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Abstract

This paper presents a new technique for scaling mode shapes, obtained from cepstrum-based operational modal analysis

(OMA) techniques, such as that described in the companion paper, using finite element model updating. This OMA

technique estimated frequency response functions (FRFs) between a cyclostationary input and response measurements.

If the input is frequentially white, the resulting FRFs can be obtained up to an overall scaling constant using the in-band

poles and zeros identified in the OMA process and employing the response autospectrum as a reference to correct for

the effect of out of band modes. In this way, the mode shapes would be scaled correctly relative to each other but

would still have arbitrary overall magnitude. If the input is not white, then no reference is available to correct

FRF regenerated from in-band poles and zeros, and so these FRFs will exhibit both an overall slope resulting from the

effect of out-of-band poles and zeros, and an arbitrary magnitude. This overall slope will differ between measurement

locations so even the relative scaling between the mode shapes will be lost. This paper describes a simple technique for

recovering both the relative and overall scaling of the FRFs, and hence the mode shapes, based on finite element model

updating.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there has been a great deal of research in the field of operational modal analysis (OMA).
A number of techniques have been presented which aim to estimate the modal properties of a system, i.e. its
resonances, damping and mode shapes, from response only measurements. The primary advantage of these
techniques over traditional input/output modal analysis is that the in-service forces can be used to excite the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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structure which avoids the need for an artificial input, such as a shaker or impact, and means that the modal
properties recovered will be those that the system exhibits in service. These techniques include the frequency
domain decomposition (FDD) algorithms [1,2], stochastic subspace iteration (SSI) [3,4] and the new
PolyMAX technique [5]. However, all these techniques make an underlying assumption about the nature of
the input—that it is frequentially white.

One drawback of OMA is that, without knowledge of the input, both the overall and the relative scaling of
the mode shapes is lost. Scaled mode shapes are important for a number of applications, including some forms
of structural health monitoring and force identification [6,7]. If the input is frequentially white then the relative
scaling of a particular mode to all other modes is retained and only an overall scaling factor for all modes
needs to be recovered in order to obtain scaled mode shapes. If the input is not white then both the relative and
overall scaling is lost.

A number of OMA techniques have also emerged, which seek to exploit the properties of the cepstrum
[8–10]. The cepstrum is a homomorphic operator, meaning that in the cepstrum domain the force and transfer
function are additive. In addition, if the input is frequentially smooth, then its cepstrum will be very short and
so by removing the low ‘‘quefrency’’ region (the name ‘‘quefrency’’ is derived from ‘‘frequency’’ in the same
was as ‘‘cepstrum’’ is derived from ‘‘spectrum’’), the cepstrum of the transfer function can be isolated
and curve-fitted to extract the system modal properties. This technique was originally developed for SIMO
systems but has since been expanded to particular MIMO systems, one of which is described in the companion
paper [11].

The ability to cope with non-white inputs and retain the relative scaling of the modes makes these
techniques very powerful but they still require a priori knowledge in the form of an equalisation curve in order
to overcome the effect on each transfer function of out-of-band modes. This a priori knowledge can take the
form of a set of transfer functions from a traditional input/output modal analysis or a finite element model.
However, as was discussed above, the advantage of OMA lies in the fact that input/output modal tests are not
required, and finite element models are often poor predictors of the dynamic performance of a system. This
paper presents a technique for obtaining the equalisation curves and scaling mode shapes by using an updated
finite element model.

In the last few years, a significant amount of research has been devoted to the question of scaling
mode shapes from OMA. One important contribution has been in obtaining scaling factors for each
mode based on results of a separate, but significantly abridged, OMA in which the system has been
modified, usually with a known added mass [12,13]. This technique has been shown to provide accurate
mode shape scaling but is relatively expensive in that it requires a separate test and modifications to the
system.

Often a relatively detailed FEA model exists even for complicated systems. It may not be suitable for
dynamic analysis but so long as the mass distribution is relatively accurate, the stiffness can be coarsely
updated using the resonances alone. The FRFs from the updated model can then be used to calculate the
equalisation curves. Alternatively, a much simpler and coarser model can be used.

