1.2 x 10 Ns/m? for shear viscosity and 3.3 x 107
Ns/m? for the bulk viscosity of pure water.



The addition of the relaxation processes to equation (6) gives the empirical
attenuation rate for sea water () (Clay and Medwin, 1977):

o

s

L71x10%(4g, /34 4 VF* (S, AF, F* A B
_ (Hf3 Juf) + Ppt2 m (1—1.23X10_3PL)+ AZF;bFZ (7
PsCy Fh o

The salinity of the water, S,p, is in parts per thousand. The terms F,., and F; are the
temperature dependant relaxation frequencies of the magnesium sulphate and boric
acid respectively in kHz. The insonification frequency, F, is expressed in kilohertz,
A’ and A” are scaling factors that convert their respect terms in equation (7) to
decibels per unit distance (Clay and Medwin, 1977). The hydrostatic head pressure,
Py, due to the water column given is by,

By=psgh (8)
The sound speed, ¢, in the bubble-free water is a function of temperature, depth and

salinity, Several formulations exist, Clay and Medwin (1977} give the following
empirical expression:

~35)+1.58x10° P,
9)

¢; =1449.2+4.6T - 0.055T +0.00029T° +(1.34-0.0107 )§

ppt

where T (°C) is the water temperature.
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Figure 1: The attenuation coefficient due to absorption in sea water (solid line) at 16°C and salinity at
35 ppt with contributions from fresh water {large dashes) and relaxation contributions from boric acid
(small dashes) and magnesium sulphate (dash-dot). a) Frequency window is 0.1 to 100 kHz. b)
Frequency window is 10 to 10000 kHz.



2.2  The Dispersive Bubbly Medium

Since the bubble can be viewed as a single degree of freedom oscillator (Leighton,
1994), the driving force on the bubble delivered by the insonifying sound field will
not always be in phase with volume changes of the bubble. Therefore, the
compressibility (K,) of a bubbly medium will be complex since compressibility is the
ratio of the volume (V) to pressure (p) changes.

k(22 (10)

The complex compressibility of the bubbles can be added to the compressibility of the
bubble free water of a bubbly medium. This gives rise to a complex phase speed
given by equation (11).

¢t =(Kp)" = [f’—] (11)

where K, and k. are the complex compressibility and wave number respectively.

The pressure given in equation (2) can be expressed as a progressive pressure wave
travelling in the positive x-direction by,

P = P, exp j(wrt — gx)exp(—c ) (12)

In this form, it can be seen that the complex wave number takes the form k = g + jo%
since exp(jkx) = exp(jgx)exp(-ax). The imaginary part of the complex wave number
describes the attenuation whilst the real part describes the sound speed, (Leighton,
1994).

Commander and Prosperetti (1989) give the complex wave number for a bubbly
liquid as,

2

k2 =w—+4ﬂw2 J RUnb(RD)dRO (13)

¢t w; — 0 +2jbw

Ry=0

where Ry is the equilibrium radius of the bubble and np(Ry)dRy is the number of
bubbles having radii between Ry and dRp in a unit volume of test fluid. The resonant
frequency of the bubble is &y (see section 4) and @ is the frequency of the insonifying
sound field. It is traditional to set dRp to 1 um which has the effect of summing the
effect of number of bubbles, 7,(Ro), over each micrometer bin. The damping constant
b is a summation of the viscous, thermal and acoustic damping of the bubble.
Commander and Prosperetti (1989) give the following expression for b:

2
p=2H P gq 2R (14)

,Oan ZpROZCO 2c




The shear viscosity of the liquid is i, pp is the equilibrinm pressure in the bubble and
@ is a thermal scaling factor given by,

3y
® = : (15)
1-3(y = 1)jx|(j/ %) cotn(j / )" ~1]
where,
D
- 16
X R (16)

The gas thermal diffusivity is given by D and yis the ratio of specific heat of the gas
at constant pressure against that at constant volume.

The complex sound speed of the bubbly liquid is given by,

@ a7

Therefore, equation (13) becomes,

C—=1+4m:2T

2
2
Ce Ry=0

Rﬂn’b (RO MRO (]. 8)
W —0® +2jbw

Setting the square root of the above ratio to a real and imaginary part,

£ oujy (19)

m

the real part, u, is used to determine the phase speed through,
C -

V,=— (ms™) (20)
U

and the imaginary part, v, determines the attenuation coefficient,

a = 20{log,, e)(-“-(’:"—) (dB/m) 1)

Equations (20) and (21) allow the exact calculation of phase speed variations and
excess attenuation with frequency for any given bubble population.