2. Theoretical overview

2.1. Equalisation curves

Gao and Randall [9,10] showed that, by isolating the region of the cepstrum, which is dominated by the
transfer function, the system resonances and anti-resonances can be correctly identified. However, they also
showed that this is not sufficient to reconstruct the FRF due to the influence of out-of-band modes which are
excluded from the analysis. This could be corrected by estimating ‘‘phantom zeros’’, artificially introduced in-
band zeros, replacing out-of-band poles and zeros, which have no physical relation to the system, and
generating a magnitude equalisation curve from these phantom zeros.

Rather than generating the equalisation curve from phantom zeros, subsequent developments of the
cepstrum technique have included a far simpler difference method where the regenerated FRF is compared
with a reference FRF, which may come from a previous measurement or a finite element model. The log
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magnitude difference between the two is smoothed across the frequency range to provide the equalisation
curve. The log magnitude difference is obtained from

�ðf kÞ ¼ log jHref ðf kÞj � log jHregenðf kÞj, (1)

where Href and Hregen are the reference FRF and the FRF regenerated from in-band poles and zeros,
respectively. The equalisation curve is then obtained by taking the Fourier transform of the difference to
create a two sided ‘‘spectrum’’

GðkÞ ¼ 1
2N

X2N�1

n¼0

�ðnÞe�jpkn=N , (2)

where N is the length of e. Taking the first m samples of G, where m is typically small (say ten), and applying a
Hilbert transform relationship, the inverse Fourier transform is then employed to obtain the equalisation
curve

HeqðnÞ ¼
X2N�1

k¼0

ĜðkÞwke
j2pkn=N , (3)

where Ĝð1Þ ¼ Gð1Þ, Ĝð2 : mÞ ¼ 2Gð2 : mÞ, and Ĝðmþ 1 : 2NÞ ¼ 0, and wk is a smooth liftering function such as a
half Hanning window. This process, including a typical equalisation curve, is represented in Fig. 1.

However, if significant differences exist between the resonance and anti-resonance locations in the
regenerated and reference FRFs, if for example the finite element model used to generate the FRFs is
inaccurate, then the equalisation curve can become distorted. This paper suggests first updating the finite
element model using the resonances identified by an OMA technique which ensures that significant differences
between regenerated and reference resonances and anti-resonances can be avoided. It should be noted
however, and it is shown below, that the updated model need not be completely accurate.

2.2. Finite element model updating

Given that the OMA technique presented in the companion paper identifies both resonances and anti-
resonances, it may be suggested that these could be used to obtain an accurate update of a finite element model
[14–16]. The mode shapes from such a model would then be correctly scaled. However, as outlined in [17], the
resonances alone may be sufficient to update a model in the frequency range of interest. This paper therefore
pursues a different path, that of scaling the OMA FRFs using FRFs from a finite element model which
has been updated using only the resonance information. The process described in this paper is summarised in
Fig. 2.
Fig. 1. Typical FRFs (a): reference (solid line), regenerated (yy) and scaled (- .- .- .- ), and the corresponding equalisation curve (b).
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Fig. 2. Proposed procedure for obtaining scaled mode shapes from OMA.

Fig. 3. Simulated beam.
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3. Results

3.1. Simulation

The proposed technique was applied to a simulated system consisting of a free–free beam with localised
damage, as represented in Fig. 3.

The beam was modelled using 10 identical brick elements with displacement dof only [18]. The use of brick
elements may not provide the most accurate model for this system but it will be shown that the technique
presented here is sufficiently robust that they are adequate for this application.

The density of steel was taken to be 7.85e3 kg/m3, and the elastic and shear moduli were 210e3 and
77e3MPa, respectively. The mass and stiffness matrix of a typical element is given by

m ¼
rhbl

4

1 0

0 1

� � � 0

c

..
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2 0
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1 0
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where r is the density and l, b, h are the length, breadth and height, respectively:

k ¼

a1 þ 2a3 �a1 þ a3

�a1 þ a3 a1 þ 2a3

a4 a1 � 2a3

�a4 �a1 � a3

�a1 � a3 �a4

a1 � 2a3 a4

a4 �a4

a1 � 2a3 �a1 � a3

a2 a4

a4 a1 þ 2a3

�a4 �a2

�a1 þ a3 �a4

�a1 � a3 a1 � 2a3

�a4 a4

�a4 �a1 þ a3

�a2 �a4

a1 þ 2a3 a4

a4 a2

2
6666666664

3
7777777775

, (5)

where a1 ¼ Glb=4h, a2 ¼ Ghb=l, a3 ¼ Ehb=6l, a4 ¼ Gb=2, G is the shear modulus and E is the modulus of
elasticity, and u ¼ f x1tx x1bx x1z x2tx x2bx x2z gT where x and z refer to displacements along the
longitudinal axis of the beam and transverse to the longitudinal axis of the beam, respectively, and the
subscripts t and b refer to the top and bottom of the beam.

The damage was simulated by a reduction in stiffness of three elements along the beam, akin to the cracks in
the beam test rig experiment below, which produced a significant change in the resonances but only a minor
change in the mode shapes of the beam, as represented in Table 1 and Fig. 4.
Table 1

Resonance frequencies of the modelled uniform and damaged beams

Bending mode Resonance frequency (Hz) % Difference

Uniform beam Damaged beam

1st 103.39 83.100 20

2nd 282.22 211.60 25

3rd 553.06 453.65 18

4th 925.65 889.21 3.9

5th 1426.1 1331.7 6.6

6th 2108.5 1773.0 16

Fig. 4. MAC of bending modes 1–6 for the uniform and damaged beams.
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3.2. Estimation of the system resonances

The responses of the simulated beam were calculated using a coloured cyclostationary excitation. This
excitation was a burst random signal, with a duty cycle of 250ms on/250ms off, subsequently filtered using a
first-order Butterworth low-pass filter. This provided a smooth but steep decay across the frequency range,
ensuring that the scaling of the higher modes would be significantly distorted. Such distortion is experienced in
many practical applications such as vibrations from internal combustion engines. The autospectrum of the
input is represented in Fig. 5.

Noise free transfer functions were generated using a pole/residue model based on the resonances and mode
shapes from the finite element model. These were used in conjunction with the cyclic spectra of the input to
generate the cyclic spectra of the responses, which are represented in Fig. 6. As is clearly evident in this figure,
the coloured input has severely distorted the magnitude of the modes across the frequency range so that both
the relative and overall scaling of the modes has been lost.
Fig. 5. Autospectrum of the coloured burst random excitation.

Fig. 6. Cyclic spectra of the responses of the simulated beam from each of the 11 measurement points.
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The system resonances were then estimated using the OMA process described in the companion paper on
the driving point cyclic spectrum. These resonances were then used to update the finite element model of the
beam.

It should be emphasised that the OMA process employed here and described in the companion paper has no
difficulty in identifying the system resonances and anti-resonances, even in the presence of such significant
distortion. The only restriction is that the second-order cyclostationary component of the excitation is
frequentially smooth, which is far less restrictive that the usual white noise assumption.

3.3. Finite element model updating

The stiffness of the elements which exhibited damage were updated using a standard penalty function
method [19] and the non-linear least squares optimisation algorithm in Matlab. The updated resonance
frequencies are presented in Table 2.

3.4. Regeneration of the correctly scaled FRFs

The FRFs from the updated finite element model were then used in the generation of the equalisation
curves, as described in Eqs. (1)–(3). These equalisation curves, together with the in-band poles and zeros
identified during the OMA process described in the companion paper, were then used to regenerate the
correctly scaled FRFs. The regenerated FRFs are presented in Fig. 7 below showing the effect of the
equalisation.
Table 2

Updated resonance frequencies for bending modes 1–6

Bending mode Resonance frequency (Hz) % Difference

Actual Updated

1st 83.10 83.04 0.07

2nd 211.6 211.55 0.02

3rd 453.65 453.90 0.06

4th 889.21 889.09 0.01

5th 1331.7 1331.8 0.01

6th 1773.0 1773.1 0.01

Fig. 7. Regenerated FRFs of the simulated beam from the OMA process—without equalisation (a) and with equalisation (b).
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It is important to emphasise that the equalisation does not counteract the distortion of the coloured inputs,
rather it merely accounts for the effect of the out-of-band modes. By separating the input and transfer function
in the cepstrum domain, the estimated system properties are completely unaffected by the colour of the input.
This robustness to non-white inputs is one advantage of cepstrum based system identification techniques.