2.2.1 Analysis of Model Bubble Populations

As an initial test, a set of bubble population models were applied to the dispersion
algorithms of equations (20) and (21) and the frequency-dependant phase speed and
attenuation coefficients were calculated. Finally, the data collected from a sea trial in
the Solent (Leighton ez al, 1998), using the combination frequency technique, was
also applied to determine the magnitude of effect on phase speed and attenuation
presented by a typical oceanic bubble population.

a) A mono-disperse bubble population

Figures 2a and 2b show the phase speed and excess attenuation that was derived for a
mono-disperse bubble population of equilibrium bubble radius of 0.994 mm and a
void fraction' of 0.0377%. It should be noted that the global maximum in the
attenuation plot occurs at the resonant frequency of the bubble population. The phase
speed asymptotes to a bubble free phase speed at high insonification frequencies.
Figures 2¢ and 2d plot the phase speed and attenuation for the same mono-disperse
bubble size but with varying void fractions. It can be seen that the reduction in the
number of bubbles reduces the phase speed and attenuation variation. The behaviour
of phase speed and attenuation as a function of void fraction (figures 2¢ and 2d)
should be noted as an indication of the behaviour of these two quantities with respect
to depth since bubble populations are also a function of depth (as will be shown in
section 3.2).
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Figure 2: a) Phase speed of pressure waves incident on a mono-disperse bubble population of

equilibrium radius 0.994 mm and a void fraction of 0.0377%. b) The excess attenuation evident of a

pressure wave incident on a mono-disperse bubble population of equilibrium radius 0.994 mm and a

void fraction of 0.0377%. c) Phase speeds of a pressure wave incident on mono-disperse bubble

' The Void Fraction (VF) is the percentage of gas in the liquid medium.,



populations all of equilibrium radius 0.994 mm and decreasing void fractions. d) The excess
attenuation evident of a pressure wave incident on a mono-disperse bubble population all of
equilibriumn radius 0.994 mm and a decreasing void fraction.

b) A bi-disperse bubble population

Figures 3a and 3b show the phase speed and excess attenuation that was derived for a
bi-disperse bubble population consisting of two equilibrium radii of 1.13 and 2.53 mm
with respective void fractions of 0.0421 and 0.0256%.

a

b

Phiase speed (m/s).

Attenuation Coefficient (dB/m).

101102 10 o 0 10 o P 10t P w®
Frequency (Hz). Frequency (Hz).

Figure 3: a) Phase speed of pressure waves incident on a bi-disperse bubble population consisting of
two equilibrium radii of 1.13 and 2.53 mm with respective void fractions of 0.0421 and 0.0256%. b)
The excess attenuation evident of pressure waves incident on a bi-disperse bubble population
consisting of two equilibrium radii of 1.13 and 2.53 mm with respective void fractions of 0.0421 and

0.0256%.

c) A typical oceanic bubble population taken from the first sea trial using the
combination frequency technique (Leighton et al, 1998)

Figure 4a shows a typical bubble population measured by the combination frequency
technique during the first sea trial. This distribution was put into the dispersive phase
speed and attenuation model (equations (20) and (21)) to produce figures 4b and 4c.
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Figure 4: a) A bubble distribution function taken from a sea trial using the combination frequency
technique. b) Phase speed variations with frequency derived for the bubble population shown in figure
4a. c) The excess aftenuation with frequency derived for the bubble population shown in figure 4a.



3.0 THE DEPTH DEPENDENCE OF MODEL BUBBLE POPULATIONS

Before the dispersion algorithms (section 2) can be applied to a depth dependent
bubble population, a basic knowledge of the variation of bubbles with depth must be

sought.

This section presents historical data of bubble populations taken at different depths to
allow the reader to apply the results in simulations.

3.1 Bubble Size Disfributions in the Ocean

Figure 5 shows a comparison of five historical measurements of the near surface
bubble population in deep water and at high wind speed. These studies are
specifically, Farmer and Vagle (1989, 1997), Johnson and Cooke (1979), Breitz and
Medwin(1989) and Phelps and Leighton (1998). The population density is presented
in terms of ny(Rp), the number of bubbles at a particular bubble radius per cubic meter
of water per micrometer radius range.
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Figure 5: A comparison of five historical measurements of the near surface bubble population in deep
water and at high wind speed. The data is taken from references (Johnson and Cooke, unbroken);
{Farmer and Vagle (1) from their 1989 study, large dashes); (Breitz and Medwin, unbroken); (Farmer
and Vagle (2) from their 1997 study, small dashes); and (Phelps and Leighton, bold solid line),

These measurements were all recorded near the surface (<1.5 m) in deep water (using
an oceanographic definition) in high wind speeds (11-15 m/s).

The earliest deep water bubble population measurements were performed by Johnson
and Cooke who employed a sophisticated optical measurement technique in 20-30 m
deep water, Their data for (.7 m depth and 11-13 m/s wind speed is shown in Fig. 5,



compared with other historical measurements which are described below. Their data
shows a steady increase in the population between ~ 200 um and 60 pm, which then
flattens out until approximately 20 um. However, other workers have commented that
the photographic observations lack the necessary resolution to observe these smaller
bubbles, and that the measured population may underestimate the actual population.

These optical measurements were followed by an acoustic technique of Farmer and
Vagle (1989) which used four upwardly facing sonar transducers and monitored the
linear backscatter at the four frequencies 28, 50, 88 and 200 kHz. The data was used
to infer an ambient bubble population which was then nsed in modelling the
waveguide propagation characteristics in the bubble layer. The population estimates
inferred from the strength of the backscattered signal were iteratively matched to the
Johnson and Cooke optical data at large bubble size. The estimated population is also
shown in Fig. 1, taken at 10 cm depth and in 12-14 m/s wind speed from the Fasinex
location, and shows the population to rise up to a maximum at 20 wm of around 1 x
10° bubbles per m® per 1 um radius increment.

The third notable historical measurement was performed by Breitz and Medwin
(1989) who used a flat plate resonator to characterise the local oceanic population.
This technique again relies on the linear bubble behaviour to affect the attenuation of
modes set up between the two resonator plates, which can be used to infer population
numbers for bubbles resonant at those modal frequencies. The technique can yield
absolute measures of the bubble population, and their measurements are shown on
Fig. 5 with the other two historical estimates. This data was collected at 25 cm below
the sea surface in 120 m water depth in a 12 m/s wind speed. Their data shows a
monotonically increasing bubble population between 250 and 30 pum, but with a
higher number of larger bubbles than the other two estimates and a slightly reduced
number of smaller bubbles than those estimated by Farmer and Vagle in the same
year.

A fourth measurement of the oceanic population is presented again by Farmer and
Vagle (this time in 1997), who themselves employed an acoustic resonator, but with a
larger radius span than the earlier Breitz and Medwin experiment. Their data was
taken at a lower depth of 1.3 m, although in wind speeds comparable with the other
data shown (10 m/s). Typical data is shown in Fig. § with the other historical
measurements. The data shows good agreement with the earlier workers for bubbles
larger than 40 pm, and then dips off to fall between the Breitz and Medwin data and
that of Johnson and Cooke for smaller bubbles. This may be due to the greater depth
at which the recent Farmer and Vagle population was measured, or a limitation of
their measurement technique. The workers calibrate their data by using their measured
population to calculate the sound speed anomaly due to the presence of the bubbles,
and compare this directly with measured sound speed data. The agreement is excellent
for larger bubbles, but at the smallest bubble sizes there is a divergence between the
measured value and predicted estimate.

The requirement of this section is to obtain simple expressions for the depth
dependence of the number of bubbles per cubic metre within one micrometre
increment of radius. That is to say, we require of n,(R,z). The first stage will be to
express of n,(Ro) for a fixed depth z, the data given in Figure 1.



Take the Breitz and Medwin data, for example. From resonance broadening
measurements for nine specific bubble sizes in the range 30 pum<R;<270 pm, Breitz

and Medwin found an average bubble density of

ny(Rg) = 7.8 x 108 —0_ " (for30 pm <Ry< 270 pim) (22)
[um]

In the same radius range the maximum bubble density detected was ny(Ry) = 1.6 X 10°

[Ry/1 _Ltm}‘z'7. Medwin and Breitz however found that only the larger bubbles in the

range 60 pm<R;<240 pm followed a my(Ro) o [Ry/1 pm] %6 distribution: the

population of smaller bubbles (30 pm<R,<60 pm) decayed as n,(Ro} & [R/1 pm] ™.