The scaled mode shapes are compared with those of the ‘‘damaged’’ beam finite element model in Fig. 8.
The correlation of the mode shapes is further emphasised by the modal assurance criterion (MAC), as

represented in Fig. 9.
Fig. 8. Bending mode shapes 1–6 of the simulated beam—from FE model (grey) and from the OMA process after scaling (black).

Fig. 9. MAC of the scaled mode shapes from OMA and from the original beam model.
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Although the MAC does not take into account the scaling of the modes, this figure shows that the
equalisation of the FRFs was successful as the unequalised FRFs each have a unique slope, which distorts
each dof independently across the frequency range, as seen in Fig. 7. As a result any mode shape information
is severely affected and the MAC would be greatly reduced, as represented in Fig. 10.

4. Experimental results

4.1. Experiment set-up

The technique was tested using measurements taken on a steel beam test rig, represented in Fig. 11. The
beam was identical to the simulated beam used in the previous section, with dimensions 20� 50� 1000mm3,
was suspended on soft springs to simulate a free–free support with the highest rigid-body mode at 5Hz
(pitching mode), well separated from the first bending mode at 95Hz.
Fig. 10. MAC of the mode shapes from the unequalised FRFs from the OMA process and from the original beam model.

Fig. 11. Steel beam test rig.
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The beam has two cuts across its width and through approximately 75% of its depth located at 190 and
540mm from the left-hand edge. The beam was excited through a shaker mounted on the longitudinal
centreline of the beam at the left hand edge. The responses to this excitation were measured at 11 equally
spaced locations along the beam, also along its centreline. Exciting along the centreline of the beam ensured
only the bending modes were excited which allowed a simplified finite element model to be employed.

The excitation consisted of burst random noise, with 250ms on/250ms off duty cycle, across a frequency
range of 2048Hz. The noise was coloured using a pink filter creating a significant scaling distortion of the
response spectra. The response measurements were sampled at 4096Hz and each measurement was of 10min
duration. The long measurement length was required in order to allow sufficient averaging to achieve a
smooth cyclic spectrum.

The input autospectrum, as measured by the force transducer, of a typical measurement is represented in
Fig. 12.

Evident in this figure is the overall shape of the pink filter, the effect of the anti-aliasing filter above 1.6 kHz
and the peak notches at each resonance. These peak notches are due to the separation between the natural
frequency of the beam itself (as registered by the ratio of response to measured force) and the maximum
response at the natural frequency of the beam plus shaker moving element. In OMA, this is generally not
encountered because the system is excited by in-service forces and not through an attached system such as a
shaker.

The cyclic spectra were calculated in the manner described in the companion paper. The eleven cyclic
spectra are represented in Fig. 13.

The distortion due to the coloured input is especially evident when the cyclic spectra are compared with the
corresponding FRFs, as represented in Fig. 14 for a typical measurement.

The effect of this distortion is to corrupt the relative scaling of each mode, meaning that each mode now has
an independent and arbitrary scaling. If the input was white, then only an overall scaling for all modes would
need to be recovered.
4.2. Finite element model

The beam was modelled using 20 identical brick elements with displacement dof only, as described above.
The material properties were identical to those used in the simulation above.
Fig. 12. Typical measured input autospectrum of the beam.
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Fig. 14. Comparison of a typical FRF (solid line) and the corresponding cyclic spectrum (dashed line) which has been distorted by the

coloured input.

Fig. 13. Cyclic spectra of the beam for a ¼ 1/T.
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4.3. Finite element model updating

The resonance frequencies in the range 1–2048Hz were estimated from one of the cyclic spectra above by
curve-fitting in the cepstrum domain. These resonance frequencies were then used to update the finite element
model to account for the effect of the cuts.

The effect of the cuts was represented in the model as reduced values of the elastic modulus in the
corresponding elements. The elastic modulus of these two elements was then updated using the non-linear
least squares optimisation algorithm in Matlab. The updated elastic moduli were 85.5 and 66.7MPa,
respectively. The resonances of the original and updated model and those estimated from the test rig are
contained in Table 3.
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Fig. 15. Comparison of the driving point FRF from measurement (solid line) and from the updated finite element model (dashed line).