A [Ry/1 pm]* model distribution fits most of the data obtained by bubble counting

reasonably well.

This can be done with the other historical data sets (Figure 6).
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Figure 6: A comparison of the three historical measurements that require defining as simple
expressions. The data is taken from references (Farmer and Vagle (1) published in 1989); (Farmer
and Vagle (2) published in 1997); and (Phelps and Leighton, 1998).

Expressions for each of the bubble distributions shown in figure 6 were determined by
curve fitting linear, logarithmic, polynomial, power and exponential functions to the
data in a least squares sense. The function that gave the best qualitative fit to the data
was selected. The Farmer and Vagle (1989) and Phelps and Leighton (1998)
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Figure 8: The Phelps and Leighton data set was defined using two power law equations and a
polynomial expression. The power law equation cross at the peak in the distribution and the
polynomial expression accounts for the increased large bubbles measured. The resulting distribution
(indicated by the dashed line) is overlaid for comparison. The equation for the distribution is also
shown were n is the number of bubbles per ni’ per pim radius increment and R is the bubble radius in

um.

The Phelps and Leighton (1998) population was estimated using two power law
functions and a polynomial function to account for the increased number of large

bubbles measured (figure 8). The first equation (25) is valid up to 18 um and the
second equation (26) is valid from 19 pm to 62 pm. The final equation (27) is valid
from 63 um to approximately 170 um. Owing to the nature of the polynomial
expression this rapidly tends to zero for bubble radii > 170 pm.
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populations were modelled in this fashion but using a series of expressions to obtain a

good fit to the data.
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Figure 7: The Farmer and Vagle (1989) data set was defined using two power law equations crossing
at the peak in the distribution. The resulting distribution (indicated by the dashed line) is overlaid for
comparison. The equation for the distribution is also shown where n, is the number of bubbles per m’

per tim radius increment and R is the bubble radius in pm.

The 1989 Farmer and Vagle (1) population was estimated using two power law
functions (figure 7). The first equation (23) is valid up to 21 pm and the second

equation (24) is valid from 22 pm.
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The final distribution, that of Farmer and Vagle 1997 (2), is approximated using a
single exponential expression given in equation (28).

0.0426-F0

n,(R,)=6941e (28)
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Figure 9: The 1997 Farmer and Vagle (2) data set was defined using an exponential expression. The
resulting distribution (indicated by the dashed line) is overlaid for comparison. The equation for the
distribution is also shown where ny, is the number of bubbles per m® per um radius increment and R is
the bubble radius in Lm.
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3.2 Bubble e-folding Depth

Once an expression has been obtained for the bubble size distribution at a specific
depth (see previous section), the requirement is to produce a depth-dependent
expression for the bubble population distribution. Vertical arrays of bubble sensors
have been deployed, but searches have not yielded any published reports of the depth-
dependence of the bubble population from this trial®. However an estimate population
can be found by combining the fixed-depth populations calculated above, noting the
depth at which each was taken, and fitting to them an e-folding depth (of course,
variations in windspeed and water depth will reduce the validity of combining such
data in this manner, but the technique is sufficient for this estimation).

The population measurements of Farmer and Vagle (1989), Phelps and Leighton
(1998) and Farmer and Vagle (1997) were taken at a depth of 0.1 m, 0.5 m, and 1.3 m
respectively. The numbers of 20 um and 30 pm bubbles in each of this distributions
can be plotted against depth and an exponential curve of the form y = ae™, where a

and b are constants, can be fitted to the data. The resulting average e-folding depth is
given by the value of b is 3.3 m and 2.3 m respectively.

These depths are not far from the e-folding depths of backscatter (as opposed to
bubble densities) to be found in the literature. Direct sonar measurements in Loch
Ness by Thorpe (1982), and his analysis of Johnson and Cooke's sea results, suggest
that the acoustic scattering cross-section decays approximately exponentially with
depth (with an e-folding depth of metre order), and increases with windspeed.
Monahan and Lu characterise § plumes as having decay depths of around 0.5 m. Of
course the stronger the effects of turbulence and Langmuir circulation, the greater the
depth in general to which the bubble clouds will penetrate, and hence the less the e-
folding depth. It is generally accepted that when the circulation is strong the bubble
layer can extend to some 10 m below the sea surface.

Direct measurements of bubble size distributions near the ocean surface were
acquired in the Gulf of Mexico using acoustic resonators (Farmer et al., 1998). The
data were collected at five different depths with the wind speed ranging from 7.5 to 15
nvs. There is much temporal variability in the results, but when averaged, the size
distribution the data appear to fit the following empirical relation:

n,(Ry,2,W)=BW" exptz/ D)p(R,), (29)
with |

p(Ryy = {Ro " Roso (30)
° BR,* R, >a,

where W is wind speed at 10m, and z is depth below the instantaneous ocean surface.
Farmer found that ag = 100 yum was appropriate for the data set, with p; ~ -1.75 and p,

? However a personal approach by Prof. Leighton to Prof. Farmer of produced some unpublished data
which is discussed at the end of this section.

14



~5.0. The parameter 8 =a\"?’ =aS™ is adjusted to ensure continuity at @, and B =

4094. It should be emphasised that this is a simplification. For example there is some
evidence that a, decreases somewhat with depth and this is not included. There is
also systematic evolution of the bubble size spectrum with time following injection by
the breaking wave. The e-folding depth found by Farmer was D, = 0.7 m.

3.3  Inclusion of Depth Dependence into Calculations for Dispersion in Bubbly
Media

The continuous depth dependence of a bubble population can be written discretely in
terms of flat splines that interpolate the bubble population for a particular radii with

respect to depths zy to 4.

n,(Ry,2)=Y 1, (R,) G1)
J=1

This equation descretises the continuous depth dependent bubble distribution ny(Rs,z)
into a series of linear and flat equations that describe the bubble distribution function

over the depth domain [z;:z7;1]. This is represented in figure 10.

BUBBLE DISTRIBUTION n,{R,.z) (M)
Zl T T T T T

DEPTH, z (m}

7l

Figure 10: A continuous bubble distribution function as a function of depth (7). The plot shows the
exponential decay of the bubble population for a particular radius Ry with depth, z. The range of depth

is from z; to zn.
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BUBBLE DISTRIBUTION n,(R,,2) ()

DEPTH, z {m)

e, e

Figure 11: The descretised representation of the continuous bubble population of Figure 10. The
continuous function is represented as a series of linear and flar distributions within the depth domain

[zrzpet]

The discretisation of the bubble population as shown in figure 11 allows the
dispersive effect of the depth dependant bubble population to be calculated over a
finite distance of acoustic propagation. This approach also lends itself to a stratified
model of the ocean that may be used in a ray tracing model.

Substitution of equation (31) into equation (18) gives the following depth dependant
phase speed ratio.

R nb(Ro’Z)
Z(RO’Z) w2+2jb(Rova

Cj EZ; =1+ 4mc*(z) _f

dR, (32)

4.0 CONCLUSIONS

The following section will summarise the equations that are depth dependent and have
to be modified from their original form in order that they can be employed in a ray-
tracing model,

The first is the depth dependent dispersion ratio which produces phase speed
variations and excess attenuation coefficients via equations (20) and (21) respectively.

( )— R nb(RO’z)
2(Z) rdne’( Z)I o} (Ry,2)-0 +2Jb(Ro,z)COdR ©3)

Equation (31) requires the descretised depth dependent bubble population,

N
n,(Ry,2)=Y.m,,(R,) (34)
J=1
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resonant frequency of a bubble,

1 20) 20 4u’
Wiz)= ——,13K I — |-—- 35
0() ZﬂRo\/._a\/ (po() Ro] R, PROZ (35)
damping constant,
2
o)=Ly 2o gq, O°Ry (36)
PRy"  2pR)"® 2c

and sound speed,

~35)+1.58x10° P, ()
(37)

c(z)=1449.2+ 4.6T —0.055T % +0.00029T° + (1.34 — 0.010T \(§

ppt

where,
P,(z)=p,8z 38)

The depth dependent homogenous attenuation coefficient for saline water can be
given as,

1.71x10%4p . /13+ ', JF? (S A'F_F? " 2
e, (z)= X (ﬂf +Mf) +[ oo d o ](1—1.23x10_3ﬂ(z))+(i£’—‘%f—]

pciz) F>+F2 F?+F?
(39)
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