Table 3

Resonances of the steel beam test rig and updated finite element model

Bending mode Resonance frequency (Hz) % Error in FE model

Original FE model Updated FE model Test rig Before updating After updating

1st 106.6 93.63 95.50 12 2.0

2nd 292.3 278.3 275.0 6.3 1.2

3rd 570.2 499.5 512.0 11 2.4

4th 938.8 868.3 869.0 8.0 0.12

5th 1398 1290 1320 5.9 2.3

6th 1948 1911 1860 4.7 2.7

D. Hanson et al. / Mechanical Systems and Signal Processing 21 (2007) 2459–24732470
As can be seen above, the resonance-only update improves the accuracy of the modelled resonances, but
some significant error still exists. This can be seen in a comparison of a typical FRF from the updated model
and the measurements from the beam, as represented in Fig. 15.

FRFs from this updated model were then used to calculate the equalisation curves in the OMA process. The
driving point FRF and a typical transfer FRF are represented in Fig. 16.

It is important to note that this process was robust to the small errors still present in the updated FRFs,
both in terms of frequency and damping as can be seen in Fig. 15, indicating that the relatively coarse model
and resonance-only update were sufficient to generate the equalisation curves. In addition, the resonances of
the scaled FRFs from OMA can be seen to be slightly lower than those of the measured frequency response
functions. As mentioned above, this is due to the added mass of the shaker moving element, which affects the
response spectra but not the frequency response functions. This effect would be observed in any OMA process
which uses response spectra as its basis.

Interestingly, the effect of out-of-band modes in the pole/zero model employed here is much less in driving
point measurements than on transfer measurements; the opposite of the traditional pole/residue model. As
Gao and Randall [9] explain, the amplitude ratio of a out-of-band poles and zeros tend to balance in driving
point measurements because there are an equal number of out-of-band poles and zeros. Therefore, the in-band
effect is very small. This is not the case in transfer measurements, which exhibit more poles than zeros and so
their amplitude ratio is unbalanced. The equalisation curves of driving point measurements therefore will be
relatively flat and those of transfer measurements will be relatively steep.
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Fig. 16. Comparison of correctly scaled FRFs from OMA (dashed line) and measured (solid line); driving point (a) and typical transfer (b).

Fig. 17. Comparison of scaled mode shapes from OMA (black) and from input/output modal analysis (grey).
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4.4. Correctly scaled mode shapes from OMA

The correctly scaled FRFs were curve-fitted using commercial software and the mode shapes generated.
These mode shapes are compared with those from the measured FRFs in Fig. 17. As can be seen, the scaled
mode shapes from the OMA process compare relatively well with those from the traditional input/output
modal analysis.

The mode shapes in Fig. 17 may be also be compared using the MAC as represented in Fig. 18 although as
discussed above, this does not provide a measure of scaling of the modes and so represents the degree to which
the equalisation was successful.
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Fig. 18. MAC of the mode shapes from OMA and from input/output modal analysis.
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5. Discussion

This paper presented a simple method for recovering both the relative scaling between modes, and the
overall scaling of all modes, which are lost in OMA when the input excitation is not white. The technique
involved identifying the resonances from a single distorted response spectrum and using these to update a
simple finite element model. The frequency response functions from this updated model could then be used to
provide the equalisation curves for a cepstrum based blind identification technique.

The technique was demonstrated on a simulated beam with localised damage and using measurements taken
on a steel beam test rig which had localised damage in the form of cuts across its width. In both cases, the
input excitation decayed significantly across the frequency range so that both the relative and overall scaling of
the modes was lost. The technique was shown to recover scaled mode shapes in both cases, even when small
differences existed between the FRFs of the updated model and the response cyclic spectra.

This technique is proposed in conjunction with a cyclostationary and cepstrum based OMA technique
outlined in the companion paper which may be applied to vehicles with internal combustion engines. In this
way, it might be possible to obtain scaled mode shapes of vehicles such as locomotives and passenger trains
from in-service measurements.
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